
Benefits of optical system diversity for multiplexed
image reconstruction

Hseuh-Ban Lan, Sally L. Wood, Marc P. Christensen, and Dinesh Rajan

Algorithms that use optical system diversity to improve multiplexed image reconstruction from multiple
low-resolution images are analyzed and demonstrated. Compared with systems using identical imagers,
systems using additional lower-resolution imagers can have improved accuracy and computation. The
diverse system is not sensitive to boundary conditions and can take full advantage of improvements that
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1. Introduction

Computing high-resolution images from multiple
low-resolution images is a well-known, ill-posed, and
computationally intensive problem1–3 that has re-
cently become of interest in two application areas. A
high-resolution camera may be considerably more ex-
pensive than a lower-resolution camera with only
10% to 25% as many pixels. If there is adequate time
to capture multiple slightly offset images of the same
stationary objects, it is possible that a high-resolution
image could be obtained from a low-cost camera such
as a web camera or television camera.4–6 In this ap-
plication the relative offsets caused by camera motion
are typically computed by using image correlation
rather than by relying on camera position and orien-
tation information.

A second application area is the design of a camera
with a flat form factor, achieved by using smaller
optical elements that must be positioned closer to the
image detectors.7–11 In this case the low-resolution
images are a result of moving the imaging elements
closer to the sensor array, resulting in a physically
smaller image at the detector for the same field of
view (FOV). The individual detectors in the array

cannot be proportionately reduced in size because of
manufacturing constraints and increased noise levels
as the detector size is reduced, so computational
imaging methods must be used to create a higher-
resolution image. The camera design may have
fixed7,8 or steerable9–11 imaging resources that will
determine the relative offsets of the low-resolution
images.

Radio astronomy (e.g., Ref. 12) and medical imag-
ing (e.g., Ref. 13) have a long and successful history
of computing high-resolution reconstructed images
from sampled data measurements with lower-
resolution in some dimensions. In these cases the
resulting image is often used as input for further
computation or detection algorithms as well as for
viewing, so the number of bits per pixel in the com-
puted image will often be limited by the noise
environment rather than by the observer viewing re-
quirements. Methods of error analysis, system de-
sign, and performance specifications used in these
fields can be applied to current flat-camera design
problems of image reconstruction accuracy and effi-
cient computational methods.

In both the flat-camera application and the single
movable low-resolution camera application, results
have been demonstrated with resolution improved by
factors in the range of 3 to 5. For example, the thin
observable module by bound optics (TOMBO) sys-
tem8 used a conventional 240 � 240 pixel sensor
array divided into a 6 � 6 array of 40 � 40 pixel
subarrays, each of which had a 500 �m aperture mi-
crolens with f � 1.3 mm. With the object distance
fixed at 26 cm, a resolution improvement of a factor of
4 was measured, although the design parameters
suggest that a factor of 5 or 6 is possible. How-
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ever, the pseudoinverse-based reconstruction method
caused undesirable noise amplification in the recon-
structed images.

The design of manufacturable camera geometries
and associated reconstruction algorithms must be
concerned with the accuracy of the reconstructed im-
age and the computational burden of creating it. The
ill-posed nature of the inverse problem requires
methods that use almost all observed image data for
the computation of each reconstructed pixel. Usually
the image quality is measured in terms of the actual
or expected mean-square error (MSE), which is a
more suitable measure for image information avail-
able for postprocessing than for viewing quality. The
visual effect of a particular MSE level can vary dra-
matically, depending on the local contrast of the de-
sired image and the spatial-frequency content of the
error. However, for applications in which computa-
tional methods for feature detection or segmentation
will be used, the MSE will be more closely related to
overall performance. In these cases increasing the
number of bits per pixel above 8, as is typical in
medical imaging, may be important.

This paper describes a computational imaging ap-
proach to reconstructing high-resolution images by
using magnification diversity in the low-resolution
image-acquisition architecture. This results in better
expected and actual performances when measure-
ments are made in terms of MSE. Diversity also re-
sults in computational benefits because good-quality
local reconstructions of small tiles from the full image
can be computed independently, leading to a reduc-
tion in computation and natural parallelization op-
portunities. In addition, noise propagation is greatly
reduced by using a minimum variance estimator
(MVE) with magnification diversity. When the noise
associated with the acquisition of low-resolution im-
ages can be reduced, methods that use diversity can
provide more bits per pixel in the computed high-

resolution image. The mathematical notation and
analysis of the expected error performance for arrays
of low-resolution images are derived in Sections 2 and
3, respectively. The improvements expected from di-
versity are analyzed and demonstrated in Section 4,
and the performance of an optical system with mild
distortion is explored in Section 5.

