Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 21. Risk Identification for Quantifiable Quality Improvement

- Basic Ideas and Concepts
- Traditional Statistical Techniques
- Newer/More Effective Techniques
- Tree-Based Analysis of ODC Data

Risk Identification: Why?

- Observations and empirical evidences:
 - ▷ 80:20 rule: non-uniform distribution:
 - 20% of the modules/parts/etc.
 contribute to
 - 80% of the defects/effort/etc.
 - ▷ implication: non-uniform attention
 - risk identification
 - risk management/resolution
- Risk Identification in SQE:
 - ▷ 80:20 rule as implicit hypothesis
 - ▷ focus: techniques and applications

Risk Identification: How?

- Qualitative and subjective techniques:
 - ▷ Causal analysis
 - Delphi and other subjective methods
- Traditional statistical techniques:
 - ▷ Correlation analysis
 - Regression models:
 - linear, non-linear, logistic, etc.
- Newer (more effective) techniques:
 - ▷ Statistical: PCA, DA, TBM
 - ▷ AI-based: NN, OSR
 - ▷ Focus of our Chapter.

Risk Identification: Where?

- 80% or target:
 - Mostly quality or defect (most of our examples also)
 - Effort and other external metrics
 - Typically directly related to goal
 - Resultant improvement
- 20% or contributor:
 - \triangleright 20%: risk identification!
 - ▷ Understand the link
 - ▷ Control the contributor:
 - corrections/defect removal/etc.
 - future planning/improvement
 - remedial vs preventive actions

Traditional Technique: Correlation

- Terminology:
 - ▷ r.v.: random variables
 - ▷ i.v.: independent (random) variable
 - also called predictor (variable)
 - ▷ d.v.: dependent (random) variable
 - also called response (variable)
 - observations and distribution
- Statistical distributions:
 - ▷ 1d: normal, exponential, binomial, etc.
 - ▷ 2d: independent vs. correlated
 - ▷ covariance, correlation (coefficient)

Traditional Technique: Correlation

- Correlation coefficient:
 - \triangleright ranges between -1 and 1
 - ▷ positive: move in same direction
 - ▷ negative: move in opposite direction
 - ▷ 0: not correlated (independent)
- Correlation analysis:
 - ▷ use correlation coefficient
 - linear (Pearson) correlation vs.
 non-parametric (Spearman) correlation
 - ▷ based on measurement type/distribution:
 - non-normal distribution
 - ordinal measurement etc.

Traditional Technique: Correlation

- Correlation analysis: applications
 - understand general relationship
 - e.g., complexity-defect correlation
 - ▷ risk identification also
 - ▷ cross validation (metrics etc.)
- Correlation analysis: assessment
 - only partially successful
 - ▷ low correlation, then what?
 - ▷ data skew: 0-defect example
 - ▷ uniform treatment of data

 \Rightarrow Other risk identification techniques needed.

Traditional Technique: Regression

- Regression models:
 - ▷ as generalized correlation analysis
 - \triangleright *n* i.v. combined to predict 1 d.v.
 - ▷ forms of prediction formula $\Rightarrow \text{ diff. types of regression models}$
- Types of regression models:
 - ▷ linear: linear function

 $y = \alpha_0 + \alpha_1 x_1 + \dots + \alpha_n x_n + \epsilon$

- ▷ log-linear: linear after log-transformation
- ▷ non-linear: non-linear function
- Iogistic: represent presence/absence of categorical variables

Traditional Technique: Regression

• Regression analysis: applications

▷ similar to correlation analysis

- > multiple attribute data
- Regression analysis: assessment
 - ▷ only partially successful
 - ▷ similar to correlation analysis
 - ▷ often marginally better (R-sqr vs c.c.)
 - ▷ same kind of problems
 - ▷ data transformation problem
 - \triangleright synthesized metrics \sim regression model?

 \Rightarrow Other risk identification techniques needed.

New Techniques

- New statistical techniques:
 - ▷ PCA: principal component analysis
 - ▷ DA: discriminant analysis
 - ▷ TBM: tree-based modeling
- AI-based new techniques:
 - ▷ NN: artificial neural networks.
 - \triangleright OSR: optimal set reduction.
 - ▷ Abductive-reasoning, etc.
- Focus of our Chapter.

- Not really new techniques, but rather new applications in SE.
- PCA: principal component analysis
 - ▷ Idea of linear transformation.
 - ▷ PCA to reduce dimensionality.
 - Effectively combined with DA and other techniques (NN later).
- DA: discriminant analysis
 - Discriminant function
 - ▷ Risk id as a classification problem
 - Combine with other techniques

• PCA: why?

