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Abstract—General definitions of spreading and coding are
given based on the notion of Shannon bandwidth introduced by
Massey (1994), with the goal of distinguishing these operations
for signaling with bandwidth redundancy. These definitions are
shown to lead to a separation result: every bandwidth redundancy
scheme can be expressed as a concatenation of coding followed by
spreading. The coding-spreading tradeoff problem is then studied
for a code division multiple access (CDMA) system in which the
receiver processes the received signal by using a user-separating
front-end, which feeds into autonomous single-user decoders.
Under the single-user decoding setting, it is established that the
linear minimum mean square error (LMMSE) front-end multiuser
detector is optimum among all front-ends that are constrained
to use only spreading information. Also, conditions are given for
the single-user decoders to ignore spreading information without
losing optimality. An example illustrating the coding-spreading
tradeoff optimization for a direct sequence CDMA system with
random spreading is given. Single-cell and multicell scenarios are
considered in the optimization, and a comparison is made of the
spectral efficiencies that can be achieved with the conventional
matched filter and LMMSE front-ends.

Index Terms—Channel coding, code division multiaccess, land
mobile radio cellular systems, least mean square methods, matched
filters, signal detection, spectral efficiency, spread spectrum com-
munication.

I. INTRODUCTION

I N SPREAD spectrum code division multiple access
(CDMA) systems, the spectral (Fourier) bandwidth of each

user in the system is increased to fill up the entire “available”
bandwidth. Such bandwidth expansion is known to facilitate
multiple access with many desirable features, particularly in the
context of wireless cellular systems [2]. In a CDMA system,
each user’s transmitted signal has a large time-bandwidth
product, i.e., the spectral bandwidth1 (in Hz) occupied by
the signal is considerably larger than the information rate(in
bits/s). If we consider a hypothetical baseline system where we
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1For ease of exposition of the results, we assume real-valued baseband signals
and systems throughout the paper. A spectral bandwidth ofW denotes that the
signal energy is contained in range of frequencies[�W;W ]. The analysis and
results are straightforwardly extended to complex baseband models that repre-
sent carrier modulated signals and systems.

construct the user’s transmitted signal as an uncoded binary
phase shift-keying (BPSK) signal with Nyquist sinc pulse
shaping, then the bandwidth of this baseline system equals

Hz. We, hence, need to introduce bandwidth redundancy
into this signal if it is to occupy a spectral bandwidth of

.
In this paper, we use the notion of Shannon bandwidth intro-

duced by Massey [1] to distinguish between two components
of a bandwidth redundancy scheme, namely,spreadingand
coding. Our goal is then to study the coding-spreading tradeoff
in CDMA systems. This tradeoff problem has been considered
for specific CDMA systems in previous work (see, e.g., [3]
and [4] for single-user detection results, and [5] and [6] for
multiuser detection results). One of the contributions of this
paper is in formally establishing that the tradeoff problem
is well-defined. In addition, we give a general approach to
optimizing the tradeoff, and explore the details and implications
of this optimization in the context of cellular CDMA systems.

In Section II, we establish a useful separation result that every
bandwidth redundancy scheme can be written as a concatena-
tion of coding followed by spreading. This separation result
leads naturally to the question of how a fixed bandwidth ex-
pansion should be allocated between coding and spreading. The
answer to this question depends crucially on the channel and the
receiver structure.

In Sections III and IV, we pose the coding-spreading tradeoff
problem for the interesting special case of a CDMA system
with single-user decoding. Here, the receiver processes the sum
of the user’s signals, corrupted by white Gaussian noise, by
using a user-separating front-end detector that is followed by
autonomous single-user decoders. For such a receiver, we first
show that among all linear front-end detectors, the one that min-
imizes the mean square error (MSE) at the input of the de-
coders does not depend on the codebooks of the users. Fur-
thermore, under the single-user decoding restriction, we give
arguments supporting the asymptotic optimality of the linear
minimum mean square error (LMMSE) front-end, similar to
previous results in [7]. We also give conditions under which
the single-user decoders may operate without knowledge of the
users’ spreading functions and not sacrifice optimality, and give
examples of when these conditions are met. We, hence, estab-
lish a form of separation between detection and decoding at the
receiver.

In Section V, we study the coding-spreading tradeoff in
detail for the specific example of a direct sequence CDMA
system with ideal single-user coding and decoding, and random
spreading. The spectral efficiency of the system is the criterion
used for studying the tradeoff. We consider the two extreme
cases where the codesymbols are constrained to be binary and
where they are unconstrained. Both single-cell and multicell
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scenarios are considered in the tradeoff study. Using recent
results on large system analysis of linear multiuser detectors
[6], [8], we obtain expressions for the coding-spreading tradeoff
curves for the (near optimum) LMMSE and the conventional
matched filter (MF) front-ends.

In Section VI, we compute the tradeoff curves numerically
for specific examples, and provide simulation results that
confirm the accuracy of the large system analysis for practical
system sizes. Based on the peak spectral efficiencies that can
be achieved by these two front-ends, we then draw interesting
conclusions regarding the applicability of multiuser detection
techniques in cellular CDMA systems.