2. Image Data Model

Figure 1 shows block diagrams of a basic physical
optical model of digital image formation and the cor-
responding mathematical model used in this paper.
The input to the first block of the physical model is a
spatially continuous image source. This single block
represents the projection of the image source by using
combinations of lenses and mirrors, such as those
described in Refs. 7–10 onto a detector array of dis-
crete sensor elements. In the second block each pixel
in the sensor array integrates light intensity spatially
over the finite physical size of the sensor element and
temporally over the image-acquisition time. Mea-
surement noise from various sources is added to the
spatially and temporally sampled output image read
from the detector array.

The corresponding abstracted mathematical block
diagram shown in Fig. 1(b) also uses two blocks that
are both part of the physical detector block above it.
Here the input image is modeled as a continuous
image source that is a pixel array at the resolution of
the desired output. Although the actual desired pixel
size or angular resolution of the image source will
be measured in milliradians, in this mathematical
model the pixel size is measured after projection onto
a detector array in the same units used for the detec-
tor pixels. The first block represents the convolution
of the high-resolution input image with an averaging
filter whose width and shape are determined by the
detector pixel size. If the point-spread function of the
optical system is significant compared with the de-

Fig. 1. Basic block diagrams for (a) the physical optical system and (b) the corresponding mathematical model.
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tector size, that convolution would also be included
here. However, it is assumed that the diffraction-
limited spot size of the optical system is �5 times
smaller than the detector size9,10 and the blur dis-
cussed in this paper is caused by the finite detector
size, not the resolution limitations of the optical sys-
tem. The convolution result is the input to the second
block, which implements a sampling operation to se-
lect values at the detector pixel centers. Figure 2(a)
schematically shows a projection in which the detec-
tor pixels have the same resolution as the source
pixels, while in Fig. 2(b) nine source pixels are aver-
aged by each detector pixel.

The three main objectives of computational im-
aging analysis are to recover the best estimate of
the source image from the image or images cap-
tured from the detectors to define performance lim-
its and to improve the optical system design by
making it more efficient in producing information
useful for the image reconstruction. Let F represent
the two-dimensional desired source image modeled
by a pixel array at the desired resolution with Ny

rows and Nx columns. Let N � NyNx be the total
number of source pixels. For computation and anal-
ysis, the source-image array F is stored by rows in an
N � 1 column vector f, with source pixel value
F�ny, nx� stored in f�nyNx � nx� for 0 � ny � Ny � 1 and
0 � nx � Nx � 1. Similarly, the My � Mx detector
image, G, will be stored by rows in an M � 1 column
vector, g, where M � MyMx.

The characteristics of the image-acquisition geom-
etry, the behavior of the optical elements, the inte-
gration and sampling effects of the detector pixels,
and the relative physical positions and sizes of the

detector pixels and projected source pixels are all
used to compute a set of coefficients that define the
relative contribution of each source-image pixel to
each detector pixel. These coefficients form the obser-
vation partial matrix H. A linear mathematical
model of the measurement system appropriate for
both space-invariant and space-variant imaging sys-
tems is given as

g � Hf � v. (1)

Although shift invariance is not assumed in this su-
perposition sum model, intuitive understanding is
often obtained from considering the more restricted
case in which H represents a separable convolution
sum. An M � 1 noise vector v may include uncorre-
lated random noise from a variety of sources.

A MVE f̂, can be computed by using Eq. (2) (e.g,
Ref. 14) if the measurement noise and the class of
possible image sources can be reasonably modeled as
Gaussian random variables:

f̂ � f0 � K�g � Hf0�. (2)

The initial estimate of f is f̂0 � f0, where f0 � ��f� is
the expected value f. This initial estimate is updated
based on the measurement prediction error in Eq. (3)
by using the reconstruction matrix K in Eq. (4)
to produce a MVE estimate. The matrix K is com-
puted by using estimates of the noise covariance,
Rv � ��vvT�, and the covariances of the image class,
P0 � ���f � f0��f � f0�T�. These estimates are indicated

Fig. 2. Projections of source-image pixels onto detector arrays.
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by R̂v and P̂0:

g̃0 � g � ĝ0 � g � Hf0, (3)

K � P̂0H
T�HP̂0H

T � R̂v��1. (4)

The derivation of Eq. (4) assumes that the noise has
a zero-mean value and that there is no correla-
tion between the noise and the image data so that
��fvT� � 0.

Equation (2) explicitly allows f to have a nonzero-
mean value. If it is assumed that the detector images
are always adjusted by Hf0, as explicitly shown in Eq.
(2), then simpler versions of the equations that as-
sume a zero-mean f can be used, and f0 can be simply
added to the computed estimate to produce f̂.

