
Software Quality Engineering Slide (Ch.21) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 21. Risk Identification for

Quantifiable Quality Improvement

• Basic Ideas and Concepts

• Traditional Statistical Techniques

• Newer/More Effective Techniques

• Tree-Based Analysis of ODC Data

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 2

Risk Identification: Why?

• Observations and empirical evidences:

. 80:20 rule: non-uniform distribution:

– 20% of the modules/parts/etc.

contribute to

– 80% of the defects/effort/etc.

. implication: non-uniform attention

– risk identification

– risk management/resolution

• Risk Identification in SQE:

. 80:20 rule as implicit hypothesis

. focus: techniques and applications

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 3

Risk Identification: How?

• Qualitative and subjective techniques:

. Causal analysis

. Delphi and other subjective methods

• Traditional statistical techniques:

. Correlation analysis

. Regression models:

– linear, non-linear, logistic, etc.

• Newer (more effective) techniques:

. Statistical: PCA, DA, TBM

. AI-based: NN, OSR

. Focus of our Chapter.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 4

Risk Identification: Where?

• 80% or target:

. Mostly quality or defect

(most of our examples also)

. Effort and other external metrics

. Typically directly related to goal

. Resultant improvement

• 20% or contributor:

. 20%: risk identification!

. Understand the link

. Control the contributor:

– corrections/defect removal/etc.

– future planning/improvement

– remedial vs preventive actions

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 5

Traditional Technique: Correlation

• Terminology:

. r.v.: random variables

. i.v.: independent (random) variable

– also called predictor (variable)

. d.v.: dependent (random) variable

– also called response (variable)

. observations and distribution

• Statistical distributions:

. 1d: normal, exponential, binomial, etc.

. 2d: independent vs. correlated

. covariance, correlation (coefficient)

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 6

Traditional Technique: Correlation

• Correlation coefficient:

. ranges between −1 and 1

. positive: move in same direction

. negative: move in opposite direction

. 0: not correlated (independent)

• Correlation analysis:

. use correlation coefficient

. linear (Pearson) correlation vs.

non-parametric (Spearman) correlation

. based on measurement type/distribution:

– non-normal distribution

– ordinal measurement etc.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 7

Traditional Technique: Correlation

• Correlation analysis: applications

. understand general relationship

– e.g., complexity-defect correlation

. risk identification also

. cross validation (metrics etc.)

• Correlation analysis: assessment

. only partially successful

. low correlation, then what?

. data skew: 0-defect example

. uniform treatment of data

⇒ Other risk identification techniques needed.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 8

Traditional Technique: Regression

• Regression models:

. as generalized correlation analysis

. n i.v. combined to predict 1 d.v.

. forms of prediction formula

⇒ diff. types of regression models

• Types of regression models:

. linear: linear function

y = α0 + α1x1 + ... + αnxn + ε

. log-linear: linear after log-transformation

. non-linear: non-linear function

. logistic: represent presence/absence of

categorical variables

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 9

Traditional Technique: Regression

• Regression analysis: applications

. similar to correlation analysis

. multiple attribute data

• Regression analysis: assessment

. only partially successful

. similar to correlation analysis

. often marginally better (R-sqr vs c.c.)

. same kind of problems

. data transformation problem

. synthesized metrics ∼ regression model?

⇒ Other risk identification techniques needed.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 10

New Techniques

• New statistical techniques:

. PCA: principal component analysis

. DA: discriminant analysis

. TBM: tree-based modeling

• AI-based new techniques:

. NN: artificial neural networks.

. OSR: optimal set reduction.

. Abductive-reasoning, etc.

• Focus of our Chapter.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 11

New Techniques: PCA & DA

• Not really new techniques,

but rather new applications in SE.

• PCA: principal component analysis

. Idea of linear transformation.

. PCA to reduce dimensionality.

. Effectively combined with DA and other

techniques (NN later).

• DA: discriminant analysis

. Discriminant function

. Risk id as a classification problem

. Combine with other techniques

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 12

New Techniques: PCA & DA

• PCA: why?