II. SEPARATION OFCODING AND SPREADING

A. Fourier and Shannon Bandwidths

Consider the space of real-valued functions that are time-lim-
ited to the interval and approximately bandlimited to a
baseband bandwidth of Hz, i.e., most of the energy is con-
tained in the range of frequencies . Denote this space
by , and note that has dimension given
by [see e.g., ([9, p. 294])]

We refer to as theFourier dimensionof the signal space. The
prolate spheroidal wave functions (PSWFs) form the best basis
for in the sense described in [10]. But if
and we ignore edge effects, we have the following simpler set
of orthonormal basis functions that are formed by translations
of sinc pulses:

(1)

where .
Consider the following single-user communications problem.

Suppose our goal is to transmit information at the rate of
bits/s, i.e., we wish to send one of possible symbols
(equivalently a sequence of bits) in time , using one
of the signals from the set .
We do not restrict the form of signals in any way except that the
signal set occupies a Fourier bandwidth of, i.e., is
the smallest range of frequencies that encompasses the essential
bandwidths of all the signals in the set.

It is clear that each belongs to ,
and can, hence, be represented by a -dim vector

, with

(2)

We denote the signal set by . We will abuse
notation slightly, and use to denote both the space of
functions and their corresponding -dim vector repre-
sentations. Thus, we can considerto be a subset of .
Without loss of generality we may assume that , since
this will hold for sufficiently large .

Before we proceed we define a baseline signal set that will be
used in the remainder of the paper. We will use the superscript
prime to denote the parameters of the baseline signal set.

Definition 1: Thebaseline signal setfor signaling at rate
bits/s on is given by , i.e., the infor-
mation bits are modulated using BPSK with Nyquist sinc pulse
shaping.

Note that the Fourier bandwidth of the baseline system
, and . This motivates the following defini-

tion.
Definition 2: Thebandwidth expansion factor of a general

signaling scheme with Fourier bandwidth is given by

(3)

For CDMA signals is usually for each user.
Definition 3: A signaling scheme is said to be abandwidth

redundancy schemeif .
We now note that the signal set may have

a span whose dimension is smaller than. This leads to the
following definition of Shannon bandwidth that was introduced
by Massey in [1].

Definition 4: The dimension of is called the
Shannon dimensionof the signal set, and is denoted by .
The ratio , which represents half the number of di-
mensions per second occupied by the signal set, is called the
Shannon bandwidthof the signal set, and is denoted by.

Clearly and . The notion of Shannon
bandwidth was used by Massey to precisely define a spread-
spectrum system as one for which (actually ),
with spreading factor defined as

(4)

Note that may be smaller or larger than , and hence,
may be smaller or larger than, depending on the alphabet size
chosen for signaling. If the signaling is constrained to bebinary,
then it is easy to see that and, hence, that .
Also, for the baseline signal set of Definition 1, it is clear that

.
Based on the definition of a spread spectrum system as one

for which , Massey gives several examples in [1] that il-
lustrate the difference between spread-spectrum and nonspread-
spectrum systems. In Section II-B, we use the notion of Shannon
bandwidth to define the operation ofspreading, and more im-
portantly to distinguish it from the operation ofcoding.

B. Spreading as a Linear Mapping in Signal Space

The process of converting the sequence of bits into a
signal is generally referred to ascoding.
The mapping of the set of all sequences of bits to the set

, can equivalently be considered to be a mappingfrom the
baseline signal set to . Assuming that

, this mapping is a bandwidth redundancy scheme
(see Definition 3).

The above general definition of coding encompasses the case
when , i.e., the case of spread-spectrum signaling. In
fact, standard direct sequence spreading used in CDMA systems
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can be considered as equivalent to repetition coding. However,
as noted in [1], coding and spreading should be considered to
be fundamentally different components of the bandwidth redun-
dancy mapping . Our goal is to identify these components so
that we can study the coding-spreading tradeoff problem.

If we constrain so that has Shannon bandwidth, then
the maximum rate achievable on a single-user additive white
Gaussian noise (AWGN) channel with Fourier bandwidth, is
given by [1]

(5)

where is the signal power, is the two-sided noise power
spectral density, andis the capacity of the channel. Sinceis
monotonically increasing in , the capacity is achieved only
if . Thus, any mapping that achieves capacity must
satisfy . For spread-spectrum signaling, the mapping
necessarily results in . Since the maximum achievable
rate is determined by , spreading could be considered to be
providing zero coding gain for single-user communications on
an AWGN channel.

Based on Massey’s definition of a spread spectrum system,
it is tempting to define the operation of spreading as any band-
width redundancy scheme that increases the Fourier bandwidth,
while preserving the Shannon bandwidth. However, such a def-
inition may not be consistent with the notion that spreading pro-
vides zero coding gain in AWGN, as the following example il-
lustrates.

Example 1: Consider a signal set , with
, consisting of the signals

Consider the bandwidth redundancy mapping that increases the
Fourier dimension to three in such a way that the new signal set

consists of the signals

Clearly, the Shannon dimension (and bandwidth) of are
the same as those of . However, the mapping increases the
Euclidean distance between the signals while preserving their
energies and, hence, provides coding gain in AWGN.