Simulations can demonstrate how good an esti-
mate of f is created by using the reconstruction ma-
trix K, but it is also useful to consider the analytical
expressions for the expected squared error by using
the covariance of the estimate error � � ��f̃ f̃T�, where
f̃ � f � f̂. The variance of each individual pixel in f̃ can
be computed by using Eq. (5). This expression is valid
for any matrix K, and it explicitly allows an actual
noise covariance Rv and image class covariance P0 to
be different from the estimated values R̂v and P̂0. The
diagonal of the matrix � contains the expected vari-
ance for each element of the error vector f̃:

� � ��f̃ f̃T� � �I � KH�P0�I � KH�T � KRvK
T. (5)

These equations provide a method for comparing the
expected and actual performances of ideal and sim-
plified estimators as a function of the actual noise
variance. For the specific case in which K is compu-
ted from Eq. (4) by using accurate models so that
R̂v � Rv and P̂0 � P0, Eq. (5) can be simplified to the
following:

� � P0 � P0H
T�HP0H

T � Rv��1 HP0. (6)

A. Traditional Imaging System

These performance measures can be applied to a tra-
ditional high-resolution imaging system in which the
sensor pixel size is matched to the desired resolution
of the projected image, and there is a one-to-one cor-
respondence between the elements of f and the ele-
ments of g. This is illustrated in Fig. 2(a) Typically
it is simply assumed that f̂ � g, which implicitly
assumes that the image source is projected onto
the sensor array with correct focus, that H is the
N � N identity matrix IN, and that the measurement
noise is zero. With knowledge of P0 and Rv, Eqs. (2)
and (4) can be used to compute the reconstruction
matrix K for the MVE as follows:

K � P̂0�P̂0 � R̂v��1. (7)

For the special case in which the individual noise
samples are uncorrelated, the covariance matrix Rv

can be written as a scaled identity matrix �2IM. If
P0 � p0IN then K � �p0��p0 � �2��IM, where M � N. For
the MVE, the values of �2 and p0 will determine the
best relative weighting of the observed pixel values
and the mean value of f.

B. Resolution Improvement with a Single Image

The pixel resolution of the sensor image g may be
lower than the desired resolution of f̂. With only one
image, resolution improvement through restoration
relies on implicit or explicit a priori assumptions that
may not always be appropriate. Interpolation can be
used to make the resolution appear to be improved,
but this does not restore frequencies that have been
zeroed by the spatial averaging of individual detec-
tors and does not repair aliasing artifacts.

A common model for the low-resolution sensor im-
age assumes that each detector in a sensor array
averages a q � q pixel area from the desired high-
resolution source image, which is perfectly focused on
the sensor arrays. For simplicity, it will also be as-
sumed that the pixel grid boundaries of G are aligned
with every qth pixel boundary of F, although allowing
relative translations and rotations does not funda-
mentally change the results. Now the desired number
of source pixels is N � q2M. The response of a single
pixel of the detector is modeled by a corresponding
row of the M � N rectangular matrix H. Each row
will have q2 nonzero elements, each with a value of
1�q2, positioned to correspond to the q2 elements of F
in the FOV of the detector pixel. Because the optics
produces a small point-spread function relative to a
detector pixel size, there will be no significant overlap
in the FOV of any pair of detectors, and the dot prod-
uct of any pair of rows of H will be zero. This imaging
system with one low-resolution detector array will be
called a subimager (SI).

With the same assumptions used for the tradi-
tional high-resolution imaging system with respect to
Rv and P0, we have HP0H

T � �p0�q2�IM. The resulting
expression for K is given by

K � p0INHT
q2

p0 � q2�2 IM �
p0q

2

p0 � q2�2 HT. (8)

In the noiseless zero-mean case f̂ � q2HTg. Since the
nonzero values in H are all 1�q2, the reconstruction
simply backprojects the value of each detector pixel
onto the q2 source pixels in its FOV. This is some-
times called zero-order interpolation. As measure-
ment noise increases, f̂ is reduced, and increasing the
value of q increases the noise term in the denomina-
tor. Using only image data from one SI, we cannot
distinguish any structures within the FOV of a de-
tector pixel, we cannot repair aliasing artifacts due to
the lower spatial sampling rate, and we lose all in-
formation about the presence of spatial frequencies
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with an integral number of periods equal to the width
of a detector.

