Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 20. Defect Classification and Analysis

- General Types of Defect Analyses.
- ODC: Orthogonal Defect Classification.
- Analysis of ODC Data.

Defect Analysis

- Goal: (actual/potential) defect↓ or quality↑ in current and future products.
- General defect analyses:
 - ▷ Questions: what/where/when/how/why?
 - ▷ Distribution/trend/causal analyses.
- Analyses of classified defect data:
 - ▷ Prior: defect classification.
 - ▷ Use of historical baselines.
 - Attribute focusing in 1-way and 2-way analyses.
 - ▷ Tree-based defect analysis (Ch.21).

Defect in Quality Data/Models

- Defect data \subset quality measurement data:
 - \triangleright As part of direct Q data.
 - ▷ Extracted from defect tracking tools.
 - Additional (defect classification) data may be available.
- Defect data in quality models:
 - ▷ As results in generalized models (GMs).
 - As r.v. (response/independent) variable in product specific models (PSMs).
 - semi-customized models \approx GMs,
 - observation-based: r.v. in SRGMs,
 - predictive: r.v. in TBDMs.
 - (SRGMs/TBDMs in Ch.22/21.)

General Defect Analysis

- General defect analyses: Questions
 - ▷ What? identification (and classification).
 - type, severity, etc.,
 - even without formal classification.
 - ▷ Where? distribution across location.
 - ▷ When? discovery/observation
 - what about when injection? harder
 - pre-release: more data
 - post-release: more meaningful/sensitive
 - ▷ How/why? related to injection
 - \Rightarrow use in future defect prevention.
- General defect analyses: Types
 - \triangleright Distribution by type or area.
 - ▷ Trend over time.
 - ▷ Causal analysis.
 - ▷ Other analysis for classified data.

Defect Analysis: Data Treatment

- Variations of defect data:
 - ▷ Error/fault/failure perspective.
 - ▷ Pre-/post-release.
 - ▷ Unique defect?
 - ▷ Focus here: defect fixes.
- Why defect fixes (DF):
 - ▷ Propagation information.
 - ▷ Close ties to effort (defect fixing).
 - Pre-release: more meaningful.
 (post release: each failure occurrence.)

Defect Distribution Analysis

- What: Distribution over defect types.
 - ▷ Ties to quality views/attributes (Ch.2).
 - ▷ Within specific view: types/sub-types.
 - \triangleright Defect types \Leftarrow product's "domain".
 - ▷ IBM example: CUPRIMDSO.
- Web example: Table 20.1 (p.341)
 - \triangleright Defect = "error" in web community.
 - ▷ Dominance of type E "missing files".
 - ▷ Type A error: further analysis.
 - ▷ All other types: negligible.

Defect Distribution Analysis

- Where: Distribution over locations.
 - ▷ Common: by product areas
 - sub-product/module/procedure/etc.
 - IBM-LS: Table 20.3 (p.342)
 - IBM-NS: Table 20.4 (p.343)
 - common pattern: skewed distribution
 - ▷ Extension: by other locators
 - e.g., types of sources or code
 - example of web error distribution
 - Table 20.2 (p.342) by file type
 - again, skewed distribution!
- Important observation:
 - ▷ Skewed distribution, or 80:20 rule
 - \Rightarrow importance of risk identification
 - for effective quality improvement
 - Early indicators needed!
 (Cannot wait after defect discoveries.)

Defect Trend Analysis

- Trend as a continuous function:
 - ▷ Similar to Putnam model (Ch.19)
 - but customized with local data
 - Other analysis related to SRE
 - defect/effort/reliability curves
 - more in Ch.22 and related references.
 - Sometimes discrete analysis may be more meaningful (see below).
- Defect dynamics model: Table 20.5 (p.344)
 - ▷ Important variation to trend analysis.
 - ▷ Defect categorized by phase.
 - ▷ Discovery (already done).
 - ▷ Analysis to identify injection phase.
 - ▷ Focus out-of-phase/off-diagonal ones!

Defect Causal Analysis

- Defect causal analyses: Types
 - ▷ Causal relation identified:
 - error-fault vs fault-failure
 - works backwards
 - ▷ Techniques: statistical or logical.
- Root cause analysis (logical):
 - ▶ Human intensive.
 - ▷ Good domain knowledge.
 - ▷ Fault-failure: individual and common.
 - Error-fault: project-wide effort focused on pervasive problems.
- Statistical causal analysis: \approx risk identification techniques in Ch.21.

ODC: Overview

- Development
 - ▷ Chillarege et al. at IBM
 - Applications in IBM Labs and several other companies
 - Recent development and tools
- Key elements of ODC
 - ▷ Aim: tracking/analysis/improve
 - ▷ Approach: classification and analysis
 - ▷ Key attributes of defects
 - ▷ Views: both failure and fault
 - Applicability: inspection and testing
 - ▷ Analysis: attribute focusing
 - Need for historical data

ODC: Why?