It is easy to check that the mapping from to in
Example 1 is not linear. Now consider a linear mapping from

to , with
, and let this mapping be defined by matrix. If is

nonsingular, then this mapping clearly preserves the Shannon
bandwidth. This might motivate the definition of spreading as
an energy preserving, nonsingular, linear mapping. However,

the following simple example illustrates that even such a def-
inition is not specialized enough.

Example 2: Consider , and
the linear mapping defined by

This mapping takes to . Hence,
is energy preserving, but it increases the distance between the
signals and provides coding gain in AWGN.

If we further restrict the linear mapping in such a way
that it not only preserves the energy of the signals in , but
also the distances between them, then it is easy to see that
leaves performance unchanged (provides zero coding gain) for
single-user communication on an AWGN channel. A sufficient
condition on that guarantees this property is that it isunitary,
i.e., . This motivates the following definition.

Definition 5: A bandwidth redundancy mapping from
to , with

, is calledspreadingif it can be expressed as a unitary
linear mapping.

While such a definition may appear to be restrictive, it gener-
alizes the two standard ways of spectrum spreading: direct se-
quence spreading and frequency hopping.

Example 3: Direct Sequence Spreading:Consider a
-ary signal set . Using the basis

functions of (1) with , we have
, where

.
Direct sequence spreading by factor, with

, involves replacing in (2) by the chip signal
that is given by

where

are basis functions for . Thus, the spread signal is
given by

Of course, since belongs to , we can write

Now, if we define and
, then
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where

...
...

...
...

If we normalize the spreading sequences so that , it is
easy to see that .

Example 4: Fast Frequency Hopping:Consider the same
-ary signal set on as in Example 3. Frequency hopping

involves replacing in (2) by

where

and where is the hopping sequence. It is
easy to show that the mapping that describes frequency hopping
is also linear with

...
...

. . .
...

where denotes the unit length vector with a one in theth
position.

It is easily checked that other forms of spreading based on
multicarrier approaches are also special cases of Definition 5.

C. Separation Result

To complete our description of the dichotomy between coding
and spreading, we give a narrower definition of coding in terms
of Shannon and Fourier bandwidths.

Definition 6: Let be a signal set with
. A mapping from to , is

calledcodingif as well.
Note that coding does not necessarily expand bandwidth, i.e.,

could be less than . It is clear from (5) that the coding
that achieves the capacity of a single-user AWGN channel sat-
isfies Definition 6. The same is true of ideal, capacity achieving
codes for other channels that we consider in Section V. Also,
as argued in [1], for large block lengths any nontrivial coding
scheme will satisfy Definition 6.

Definitions 5 and 6 lead naturally to the following separation
result.

Proposition 1: Separation of Coding and Spreading:Con-
sider the baseline signal set , which has

. Consider any bandwidth redundancy mapping
that increases the Fourier bandwidth of the signal set to

, and changes the Shannon bandwidth to. This scheme
can be written as a concatenation of coding fromto

, followed by spreading from to ,
where .

Proof: Let and .
The -ary signal set can be represented by the-dim vec-
tors , the -dim vectors
in , and , respectively. Then

for

Note that the signals are -dim vectors whose span has
dimension . Thus, we may identify a set of orthonormal
vectors , and write

(6)

If we set , then it is clear that .
Associated with each is a -dim vector

. Using (6) and the fact that , we
can write

for

Now, is a mapping from to , with .
Also, it is clear that as well. Thus,
is codingaccording to Definition 6. Thespreadingpart is obvi-
ously described by the mapping, since it is unitary and

for

III. T HE TRADEOFFPROBLEM FORCDMA SYSTEMS

Given any bandwidth redundancy scheme, Proposition 1 al-
lows us to identify and separate the coding and spreading com-
ponents of this scheme. It is also clear that coding and spreading
can contribute differently to system performance. The natural
question that arises then is how a fixed bandwidth expansion
factor should be allocated between coding and spreading.

For illustration, consider the tradeoff problem for a single-
user, AWGN communication system. Since spreading cannot in-
crease channel capacity, the capacity maximizing solution puts
all of the bandwidth expansion into coding. However, as noted
in [1], spreading need not reduce capacity too much, and if prac-
tical constraints such as decoding complexity are taken into ac-
count, using a significant fraction of the bandwidth expansion
for spreading may be justified. Other motivations for spreading
could come from the low probability of interception (LPI) of a
spread spectrum signal and its immunity to multipath fading in
a wireless environment.

Now consider the coding-spreading tradeoff in the context
of CDMA systems. For simplicity of presentation, consider the
symmetric situation where each one ofusers independently
needs to send information at the rate ofbits/s in interval .
We may construct baseline signal sets for each of the users as
per Definition 1, with . The baseline signal set
for user is denoted by .

