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Abstract— We consider a multiple access channel (MAC) with
multiple antennas, where each user has different diversity and
multiplexing gain requirement. For this configuration, we charac-
terize the fundamental tradeoff region for each user. Specifically,
we compute the maximum achievable diversity gain for a user
in a MAC, given an achievable point in the multiplexing gain
region.

I. INTRODUCTION

Communication innovations aspire for increased reliabil-
ity and speed. Multiple antennas at the transmitter and re-
ceiver operating over a wireless medium have been shown
to improve both. The improvements in reliability and speed
quantified using diversity and multiplexing gains occur with
a fundamental tradeoff. This tradeoff has been character-
ized for an i.i.d. quasi-static Rayleigh fading multiple-input,
multiple-output (MIMO) channel [1]. Specifically, the maxi-
mum achievable diversity gain, d∗m,n(r), at a given multiplex-
ing gain, r, for a MIMO system with m transmit and n receive
antennas, is given by,

d∗m,n(r) = (m− r)(n− r), (1)

for all coherence times, tc ≥ m+n−1. Recently, the diversity
multiplexing (D-MG) tradeoff was extended to non i.i.d.
Rayleigh and other fading distributions in [2]. In a multiuser
scenario like the MIMO multiple access channels (MAC), in
addition to diversity and multiplexing gains, multiple access
gain is observed. In an i.i.d Rayleigh channel, when all users
have the same number of transmit antenna, the combined effect
from all users at the receiver is no different from a point-to-
point MIMO link. Thus user interference is exploited as multi-
ple access gain which is defined as the ability of the receiver’s
antennas to spatially separate signals from different users. For
a MAC with symmetric diversity and rate requirements, [3]
characterizes the tradeoff between the three types of gains. In
this paper, we focus on a similar tradeoff for a MIMO MAC
with asymmetric requirements.

In this paper, we consider a MIMO MAC where each
user has different number of transmit antennas. This asym-
metry translates to a situation where all users have different
maximum achievable diversity and multiplexing gains. In this
paper, we derive the optimal D-MG tradeoff region for each
user in an asymmetric MAC. This tradeoff is achieved using
i.i.d Gaussian codebooks(uniform superposition coding) for all
users and a typical set decoder. In particular,

• The tradeoff region establishes conclusively, that each
user in an asymmetric MAC can achieve its maximum
diversity simultaneously with all other users and is not
limited by the user with the least number of transmit
antennas. This result is an improvement over [3], where
authors assume a common diversity requirement for all
users in the MAC.

• In an asymmetric MAC, the received signals from all
users pass through independent but not identical Rayleigh
channels. But, in light of a recent result in [2] for non i.i.d
Rayleigh channels, we show that multiple access gain is
guaranteed for all users in an asymmetric MAC.

Additionally, we find the maximum achievable rate region for
an asymmetric MAC, given a set of diversity requirements
for all users. A achievable rate-tuple for a set of diversity
gains is fully defined by the user with the minimum diversity
requirement. A bound on the achievable diversity region for
a given set of multiplexing gains was found for a two user
asymmetric MAC in [4]. It was shown, using a joint ML
receiver and superposition coding, the users’ diversity gains
are not independent of each other and thus multiple access
gains are not exploited.

The rest of the paper is structured as follows. Section II
formally introduces the system model and the problem being
studied. Our main result which characterizes the maximum
diversity gain as a function of achievable multiplexing gain-
tuples is in Section III. The derived tradeoff is illustrated in
Section IV followed by conclusions in Section V.

Notation: Uppercase boldface letters represent matrices. H†

represents the hermitian transpose of matrix H. CN (0, 1)
denotes a complex Gaussian random variable with zero mean
and unit variance. The notation, ∆= is read, ”is defined as” and
the notation, .=, in f(β) .= βa is used to denote exponential
equality [1].

