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ABSTRACT

Multiplexed image reconstruction, estimating high resolution im-
ages from multiple low resolution images with highly overlapped
fields of view, is improved when the magnification of the imagers
is diverse. No assumptions of shift invariance or Toeplitz structure
are required for computational manageability because localized re-
construction is possible and sensitivity to boundary conditions is re-
duced. Such multiplexed diverse image sensors have applications in
flat sensor systems for surveillance and pervasive personal imaging.

Index Terms— Multiplexed imagers, image reconstruction, com-
putational imaging, flat camera.

1. INTRODUCTION

High resolution image reconstruction from multiple low resolution
images is important for two different application areas of current
interest: i) A low-cost low resolution camera that could produce im-
ages equal in quality to those produced by a more expensive higher
resolution camera would have numerous commercial applications in
imaging and video [1–3]. ii) A computational imaging system with
a flat form factor may require using smaller optical elements posi-
tioned closer to the image detectors [4–9]. This creates a physically
smaller image on the detector array for the same field of view (FOV).
Proportionately reducing the size of the detector elements to main-
tain high resolution is not feasible because it would decrease the
SNR and cause manufacturing difficulties.

In both applications, the higher resolution image would be cre-
ated computationally from multiple low resolution images with sub-
pixel translations. This super-resolution problem is well known, ill-
posed, and computationally intensive [10–13]. The reconstruction
methods are similar to well-known algorithms used in radio astron-
omy (e.g. [14]) and medical imaging (e.g. [15]). The performance of
an optimal reconstruction method will depend on the noise level in
the low resolution images and the degree to which the information
in the desired higher resolution image is captured by the sequence of
low resolution images.

This paper will address the flat camera reconstruction problem
where each low resolution image is captured by an individual small
imaging device called a sub-imager (SI). Reducing the noise level
of the SIs and providing magnification diversity can extend the lim-
its in [13], which were based on a single magnification. A single
magnification was also used in the TOMBO system [5] in which a
conventional240 × 240 pixel sensor array was divided into a6 × 6

array of40× 40 pixel sub arrays, each of which had a500µm aper-
ture micro-lens with f=1.3 mm. The object distance was fixed at
26 cm, and a resolution improvement by a factor of 4 was reported.
Reconstruction results have also been demonstrated using a single
low resolution camera to provide an image sequence [1–3]. How-
ever, performance analysis for this application could depend on dif-
ferences between the low-cost and high-cost cameras in the optics
quality and the detector efficiency as well as the camera resolution
difference.

Previous results have demonstrated the performance improve-
ment due to optical system diversity for PANOPTES, a new flat-form
factor computational imaging architecture [6, 8]. In this paper these
results are extended to non-integer magnification ratios, reduced di-
versity systems, and space variant magnifications. Diversity in the
effective magnification of an imaging system relative to the sampled
pixel array can be created in several ways. A basic micro-lens/micro-
mirror array designed to meet the flat camera thickness specifications
could be augmented with additional imaging resources that would
project a larger field of view onto a pixel than the basic array. Alter-
natively, added optical elements of the same type as the basic array
could project the image source onto physically larger pixels which
could also have lower noise levels. A third possibility would use
arrays of optical elements with space variant magnification.

The paper is organized as follows. In Section 2 we introduce the
basic model used in the analysis. Diversity aspects of the proposed
imaging system are discussed in Section 3 and the performance anal-
ysis is presented in Section 4.

2. MATHEMATICAL MODEL

A continuous image sourcefC(x, y), bandlimited by the point spread
function of the optical system, is projected onto an array of rectangu-
lar detectors. The point spread function is assumed to be small com-
pared to the detector size. The convolution offC(x, y) with the rect-
angular shape function of the detector producesgC(x, y), which is
sampled at the detector spacing. For a detector of widtha and height
b, the transform of the shape function to spatial frequency(u, v)
is (sin(πua)/(πu))(sin(πvb)/(πv)), which will produce periodic
nulls in the frequency response. In the absence of known bound-
ary conditions, it is not feasible to restore the zeroed frequencies by
combining images acquired with sub-pixel translations.

For a one-dimensional image model, it is possible to reconstruct
a high resolution image at all frequencies if images are acquired



from two different systems using detector window widths that are co-
prime in terms of the coordinates offC(x, y). For a two-dimensional
model, three different window widths are needed [8]. Selection of
the window widths for optimal performance must consider both the
positions of the zeros in the frequency response and the need to lower
the measurement noise as the size of the window is increased to
maintain the same expected error performance.

Figure 1 shows the frequency response for two systems with
three different magnifications. Letq represent the window width
in units of the desired pixel resolution of the reconstructed image. In
Figure 1a, the values ofq are 3, 4, and 5. The zeros are well dis-
tributed along the normalized frequency axis, but the width of the
largest window is 67% larger than the base window width. In con-
trast, in Figure 1b, the values ofq are 3, 3.2, and 3.4. Consequently,
the zeros are closely distributed in the normalized frequency axis,
but now the width of the largest window is only 13% larger than the
base window width. The desired discrete source image is modeled
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Fig. 1. Frequency response of two systems with diverse magnifica-
tion

as a pixel array at the desired resolution. LetF represent theNy row
andNx column image source withN = NyNx source pixels. This
source image array is stored by rows in anN × 1 column vector,f .
Similarly, theMy × Mx sensor image,G is stored by rows in the
M × 1 column vector,g.