- Statistical defect models:
 - ▷ Quantitative and objective analyses.
 - ▷ SRGMs (Ch.22), DRM (Ch.19), etc.
 - ▷ Problems: accuracy & timeliness.
- Causal (root cause) analyses:
 - ▷ Qualitative but subjective analyses.
 - ▷ Use in defect prevention.
- Gap and ODC solution:
 - ▷ Bridge the gap between the two.
 - ▷ Systematic scheme used.
 - ▷ Wide applicability.

ODC: Ideas

- Cause-effect relation by type:
 - ▷ Different types of faults.
 - ▷ Causing different failures.
 - ▷ Need defect classification.
 - ▷ Multiple attributes for defects.

• Good measurement:

- ▷ Orthogonality (independent view).
- ▷ Consistency across phases.
- ▷ Uniformity across products.
- ODC process/implementation:
 - ▷ Human classification.
 - ▷ Analysis method and tools.
 - ▷ Feedback results (and followup).

ODC: Theory

- Semantic classification:
 - Defect classes for a product
 - ▷ Can be related to process
 - ▷ Can explain progress
 - Akin to event measurement
 - Compare to opinion-based classification (e.g., where-injected)
 - ▷ Sufficient condition:
 - spanning set over process
 - formed by defect attributes
- Classification for cause-effect or views:
 - ▷ Cause/fault: type, trigger, etc.
 - ▷ Effect/failure: severity, impact, etc.
 - Additional causal-analysis-related: source, where/when injected.
 - ▷ Sub-population: environment data.

ODC Attributes: Effect/Failure-View

- Defect trigger:
 - ▷ Associated with verification process
 - similar to test case measurement
 - collected by testers
 - ▷ Trigger classes
 - product specific
 - black box in nature
 - pre/post-release triggers
- Other attributes:
 - ▷ Impact: e.g., IBM's CUPRIMDSO.
 - \triangleright Severity: low-high (e.g., 1-4).
 - ▷ Detection time, etc.
- Concrete example: Table 20.6 (p.347)

ODC Attributes: Cause/Fault-View

- Defect type:
 - ▷ Associated with development process.
 - ▷ Missing or incorrect.
 - ▷ Collected by developers.
 - ▷ May be adapted for other products.
- Other attributes:
 - ▷ Action: add, delete, change.
 - ▷ Number of lines changed, etc.
- Concrete example: Table 20.6 (p.347)

ODC Attributes: Cause/Error-View

- Key attributes:
 - ▷ Defect source: vendor/base/new code.
 - ▷ Where injected.
 - ▷ When injected.
- Characteristics:
 - ▷ Associated to additional causal analysis.
 - ▷ (May not be performed.)
 - Many subjective judgment involved (evolution of ODC philosophy)
- Concrete example: Table 20.6 (p.347) (Only rough "when": phase injected.)

Adapting ODC for Web Error Analysis

- Continuation of web testing/QA study.
- Web error = observed failures, with causes already recorded in access/error logs.
- Key attributes mapped to ODC:
 - \triangleright Error type = defect impact.
 - types in Table 20.1 (p.341)
 - response code (4xx) in access logs
 - \triangleright Referring page = defect trigger.
 - individual pages with embedded links
 - classified: internal/external/empty
 - focus on internal problems
 - \triangleright Missing file type = defect source
 - different fixing actions to follow.
- May include other attributes for different kinds of web sites.

ODC Analysis: Attribute Focusing

- General characteristics
 - ▷ Graphical in nature
 - ▷ 1-way or 2-way distribution
 - ▷ Phases and progression
 - ▷ Historical data necessary
 - ▷ Focusing on big deviations
- Representation and analysis
 - ▷ 1-way: histograms
 - ▷ 2-way: stack-up vs. multiple graphics
 - Support with analysis tools

ODC Analysis Examples

- 1-way analysis: Fig 20.1 (p.349)
 - Defect impact distribution for an IBM product.
 - Uneven distribution of impact areas!
 \Rightarrow risk identification and focus.
- 1-way analysis: Fig 20.2 (p.350)
 - ▷ Web error trend analysis.
 - ▷ Context: compare to usage (reliability).
- 2-way analysis: Table 20.7 (p.351)
 - ▷ Defect impact-severity analysis.
 - ▷ IBM product study continued.
 - Huge contrast: severity of reliability and usability problems!

ODC Process and Implementation

- ODC process:
 - ▷ Human classification
 - defect type: developers,
 - defect trigger and effect: testers,
 - other information: coordinator/other.
 - ▷ Tie to inspection/testing processes.
 - ▷ Analysis: attribute focusing.
 - ▷ Feedback results: graphical.
- Implementation and deployment:
 - ▷ Training of participants.
 - ▷ Data capturing tools.
 - ▷ Centralized analysis.
 - ▷ Usage of analysis results.

Linkage to Other Topics

- Development process
 - ▷ Defect prevention process/techniques.
 - \triangleright Inspection and testing.
- Testing and reliability:
 - Expanded testing measurement
 - Defects and other information:
 - Environmental (impact)
 - Test case (trigger)
 - Causal (fault)
 - Reliability modeling for ODC classes