.≤,
.≥ are similarly defined.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multiple access MIMO channel with K users as
shown in Fig. 1. The wireless link between user i and the base
station is described by a single flat fading path between any
of its mi transmit and n receive antennas. The channel gains
between all pairs of transmit and receive antennas for the ith

user are lumped in a n×mi -dimensional channel matrix, Hi,
whose elements are assumed to be i.i.d. CN (0, 1). Further, the
channel is assumed to be block fading in which the entries in
the channel matrix may change independently after coherence
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Fig. 1. A MAC with K users with each user having different number of
transmit antennas

time, tc symbols. Let Xi be the mi×tc -dimensional complex
transmit matrix for the ith user. Then, the n× tc -dimensional
received matrix, Y, at the base station is given by,

Y =
K∑

i=1

√
SNR
mi

HiXi + Z (2)

where Z is the n × tc -dimensional additive white Gaussian
noise - CN (0, 1). SNR is the average signal to noise ra-
tio (SNR) at the each receive antenna in the base station. Since
the noise is assumed to have unit variance, SNR is indicative
of the total transmit power. Since, each user in the MAC can
have different number of transmit antennas, we will refer to
this channel as the asymmetric MAC in the sequel.

Let the users in the MAC communicate over a fixed block
of tc symbols. A SNR-indexed codebook for user i, denoted
by Ci{SNR} is made up of 2tcRi codewords, where Ri

denotes its rate of communication. The m × tc dimensional
codewords are denoted as {X(i)

j , j = 1, . . . 2tcRi}. We wish
to characterize the maximum achievable diversity d∗k for any
user, k = 1, . . . ,K, i.e.,

P (k)
e (SNR) .= SNR−d∗k (3)

for a given set of the K-tuple spatial multiplexing gain
(r1, . . . , rK), in the achievable rate region of the MAC, where,

ri = lim
SNR→∞

Ri(SNR)
log SNR

. (4)

For each rate-tuple, define d∗k(r1, . . . , rK) as the supremum of
the diversity gains for the kth user over all coding schemes.

III. OPTIMAL DIVERSITY MULTIPLEXING TRADEOFF OF
ASYMMETRIC MAC

Theorem: Consider a MAC with K users, where the ith

user has mi transmit antennas and the base station has n
receive antennas. If the block length tc ≥ (n−1)+

∑K
i=1 mi,

the optimal diversity-multiplexing tradeoff for any user k in
the MAC, given a achievable rate vector, (r1, . . . , rK), is
described by

d∗k(r1, . . . , rK) = min
Sk

d∗P
i∈Sk

mi,n

(∑

i∈Sk

ri

)
(5)

where Sk =
{
{k}∪ S̃k, ∀S̃k ⊆ {1, . . . , k−1, k+1, . . . , K}

}

is the subset of users containing user k and d∗m,n(r) is
the maximum diversity for a point-to-point channel with m
transmit, n receive antennas and a multiplexing gain r defined
in (1).

Proof: The proof involves the computation of the probability
of error that is asymptotic in SNR. The dominant error event
for block length, tc ≥ (n − 1) +

∑K
i=1 mi occurs when the

channel is in outage i.e., the target rate-tuple does not lie in
the multiple access region defined by the realized channel
matrices {Hi}i. Following similar arguments as in [1], the
error probability for the kth user can be bounded as,

P (k)(O) ≤ P (k)
e (SNR) ≤ P (k)(O) + P (k)

e (no outage), (6)

where P (k)(O) is the outage probability and P
(k)
e (no outage)

is the error probability under no outage for user k. We first
compute the outage probability and show using a random cod-
ing argument that conditioned on no-outage, the SNR exponent
of the error probability is no worse than the probability of
outage for all block lengths, tc ≥ (n− 1) +

∑K
i=1 mi.