An observation partial matrixH models the behavior of the op-
tical elements, the integration of the detector array sensors, and the
physical geometry of the sensor array. A linear mathematical model
of the measurement system is considered as given by,

g = Hf + v, (1)

where, noise vectorv includes uncorrelated random noise from a
variety of sources. When the measurement noise and the class of
possible image sources are modeled as Gaussian random variables,
the minimum variance estimate (MVE),̂f , can be computed as [16],

f̂ = f0 + K(g − Hf0) (2)

The matrixK is defined using estimates of the noise covariance,
R̂v = E[vvT ], and the covariances of the image class,P̂0 = E[(f −
f0)(f − f0)

T ] as,

K = P̂0H
T (HP̂0H

T + R̂v)−1 (3)

This derivation ofK assumes that the noise has a zero mean value
and that the image and noise are uncorrelated,i.e., E[fvT ] = 0.

The covariance of the estimate errorξ = E[f̃ f̃T ] wheref̃ =

f − f̂ can be used to find the expected squared error for an imaging
system modeled byH. The variance of each individual pixel iñf
can be computed using (4) for anyK. Here actual noise covariance
Rv and the actual image class covarianceP0 may be different from
the estimated values. The estimation error is given by,

ξ = E(f̃ f̃T ) = (I − KH)P0(I − KH)T + KRvKT (4)

The diagonal elements of the matrixξ contain the expected variance
for each element of̃f .

Both analytical analysis and simulation results show that when
H models a low resolution sensor array, the spatial frequencies that
average to zero across the sensor can never be recovered. Hence,
continued reduction of the measurement noise does not result in
comparable reductions in the average expected squared error [6,8].

3. ARRAYS OF DIVERSE SUB-IMAGERS

Since no assumption of shift invariance was used, the mathematical
formulation in the previous section applies equally well to the case
whereH represents an array of identical SIs or an array of diverse
SIs. In both cases a high resolution reconstruction can be computed
from an array of SIs with subpixel relative translations of sensor ar-
rays. The expected error of the reconstruction can be reduced by
using diverse SIs, and different types of diverse sub-imager arrays
can be compared.

The mathematical representation of a single SI in the previous
section can be extended to represent an array of SIs. LetH0,0 = H
represent a single SI in which the detector FOVs are not overlapping
and each detector averages aq × q pixel area of the desired image.
A q × q array of sub-imagers with FOVs offset from each other by
one desired source pixel width will have a combined FOV that is
extended byq − 1 pixels horizontally and vertically withNxE =
Nx + q − 1 andNyE = Ny + q − 1. The shift matrixZl is an
N ×NE matrix in whichZl(i, j) = δ(i− (j − l)). If the H matrix
of a SI is post-multiplied byZl, the FOV of the SI will effectively
shift to the right byl pixel position in thef vector and will place
the SI’s FOV correctly in the extended composite FOV of all SIs.
Row shifts ofk rows will require a multiplication byZkNxE

for the
two-dimensional image data stored in vectorf .

The vectorgk,l represents the detector image from the(k, l)th

SI. Using the measurement model of (1), individual equations can be
written for each SI as,

gk,l = HZkNxE+lf + vk,l = Hk,lf + vk,l (5)

The total number of observed pixels from the sub-arrays is the same
as the number of pixels in a traditional high resolution imager. How-
ever, the total FOV for the array of SIs is extended because no as-
sumptions are made about boundary conditions.

The column vectors of image outputs from all the SIs in (5) can
be combined into a single array of data as follows:

g = Hqf + v

gT = [gT
0,0, gT

0,1, · · · , gT
q−1,q−1]

T

HT
q = [HT

0,0, HT
0,1, · · · , HT

q−1,q−1]
T

vT = [vT
0,0, vT

0,1, · · · , vT
q−1,q−1]

T

(6)

The subscriptq on the combinedH matrix indicates aq× q array of
SI with linear resolution reduced by a factor ofq.



The expected squared error for the MVE reconstruction can be
estimated using the singular value decomposition or spectral repre-
sentation [17]. LetHq = USV T , whereU and V are N × N
andNE × NE unitary matrices andS is anN × NE matrix with
singular values along the diagonal. Assume thatRv = σ2IN and
P0 = p0INE

. Then HqP0H
T
q = p0USST UT and, using (4)

ξ = V ΛV T where the elements of theNE × NE diagonal ma-
trix Λ are given by (7). The elements ofΛ determine the average
expected squared error when̂f is computed using the MVE with the
detector images in (6) and are given by,

λi =

(

p0σ2

p0s2

i
+σ2

for 1 ≤ i ≤ N

p0 for N + 1 ≤ i ≤ NE

(7)

