Chapter 3

Performance Analysis of Multiprocessor Architecture
3.1 Computational Models

- **Equal Duration Model**
 - A task is divided into n equal subtasks each of which is executed by 1 processor.
 - t_s is the execution time of the whole task using a single processor.
 - The time taken by each processor to execute its subtask $t_m = t_s/n$.
 - Then time taken by the whole system to execute the whole task is $t_m = t_s/n$.
3.1 Computational Models

- Speedup factor $S(n) = \frac{t_s}{t_m} = \frac{t_s}{(t_s/n)} = n$.
- Speedup factor = number of processors used, n.
- Assume time t_c is needed as overhead time for processors to communicate, therefore: $t_m = (t_s/n) + t_c$.
- Speedup (n) becomes: $n/ (1+(n * t_c/t_s))$.
- Efficiency = speedup$(n)/n = 1/ (1+(n * t_c/t_s))$.

3.1 Computational Models

- Parallel Computation With Serial Sections Model:
 - A fraction f of a given task is not dividable into concurrent subtasks.
 - $(1-f)$ is assumed to be dividable into concurrent subtasks.
 - Therefore speedup $(n) = \frac{\frac{t_s}{ft_s + (1-f)t_s}}{\frac{n}{1+(n-1)f}}$
3.1 Computational Models

• Speedup:
 – $S = \frac{\text{Speed(new)}}{\text{Speed(old)}}$
 – $S = \frac{\text{Work/time(new)}}{\text{Work/time(old)}}$
 – $S = \frac{\text{time(old)}}{\text{time(new)}}$
 – $S = \frac{\text{time(before improvement)}}{\text{time(after improvement)}}$
3.1 Computational Models

• Speedup:
 – Time (one CPU): $T(1)$.
 – Time (n CPUs): $T(n)$.
 – Speedup: S
 – $S = T(1)/T(n)$
3.2 An Argument For Parallel Architectures

• Grosch’s law
 – “To sell a computer for twice as much, it must be four times as fast”.
 – Vendors skip small speed improvements in favor of waiting for large ones.
3.2 An Argument For Parallel Architectures

- Buyers of expensive machines would wait for a twofold improvement in performance for the same price.
3.2 An Argument For Parallel Architectures

• Amdahl’s law
 – The performance improvement to be gained from using some faster mode of execution is limited by the fraction of the time the faster mode can be used.
 – There is an intrinsic limit set on the performance improvement (speed) regardless of the number of processors used.
3.2 An Argument For Parallel Architectures

- Amdahl’s law

![Graph showing travel times and speeds](image)

- Walk 4 miles/hour: \(50 + 20 = 70\) hours, \(S = 1\)
- Bike 10 miles/hour: \(20 + 20 = 40\) hours, \(S = 1.8\)
- Car-1 50 miles/hour: \(4 + 20 = 24\) hours, \(S = 2.9\)
- Car-2 120 miles/hour: \(1.67 + 20 = 21.67\) hours, \(S = 3.2\)
- Car-3 600 miles/hour: \(0.33 + 20 = 20.33\) hours, \(S = 3.4\)
3.2 An Argument For Parallel Architectures

• Amdahl’s law
 – β: The fraction of the program that is naturally serial.

 – $(1 - \beta)$: The fraction of the program that is naturally parallel.
3.2 An Argument For Parallel Architectures

- Amdahl’s law

\[
S = \frac{T(1)}{T(N)}
\]

\[
T(N) = T(1)\beta + \frac{T(1)(1-\beta)}{N}
\]

\[
S = \frac{1}{\beta + \frac{(1-\beta)}{N}} = \frac{N}{\beta N + (1-\beta)}
\]
3.2 An Argument For Parallel Architectures

- Amdahl’s law
3.2 An Argument For Parallel Architectures

- Gustafson-Barsis’s law
 - If s and p are the serial and parallel time spent on a parallel system, then $s + p \times n$ is the time needed by a serial processor to perform the computation.
3.2 An Argument For Parallel Architectures

- Gustafson-Barsis’s law

\[N \ & \ & \beta \text{ are not independent from each other.} \]

\[\alpha : \text{The fraction of the program that is naturally serial.} \]

\[T(N) = 1 \]

\[T(1) = \alpha + (1 - \alpha) \ N \]

\[S = N - (N-1) \alpha \]
3.2 An Argument For Parallel Architectures

- Gustafson-Barsis's law
3.2 An Argument For Parallel Architectures

- Gustafson-Barsis’s law
3.3 Interconnection Networks Performance Issues

• Bandwidth of a crossbar:
 – is the average number of requests that can be accepted by a crossbar in a given cycle.
 – For M memory modules and n processors,
 • if a processor generates a request with probability \(\rho \) in a cycle directed to each memory with equal probability, then the expression for the bandwidth is: \(M(1-(1-(\rho/M))^n) \)
3.3 Interconnection Networks
Performance Issues

- Bandwidth of a multiple bus:

\[BW = \sum_{k=1}^{B} k \times \beta + \sum_{k=B+1}^{N} B \times \beta \]
3.3 Interconnection Networks Performance Issues

• Bandwidth of a Multistage Interconnection Network:
 – Assumption: MIN consists of stages of a x b crossbar switches.
 – \(BW = b^n \times r_n \)
3.4 Scalability of Parallel Architectures

- A parallel architecture is scalable if it can be expanded (or reduced) to a larger (smaller) system with a linear increase (decrease) in its performance (cost).
- In terms of speed, a scalable system is capable of increasing its speed in proportion to the increase in number of processors.
- In terms of efficiency, a parallel system is scalable if its efficiency is kept fixed as the number of processors is increased.
- Size scalability: measures the maximum number of processors a system can accommodate.
3.4 Scalability of Parallel Architectures

- Application scalability: ability to run application software with improved performance on a scaled-up version of the system.
- Generation scalability: ability of a system to scale-up by using next-generation (fast) components.
- Heterogeneous scalability: ability of a system to scale-up by using hardware and software components supplied by different vendors.
3.5 Benchmark Performance

– Benchmark performance: is the use of a set of integer and floating-point programs (known as benchmark) designed to test different performance aspects of a computing system under test.

– Benchmark programs should be designed to provide fair and effective comparisons among high-performance computing systems.
3.5 Benchmark Performance

- Serial Benchmarks
- Parallel Benchmarks
- PERFECT Benchmarks
- NAS Kernel
- The SLALOM
- The Golden Bell Prize
- WebSTONE for the Web
3.6 Summary

• A number of issues related to the performance of multiprocessor systems was covered.

• Two computational models were introduced:
 – Equal duration
 – Parallel computations with serial sections

• A rebuttal to a number of critical views about the effectiveness of parallel architectures has been made:
 – Grosch’s law
 – Amdahl’s law

• A number of performance metrics for static and dynamic interconnection networks has been provided.
3.6 Summary

• The scalability of parallel architectures in terms of speed and efficiency has been discussed.
• A number of unconventional metrics for scalability has also been discussed.
• Finally, The issue of benchmark performance measurement has been introduced.