A. Outage Formulation

Definition (Outage Event [3]): For an asymmetric MAC
with K users, the outage event is

O ∆=
⋃

S

OS , (7)

where the union is taken over all subsets S ⊆ {1, . . . , K}.
The outage event OS represents the event that outage occurs
for a subset of S users and is defined as,

OS
∆=

{
H ∈ Cn×M : I (XS ;Y|XSc ,H = H) <

∑

i∈S

Ri

}

(8)
where H = [H1 H2 . . . HK ] is the concatenated channel

matrix and Xs =
[
X†

1 . . . X†
|S|

]†
contains the input signals

from the users in S and M =
∑K

i=1 mi.
To compute OS , we assume that the receiver has the

knowledge of the correct data symbols XSc transmitted by
users in Sc and cancels the contribution of XSc from the
received signal. Then, for the remaining |S| users, outage
occurs when the mutual information is smaller than the desired
sum rate. The behavior of the outage probability for the
asymmetric MAC is summarized in the following Lemma.

Lemma: For an asymmetric MAC with K users, where the
ith user is equipped with mi transmit antennas, and the base
station with n receive antennas, let the data rate of user i be
Ri = ri log SNR, for i ∈ {1, . . . , K}. The probability of error
for user k with any coding scheme is lower bounded as,

P (k)
e (SNR)

.≥P (k)(O) .= SNR−d∗k(r1,...,rK), (9)

where d∗k(r1, . . . , rK) is defined in (5).
Proof: Since the receiver cancels the contribution of the

data XSc
k

from the received signals given in (2), the channel
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can now be rewritten as,

YSk
=

√
SNR

∑

i∈Sk

√
1

mi
HiXi + Z, (10)

=
√

SNRHSk
XSk

+ Z, (11)

where HSk
∈ C

n× P
i∈Sk

mi

is the concatenated channel ma-

trix of users in Sk with entries
{√

1
mi

Hi

}

i∈Sk

. Thus, the

problem is now reduced to a point-to-point problem with
MSk

=
∑

i∈Sk

mi transmit antennas and n receive antennas, and

a channel matrix HSk
whose entries belong to an independent

but no longer identical complex Gaussian distribution. Let
the target data rate of user i be Ri = ri log SNR for i ∈
{1, . . . ,K}. Then, the SNR exponent of the outage probability
for such non-i.i.d. Gaussian channel is shown in [2] to be,

P (OSk
) = Pr

[
I

(
XSk

;Y|XSc
k
,H = H

)
<

∑

i∈Sk

Ri

]

(a).= Pr

[
det(I + SNRHSk

H†
Sk

) < SNR
P

i∈Sk

ri
]

.= SNR
−d∗MSk

,n

“P
i∈Sk

ri

”
, (12)

where (a) is derived by choosing the input {Xi}i of all
users to be i.i.d Gaussian distribution - CN (0, 1) which is
shown to minimize the P (OSk

) for all Sk simultaneously.
Thus, even when the entries of the point-to-point link are
no longer identically Gaussian, the achievable diversity for
a given multiplexing gain is no different than when the entries
are i.i.d. Gaussian in the high SNR regime and the multiple
access gain is guaranteed for all users.

Hence, the total outage probability [3] can be shown to be,

P (k)(O) = P

(⋃

Sk

OSk

)
≤

∑

Sk

P (OSk
) .= P (OS∗k ), (13)

where S∗k = arg min
Sk

d∗MSk
,n

(
∑

i∈Sk

ri

)
is the subset with the

slowest decay rate of P (OSk
). Combining (13) with the fact

that P (k)(O) ≥ P (OS∗k ), we have

P (k)(O) .= P (OS∗k ) .= SNR
−min

Sk

d∗MSk
,n(

P
i∈Sk

ri)

. (14)

Combining (14) with (6), we see that the outage probability
lower bounds the error probability and the result follows.

B. Achievability

To complete the proof of the theorem, we need to show that
the lower bound in (9) is tight in the limit SNR → ∞, for
block length tc ≥ (n− 1) +

∑K
i=1 mi. We now show that for

any rate K-tuple, (r1, . . . , rK), there exists a coding scheme
that achieves the diversity d∗k(r1, . . . , rK) for user k.

