
Software Quality Engineering Slide (Ch.16) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 16. Fault Tolerance

and Safety Assurance

• Basic Concepts

• Fault Tolerance via RB and NVP

• Safety Assurance Techniques/Strategies

• Summary and Perspectives

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 2

QA Alternatives

• Defect and QA:

. Defect: error/fault/failure.

. Defect prevention/removal/containment.

. Map to major QA activities

• Defect prevention:

– Error source removal & error blocking

• Defect removal: Inspection/testing/etc.

• Defect containment — This Chapter:

. Fault tolerance:

local faults 6⇒ system failures.

. Safety assurance: contain failures or

weaken failure-accident link.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 3

QA and Fault Tolerance

• Fault tolerance as part of QA:

. Duplication: over time or components

. High cost, high reliability

. Run-time/dynamic focus

. FT design and implementation

. Complementary to other QA activities

• General idea

. Local faults not lead to system failures

. Duplication/redundancy used

. redo ⇒ recovery block (RB)

. parallel redundancy

⇒ N version programming (NVP)

• Key reference (Lyu, 1995b):

M.R. Lyu, S/w Fault Tolerance, Wiley, 1995.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 4

FT: Recovery Blocks

• General idea

. Periodic checkpointing

. Problem detection/acceptance test

. Exceptions due to in/ex-ternal causes

. Rollback (recovery)

. Flow diagram: Fig 16.1 (p.270)

• Research/implementation issues

. Checkpoint frequency:

– too often: expensive checkpointing

– too rare: expensive recovery

. Smart/incremental checkpointing.

. External disturbance: environment?

. Internal faults: tolerate/correct?

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 5

FT: NVP

• NVP: N-Version Programming

• General idea: Fig 16.2 (p.272)

. Multiple independent versions

. Dynamic voting/decision rule

. Correction/recovery?

– p-out-of-n reliability

– in conjunction with RB

– dynamic vs. off-line correction

• Research/implementation issues

. How to ensure independence?

. Support environment:

– concurrent execution

– voting/decision algorithms

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 6

FT/NVP: Ensure Independence

• Ways to ensure independence:

. People diversity:

type, background, training, teams, etc.

. Process variations

. Technology: methods/tools/PL/etc.

. End result/product:

– design diversity: high potential

– implementation diversity: limited

• Ways to ensure design diversity:

. People/teams

. Algorithm/language/data structure

. Software development methods

. Tools and environments

. Testing methods and tools (!)

. Formal/near-formal specifications

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 7

FT/NVP: Development Process

• Programming team independence

. Assumption: P-team independence

⇒ version independence

. Maximize P-team isolation/independence

. Mandatory rules (DOs & DON’Ts)

. Controlled communication (see below)

• Use of coordination team

. 1 C-team – n P-teams

. Communication via C-team

– not P-team to P-team

– protocols and overhead cost

. Special training for C-team

• NVP-specific process modifications

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 8

FT/NVP: Development Phases

• Pre-process training/organization

• Requirement/specification phases:

. NVP process planning

. Goals, constraints, and possibilities

. Diversity as part of requirement

– relation to and trade-off with others

– achievable goals under constraints

. Diversity specification

. Fault detection/recovery algorithm?

• Design and coding phases:

enforce NVP-process/rules/protocols

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 9

FT/NVP: Development Phases

• Testing phases:

. Cross-checking by different versions

— free oracle!

. Focus on fault detection/removal

. Focus on individual versions

• Evaluation/acceptance phases:

. How N-versions work together?

. Evidence of diversity/independence?

. NVP system reliability/dependability?

. Modeling/simulation/experiments

• Operational phase:

. Monitoring and quality assurance

. NVP-process for modification also

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 10

FT and Safety

• Extending FT idea for safety:

. FT: tolerate fault

. Extend: tolerate failure

. Safety: accident free

. Weaken error-fault-failure-accident link

• FT in SSE (software safety engineering):

. Too expensive for regular systems

. As hazard reduction technique in SSE

. Other related SSE techniques:

– general redundancy

– substitution/choice of modules

– barriers and locks

– analysis of FT

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 11

What Is Safety?

• Safety: The property of being accident-

free for (embedded) software systems.