3. Arrays of Subimagers

An array of identical SIs with lateral shifts of FOV
equal to the desired resolution can provide informa-
tion needed to resolve some structure at the desired
resolution and avoid aliasing due to the reduced sam-
pling rate. For simultaneous image capture, this
array of SIs with lateral shifts of FOV can be accom-
plished in a fixed geometry such as the one used for
the TOMBO system.7,8 However, the fixed geometry
requires a fixed distance between the image source
and the camera for a specific resolution improvement.
To avoid this limitation, one can make a SI array with
a more flexible steerable imaging system such as the
PANOPTES (processing arrays of Nyquist-limited
observations to produce a thin electro-optic sensor)
system.9,11 For multiple images of a stationary scene,
the array of low-resolution images can be obtained
from a single SI if there is physical motion of the
camera between acquisition of the images.1,6,5

The mathematical representation of a single SI in
Section 2 can be extended to represent an array of
SIs. Let H0,0 � H represent a single SI in which the
detector FOVs are not overlapping and that each de-
tector averages a q � q pixel area of the desired
image. A q � q array of SIs with FOVs offset from
each other by the width of one source pixel will have
a combined FOV that is extended by q � 1 pixels
horizontally and vertically with NxE � Nx � q � 1 and
NyE � Ny � q � 1. The number of pixels in this
extended FOV will then be NE � NxENyE. This is
shown in Fig. 3 for three small SIs. On the left,
a 3 � 3 pixel region of f is projected to each of two
pixels in the SI array in the same manner as shown
in Fig. 2(b) except that the size of F has been ex-
tended by two pixels on the right. The two additional
shifted SIs each have a FOV shifted by the width of
one source pixel, and the combined FOV of all SIs is
now 3 � 8 pixels. Note that, for the source model used
here, the subimage from a FOV shifted by a fraction
of a source pixel can be written as a weighted sum of
two subimages with an offset of exactly the width of
one source pixel, so there is no loss of generality in
assuming the regular spacing of SI FOVs.

To represent these observations mathematically,
we define a shift matrix Zl as an N � NE matrix
in which Zl�i, j� � 	�i � �j � l��, where 	�k� � 1 for

Fig. 3. Projections of source-image pixels onto three different SI
detector arrays.

Fig. 4. High-resolution 400 � 400 pixel image of (a) an airport
(from the University of Southern California Signal and Image
Processing Institute Image Database), (b) the image tile 76 � 76
pixels, (c) the SI outputs for q � 5.
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k � 0 and has a value of zero for all other values of k.
If the H matrix of a SI is postmultiplied by Zl, where
0 � l � q � 1, all columns of H will be shifted by l
positions to the right, and vectors of zeros will fill the
first l columns. This postmultiplication will effec-
tively shift the FOV of the SI by l pixel positions in
the f vector and will place the SI’s FOV correctly in
the extended composite FOV of all SIs. Row shifts of
k rows will require a multiplication by ZkNxE

for the
two-dimensional image data stored in f in vector
form.

Let the vector gk,l represent the detector image
from the �k, l�th SI. Using the measurement model of
Eq. (1), we can write the individual equations for each
SI:

g0,0 � HZ0f � v00 � H0,0f � v0,0,

g0,1 � HZ1f � v01 � H0,1f � v0,1,

g1,0 � HZNxE
f � v10 � H1,0f � v1,0,

É

gq�1,q�1�HZ�q�1��NxE�1�f � vq�1,q�1

�Hq�1,q�1f � vq�1,q�1. (9)

The total number of pixels from the q � q array of
M-pixel SIs is equal to q2M, which is the same as N.
So the number of observed pixels is now the same as
the number of pixels in a traditional high-resolution
imager. However, for the array of SIs, the total FOV
is extended because no assumptions are made about
boundary conditions. Figure 4(b) shows a 74 � 74
pixel high-resolution image tile of an airplane taken
from the larger source image shown in Fig. 4(a). Fig-
ure 4(c) shows the 25 reduced-resolution 14 � 14
pixel images obtained from a SI array by using
q � 5. The loss of significant image information in the
individual low-resolution images is readily apparent.
A reconstruction algorithm is needed to compute an
estimate of the high-resolution image from the array
of low-resolution images.

The column vectors of image outputs from all the
SIs in Eq. (9) can be combined into a single array of
data with Eq. (10), in which column structures are
written in a more compact transposed row form. As
shown here, the vector of SI data is sorted first by SI
and then by rows within one subimage. A subscript q
has been added to the combined H matrix to indicate
matrices for a q � q array of SIs with resolution
reduced by a factor of q:

g � Hqf � v,

gT � �g0,0
T, g0,1

T, . . . , gq�1,q�1
T�T,

Hq
T � �H0,0

T, H0,1
T, . . . , Hq�1,q�1

T�T,

vT � �v0,0
T, v0,1

T, . . . , vq�1,q�1
T�T. (10)

The expected squared error for the MVE recon-
struction can be estimated if the singular values of Hq

are known. Then Hq can be written in terms of its
singular-value decomposition or spectral representa-
tion15 Hq � USVT, where U and V are N � N and
NE � NE unitary matrices and S is an N � NE matrix
with singular values along the diagonal. Then Eq. (5)
can be rewritten by using that form. For simplicity,
assume as before that Rv � �2IN and P0 � p0INE

. Then
HqP0Hq

T � p0USSTUT and, using Eq. (6), � � V
VT,
where the elements of the NE � NE diagonal matrix �
are given by Eq. (11). The elements of � will deter-
mine the average expected squared error when f̂ is
computed by using the MVE with the detector images
in Eq. 10:

�i ��p0�
2��p0si

2 � �2� for 1 � i � N
p0 for N � 1 � i � NE

.