Suppose all signals are coded by a factor and then
spread by a factor , as discussed in Proposition 1. For user

, let denote the mapping (codebook) that defines the coding,
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Fig. 1. Single-user decoding paradigm.

and let denote the linear mapping that defines the spreading.
Then the coding and spreading operations at the transmitters are,
respectively, described by

and (7)

The mappings and could be different across the
users, although in practical CDMA systems, such as the one
based on the IS-95 standard [11], the codebooks are identical.
The transmitted signal corresponding to theth symbol of user

is, thus, .
The received signal obviously depends on the effect of the

channel on the users’ signals. For wireless channels, typical ef-
fects include addition and attenuation of transmitted signals,
propagation delays, multiple resolvable paths, additive noise,
etc. In general, if we assume a channel model where the signals
undergo linear distortion and the additive noise at the receiver
is white Gaussian, the received signal can be written as

(8)

where , and depends on and the
channel model. In particular, when the users are synchronous
and there is no multipath fading, we have . We will
consider this case in greater detail in Section V. In addition,
though most of the discussion in this section holds for general

, we use for simplicity in notation.
For an AWGN multiaccess channel, the solution that maxi-

mizes the sum capacity again favors all coding [6]. Of course,
this solution assumes an optimum joint decoding scheme that
forms estimates of the information symbols of all users jointly
from , using a decoder that exploits information about both the
spreading and coding components of all users’ signals, as well
as the channel state information. For synchronous users with
spreading factor equal to number of users, it is possible to
orthogonalize users so as to not incur any loss in capacity. Even

when it is possible to find spreading sequences that
incur no loss in capacity [12], [13].

The tradeoff problem is much more interesting in practical
CDMA systems, where complexity constraints favor adopting a
receiver that consists of a front-end multiuser detector followed
by autonomous single-user decoders. The front-end produces

outputs , with being a “good” estimate of the
encoder output of user , based on . The estimates
are then fed to autonomous single-user decoders (see Fig. 1).
We formally state below the single-user decoding assumption
that will be used in the remainder of the paper.

Assumption 1:The decoder for a particular user does not de-
pend on the codebooks of the interferers.

IV. LMMSE FRONT-END AND SEPARATION AT THE RECEIVER

Under the single-user decoding restriction, we will establish
a separation between detection and decoding in the following
sections. We first show that the LMMSE front-end does not
benefit from knowledge of the codebooks of the users. Fur-
ther, we establish that the LMMSE front-end is the optimum
front-end among all front-ends (linear and nonlinear) that do
not use knowledge of the codebooks of the users. Finally, we
give conditions under which the single-user decoders that follow
the LMMSE front-end do not benefit from knowledge of the
spreading matrices of the users.

A. LMMSE Front-End Does not Require Codebooks

Suppose we use the MMSE criterion for producing the esti-
mates from . The goal is then to pick the to minimize
the MSE

(9)

The expectation in (9) is over the distribution of the noise and
the prior distribution on the symbols of the users.
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Note that the probability distribution of the code-vector
is a function of the prior distribution on the information sym-
bols and the codebooks . Since the users send independent
pieces of information, the code-vectors can be assumed
to be mutually independent across users. The individual com-
ponents of each code-vector are necessarily dependent (for
a nontrivial code). However, it is reasonable to assume that the
components are uncorrelated.

Assumption 2:The code-vectors are mutually indepen-
dent. Furthermore, the components of eachare zero-mean,
identically distributed, and uncorrelated, i.e.,

and

where is the average energy of . We further assume that
is not a function of .

While Assumption 2 appears to be restrictive, it holds for
most coding schemes of interest.

Claim 1: Suppose is constructed from a error
control code that is linear over a finite field , by map-
ping the symbols from to the real line . Suppose further
that this mapping is designed to yield average energy per
symbol, while maximizing the distance between constellation
points on . Then Assumption 2 holds.

Proof: This construction obviously requires the mild con-
dition that . Let denote a generic codeword of. If
we consider a particular position, say theth, it is easy to show
from linearity over that the th codesymbol takes on
each value in the same number of times if we look across
codebook . (This assumes of course that we eliminate code
symbols that are zero for all codewords.) To constructfrom

, we simply map the elements of to . We note that to
maximize distance under given average power constraints, the
mapping to must be symmetric around the origin. With the
assumption that the information symbols are equally likely, the
claim follows.

The MMSE front-end could in general use knowledge of both
the codebooks and the spreading matrices to mini-
mize the MSE of (9). If we restrict the front-end to be linear, we
have the following result.

Proposition 2: Under Assumption 2, the LMMSE front-end
depends only on the spreading matrices of the various users, and
not their codebooks.

Proof: Any linear front-end can be described by a set of
matrices that map of (8) to the vectors , i.e.,

Under Assumption 2, it is easy to show [see, e.g., ([14, Chapter
6])] that the LMMSE solution for user is given by

(10)

where

(11)

The result follows.

Proposition 2 illustrates a partial separation of coding and
spreading at the receiver, i.e., coding does not help with linear
signal separation at the front-end under the MMSE criterion. On
the other hand, a nonlinear front-end can make use of knowledge
of the codebooks to improve performance. An example of such a
nonlinear front-end is an interference cancellation scheme that
uses the code-books of the interferers to reconstruct their sig-
nals for cancellation. In Section IV-B, we consider the LMMSE
front-end from a different viewpoint, and argue that it is optimal
among all (linear and nonlinear) front-ends that are constrained
to use only spreading information.

