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ABSTRACT array of40 x 40 pixel sub arrays, each of which ha&d@0pm aper-

Multiplexed image reconstruction, estimating high resolution im{Uré micro-lens with f=1.3 mm. The object distance was fixed at

ages from multiple low resolution images with highly overlapped2® €M, and a resolution improvement by a factor of 4 was reported.
fields of view, is improved when the magnification of the imagerSReconstructlon results have also been demonstrated using a single

is diverse. No assumptions of shift invariance or Toeplitz structurd®W resolution camera to provide an image sequence [1-3]. How-

are required for computational manageability because localized r&Ver, Performance analysis for this application could depend on dif-

construction is possible and sensitivity to boundary conditions is rel€€nces between the low-cost and high-cost cameras in the optics

duced. Such multiplexed diverse image sensors have applications‘i’r‘l‘a"ty and the detector efficiency as well as the camera resolution

flat sensor systems for surveillance and pervasive personal igiagindiference. _
Previous results have demonstrated the performance improve-

Index Terms— Multiplexed imagers, image reconstruction, COMinent due to optical system diversity for PANOPTES, a new flat-form

putational imaging, flat camera. factor computational imaging architecture [6, 8]. In this paper these
results are extended to non-integer magnification ratios, reduced di-
1. INTRODUCTION versity systems, and space variant magnifications. Diversity in the

effective magnification of an imaging system relative to the sampled
High resolution image reconstruction from multiple low resolution pixel array can be created in several ways. A basic micro-lens/micro-
images is important for two different application areas of currentmirror array designed to meet the flat camera thickness specifications
interest: i) A low-cost low resolution camera that could produce im-could be augmented with additional imaging resources that would
ages equal in quality to those produced by a more expensive highgroject a larger field of view onto a pixel than the basic array. Alter-
resolution camera would have numerous commercial applications inatively, added optical elements of the same type as the basic array
imaging and video [1-3]. ii) A computational imaging system with could project the image source onto physically larger pixels which
a flat form factor may require using smaller optical elements posicould also have lower noise levels. A third possibility would use
tioned closer to the image detectors [4-9]. This creates a physicallyrrays of optical elements with space variant magnification.
smaller image on the detector array for the same field of view (FOV).  The paper is organized as follows. In Section 2 we introduce the
Proportionately reducing the size of the detector elements to mairbasic model used in the analysis. Diversity aspects of the proposed
tain high resolution is not feasible because it would decrease thignaging system are discussed in Section 3 and the performance anal-
SNR and cause manufacturing difficulties. ysis is presented in Section 4.

In both applications, the higher resolution image would be cre-
ated computationally from multiple low resolution images with sub-
pixel translations. This super-resolution problem is well known, ill- 2. MATHEMATICAL MODEL
posed, and computationally intensive [10-13]. The reconstruction
methods are similar to well-known algorithms used in radio astronA continuous image sourgk: (x, y), bandlimited by the point spread
omy (e.g. [14]) and medical imagingg. [15]). The performance of function of the optical system, is projected onto an array of rectangu-
an optimal reconstruction method will depend on the noise level idar detectors. The point spread function is assumed to be small com-
the low resolution images and the degree to which the informatiopared to the detector size. The convolutiorfefz, y) with the rect-
in the desired higher resolution image is captured by the sequence afgular shape function of the detector produgeér, ), which is
low resolution images. sampled at the detector spacing. For a detector of wi@thd height
This paper will address the flat camera reconstruction problen, the transform of the shape function to spatial frequefcy)

where each low resolution image is captured by an individual smalis (sin(mua)/(7u))(sin(wvb)/(mv)), which will produce periodic
imaging device called a sub-imager (SI). Reducing the noise leveiulls in the frequency response. In the absence of known bound-
of the Sls and providing magnification diversity can extend the lim-ary conditions, it is not feasible to restore the zeroed frequencies by
its in [13], which were based on a single magnification. A singlecombining images acquired with sub-pixel translations.
magnification was also used in the TOMBO system [5] in which a  For a one-dimensional image model, it is possible to reconstruct
conventional40 x 240 pixel sensor array was divided int®ax 6 a high resolution image at all frequencies if images are acquired



from two different systems using detector window widths that are co-  The covariance of the estimate eror= E[ffT} wheref =
prime in terms of the coordinates £ (z, y). Foratwo-dimensional  f — f can be used to find the expected squared error for an imaging
model, three different window widths are needed [8]. Selection okystem modeled byf. The variance of each individual pixel ifi
the window widths for optimal performance must consider both thecan be computed using (4) for afi§. Here actual noise covariance
positions of the zeros in the frequency response and the need to lowgr, and the actual image class covariadéemay be different from
the measurement noise as the size of the window is increased the estimated values. The estimation error is given by,
maintain the same expected error performance.

