
Software Quality Engineering Slide (Ch.17) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 17. Comparing QA Alternatives

• General Areas/Questions for Comparison

• Applicability, Effectiveness, and Cost

• Summary and Recommendations

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 2

QA Alternatives

• Defect and QA:

. Defect: error/fault/failure.

. Defect prevention/removal/containment.

. Map to major QA activities

• Defect prevention

– Error source removal & error blocking

• Defect removal: Inspection/testing/etc.

• Defect containment: Fault tolerance and

failure containment (safety assurance).

• Comparison: This chapter.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 3

Comparison

• Cost-benefit under given environments:

. Environments: applicable or not?

. Cost to perform.

. Benefit: quality, directly or indirectly.

• Testing as the comparison baseline:

. Most commonly performed QA activity.

. Empirical and internal data for testing.

. QA alternatives compared to testing:

– defect prevention (DP),

– inspection,

– formal verification (FV),

– fault tolerance (FT),

– failure containment (FC).

. FT & FC: separate items in comparison.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 4

Comparison: Applicability

• Applicability questions:

. High-level questions: development vs.

field usage (and support/maintenance)

. Low level questions:

development phases/activities.

• Applicability to maintenance:

. Not applicable: Defect prevention.

(although lessons applied to future)

. Applicable to a limited degree:

Inspection, testing, formal verification,

as related to reported field failures.

. Applicable: fault tolerance and failure

containment, but designed/implemented

during development.

• Applicability to development (our focus):

all QA alternatives.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 5

Comparison: Applicability

• Objects QA activities applied on:

. Mostly on specific objects

– e.g., testing executable code

. Exception: defect prevention on

(implementation related) dev. activities

. Summary: Table 17.1 (p.289)

• Applicability to product domain/segment:

. All QA alternatives can be applied to all

domains/segments.

. Other factors: cost-benefit ratio.

. Higher cost needs to be justified by higher

payoff/returns.

. Further comparison in connect to cost

and effectiveness comparisons.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 6

Comparison: Applicability

• Applicability to development phases:

. In waterfall or V-model: implementation

(req/design/coding) & testing/later.

. Inspection in all phases.

. Other QA in specific sets of phases.

. Summary: Table 17.2 (p.290).

. Also relate to Fig 4.1 (p.45, Chapter 4).

• Related activities in additional phases,

e.g., design/implementation for FT and FC.

• Other process variations:

similar to smaller cycles of waterfall

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 7

Comparison: Applicability

• Pre-condition to performing specific QA

activities: Specific expertise required, which

is also related to cost.

• Expertise areas:

. Specifics about the QA alternative.

. Background/domain-specific knowledge.

. FV: formal training.

. FT: dynamic system behavior.

. FC: embedded system safety.

. Other QA: general CS/SE knowledge.

• General expertise levels:

. Mostly in ranges, depending on specific

techniques used.

. Summary: Table 17.3 (p.291).

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 8

Comparison: Benefit or Effectiveness

• General benefit questions:

. Better quality: views and perspectives?

. Defect-centered view in this book:

⇒ fewer defects

. Defect-related questions below.

. Other benefit: experience, culture change,

process improvement, etc.

• Defect related question:

. Defect specifics: errors/faults/failures

. Problem or defect types

. Defect levels or pervasiveness

. Information for defect↓ and quality↑

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 9

Comparison: Effectiveness

• Defect specifics or perspectives:

. Dealing with errors/faults/failures?

. Direct action vs followup action: may

deal with different defect perspectives.

. Example: failures detected in testing but

(failure-causing) faults fixed in followup.

. Summary: Table 17.4 (p.292).

• Defect levels or pervasiveness:

. At entry D0 and exit points D1

(assuming D0 < D1 )

. Effectiveness ≈ ∆ = D1 − D1 and

different types of defects removed.

. Some rare condition defects may be

critical to some systems (safety?).

. Applicability/effectiveness at D0 levels:

– Table 17.6 (p.294)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 10

Comparison: Effectiveness

• Problem or defect types: Table 17.5 (p.292).

• Defect types: Inspection vs. testing:

. Static analysis vs. dynamic execution

⇒ static vs dynamic problems and

conceptual/logical problems vs.

timing problems.