B. Optimality of the LMMSE Front-End

In the remainder of this section, we assume that in addition
to Assumptions 1 and 2, the following assumption holds.

Assumption 3:The front-end is not allowed to use the code-
books of any user.

Consider the received signal (8) again

(12)

where we have separated out the signal of user. Since neither
the front-end nor the decoder of useris allowed to use code-
book information of interfering users, we can interpret (12) as
a single-user vector channel betweenand . The interferers
are, thus, treated as part of the additive noise, i.e.,

(13)

where . Using Assumption 2, it follows
that the noise vector has the covariance matrix

The connection between and can be considered to be the
effective single-user (ESU) channel for user(see Fig. 1). The
maximum information rate for user is determined by the ca-
pacity of this ESU channel. If we assume for now that the de-
coder for user is allowed to use the spreading information of
all the users, then capacity of the ESU channel of useris de-
termined by the mutual information . This
motivates the following definition.

Definition 7: A front-end is optimum for single-user de-
coding of user if it maximizes for each
choice of distribution for .

From the data processing inequality [15, Chapter 2] it is clear
that

(14)

Our goal is to show that the LMMSE front-end achieves this
upper bound and is hence optimum according to Definition 7.

To proceed we need to make the following additional assump-
tion.

Assumption 4:The noise vector has aGaussiandistribu-
tion with zero-mean and covariance.

Clearly, the assumption would hold if the codesymbol vectors
of the interferers were themselves Gaussian. For an arbitrary
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distribution of the symbols, it is possible to show that tends
to a Gaussian vector in distribution as , under mild
conditions on the spreading matrices [16, Section 29]. While
this asymptote may justify the Gaussian approximation to some
extent, it is of greater interest to let as well with
tending to a constant. A rigorous application of the Central Limit
Theorem in the latter asymptote is an interesting open problem.

The Gaussian approximation for the interference implies the
following result, which follows from reasoning similar to that
in [7].

Proposition 3: Under Assumptions 1–4, the LMMSE is op-
timum for single-user decoding of each user.

Proof: It follows from the data processing inequality [15,
Chapter 2] that mutual information is preserved under invertible
transformations of the received signal. Thus

(a)

(b)

(c)

where is the LMMSE front-end. In the above equalities, (a)
follows since is invertible. To see (b) note that

is just a noise-whitening operation and is .
Therefore, is a sufficient statistic, and the mutual in-
formation is preserved [15, Chapter 2]. Finally, (c) follows be-
cause is related to through an invertible matrix [see
(10)]. Thus, the LMMSE front-end achieves the upper bound in
(14), and the proposition follows.

C. Separation Between Detection and Decoding

Proposition 3 illustrates that the LMMSE front-end that uses
only spreading information does not lead to a loss of mutual in-
formation. As mentioned earlier, this corresponds to a partial
separation of coding and spreading at the receiver. For com-
plete separation, the decoder should use only the codebook of
the desired user and no spreading information. To see whether
complete separation is possible without a loss in performance,
consider the output of the LMMSE detector that is fed to the
decoder. Let . Then, using (10)

where is . Clearly, the spreading matrices enter
the detector output only through the matrix . Hence, com-
plete separation between the LMMSE detector and decoder is
achieved with no loss of performance if

(15)

While (15) does not hold in general, there are particular cases in
which it is true. A simple example is when we have synchronous
users in AWGN and all the users span mutually orthogonal sub-
spaces. In this case, we have .
Another interesting scenario is when the matrices con-
sist of independent, zero-mean, randomly chosen entries, and
we consider the large system asymptote where with

tending to a constant. Then equality in (15) is asymptot-
ically achieved (see, e.g., [17]). A special case of this scenario
is described in Section V.

The above discussion justifies the use of LMMSE detector as
a benchmark for the front-end detector, under the single-user
decoding restriction. It is, hence, of interest to optimize the
coding-spreading tradeoff for this front-end. In the following
section we discuss an example that illustrates this optimization.
We also compare the LMMSE and conventional MF front-ends.

V. CODING-SPREADING TRADEOFF IN SYNCHRONOUS

DS/CDMA SYSTEM

Consider a CDMA system in which spreading is achieved
using a direct sequence approach, where each code symbol is
spread by a unit energy chip waveform as in Example 3.Random
spreading is assumed, i.e., the spreading sequences are inde-
pendent from codesymbol to codesymbol and across users. Fur-
thermore, the chips within a codesymbol are independent iden-
tically distributed (i.i.d.)binary zero-mean random variables.
In addition, we assume a synchronous system, although similar
results will be obtained for asynchronous systems as long as
bandwidth restrictions are correctly imposed on the chip wave-
forms [18], [19]. We first consider a “single-cell” wireless com-
munication system, where all the users in an isolated cell
are received withequal power(i.e., they are perfectly power
controlled) at the base station and the only interference is from
thermal AWGN with a spectral height of . The approach
is easily extended to a multicell scenario, and we demonstrate
this through a simple model for the out-of-cell interference in
Section VI.