. Correlated i.v.’s ⇒ unstable models

. Extreme case:

linearly dependent ⇒ singularity

. linear transformation (PCA) ⇒

uncorrelated PCs (or domain metrics)

• PCA: how?

. Covariance matrix: Σ

. Solve |Σ − Λ| = 0 to obtain eigenvalues

λj along the diagonal for the diagonal

matrix Λ

. λj’s in decreasing value

. Decomposition: Σ = CTΛC

. C: matrix of eigenvectors

(transformation used)

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 13

New Techniques: PCA & DA

• Obtaining PCA results:

. Transformation: D = ZT , where

– Z is the original data matrix

– T is the transformation matrix

. Λ, C, T calculated by various statistical

packages/tools

• PCA result interpretation/usage:

. Eigenvalues ≈ explained variance.

. First few (3-5) principal components (PCs)

explain most of the variance.

. Uncorrelated PCs

⇒ good/stable (linear/other) models

• PCA example: Table 21.1 (p.357)

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 14

New Techniques: PCA & DA

• DA: how?

. Define discriminant function.

. Classify into G1 and G2

– G1: not fault-prune

– G2: fault-prune

. Definitions: Section 21.3.1 (p.357).

. Other/similar definitions possible.

. Minimize misclassification rate in model

fitting and in prediction.

. Good results (Khoshgoftaar et al., 1996).

• PCA&DA: Summary and Observations:

. Positive/encouraging results, but,

. Much processing/transformation needed.

. Much statistics knowledge.

. Difficulty in data/result interpretation.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 15

New Technique: NN

• NN or ANN: artificial neural networks

. Inspired by biological computation

. Neuron: basic computational unit

– different functions

. Connection: neural network

. Input/output/hidden layers

• NN applications:

. AI and AI problem solving

. In SQE: defect/risk identification

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 16

New Technique: NN

• Computation at a neuron: 2 stages

. Weighted sum of input: h =
n∑

1

xi

(may include constant)

. Then activation function y = g(h)

– threshold, piecewise-linear,

– Gaussian, sigmoid (below), etc.

y =
1

1 + e−βx

. Illustration: Fig 21.1 (p.358)

• Overall computation:

. Layers of neurons

. Input layer: raw data feed

. Other layers: computation at n neurons

. Objective: minimize prediction error at

the output layer

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 17

New Technique: NN

• NN algorithm: backward propagation

. Fig 21.2 (p.359)

(actually algorithm ideas, not exact)

. Trace through steps

. Error: deviance (sum of error sqr)

• NN study (Khoshgoftaar and Szabo, 1996):

. Table 21.2 (p.359)

. NN superior to linear regression.

. NN+PCA superior to NN on raw data.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 18

New Technique: TBM

• TBM: tree-based modeling

. Similar to decision trees

. But data-based (derived from data)

. Preserves tree advantages:

– easy to understand/interpret

– both numerical and categorical data

– partition ⇒ non-uniform treatment

• TBM applications:

. Main: defect analysis

TBDMs (tree-based defect models)

. Past: psychology, SE-Amadeus, etc.

. Reliability: TBRMs (Ch.22)

• TBM: both risk identification and charac-

terization.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 19

New Technique: TBM

• TBM for risk identification:

. Assumption (in traditional techniques):

– linear relation

– uniformly valid result

. Reality of defect distribution:

– isolated pocket

– different types of metrics

– correlation/dependency in metrics

– qualitative differences

. Need new risk id. techniques.

• TBM for risk characterization:

. Identified, then what?

. Result interpretation.

. Remedial/corrective actions.

. Extrapolation to new product/release.

. TBDMs appropriate.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 20

New Technique: TBM

• TBDMs: tree-based defect models using

tree-based modeling (TBM) technique

• Decision trees:

. multiple/multi-stage decisions

. may be context-sensitive

. natural to the decision process

. applications in many problems

– decision making & problem solving

– decision analysis/optimization

• Tree-based models:

. reverse process of decision trees

. data ⇒ tree

. idea of decision extraction

. generalization of “decision”

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 21

New Technique: TBM

• Technique: tree-based modeling

. Tree: nodes=data-set, edges=decision.

. Data attributes:

– 1 response & n predictor variables.

. Construction: recursive partitioning.