(11)

Analysis of the expected errors for the array of
subimages is described more intuitively if the com-
bined data vector g is reordered with the observed
pixels for a row of SIs interleaved so that the
overlapping individual FOVs of adjacent detector
pixels are shifted by the width of one source pixel.
Thus the first three elements of the reordered g
would be �g0,0�0, 0�, g0,1�0, 0�, g0,2�0, 0�, . . .]T rather
than �g0,0�0, 0�, g0,0�0, 1�, g0,0�0, 2�, . . .]T. With this or-
dering, g can be interpreted as the output of a single
array of detector pixels ideally sampled at intervals
equal to the desired source pixel size. However the
samples are taken from a source image blurred by
convolution with a rectangular function of the same
size as the actual detector prior to projection onto the
detector.

In this form a one-dimensional convolution would
create a Toeplitz matrix H and the two-dimensional
separable convolution would create a Toeplitz–block–
Toeplitx matrix H.15 As the size of a Toeplitz matrix
increases, its eigenstructure approaches the eigen-
structure of a circulant matrix16 in which the eigen-
values are the discrete Fourier transform (DFT) of the
first row and the eigenvectors are DFT vectors. The
eigenvalues for the H matrix for a two-dimensional
convolution in this case will be the product pairs of the
eigenvalues for an H matrix for one-dimensional con-
volution.15 This provides a simple method for estimat-
ing the performance of an array of SIs based on the size
of the reconstructed image tile, the value of q, and the
amount of measurement noise. Exact computations of
the expected squared error without the circulant struc-
ture assumption are given in Section 4, and these re-
sults are consistent with the analytical approximation
given here. Note that the DFT values will be zero for
spatial frequencies with an integral number of periods
in one detector width and that, when boundary condi-
tions are not known, any amount of these spatial fre-
quencies can be added to f̂ without changing the
predicted values of g11,17. This will limit the perfor-
mance of an array of identical SIs as described above,

2864 APPLIED OPTICS � Vol. 45, No. 13 � 1 May 2006



and reducing measurement noise, �2, below the point
at which most of the error is due to zero-valued eig-
envalues will not continue to improve the recon-
structed images.

4. Performance Improvements with Diversity

In Section 3 we analyzed the expected performance of
arrays of identical shift-invariant SIs when the FOV
of adjacent SIs is shifted by one pixel width of the
desired high-resolution image. Adding more identical
SIs with subpixel shifts of FOV can provide more data
for noise averaging, but since this does not change the
spatial frequencies that will produce a response of
zero, the additional images do not improve the ob-
servability of the desired image. Even if the simple
uniform averaging model for the detector pixel re-
sponse may be modified somewhat, the detector pixel
will still perform an averaging function over its sur-
face and will have low sensitivity to some spatial
frequencies, which will limit reconstruction accuracy.

In contrast, adding new SIs with different ratios
between the detector pixel size and the projected de-
sired pixel size can provide new information about
image components with spatial frequencies that have
a weak response at the detector pixels of the first
set of SIs. Consider a one-dimensional system in
which a uniform average is taken over w, the width of
the one-dimensional detector pixels. The spatial-
frequency response due to this averaging will be a
sinc function with zeros at integer multiples of radian
frequency �0 � 2
��. If a second set of wider detec-
tors is added with a length that is not an integer
multiple of the first length, the sinc function defining
its response will have no zeros in common with the
first detectors. Using subimages from both detectors
will provide information about all spatial frequencies,
and the accuracy of the reconstruction will be limited
only by the measurement noise level. For a two-
dimensional imaging system, a third set of detectors
must be added to avoid loss of two-dimensional
spatial-frequency components.

This optical system diversity can come from the
diversity in magnification factors of SI optical sys-
tems or the diversity in the physical size of the SI
sensor pixels using the same optics. In the former
case the distance between the new optical compo-
nents and the detector arrays would be less than the
distance for the original SIs, which would cause the
size of the projected image to decrease. In the latter
case the increased size of the detector pixels would
result in lower values of measurement noise, which
would help offset the performance disadvantage of
the increased value of q. For both cases, this diversity
will be referred to as magnification diversity in the
context of the ratio of the physical detector width and
the width of the projected pixels at the desired reso-
lution. The added SIs alone will have poorer perfor-
mance than the SIs at the original magnification, but
they also add information that was not observable by
the original array.