As before, we have that each user sends information at rate
of bits/s of information in some long time interval . The
transmission bandwidth available is and is the
bandwidth expansion factor. By Proposition 1, we can separate
the bandwidth redundancy mapping into a coding component
with rate bits/symbol followed by a spreading component that
leads to an expansion by a factor. Let , and de-
note the energies per information bit, codesymbol, and chip, re-
spectively. Also, define the corresponding signal-to-noise ratios
(SNRs) by and . Then

and

Also, and are obviously related as

(16)

Note that the code ratewhich equals can also be inter-
preted as thespreading fractionof the bandwidth expansion.

After projection onto basis functions of the -dim signal
space (i.e., chip-matched filtering) and normalization, we get



VEERAVALLI AND MANTRAVADI: CODING–SPREADING TRADEOFF IN CDMA SYSTEMS 403

the following model for the received vector for one codesymbol
interval:

where and are the codesymbols, and
are the binary spreading vectors of length. The sym-

bols are normalized to have unit energy on average, i.e.,
for all . The spreading vectors are also normalized so that

.
Focusing on user, the received vector can be rewritten as

where the columns of are the spreading vectors of the
interferers, and is the vector of the corresponding codesym-
bols. For a linear front-end, the estimate for the code symbol
is based on the scalar

We restrict our attention to two linear front-ends, the conven-
tional MF, and the optimum LMMSE2 front-end from (10)

For hard decisions, the constellation point closest in Euclidean
distance to is sent to the decoder for user. For soft deci-
sions, (or some other appropriate function of) is sent to
the decoder.

The goal in the coding-spreading tradeoff optimization is to
pick the coding and spreading factors to maximize performance.
For a given , the code rate (or spreading fraction)determines
the spreading factor , so we need to only optimize. Since
we are constraining the information rates of the users (to one
information bit every chips), a reasonable measure of perfor-
mance is the largest number of users that can transmit their
bits reliably on the channel. Clearly is a function of and

(equivalently of and ). The ratio

(17)

is then the totalspectral efficiencyof the CDMA system in
bits/chip at a spreading fraction. The optimum code rate is,
hence, given by

and the peak spectral efficiency is given by

For a practical system, the code would be chosen from a family
of multiple rate codes, and would be the largest number of

2Note that the LMMSE detector here differs from that in (10) by a scalar
factor. While the MSE would change with a scaling of the output, the calcula-
tions here are based on the output signal-to-interference ratio (SIR) and remain
unaffected. Note that the LMMSE detector is also the SIR maximizing detector
[14].

users accommodated with an information bit error rate (BER) of
less than some threshold (say 10). But we may draw useful
conclusions about the coding-spreading tradeoff more easily
by assuming ideal coding. Whether we pick practical codes or
ideal codes, it is imperative that we verify that they are in-
deed “codes,” in the sense of satisfying Definition 6. Otherwise,
the “coding” component could still have a residual “spreading”
component and the tradeoff problem is not well-defined. In the
discussion below, we will consider capacity achieving codes for
various constraints on the input and output alphabets of the ESU
channels. As in the case of the single-user AWGN channel dis-
cussed in Section II, it can be shown that for these
codes as well.

With the assumption of ideal coding and with the above
caveat taken into account, is computed as follows. For
fixed and , we compute the capacity of the ESU
channel corresponding to any one of the users, say user 1.
Since the code rate must be less than for reliable
transmission, we have3

maximum value of such that

(18)

We now calculate for different scenarios. We begin
by considering the case of binary signaling for which

. Assume first that the receiver employs hard-decision
decoding, i.e., . In the single-user decoding para-
digm adopted in this paper, the decoder could use knowledge of
the spreading sequences but not the codebooks of other users.
Hence, for a given realization of the sequences, the effective
single-user channel is a binary symmetric channel (BSC) that
is time-varying but memoryless by the assumption of random
spreading. The instantaneous error probabilityof the BSC is
the average bit error probability over the code bits of the users

(19)
where and for the MF and
LMMSE front-ends, respectively. The corresponding BSC ca-
pacity is

(20)

where is the binary entropy function and the expectation is
over and .

For binary signaling and soft-decision decoding, the
single-user channel is a binary input continuous output channel.
If we approximate the conditional probability density function
(pdf) of the output by a Gaussian, then [20, p. 273]

(21)

where

3The implicit assumption of course is thatC(K;N) is decreasing function of
K. This is easily seen to be true for all the cases considered in this paper.
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with being a mixture of and with
equal weights, and being the SIR at the channel output. It is
easy to show that

(22)

where and for the MF and
LMMSE front-ends, respectively.