. Localized defects easily detected by

inspection vs. interface/interaction

problems detected by testing.

• Problem or defect types: Other QA:

. Defect prevention: negating causes or

pre-conditions to pervasive problems.

. Fault tolerance and failure containment:

rare condition/severe problems.

. Formal verification: logical problems, but

indirectly.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 11

Comparison: Effectiveness

• Information for defect↓ and quality↑

. First, interpret the result

. Use information/measurement to pro-

vide feedback for defect↓ and quality↑

(usually via analysis/modeling)

. Part IV. Quantifiable Improvement:

measure-analyze-feedback-improve steps.

• Result interpretation:

. Link to quality, impact, meaning, etc.?

. Summary: Table 17.7 (p.295)

• Specific info/feedback also in Table 17.7

(input to quality models in Part IV.)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 12

Comparison: Cost

• Cost measurement/characterization:

. Direct cost: $

. Indirect cost: time, effort, etc.

. Things affecting cost: simplicity,

expertise (already addressed), tools, etc.

. Cost to perform specific QA activities.

• Factors beyond cost to perform QA:

. Cost of failures and related damage.

. Other cost, particularly for defect

containment (FT and FC)

. Operational cost, e.g., FT mechanisms

slow down normal operations

. Implementation cost of FT mechanisms.

• Cost comparison: Table 17.8 (p.297)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 13

Comparison: Summary

• Testing:

. Important link in dev. process

. Activities spilt over to other phases

– OP development, test preparation, etc.

– (partial) code exist before testing

. Dynamic/run-time/interaction problems

. Medium/low defect situations

. Techniques and tools

. Coverage vs. reliability focus

. Cost: moderate

• Defect prevention:

. Most effective if causes known.

. Good at pervasive problems.

. Low cost, due to downstream damage↓.

. Issue: “if causes”, and up-front cost

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 14

Comparison: Summary

• Inspection:

. Good throughout dev. process

. Works on many software artifacts

. Conceptual/static faults

. High fault density situations:

– non-blocking

– experience ⇒ efficiency↑

. Human intensive, varied cost

• Formal verification:

. Positive confirmation/correctness.

. On design/code with formal spec.

. Low/no defect situations

. Practicality: high cost → benefit?

. Human intensive, rigorous training

(therefore, high up-front cost)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 15

Comparison: Summary

• Fault tolerance:

. Dynamic problems (must be rare)

. High cost & reliability (low defect)

. Technique problems (independent NVP?)

. Process/technology intensive

• Failure containment:

. Similar to FT above, but even more so.

. Rare conditions related to accidents

. Extremely high cost

⇒ apply only when safety matters

. Many specialized techniques

. Process/technology intensive

• Grand summary: Table 17.9 (p.298).

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 16

Pairwise Comparison

• Inspection vs. preventive actions:

. Inspection coupled with causal analysis.

. Together drive preventive actions.

. Key difference: error vs fault focus

• Inspection vs. formal verification

. FV ≈ formalized inspection

. Focus: people vs. mathematical/logical

. Applicability to design/code only?

. Existence of formal specifications?

. Tradeoff: formality vs. cost

. Training and acceptability issues

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 17

Pairwise Comparison

• Inspection vs. testing:

. Existence of the implemented product

. Levels of quality/defects

. Static vs. dynamic defects

. Localized vs. interconnected defects

. Combined approaches:

– phases and transitions

– inspection of testing entities/processes

• Inspection vs. fault tolerance

. Complementary instead of competing

(e.g., inspect individual versions)

. Static vs. dynamic

. Inspection of FT techniques/mechanisms

• Other comparisons: Similar to above.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.17) 18

Recommendation: Integration

• Different QA alternatives often complemen-

tary instead of competing to one another:

. Dealing with different problems.

. Work in different phases/environments.

. Combined effect

⇒ use multiple QA alternatives together.

. Shared resource and expertise.

• Integration: Concerted QA effort

. As a series of defense (Fig 3.1, p.30).

. Satisfy specific product/segment needs.

. Fit into process and overall environment.

. Adaptation/customization often needed.

. Match to organizational culture.

Jeff Tian, Wiley-IEEE/CS 2005