. Usage: relating response to predictors

– Y = Tree(X1, . . . , Xn)

– understanding vs. predicting

– identification and characterization

. Works for mixed-types of data.

. Tree growing and pruning.

• Algorithm: Fig 21.3 (p.360)

. regression tree and example

. classification tree: modify Step 3

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 22

New Technique: TBM

• TBDM example: Fig 21.4 (p.361)

. IBM-NS: a commercial product.

. 11 design/size/complexity metrics.

. High-risk subsets: nodes rll and rr

– characterization: Table 21.3 (p.361)

. Design and control complexity as main

predictors of high-risk.

• Key “selling” points:

. intuitiveness and interpretation

– compare to PCA, NN

. quantitative & qualitative info.

. hierarchy/importance/organization

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 23

New Technique: OSR

• OSR: optimal set reduction

. pattern matching idea

. clusters and cluster analysis

. similar to TBM but different in:

– pattern extraction vs. partition

• OSR: technique

. pattern extraction

. algorithm sketch: Fig 21.5 (p.362)

. organization/modeling results:

– no longer a tree, see example

– general subsets, may overlap

– illustration: Fig 21.6 (p.363)

• Details and some positive results:

see Briand et al. (1992)

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 24

Risk Identification: Comparison

• Comparison: cost-benefit analysis

≈ comparing QA alternatives (Ch.17).

• Comparison area: benefit-related

. accuracy

. early availability and stability

. constructive information and guidance

for (quality) improvement

• Comparison area: cost-related

. simplicity

. ease of result interpretation

. availability of tool support

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 25

Comparison: Accuracy

• Accuracy in assessment:

. model fits data well

– use various goodness-of-fit measures

. avoid over-fitting

. cross validation by review etc.

• Accuracy in prediction:

. over-fitting ⇒ bad predictions

. prediction: training and testing sets

– within project: jackknife

– across projects: extrapolate

. minimize prediction errors

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 26

Comparison: Usefulness

• Early availability and stability

. to be useful must be available early

. focus on control/improvement

. apply remedial/preventive actions early

. track progress: stability

• constructive information and guidance

. what: assessment/prediction

. how to improve?

– constructive information

– guidance on what to do

. example of TBRMs

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 27

Comparison: Usability

• Can’t explain in a few words

⇒ difficulties with reception/deployment

• Simplicity & result interpretation?

. technique easy to use/understand

. what does it (the result) mean?

. training effort involved

. causal and other connections

• Tool and other support:

. availability of easy-to-use tools

. other support: process/personnel/etc.

. direct impact on deployment

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 28

Summary & Recommendation

• Comparison summary and recommendation:

. Summary: Table 21.4 (p.364)

. Recommendation: TBM good balance.

. Suite: Other technique with TBM.

• Lifecycle integration:

. Process and data availability

⇒ inspection/testing/other QA data.

. Experience/infrastructure/tools/etc. for

implementation/technology transfer.

. Similar techniques for other problems

– e.g., identifying effort, schedule risks.

. Tailoring to individual process/product

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 29

Tree-Based ODC Data Analysis

• Continuation of ODC analysis:

. IBM Toronto data from ODC (Ch.20)

. 1-way → 2-way → n-way analyses

– combinatorial explosion

. Better focus on n-1 linkage:

– 1 response variable: impact

– n (=6 here) predictor variables

. ODC attributes in Table 20.6 (p.347)

– all except “severity” used

– impact-severity analysis already done:

see Table 20.7 (p.351)

• Tree-based ODC modeling

. Classification trees

(instead of regression trees)

. Change in distribution

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.21) 30

Tree-Based ODC Data Analysis

• Result interpretation:

. Overall result: Fig 21.7 (p.366)

. Dominant impact: tree nodes.

. Impact distribution: bars.

. Confidence: frequency and cardinality.

• Impact distribution results:

. Primary partition: defect trigger

. High homogeneity of right subtree

. Problem identification: left subtree

. Distribution: Fig 21.8 (p.367)

• Usage of modeling results:

. Passive tracking and correction

. Active problem identification and quality

control

Jeff Tian, Wiley-IEEE/CS 2005