Figure 1 shows the frequency response for two systems with ¢ =E(ff") = (I - KH)Py(I - KH)" + KR,K" (4)
three different magnifications. Let represent the window width
in units of the desired pixel resolution of the reconstructed image. I he diagonal elements of the matgéicontain the expected variance
Figure 1a, the values af are 3, 4, and 5. The zeros are well dis- for each element of.
tributed along the normalized frequency axis, but the width of the  Both analytical analysis and simulation results show that when
largest window is 67% larger than the base window width. In con-H models a low resolution sensor array, the spatial frequencies that
trast, in Figure 1b, the values gfare 3, 3.2, and 3.4. Consequently, average to zero across the sensor can never be recovered., Hence
the zeros are closely distributed in the normalized frequency axigsontinued reduction of the measurement noise does not result in
but now the width of the largest window is only 13% larger than thecomparable reductions in the average expected squared errar [6, 8]
base window width. The desired discrete source image is modeled

: ——— 3. ARRAYS OF DIVERSE SUB-IMAGERS

O width=3 || 1
o width=4
v_ width=5

Since no assumption of shift invariance was used, the mathematical
formulation in the previous section applies equally well to the case
where H represents an array of identical Sls or an array of diverse
Sls. In both cases a high resolution reconstruction can be computed
from an array of Sls with subpixel relative translations of sensor ar-
rays. The expected error of the reconstruction can be reduced by
using diverse Sls, and different types of diverse sub-imagaysrr
can be compared.

The mathematical representation of a single Sl in the previous
section can be extended to represent an array of SisHHhgt= H
represent a single Sl in which the detector FOVs are not overlapping
and each detector averageg & ¢ pixel area of the desired image.
T e P TR ya— A ¢ x q array of sub-imagers with FOVs offset from each other by

Normalized Frequency Normalized Frequency one desired source pixel width will have a combined FOV that is

extended by — 1 pixels horizontally and vertically wittV.r =

Fig. 1. Frequency response of two systems with diverse magnifican, + ¢ — 1 and N,z = N, 4+ ¢ — 1. The shift matrixZ; is an
tion N x Ng matrix inwhichZ;(i,5) = 6(i — (j — 1)). If the H matrix

. . . of a Sl is post-multiplied byZ;, the FOV of the SI will effectively
as a pixel array at the desired resolution. Eeepresent theV, row  gift to the right byl pixel position in thef vector and will place
and N, column image source with’ = N, N source pixels. This e s1's FOV correctly in the extended composite FOV of all Sls.
source image array is stored by rows infsn< 1 column vectorf.  Row shifts ofk rows will require a multiplication byZy x , forthe
Similarly, the M, x M, sensor image(s is stored by rows in the v dimensional image data stored in vecfor *
M x 1 column vectorg. The vectorgy, ; represents the detector image from fe!

_ An observation partial matri¥/ models the behavior of the op- g ysing the measurement model of (1), individual equations can be
tical elements, the integration of the detector array sensors, and th&.iten for each Sl as

physical geometry of the sensor array. A linear mathematical model
of the measurement system is considered as given by, gkt = HZkn, i f + vt = He o f + vgs (5)

g=Hf+v, @ The total number of observed pixels from the sub-arrays is the same
where, noise vectoo includes uncorrelated random noise from a as the number of pixels in a traditional high resolution imager. How-
variety of sources. When the measurement noise and the class @fer, the total FOV for the array of Sls is extended because no as-
possible image sources are modeled as Gaussian random variablggmptions are made about boundary conditions.

the minimum variance estimate (MVE}, can be computed as [16], The column vectors of image outputs from all the Sis in (5) can
be combined into a single array of data as follows:
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f=fo+K(g—Hfo) )
The matrix K is defined using estimates of the noise covariance,
p T . . Ao B
5[%71)(; IE[z}v)T]j ng the covariances of the image cldis= E[(f g; _ [gng, g(,{lT’ o ,ggflT,qq]T ) ©
0 0 ) HqT = [HTO’O’ ]7‘{0’17 77{{%1“]}1]
K:POHT(Hp()HT+RU)*I (3) v = [UO707 vO,la 7vq71,q71]

This derivation of K assumes that the noise has a zero mean valu&he subscripg on the combined? matrix indicates @ x ¢ array of
and that the image and noise are uncorrela‘ted]E[fvT} =0. Sl with linear resolution reduced by a factorqf



The expected squared error for the MVE reconstruction can bg = 3,4, 5 system. It is clear that without magnification diversity,
estimated using the singular value decomposition or spectral reprée reconstruction algorithms can not reduce the average expected
sentation [17]. Letd, = USVT, whereU andV are N x N squared error as the measurement noise is reduced. The other two
and Ng x Ng unitary matrices and is an N x Ng matrix with systems shown use all three magnification values, but each only uses
singular values along the diagonal. Assume tRat= o?Ix and  33% of the imagers fog = 5. This increases the error by approxi-

Py = poln,. ThenH,PyH! = poUSSTU” and, using (4) mately a factor of 2 at low noise levels, and it is still superior to the

¢ = VAVT where the elements of th&¥z x N diagonal ma-  single magnification system.