The additional information from SIs with magnifi-

cation diversity also affords significant computational
efficiency. Reconstructions involving deconvolutions of
shift-invariant averaging functions usually improve in
performance as the width of the image is increased, so
all observations are used in the computation of each
value of f̂. With magnification diversity, reconstruc-
tions can be computed from local measurements and
there is much less improvement gained by including
a larger FOV than that found with a single magnifi-
cation. These smaller subsets of the desired image
that are independently reconstructed will be called
tiles. Reconstructing the smaller tiles reduces the
amount of computation needed because of the smaller
image size and also allows straightforward use of
parallel computation.17,11

In the case of the single-magnification array, fre-
quencies close to the nulled frequency gain some visi-
bility as the FOV widens. For a multiple-magnification
system, the visibility of those frequencies comes from
the strong response of one array of SIs to a frequency
that is nulled by the other array of SIs, and increasing
the FOV is not as necessary.

The performance improvements due to magnifica-
tion diversity can be analyzed by using an approach
similar to that used for the SI array in Section 3. An
Hq matrix for each magnification is generated, and
then the observed images for arrays of subimages at
the three magnification levels are used together as
indicated in Eq. (12).

g ��gq1

gq2

gq3
	��Hq1

Hq2

Hq3
	f � v � Hf � v. (12)

The performance of this new combined system can
be analyzed by using Eq. (13), which is an alternate
form of the estimator in Eqs. (3) and (4).14 If
HT � �Hq1

THq2
THq3

T�, then HTRv
�1H can be written

as shown in Eq. (14):

f̂ � �HTR̂v
�1H � P̂0

�1��1

� �HTR̂v
�1g � P̂0

�1f0�, (13)

HTR̂v
�1H � Hq1

TR̂v1
�1Hq1 � Hq2

TR̂v2
�1Hq2

� Hq3
TR̂v3

�1Hq3. (14)

Using the same approximation as in Section 3,15 it
can be argued that, for a tile large enough for use of
the DFT approximation, the eigenvectors of all three
Hqi

THqi matrices will be the same. This would allow
the eigenvalues of the sum of the matrices in Eq. (14)
to be computed by simply adding the eigenvalues of
each of the Hqi

THqi matrices scaled by the appropriate
inverse noise variance. This supports the intuitive
concept of adding new types of SIs to capture all
spatial frequencies. For the small tiles where the
circulant approximation is less appropriate, compu-
tation of the exact average expected squared error
shows the same behavior predicted by the mathemat-
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ical analysis. In Section 5 we will show that this
improvement from diversity also occurs when the H
matrices represent space-variant projections that
cannot be represented as convolutions.

For these computations of the average expected
squared error, it is assumed that the a priori image
set variance is the same as the variance of a contin-
uous uniform distribution from 0 to 256. This range
was chosen to make results consistent with the often-
used 8-bit-pixel image-display range rather than nor-
malizing the range. However, setting this range does
not fix the number of bits per pixel at 8. If noise levels
are low enough, the number of significant bits per
reconstructed pixel can be increased to provide more
information about the imaged scene for later compu-
tational analysis. The additional bits would be used
to represent fractional pixel values rather than to
increase the range of values.

Analysis of the spatial distribution of expected
squared-error values for individual pixels found
along the diagonal of � shows that the expected
errors are much larger at the edges of an image tile
than inside the tile.11,17 To present meaningful ex-
pected squared-error results, we have assumed that
all reconstructed tiles have the edge pixels trimmed
off before the average MSE is computed. This would
require a reconstruction approach that allowed a
small overlap of tile edges when a large image is
divided into small tiles for reconstruction.

Figure 5(a) compares the expected squared errors
for a reconstruction obtained by two different sets of
SI arrays. In each case four different estimators are
computed for four different expected noise environ-
ments with estimated noise variances, �̂2, equal to
10�6, 10�4, 0.01, and 1.0. The performance is shown
for actual noise variances, �2, from 10�8 to 100.0. Re-
sults for three sets of 3 � 3 SI arrays with q � 3 are
shown by using dashed curves. Reducing the actual
measurement noise variance below 10 brings little
improvement to any of the four estimators, which at
the resolution of this graph are not distinguishable.
In the second case, shown by the solid curves,
one 3 � 3 array of SIs has q � 3. The two other SI
arrays use a lower resolution with q � 4 and q � 5.
The same actual measurement noise variance is as-
sumed for all three magnifications, and the total
number of observations is approximately the same as
used in the case with q � 3 only. By using three
different magnification factors we can improve the
performance even though the added systems individ-
ually have poorer performance than the SI array with
q � 3. As the actual noise variance is decreased, the
performance of these estimators improves until it is
limited by the values of the estimated noise variance,
which protects the estimator from propagating large
noise components in the reconstruction. It should be
noted that integer values for q have been selected to
demonstrate the value of magnification diversity
with a simple example, but that as long as the q
values are significantly different and the ratios of the

Fig. 5. Expected squared error for (a) 19 � 19 pixel tile from
detectors with q � 3 (dashed curves) and detectors with q � 3, 4,
and 5 (solid curves); (b) 19 � 19 (dashed curves) and 35 � 35 pixel
tiles (solid curves); (c) detectors with q � 5, 6, and 7 (dashed curves)
and q � 3, 4, and 5 (solid curves).
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q values are not integers, there is no requirement
that the q values be integers.