. Accident: failures with severe consequences

. Hazard: condition for accident

. Special case of reliability

. Specialized techniques

• Software safety engineering (SSE):

. Hazard identification/analysis techniques

. Hazard resolution alternatives

. Safety and risk assessment

. Qualitative focus

. Safety and process improvement

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 12

Safety Analysis & Improvement

• Hazard analysis:

. Hazard: condition for accident

. Fault trees: (static) logical conditions

. Event trees: dynamic sequences

. Combined and other analyses

. Generally qualitative

. Related: accident analysis and risk as-

sessment

• Hazard resolution

. Hazard elimination

. Hazard reduction

. Hazard control

. Related: damage reduction

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 13

Hazard Analysis: FTA

• Fault tree idea:

. Top event (accident)

. Intermediate events/conditions

. Basic or primary events/conditions

. Logical connections

. Form a tree structure

• Elements of a fault tree:

. Nodes: conditions and sub-conditions

– terminal vs. no terminal

. Logical relations among sub-conditions

– AND, OR, NOT

• Example: Fig. 16.3 (p.276)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 14

Hazard Analysis: FTA

• FTA construction:

. Starts with top event/accident

. Decomposition of events or conditions

. Stop when further development not

required or not possible (atomic)

. Focus on controllable events/elements

• Using FTA:

. Hazard identification

– logical composition

– (vs. temporal composition in ETA)

. Hazard resolution (more later)

– component replacement etc.

– focused safety verification

– negate logical relation

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 15

Hazard Analysis: ETA

• ETA: Why?

. FTA: focus on static analysis

– (static) logical conditions

. Dynamic aspect of accidents

. Timing and temporal relations

. Real-time control systems

• Search space/strategy concerns:

. Contrast ETA with FTA:

– FTA: backward search

– ETA: forward search

. May yield different path/info.

. ETA provide additional info.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 16

Hazard Analysis: ETA

• Event trees:

. Temporal/cause-effect diagram

. (Primary) event and consequences

. Stages and (simple) propagation

– not exact time interval

– logical stages and decisions

. Example (Fig 16.4, p.277) vs. FT

• Event tree analysis (ETA):

. Recreate accident sequence/scenario

. Critical path analysis

. Used in hazard resolution (more later)

– esp. in hazard reduction/control

– e.g. creating barriers

– isolation and containment

– component ⇒ composite reliability

(e.g., via event/decision path)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 17

Hazard Elimination

• Hazard sources identification ⇒ elimination

(Some specific faults prevented or removed.)

• Traditional QA (but with hazard focus):

. Fault prevention activities:

– education/process/technology/etc

– formal specification & verification

. Fault removal activities:

– rigorous testing/inspection/analyses

• “Safe” design: More specialized techniques:

. Substitution, simplification, decoupling.

. Human error elimination.

. Hazardous material/conditions↓.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 18

Hazard Reduction

• Hazard identification ⇒ reduction

(Some specific system failures prevented or

tolerated.)

• Traditional QA (but with hazard focus):

. Fault tolerance

. Other redundancy

• “Safe” design: More specialized techniques:

. Creating hazard barriers

. Safety margins and safety constraints

. Locking devices

. Reducing hazard likelihood

. Minimizing failure probability

. Mostly “passive” or “reactive”

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 19

Hazard Control

• Hazard identification ⇒ control

. Key: failure severity reduction.

. Post-failure actions.

. Failure-accident link weakened.

. Traditional QA: not much, but good

design principles may help.

• “Safe” design: More specialized techniques:

. Isolation and containment

. Fail-safe design & hazard scope↓

. Protection system

. More “active” than “passive”

. Similar techniques to hazard reduction,

– but focus on post-failure severity↓

vs. pre-failure hazard likelihood↓.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 20

Accident Analysis & Damage Control

• Accident analysis:

. Accident scenario recreation/analysis

– possible accidents and damage areas

. Generally simpler than hazard analysis

. Based on good domain knowledge

(not much software specifics involved)

• Damage reduction or damage control

. Post-accident vs. pre-accident hazard

resolution

. Accident severity reduced

. Escape route

. Safe abandonment of material/product/etc.

. Device for limiting damages

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 21

Software Safety Program (SSP)

• Leveson’s approach (Leveson, 1995)

— Software safety program (SSP)

• Process and technology integration

. Limited goals

. Formal verification/inspection based

. But restricted to safety risks

. Based on hazard analyses results

. Safety analysis and hazard resolution

. Safety verification:

– few things carried over

• In overall development process:

. Safety as part of the requirement

. Safety constraints at different levels/phases

. Verification/refinement activities

. Distribution over the whole process

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 22

Case Study: PSC for CCSCS

• Object of study and general problems:

. CCSCS: Computer-controlled

safety-critical systems.

. Problem: Safety and failure damage.

. (software) reliability models unsuitable:

– assuming large numbers of failures

– missing damage information

. Formal verification:

– static vs. dynamic verification

– need systematic assertion derivation

• Prescriptive specification checking:

. Analyze sources of hazard

. Derive systematic assertions

. Dynamically check the assertions

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 23

TFM: Two-Frame-Model

• TFM: Two-Frame-Model

. Physical frame

. Logical frame

. Sensors: physical ⇒ logical

. Actuators: logical ⇒ physical

. Example: Fig 16.5 (p.280).