Consider the ensemble of i.i.d. complex Gaussian random
codes where the ith user generates a SNR indexed codebook
Ci{SNR} containing 2tcRi independent codewords, denoted as
X(i)

1 , . . . ,X(i)

2tcRi
. Each codeword is a m× tc matrix with i.i.d

CN (0, 1) entries. These codewords are revealed to the senders
and the receiver. In each coherence time, tc, the transmitted
signal of user i is chosen equiprobably from the codebook
Ci{SNR}.

Let Atc
ε denote the set of typical (X(1), . . . ,X(K),Y)

sequences. The decoder is a typical set decoder [5],
where the decoding function chooses a K-tuple,(
a1, . . . , aK : ai ∈ {1, 2tcRi}), such that

(
X(1)

a1
,X(2)

a2
, . . . ,X(K)

aK
,Y

)
∈ Atc

ε . (15)

Due to inherent symmetry in the random codeword con-
struction, the probability of error does not depend on which
K-tuple was sent. Therefore, without loss of generality, we
can assume that all users transmit their first codeword i.e.,
(a1, . . . , aK) = (1, . . . , 1).

There are two error events that determine the probability of
error when the channel is not in outage: i) when the correct
codewords are not typical with the received sequence and ii)
when incorrect codewords are jointly typical with the received
sequence i.e., an undetected error. Define the events,

E(a1,...,aK) =
{(

X(1)
a1

,X(2)
a2

, . . . ,X(K)
aK

,Y
)
∈ Atc

ε

}
. (16)

Then, by the union bound, the probability that the kth user is
in error is given by,

P (k)
e (no outage) ≤ P

(
Ec
(1,...,1)

)
+ P

(⋃

Sk

USk

)
(17)

where USk
, the undetected error event involving user k is

defined as,

USk
=

{E(a1,...,aK) : ai 6= 1∀i ∈ Sk

}
. (18)

From the asymptotic equipartition property, P (Ec
1,...,1) → 0.

Further, from [5], we know that the probability of undetected
error can be simplified as,

P

(⋃

Sk

USk

)
≤

∑

Sk

P (USk
)

=
∑

Sk

2
tc
P

i∈Sk

Ri

2−tc(I(XSk
;Y|XSc

k
,HSk

)−ε)
.(19)

The term 2tcε in (19) does not contribute to the SNR exponent
and is ignored. The mutual information in (19) is expressed
as,

I(XSk
;Y|XSc

k
,HSk

) = log det
(
I + SNRHSk

H†
Sk

)
. (20)

Substituting (20) in (19) and recalling that
∑

i∈Sk

Ri =
∑

i∈Sk

ri log SNR, the probability of undetected error in (19)

simplifies to,

P

(⋃

Sk

USk

)
≤

∑

Sk

SNR
tc

P
i∈Sk

ri

det
(
I + SNRHSk

H†
Sk

)−tc

.

(21)

Since the codewords of all users are i.i.d. CN (0, 1), for
each subset, Sk, the term inside the summation in (21) is
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equivalent to computing the probability of error of a point-
to-point link with MSk

=
∑

i∈Sk
mi transmit and n receive

antennas and a overall data rate of
∑

i∈Sk
ri log SNR. Also,

notice that each term inside the summation in (21) is the same
as error expression for a point-to-point channel derived for
i.i.d. Rayleigh channel (equation (19) in [1]). The result in
[1] was based on the conditional pairwise error probability
averaged over the ensemble of Gaussian codewords. However,
we arrive at the same expression using the standard error
analysis of a typical set decoder, the key difference in the
current problem being the nature of the concatenated channel
matrix HSk