Figure 5(b) compares the expected squared error
for a set of three SI arrays when the size of the tile is
roughly doubled to a 35 � 35 pixel FOV in the source
image, shown by solid curves, from a 19 � 19 pixel
FOV, shown by dashed curves. The results for the
smaller tile size were also shown in Fig. 5(a) as solid
curves. The expected squared error is reduced
slightly but not dramatically when the tile size is
increased. The same improvement can be obtained
from a second stage of computation by making low-
rank corrections to the estimate from the smaller
tile.11 This shows that the large computational ben-
efit of reducing the size of the independently re-
constructed tiles does not cost much in terms of
reconstruction accuracy when magnification diver-
sity is used.

Figure 5(c) compares the expected squared error
when the resolution of all the SIs is reduced. Results
from a set of SIs with q � 3, 4, and 5 and a 35 � 35

pixel FOV are shown by solid curves here and also in
Fig. 5(b). Corresponding results for a set of SIs with
q � 5, 6, and 7 and a 41 � 41 pixel FOV are shown by
dashed curves. As expected from earlier results,
when the value of q increases, the effect of the noise
is also increased, and lower measurement noise is
needed to achieve the same reconstructed accuracy
for higher values of q.

Actual reconstructed tiles from an aerial view of
the Bay Bridge are shown in Fig. 6. In Fig. 6(b) a
35 � 35 pixel tile from the larger image is shown.
Using the same number of measurements and the
same added noise levels, we reconstructed the image
in Fig. 6(c) from the SI arrays with q � 3 and the
image in Fig. 6(d) with a mixed magnification set of
SIs by using q � 3, q � 4, and q � 5. The small
features in Fig. 6(d) with low contrast are clearly
better defined than in Fig. 6(c), while the high-
contrast large edges show only a small improvement
in Fig. 6(d) compared with Fig. 6(c). This demon-
strates the advantage of reducing the noise level in

Fig. 6. (a) Image of Bay Bridge (from the University of Southern California Signal and Image Processing Institute Image Database) and
(b) 35 � 35 pixel tile. Reconstructions using a noise variance of 0.01 for (c) q � 3 and (d) q � 3, 4, 5.
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reconstructed images by using magnification diver-
sity when the images will be used for automated seg-
mentation and feature extraction.

5. Effect of Distortion on Reduction of
Reconstruction Errors

In a high-performance multilens camera, careful de-
sign eliminates most distortion effects, while in a
camera with a small single lens, distortion will al-
most always be evident. For a flat-camera design us-
ing arrays of small steerable optical elements, it is
possible to calibrate the distortion and use it to
achieve some diversity that can improve reconstruc-
tion results. An otherwise well-corrected lens that
exhibits some distortion can be thought of as having
a focal length, and hence magnification, that is a
function of field position. Figure 7 shows the projec-
tion of thin grid lines through a lens with distortion.
Magnified views of the center and the edge are also
shown.

For a lens with moderate distortion, the difference
between the magnification at the center and at the
edge will not be as large as the differences used in
Section 4. However, it will be demonstrated that at
low noise levels the magnification difference for a
fish-eye type of lens is sufficient to improve the
reconstruction compared with the use of a distortion-
less lens. Thus an array of identical SIs with space-
variant magnification could be used to achieve optical
diversity instead of using arrays of different types of
lenses. Subimages could be oriented so that a tile of
the source image would be observed through different
parts of the lenses, creating a moderate diversity of
magnification.

Although previous examples in this paper have
used shift-invariant responses, this is not required in
the model of Eq. (1) or in the derivation of the esti-
mator in Eq. (2). There are several models for lenses
with distortion.18 A nonparametric model19 or a ra-
tional polynomial model20 can be used. Light from an
image source at position �r, �� that would fall on a
detector at position �r�q0, �� with a distortion-free
lens, would fall instead on position �r�, �� for a lens
with distortion, where the relationship between
r and r� is given by

r �
r��q0

�1 � C�r��q0�2�
. (15)

The parameter q0 is the magnification factor at the
center of the lens, and parameter C is a distortion
coefficient. When C � 0 there is no distortion.