trix A are given by (7). The elements a&f determine the average

expected squared error whéris computed using the MVE with the " _Single n () vs Three Magr Lrar e

detector images in (6) and are given by,

00
p05?+o'2 (7) ® ® ® ® @ @ ® ®

N L fori<i< N A
Po forN +1<i< Ng

The performance improvements due to magnification diversity
can be analyzed using these results for a Sl arrayHAmatrix is
generated for each magnification, and the observed images fos array
of SI's at the three magnification levels are treated as a single set of
observations as follows,

Average Expected Squared Error
w
5
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The performance of this diverse system can be analyzed using,
A Fig. 2. Effect of reducing the density of the elements with higher
f=H"RH+P ) "(H"R,'g+ P5.' fo) (9) values ofg

If H" = [Hyg, Hy, Hgs) thenH' R, H can be written as Figure 3 shows results for systems with less magnification diver-

o o o — sity. For reference, the solid and dotted lines correspond to the same
H R, H=HnR, Hqp+HpRy, He+ HgRy,  Hgs systems described in Figure 2. The three additional systems have the
(10)  following sets ofg values:{3.0, 3.5, 4.0, {3.0, 3.2, 3.4, and{3.0,

If each H, represents a large shift invariant convolution, then the3.1, 3.2 shown with dashed lines. This shows that even a small

circulant approximation to Toeplitz structures can be applied [17amount of magnification diversity is beneficial when the noise vari-

19]. Inthat case the eigenvectors of all thfég H,; matrices willbe  ance is 0.1, and for a noise variance of 0.01 the least diverse system

the same DFT vectors. This allows the matrices in (10) to be addefdas an expected error 15 times lower than the single magnification

by simply adding the eigenvalues of each of g, H,; matrices  system. As the noise variance decreases, performance impraves fo

scaled by the appropriate inverse noise variance. This matches tkige diverse systems.

intuitive concept of adding new types of Sis to capture all spatial

frequencies and demonstrates the value of diversity. ) Three magnicaions
However, without any shift invariant assumptions, magnifica- b ‘ ‘

tion diversity still allows small over-determined tiles of an image

to be reconstructed independently. For the small tiles the circulant

approximation is not appropriate, and more exact methods are used

to computeK [8,18]. The expected error computed for small tiles

in the next section is based on computation of slightly overlapping

small image tiles. The overlapping edges of the reconstructed tiles

with high expected error are discarded [8, 18].

Average Expected Squared Error

4. EXPECTED PERFORMANCE W’}

noise var=0.000001
noise var=0.0001
noise var=0.01
noise var=1.0
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Figure 2 compares single and diverse magnification systems in terms Wi
of the expected mean squared error as a function of actual measure- |
ment noise. A maximum image value of 255 is assumed. Results

10 10° 1 10~ 10 10
for four systems are shown, and for each system four estimators are Actual Noise Variance
shown corresponding to four different values of expected noise var ] L
ance indicated in the legend. The best performance is shown by the Fig. 3. Effect of small variation iry.

solid line plots for a system with of 3, 4, and 5. The worst per-

formance, shown by the dotted line plots, corresponds to a system Actual performance on real images has a wide variability. The
using onlyg = 3. At this scale, results for all four estimators with analysis has assumed all possible images with the specified number
q = 3 are superimposed across the top of the plot. The same nunof bits per pixel are equally likely. However, visually interesting
ber of observations was taken for both #he= 3 system and the images usually have a higher probability of lower frequenties



al/f? type roll-off in frequency. When high contrast images are [3]
used to compare algorithms, the impact of the noise is visually less
noticeable at boundary edges with large differences in pixel values.
However, detail in low contrast images is far better preserved when 4]
the expected error is reduced. The images in Figure 4 are takerL
from an aerial view of the Bay Bridge obtained from the USC image
data base. Figure 4 b shows a zoomed version of a small section of
the original image in Figure 4a. The two reconstructions shown in [5
Figures 4 ¢ and d, use the same number of observations, but the re-
construction using magnification diversity (c) shows the low contrast
structural detail more reliably than the system with single magnifi- [6]
cation factor. In both cases the noise variance used for the estimator
matched the added noise variance level of 0.01.

[7]

(8]

(a) (b)

\ 9]
(10]

(11]

(© (d)

Fig. 4. Image of Bay bridge (from USC data base) (a) and 35x3512]
pixel tile (b). Reconstructions using a noise variance of 0.01 for (c)
g=3onlyand (d)q=3,4,5.

(13]

5. CONCLUSIONS [14]

This paper has extended prior work showing the benefits of mai 5]
nification diversity on the improvement of super-resolution imag
reconstruction. Even a modest amount of diversity with less than
10% variation can lead to a reduction in average expected squarét6]
error by a factor of 15 when the noise variance is 0.01. A framewor 17]
has been developed for analyzing the performance for a set of ef-
fective magnifications without assuming circulant or Toeplitz struc-
tures. The benefits of large differences in effective magnification:{s18]
are partially offset by the increased impact of measurement noise as
the averaging window is increased.

[19]
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