, which is made up of independent but no longer
identical Gaussian entries because of the asymmetry in the
MAC. However, [2] shows that even for non-identical point-
to-point complex Rayleigh channels, the SNR exponent that
in the high SNR regime, is the same as that for a i.i.d.
Rayleigh channel. Therefore, for tc ≥ (n − 1) +

∑K
i=1 m,

the probability of error for the kth user in a MAC averaged
over the Gaussian code ensemble and the no outage region of
the channel statistics, evaluates to

P (k)
e (no outage)≤P

(⋃

Sk

USk

)
.≤

∑

Sk

SNR
−d∗MSk

,n(
P

i∈Sk
ri)

.=SNR
−minSk

d∗MSk
,n(
P

i∈Sk
ri) (22)

Equations (5), (9) and (22) can be combined to derive the error
probability for the kth user as,

P (k)
e (SNR) .= SNR

−minSk
d∗MSk

,n

“P
i∈Sk

ri

”
. (23)

This completes the proof of our main result.
A natural extension is to find the multiplexing-diversity

region i.e., given the achievable diversity gain {di}i for the
K users in a MAC, we wish to compute the set of K-tuple of
multiplexing gains, (r1, . . . , rK), that can be achieved. This
set of multiplexing gains is denoted R(d1, . . . , dK), and is
explicitly characterized in the following Corollary.

Corollary: For an asymmetric MAC, if block length tc ≥
(n− 1) +

∑K
i=1 mi,

R(d1, . . . , dK) =
{

(r1, r2, . . . , rK) :
∑

s∈S

rs ≤ r∗P
i∈S

mi,n
(min

s∈S
d∗s),∀S ⊆ {1, . . . , K}

}
(24)

where r∗m,n(.) is the multiplexing-diversity tradeoff curve for a
point-to-point channel with m transmit and n receive antennas.

Proof: From the proof of the Theorem, the SNR exponent
of the probability of error for user s is given by (23). By the
union bound of error events, the probability of error for a
subset of users S is given by,

P (S)
e (SNR)

.≤
∑

s∈S

P (s)
e (SNR) .= SNR

−min
s∈S

d∗s(r1,...,rK)
, (25)

where d∗s(r1, . . . , rK) is defined in (5). Now, using the same
point-to-point MIMO analogy as before, the probability that
S ⊆ {1, . . . , K} users in error is given by,

P (S)
e (SNR) .= SNR

−d∗P
s∈S

ms,n(
P

s∈S

rs)

. (26)

Fig. 3. The achievable rate region, R(d1, d2), defined in (24) for a
asymmetric 2 user MAC where users have m1 = 2, m2 = 3 transmit
antennas each and n = 4 antennas at the reciever. d in the figure is defined
as d = min{d1, d2}.

Comparing the SNR exponents of (25) and (26), we infer
that the diversity requirement for each user is met when,
d∗P

s∈S

ms,n(
∑

s∈S

rs) ≥ min
s∈S

d∗s, or equivalently,

∑

s∈S

rs ≤ r∗P
s∈S

ms,n

(
min
s∈S

d∗s

)
,

for all S ⊆ {1, . . . , K}.

IV. ILLUSTRATIONS

Consider an asymmetric MAC with two users having m1 =
2 and m2 = 3 transmit antennas respectively. Let, the base
station have n = 4 receive antennas. The achievable rate
region [6] is described by the constraints,

{(r1, r2) : r1 ≤ 2, r2 ≤ 3 and r1 + r2 ≤ 4} , (27)

where ri = min{mi, n}. Thus, given any rate pair belonging
to (27), the maximum achievable diversity for user 1, denoted
d∗1(r1, r2) is computed using (5) as,

d∗1(r1, r2) = min
{
d∗m1,n(r1), d∗m1+m2,n(r1 + r2)

}
. (28)

This maximal diversity region is plotted for different rate pairs
(r1, r2) in Fig. 2(a). Accompanying the diversity region is
a two dimensional diversity-multiplexing tradeoff plot in Fig
2(b) which is derived by slicing the diversity region in the d∗1-
r1 plane at values of r2 = {0, 1, 2, 3}. From the figures, we
can see that for r2 ∈ (0, 1), user 1 attains single user tradeoff
i.e., d∗1(r1, r2) = d∗m1,n(r1). As r2 increases beyond one, the
maximum achievable diversity-multiplexing tradeoff for user
1 reduces from the single user tradeoff curve, as seen in Fig.
2(a). The maximal diversity region for user 2, d∗2(r1, r2) can
be similarly described.