The expected squared error for arrays of SIs that
use lenses with moderate distortion was computed for
two cases. After selecting the values for C and q0, we
computed the H matrices for image tiles viewed
near the center of the lens, near the edge of the lens,
and at a middle distance from the center. These three
SI translations produced matrices analogous to
Hq1, Hq2, and Hq3, respectively, used in Section 4. The
results shown in Fig. 8 for q0 � 3 are similar to those
shown in Fig. 5(a). The dashed curves show the ex-
pected errors for the first case when only Hq1 from the
central region of the lens is used. The values
of the average expected squared errors are very close
to the values observed for the distortionless lens. The
solid curves show the estimators for the second case,
which uses approximately the same total number of
measurements as the first case, but uses all three
regions of the lens. The diversity achieved by using
different parts of the lens reduces the expected
squared error significantly compared with that of the
first case as the noise is reduced. The reduction in
error is less than the reduction in Fig. 5(a), in which
the magnification diversity was greater, but it is still

Fig. 7. (a) Projection of a grid through a lens with distortion; (b) grid at the center of the lens; (c) grid near the edge of the lens.

Fig. 8. Performance of a lens with distortion when the tiles are
viewed through different parts of the lens (solid curves) versus only
near the center (dashed curves).
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a significant improvement even for small reductions
in measurement noise.

Simulated measurements using the image tiles of
the airplane and the Bay Bridge image were used to
compute the actual MSE as a function of the vari-
ance of the added noise. Figure 9 shows results for
17 � 17 pixel tiles, with dashed curves representing
the lighter lower-contrast Bay Bridge image and solid
curves representing the darker higher-contrast air-
plane image. Results are shown for three cases in
each graph. Identical SI arrays with q � 3 are com-
pared with magnification diversity from using lenses
with distortion and with magnification diversity from
using three types of lenses with q � 3, 4, 5. For both
expected noise environments, the diverse systems
outperform the SI arrays with q � 3 only. As the
actual noise variance increases above the expected
value used to compute the MVE, the diverse systems
have a higher expected error.

Since it is expected that some distortion will be

unavoidable in arrays of small lenses used for a flat-
camera design, such as those described in Refs. 7–9,
the characteristics of these lenses can be explicitly
used in the design of SI geometries to get the poten-
tial advantage from the optical diversity due to dis-
tortion. The estimators for different regions of the
lenses can be computed from calibrated data, and
because multiple diverse arrays will be used, small
image tiles can be reconstructed independently.

6. Conclusions

Using computational imaging to create high-
resolution images from a set of lower-resolution im-
ages is desirable to limit the cost of a camera or to
construct a camera with a flatter form factor. The
analysis of high-resolution image reconstruction from
low-resolution images obtained from identical space-
invariant imaging systems shows that performance
will be limited by a weak response to some spa-
tial frequencies when boundary conditions are not
known. A minimum variance estimator (MVE) dem-
onstrates this problem by using computation of
expected squared errors and singular-value decom-
positions.

Acquiring additional images with lower resolution
can improve performance more than acquiring addi-
tional images at the same resolution, and this
relative improvement increases as the overall mea-
surement noise level is reduced. At low noise levels,
the number of significant bits per pixel could
be increased so that image-processing methods could
extract more information from the image source.

The additional images can be obtained with mag-
nification diversity by using imaging components
that project the desired scene onto a smaller area of a
detector array or by projecting the scene onto the
same-sized area of a detector array with a slightly
larger sensor size. The improvement is demonstrated
through computation of the expected squared error
and through simulations by using two test images
with varying average intensity levels and varying
contrast. A modest magnification diversity can also
be obtained from a set of identical imaging systems
with a space-variant magnification factor. Subimag-
ers (SIs) could be aligned so that specific tiles of the
desired image are captured through different regions
of a lens with well-modeled moderate distortion. This
is also demonstrated in terms of the expected
squared-error computation and simulations.

A second important benefit from effective magnifi-
cation diversity is that the reconstruction process can
be reasonably decoupled compared with the more ill-
conditioned problem of reconstruction from identical
imaging systems. This will allow parallelization of
computation for small image tiles, reduced computa-
tion, and improved numerical stability of the result.

The methods presented in this paper can be used to
analyze the expected performance of a system with a
space-varying response due to combinations of differ-
ent space-invariant SIs or due to SIs with some well-
modeled distortion as long as the system response is
adequately modeled by a superposition sum.

Fig. 9. Simulated performance of a lens with fish-eye-style dis-
tortion compared with SI arrays with q � 3 only and q � 3, 4, 5 on
an airplane image (solid curves) and the Bay Bridge image (dashed
curves) for noise variances of (a) 1.0 and (b) 0.01.
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