Finally, if we do not constrain either the input or output al-
phabets of the ESU channel, we can approximate this channel
by an AWGN channel for the two front-ends of interest [6]. The
SIR of this channel can be approximated by

(23)

with being given by (22).
For finite and , the of (20), (21), and (23) are

cumbersome to calculate. In the large system asymptotic sce-
nario where , with the ratio being kept con-
stant, asymptotically exact expressions forand may
be obtained [8], [6], by fixing the code symbol SNR. In par-
ticular, the SIR converges for almost every realization of the se-
quences to , where

for

for

(24)

with

Furthermore, converges in this asymptote as follows:

binary hard

binary soft

unconstrained.
(25)

Note that, in contrast to [6], we have explicitly intro-
duced the bandwidth expansion factor in setting up the
coding-spreading tradeoff problem. Thus, is not an inde-
pendent variable (that can be taken to infinity) in our analysis,
and the above asymptotics are not directly applicable to our
problem. The quantity of interest is determined by and

, and we are, hence, interested in the large system limit of
where with the ratio (coding rate) being

fixed. Now, it is not cleara priori whether the limiting spectral
efficiency exists. However, we can show, based on (18) and the
results for the large asymptotics described above, that

goes to in such a way that the limit below does exist4

(26)

4A rigorous proof for the limit existence requires the pointwise convergence
(in theN;
 asymptote) of appropriately defined inverse functions ofC(K;N).
However, this is more of a technicality and we do not pursue the matter here.

Furthermore, the equation satisfied bycan be obtained by set-
ting the bandwidth expansion constraint to equality in (18) and
using (25)

(27)

Using (27) we can derive the asymptotic spectral efficiencyas
a function of for a given information bit SNR .

It is of interest to note that the convergence of for
the LMMSE detector implies a complete separation of coding
and spreading at the receiver in the large system asymptote, as
discussed at the end of Section III. Specifically, by Assumption
4 and Proposition 3

Moreover, the matrix that needs to be sent to the de-
coder is equal to . This is just the output
SIR for the particular realization of the sequences. If we con-
sider the sequence of systems with users (as ),
then from (26) and (24), it is clear that limiting SIR is indepen-
dent of the realization of the sequences in the limit. Thus

Hence, it follows that:

which is an asymptotic equality between the mutual informa-
tion prior to any front-end processing to that with an LMMSE
front-end using only the spreading sequences and a decoder for
user that knows only the corresponding codebook. Thus,
under the restriction of single-user decoding at the receiver, the
structure of an LMMSE front-end followed by a single-user de-
coder without sequence knowledge is asymptotically optimum.

VI. NUMERICAL RESULTS

We first consider the equal-power, single-cell scenario. Fig. 2
shows the spectral efficiency for this case with hard
and soft-decision decoding, respectively. The value of the band-
width expansion factor is set to 64. We note that small values
of are favored for the MF front-end, while values ofclose
to 1 are favored for the LMMSE front-end. This is to be ex-
pected since the LMMSE front-end uses linear signal separation
through spreading to suppress multiaccess interference while
the MF front-end does not. We can also see that coding gives
diminishing returns for the MF receiver—a significant portion
of the bandwidth expansion can be given to spreading with a
marginal loss in spectral efficiency.

For hard decisions, the maximum spectral efficiency )
for the MF equals 30/640.47 bits/chip, and matches well
with the large system, large asymptotic value of
predicted by Hui [3]. For soft decisions, the maximum value
is 46/64 0.72 bits/chip, and again matches well the value
of given in [3]. The plots also show the system
asymptotic spectral efficiency values obtained by using (24)
and (25) in (27), and we see a good match with finite system
results.
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Fig. 2. Spectral efficiency as a function of the spreading factor for a single-cell system and binary signaling. For the simulation results, the bandwidth expansion
factor
 =64, the information bit SNR
 =18 dB and the spectral efficiency is averaged over 2000 independent random spreading sequence sets. The dashed
lines are the asymptotic spectral efficiencies.

Fig. 3. Spectral efficiency per cell as a function of the spreading factor for binary signaling and a simplified multicell model, with out-of-cell interference having
half the power of the in-cell interference;
 = 64; 
 = 18 dB.

For the LMMSE front-end, is around 1 bit/chip for
hard decisions, and is slightly larger for soft decisions. It is
interesting to note that the LMMSE spectral efficiency with
random sequences can be higher than the maximum efficiency
of 1 bit/chip achievable with orthogonal sequences and .
This is in contrast to the case without binary constraints where
it is known that orthogonalizing users with does not
incur any loss in capacity (see, e.g., [6]).

We also give results for a multicell wireless system, in which
the base station receives the sum of the in-cell users’ signals
in the presence of interference from neighboring cells. We as-
sume the following simple model for the other-cell interference.
We consider a hexagonal cell structure and consider only the
first tier of six interfering cells. We assume that all cells have
the same number of users, and that each other-cell inter-
ferer is received at a power equal to one-twelfth of the in-cell
user’s power. This means that the total power in the other-cell
interference equals half the total in-cell power, as described by
Viterbi [21]. All users in the system are assigned indepen-

dent random spreading sequences, and the LMMSE receiver
uses knowledge of the spreading sequences of allusers to
make its decisions.

We can again obtain asymptotic results in this cellular sce-
nario. For the MF detector, the code symbol SIR in (24) is mod-
ified by simply replacing with where

(28)

For the LMMSE detector, we obtain an implicit equation for
by using [8, (4)]

(29)

and it can be simplified to yield a cubic equation in.
The results with uniformly loaded multiple cells are shown

in Fig. 3. As expected, the MF spectral efficiency is down by
a factor of when compared with single-cell results. It is
interesting to see that the gap between the LMMSE and MF
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Fig. 4. Asymptotic spectral efficiency per cell with binary signals and soft-decision decoding as a function of� for single and multicell scenarios;

 ={6, 12, 18} dB.