Now, we look at the rate region described in the Corollary.
Given each user’s diversity requirement, we plot in Fig. 3, the
achievable rate region R(d1, d2) given in (24) for the 2 user
asymmetric MAC under consideration. Each rate pair (r1, r2)
in the region has an associated minimum diversity requirement,
d = min{d1, d2}. A diversity of d = 0 translates to a set
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(a) (b)

Fig. 2. (a) The diversity-multiplexing tradeoff region d∗1(r1, r2) for user 1 in a 2 user MAC (b) d∗1(r1, r2) as a function of r1 for fixed r2.

of rate pairs that describe the maximum achievable capacity
points from (27) and is shown in Fig. 3. Each rate pair in the
countour, d = 0, describes the user whose diversity has to be
zero. For example, to achieve rate pairs, (r1 = 2, r2 ≤ 2),
user 1’s diversity d1 = 0 and the associated diversity pairs are
described by (d1 = 0, d2 ≥ 0). Similarly, other diversity pairs
can be described for all points in the region.

1) Symmetric rates and asymmetric diversity requirements:
Consider a case, where the base station has the least number
of antennas in the MAC: n < mi ∀i. For all subsets, Sk,
involving the user k, the multiplexing gain is limited by,

∑

i∈Sk

ri < min

{∑

i∈Sk

mi, n

}
= n. (29)

Let all users have symmetric multiplexing gain requirements,
ri = r∀i. Then, the maximum multiplexing gain achievable by
each user that satisfies the rate constraints in (29) is r∗max =
n
K .

When all users have symmetric rate requirements, then the
optimal diversity multiplexing tradeoff for the kth user is
calculated from (5) to be, d∗k(r) = minSk

d∗P
i∈Sk

mi,n
(|Sk|r).

With the same arguments as [3], we can show that this optimal
tradeoff simplifies to,

d∗k(r) =
{

d∗m,n(r) r ≤ r′k
d∗P

i mi,n
(Kr)r ≥ r′k

(30)

where r′k is the intersecting point of the curves, d∗m,n(r) and
d∗P

i mi,n
(Kr) which is different for each user. Therefore,

for all rates r ≤ mink{r′k}, the single user tradeoff curve
can be achieved by all users and is called the lightly loaded
regime. For rates r ≥ maxk{r′k}, it is as though the K
users are pooled into a single user with

∑
i mi antennas with

multiplexing gain Kr and the MAC is heavily loaded since
all users are transmitting at high rates. If all users have the
same diversity requirement, we recover the result in [3]. We
illustrate the optimal tradeoff for each user in a 3 user MAC
with m1 = 7, m2 = 6, m3 = 5 and n = 3 in Fig. 4. The
multiplexing gain, r′k that differentiates the lightly loaded and
heavily loaded regimes in a MAC shown in the figure.

Fig. 4. The diversity multiplexing tradeoff for a asymmetric MAC with
symmetric rate requirements

V. CONCLUSIONS

In this paper, we characterized the maximum diversity gain
achievable by a user in an asymmetric MAC as a function
of the achievable multiplexing gain-tuple, when the channel is
known only at the base station. When multiplexing gain is zero
for all users, we show that each user can achieve the maximum
diversity independent of others in the MAC. However, there
is a clear deleterious effect on the achievable diversity due
to interference from other users transmitting at high rates.
An immediate challenge is to characterize the tradeoff when
partial channel knowledge is available at the transmitters.
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