• TFM characteristics and comparison:

. Interaction between the two frames

. Nondeterministic state transitions and

encoding/decoding functions

. Focuses on symmetry/consistency

between the two frames.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 24

Usage of TFM

• Failure/hazard sources and scenarios:

. Hardware/equipment failures.

. Software failures.

. Communication/interface failures.

. Focus on last one, based on empirical

evidence.

• Causes of communication/interface hazards:

. Inconsistency between frames.

. Sources of inconsistencies

. Use of prescriptive specifications (PS)

. Automatic checking of PS for hazard

prevention

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 25

Frame Inconsistencies

• System integrity weaknesses: Major sources

of frame inconsistencies in CCSCS.

• Discrete vs. continuous:

. Logical frame: discrete

. Physical frame: mostly continuous

. Continuous regularity or validity of

in-/extrapolation

• Total vs. partial functions:

. Logical frame: partial function

. Physical frame: total function

. ⇒ coercion, domain/default specs, etc.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 26

Frame Inconsistencies (II)

• Invariants and limits:

. Logical frame: no intrinsic invariant

. Physical frame: intrinsic invariant

. Special case: physical limit

. ⇒ assertions on boundaries/relations as

invariants/limits to check

• Semantic gap:

. Logical frame: image/map of the reality

. Physical frame: physical reality

. Syntax vs. semantics in logical frame

• General solution: to derive systematic

assertions for each integrity weakness and

automatically/dynamically check them.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 27

Prescriptive Specifications (PS)

• Definition and examples:

. Assertion: desired system behavior.

. Use PS in CCSCS

• PS for CCSCS:

. Address integrity weaknesses

. Systematic derivation

. How to check? dynamic/automatic

. Applications in case studies

. Effectiveness and completeness

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 28

Deriving Specific PS

• Domain prescriptions:

. Address: partial/total function

. Boundary: e.g., upper/lower bounds

. Type:

– expected ⇒ normal processing

– unexpected: provide default values or

perform exception handling

• Primitive invariants

. Address: lack of intrinsic invariant

. Relations based on physical law

. Use TFM-based FTA and ETA to iden-

tify entities to check

. e.g., conservation law:

∆Pi = Pi(t1)−Pi(t0) = Gi(t0, t1)−Ti(t0, t1)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 29

Deriving Specific PS (II)

• Safety assertions:

. Address: physical/safety limits

. Directly from physical/safety limits

. Indirect assertions:

– related program variables

– based on TFM-based FTA and ETA

• Image consistency assertions:

. Address: discrete vs. continuous

. State or status checking

. Rate checking

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 30

Deriving Specific PS (III)

• Entity dependency assertions:

. Address: linkage among components

(discrete/continuous and semantic gap)

. Functional/relational dependencies

. Operational characteristics according to

physical laws

• Temporal dependency assertions:

. Address:

temporal relations among components

(discrete/continuous and semantic gap)

. Temporal relations/dependencies

. Time delay effect according to physical

laws

. CCSCS are real-time systems

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 31

A Comprehensive Case Study

• Selecting a case study:

. Several case studies performed

. TMI-2: Three Mile Island accident

. Simulator of TMI-2 accident

. Seeding and detection of faults

• A simulator with components:

. Digital controller (pseudo-program chart)

. Physical system with 4 process variables:

power, temp, pressure, water level

. Prescription monitor

. two sets of sensors (1 for the controller

and 1 for the monitor) and one set of

actuators

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 32

Case Study (II)

• Developing PS in the case study:

. Generic assertions (domain etc.)

. Specific assertions with examples

• Fault seeding: wide variety of faults

. Erroneous input from the user (1-4)

. Wrong data types or values (5-7)

. Programming errors (8-16)

. Wrong reading of sensors (17-19)

• Result: all detected by prescription monitor

by specific PS

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 33

Case Study Summary

• Prescriptive specification checking:

. Based on TFM

. Analyze system integrity weaknesses

. Derive corresponding assertions or PS

. Checking PS for hazard prevention

. Appears to be effective in several case

studies

• Future directions and development:

. Apply to realistic applications

. Prescription monitor development:

– performance constraints

– quality/reliability of itself?

– usage of independent sets of sensors

– Fig 16.6 (p.281)

. Support for PS derivation

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.16) 34

Summary and Perspectives

• Software fault tolerance:

. Duplication and redundancy.

. Techniques: RB, NVP, and variations.

. Cost and effectiveness concerns.

• SSE: Augment S/w Eng.

. Analysis to identify hazard

. Design for safety

. Safety constraints and verification

. Leveson’s s/w safety program, PSC, etc.

. Cost and application concerns.

• Comparison to other QA: Chapter 17.

Jeff Tian, Wiley-IEEE/CS 2005