Fig. 5. Asymptotic spectral efficiency per cell with continuous alphabet as a function of� for single and multicell scenarios;
 ={6, 12, 18} dB.

spectral efficiencies is much reduced, particularly in the case
of soft-decision decoding.

In Figs. 4 and 5, we provide asymptotic spectral effi-
ciency curves for the binary and continuous alphabet cases,
respectively. The results are for the single-cell scenario with

18 dB and show that, with continuous alphabet, the gap be-
tween the LMMSE and MF spectral efficiencies grows without
bound as increases (see, also, [6]). Thus, at 18 dB,
there is significant room for improvement by using an LMMSE
receiver and larger constellation sizes. In the multicell scenario,
it can again be shown that the gap between the LMMSE and

MF spectral efficiency peaks goes to with . However, the
value of required to achieve the same gap is much larger
than that for the single-cell case. Thus, a question of practical
interest is whether the value of can be large enough to
justify constellation sizes larger than binary and/or the more
complex LMMSE front end. One perspective on this question
is as follows.

The effective bit SNR seen by the LMMSE detector must
include both thermal noise and any uncancelled interferers in
the system. In particular, suppose that there was asecondtier
of interferers that cannot be suppressed by the LMMSE de-
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tector, leading to an effective code symbol SNR of and
an effective bit SNR of . Also, suppose that total interfer-
ence from the second tier is a fractionof the interference from
the first tier. Then

(30)

where the last equality is obtained using (27). Thus, is
limited by and . Clearly, to justify the use of the LMMSE
detector over the MF detector, we must consider , the
maximum spectral efficiency with the MF detector. Analogous
to (28), the spectral efficiency values for the MF with two tiers
can be obtained by using

It follows that for the MF reaches its maximum as ,
and the maximum value is:

Hence, the maximum seen by the LMMSE detector can
be taken to be

Typical values of range from about 1 to 0.06, depending on
the propagation loss coefficient and the standard deviation of the
shadow fading process [22]. The corresponding range of
is about 4.5 dB–16 dB. Referring to Figs. 4 and 5, we see that
the peak spectral efficiency of the LMMSE detector is not sig-
nificantly higher than that for the MF detector in this range of

.
Finally, we have assumed an LMMSE detector that sup-

presses the first tier interference in the multicell scenario. The
spectral efficiency may be expected to be even smaller if we as-
sume that only in-cell interference is suppressed. The resulting
LMMSE detector operates at an effective code symbol SNR
of given in (28). The corresponding spectral efficiency
curves are shown in Fig. 6. The main conclusion from Figs. 4–6
can be summarized as follows: under the single-user decoding
restriction, in the multicell scenario, not only does binary
signaling entail no significant loss in spectral efficiency, it
suffices to use the conventional MF detector.

VII. CONCLUSION

We have given general definitions for coding and spreading,
and shown that they lead to an interesting separation result for
bandwidth redundancy schemes of the type used in CDMA sys-
tems. The separation result makes the coding-spreading tradeoff
problem well-defined. Our approach can include more general
scenarios than the ones considered in the paper, e.g., signaling
across spatial dimensions through the use of multielement an-
tennas.

We have shown through a simple example that optimizing the
coding-spreading tradeoff can lead to significant gains in spec-

Fig. 6. Asymptotic spectral efficiency for a multicell scenario where the
LMMSE detector suppresses only in-cell users (binary and continuous
alphabets);
 =18 dB.

tral efficiency of CDMA systems. We have also shown that the
optimum coding-spreading operating point is a strong function
of the type of receiver used. Many analyses comparing mul-
tiuser detection schemes with the conventional MF receiver have
either ignored coding or used the same code rate for both re-
ceivers. We have shown that for a correct comparison of two
alternative receiver structures for CDMA, it is important to con-
sider each of them at their optimum coding-spreading operating
points.

In particular, the results obtained for a simplified the multi-
cell model lead us to question the applicability of multiuser de-
tection schemes in cellular systems that employ single-user de-
coding. Of course to draw any concrete conclusions in this direc-
tion, we need to consider a more realistic system model. For ex-
ample, we have assumed ideal coding and, hence, no delay con-
straints, in this paper. The tradeoff problem with nonideal codes
has been considered in [23] and the conclusions are similar. We
have also assumed synchronous users in an AWGN channel,
perfect channel estimates and perfect power control. The MF
detector can be expected to be more robust to channel estimation
errors, whereas the LMMSE detector would be more robust to
imperfect power control. It would, hence, be interesting to con-
sider the problem with imperfect channel estimation and power
control over more realistic channel models, especially on the re-
verse link. Finally, the results in this paper clearly indicate the
limitations of a single-user decoding approach to receiver de-
sign, and point to the need for research on low complexity joint
decoding approaches like those in [24].
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