The performance improvements due to magnification diversity
can be analyzed using these results for a SI array. AnHq matrix is
generated for each magnification, and the observed images for arrays
of SI’s at the three magnification levels are treated as a single set of
observations as follows,

g =

2

4

gq1

gq2

gq3

3

5 =

2

4

Hq1

Hq2

Hq3

3

5 f + v = Hf + v (8)

The performance of this diverse system can be analyzed using,

f̂ = (HT R−1
ve

H + P−1

0e
)−1(HT R−1

ve
g + P−1

0e
f0) (9)

If HT = [HT
q1 HT

q2 HT
q3] thenHT R−1

ve
H can be written as

HT R−1
ve

H = HT
q1R

−1
veq1

Hq1 + HT
q2R

−1
veq2

Hq2 + HT
q3R

−1
veq3

Hq3

(10)
If eachHq represents a large shift invariant convolution, then the
circulant approximation to Toeplitz structures can be applied [17,
19]. In that case the eigenvectors of all threeHT

qiHqi matrices will be
the same DFT vectors. This allows the matrices in (10) to be added
by simply adding the eigenvalues of each of theHT

qiHqi matrices
scaled by the appropriate inverse noise variance. This matches the
intuitive concept of adding new types of SIs to capture all spatial
frequencies and demonstrates the value of diversity.

However, without any shift invariant assumptions, magnifica-
tion diversity still allows small over-determined tiles of an image
to be reconstructed independently. For the small tiles the circulant
approximation is not appropriate, and more exact methods are used
to computeK [8, 18]. The expected error computed for small tiles
in the next section is based on computation of slightly overlapping
small image tiles. The overlapping edges of the reconstructed tiles
with high expected error are discarded [8,18].

4. EXPECTED PERFORMANCE

Figure 2 compares single and diverse magnification systems in terms
of the expected mean squared error as a function of actual measure-
ment noise. A maximum image value of 255 is assumed. Results
for four systems are shown, and for each system four estimators are
shown corresponding to four different values of expected noise vari-
ance indicated in the legend. The best performance is shown by the
solid line plots for a system withq of 3, 4, and 5. The worst per-
formance, shown by the dotted line plots, corresponds to a system
using onlyq = 3. At this scale, results for all four estimators with
q = 3 are superimposed across the top of the plot. The same num-
ber of observations was taken for both theq = 3 system and the

q = 3, 4, 5 system. It is clear that without magnification diversity,
the reconstruction algorithms can not reduce the average expected
squared error as the measurement noise is reduced. The other two
systems shown use all three magnification values, but each only uses
33% of the imagers forq = 5. This increases the error by approxi-
mately a factor of 2 at low noise levels, and it is still superior to the
single magnification system.
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Fig. 2. Effect of reducing the density of the elements with higher
values ofq

Figure 3 shows results for systems with less magnification diver-
sity. For reference, the solid and dotted lines correspond to the same
systems described in Figure 2. The three additional systems have the
following sets ofq values:{3.0, 3.5, 4.0}, {3.0, 3.2, 3.4}, and{3.0,
3.1, 3.2} shown with dashed lines. This shows that even a small
amount of magnification diversity is beneficial when the noise vari-
ance is 0.1, and for a noise variance of 0.01 the least diverse system
has an expected error 15 times lower than the single magnification
system. As the noise variance decreases, performance improves for
the diverse systems.
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Fig. 3. Effect of small variation inq.

Actual performance on real images has a wide variability. The
analysis has assumed all possible images with the specified number
of bits per pixel are equally likely. However, visually interesting
images usually have a higher probability of lower frequenciesi.e.,



a 1/f2 type roll-off in frequency. When high contrast images are
used to compare algorithms, the impact of the noise is visually less
noticeable at boundary edges with large differences in pixel values.
However, detail in low contrast images is far better preserved when
the expected error is reduced. The images in Figure 4 are taken
from an aerial view of the Bay Bridge obtained from the USC image
data base. Figure 4 b shows a zoomed version of a small section of
the original image in Figure 4a. The two reconstructions shown in
Figures 4 c and d, use the same number of observations, but the re-
construction using magnification diversity (c) shows the low contrast
structural detail more reliably than the system with single magnifi-
cation factor. In both cases the noise variance used for the estimator
matched the added noise variance level of 0.01.

(a) (b)

(c) (d)

Fig. 4. Image of Bay bridge (from USC data base) (a) and 35x35
pixel tile (b). Reconstructions using a noise variance of 0.01 for (c)
q=3 only and (d) q = 3, 4, 5.

5. CONCLUSIONS

This paper has extended prior work showing the benefits of mag-
nification diversity on the improvement of super-resolution image
reconstruction. Even a modest amount of diversity with less than
10% variation can lead to a reduction in average expected squared
error by a factor of 15 when the noise variance is 0.01. A framework
has been developed for analyzing the performance for a set of ef-
fective magnifications without assuming circulant or Toeplitz struc-
tures. The benefits of large differences in effective magnifications
are partially offset by the increased impact of measurement noise as
the averaging window is increased.
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