- \triangleright Correlated i.v.'s \Rightarrow unstable models
- Extreme case:
 - linearly dependent \Rightarrow singularity
- ▷ linear transformation (PCA) \Rightarrow uncorrelated PCs (or domain metrics)
- PCA: how?
 - \triangleright Covariance matrix: Σ
 - ▷ Solve $|\Sigma \Lambda| = 0$ to obtain eigenvalues λ_j along the diagonal for the diagonal matrix Λ
 - $\triangleright \lambda_j$'s in decreasing value
 - ▷ Decomposition: $\Sigma = C^T \wedge C$
 - ▷ C: matrix of eigenvectors (transformation used)

- Obtaining PCA results:
 - \triangleright Transformation: D = ZT, where
 - Z is the original data matrix
 - T is the transformation matrix
 - $\triangleright \Lambda, C, T$ calculated by various statistical packages/tools
- PCA result interpretation/usage:
 - \triangleright Eigenvalues \approx explained variance.
 - First few (3-5) principal components (PCs) explain most of the variance.
 - ▷ Uncorrelated PCs \Rightarrow good/stable (linear/other) models
- PCA example: Table 21.1 (p.357)

• DA: how?

- ▷ Define discriminant function.
- \triangleright Classify into G_1 and G_2
 - $-G_1$: not fault-prune
 - $-G_2$: fault-prune
- \triangleright Definitions: Section 21.3.1 (p.357).
- ▷ Other/similar definitions possible.
- Minimize misclassification rate in model fitting and in prediction.
- ▷ Good results (Khoshgoftaar et al., 1996).
- PCA&DA: Summary and Observations:
 - ▷ Positive/encouraging results, but,
 - ▷ Much processing/transformation needed.
 - ▷ Much statistics knowledge.
 - ▷ Difficulty in data/result interpretation.

New Technique: NN

- NN or ANN: artificial neural networks
 - Inspired by biological computation
 - Neuron: basic computational unit
 different functions
 - Connection: neural network
 - Input/output/hidden layers
- NN applications:
 - ▷ AI and AI problem solving
 - ▷ In SQE: defect/risk identification

New Technique: NN

- Computation at a neuron: 2 stages
 - ▷ Weighted sum of input: $h = \sum_{1}^{n} x_i$
 - (may include constant)
 - \triangleright Then activation function y = g(h)
 - threshold, piecewise-linear,

- Gaussian, sigmoid (below), etc.
$$y = \frac{1}{1 + e^{-\beta x}}$$

▷ Illustration: Fig 21.1 (p.358)

- Overall computation:
 - ▷ Layers of neurons
 - ▷ Input layer: raw data feed
 - \triangleright Other layers: computation at n neurons
 - Objective: minimize prediction error at the output layer

New Technique: NN

- NN algorithm: backward propagation
 - Fig 21.2 (p.359)(actually algorithm ideas, not exact)
 - ▷ Trace through steps
 - Error: deviance (sum of error sqr)
- NN study (Khoshgoftaar and Szabo, 1996):
 - ▷ Table 21.2 (p.359)
 - ▷ NN superior to linear regression.
 - \triangleright NN+PCA superior to NN on raw data.

- TBM: tree-based modeling
 - Similar to decision trees
 - ▷ But data-based (derived from data)
 - ▷ Preserves tree advantages:
 - easy to understand/interpret
 - both numerical and categorical data
 - partition \Rightarrow non-uniform treatment
- TBM applications:
 - Main: defect analysis
 TBDMs (tree-based defect models)
 - Dest: nevehology SE Amadous atc
 - Past: psychology, SE-Amadeus, etc.
 - ▷ Reliability: TBRMs (Ch.22)
- TBM: both risk identification and characterization.

- TBM for risk identification:
 - ▷ Assumption (in traditional techniques):
 - linear relation
 - uniformly valid result
 - ▷ Reality of defect distribution:
 - isolated pocket
 - different types of metrics
 - correlation/dependency in metrics
 - qualitative differences
 - ▷ Need new risk id. techniques.
- TBM for risk characterization:
 - ▷ Identified, then what?
 - ▷ Result interpretation.
 - ▷ Remedial/corrective actions.
 - ▷ Extrapolation to new product/release.
 - ▷ TBDMs appropriate.

- TBDMs: tree-based defect models using tree-based modeling (TBM) technique
- Decision trees:
 - > multiple/multi-stage decisions
 - ▷ may be context-sensitive
 - ▷ natural to the decision process
 - ▷ applications in many problems
 - decision making & problem solving
 - decision analysis/optimization
- Tree-based models:
 - ▷ reverse process of decision trees
 - \triangleright data \Rightarrow tree
 - ▷ idea of decision extraction
 - ▷ generalization of "decision"

- Technique: tree-based modeling
 - ▷ Tree: nodes=data-set, edges=decision.
 - ▷ Data attributes:
 - -1 response & n predictor variables.
 - ▷ Construction: recursive partitioning.
 - ▷ Usage: relating response to predictors

 $-Y = Tree(X_1, \ldots, X_n)$

- understanding vs. predicting
- identification and characterization
- ▷ Works for mixed-types of data.
- ▷ Tree growing and pruning.
- Algorithm: Fig 21.3 (p.360)
 - ▷ regression tree and example
 - classification tree: modify Step 3

- TBDM example: Fig 21.4 (p.361)
 - ▷ IBM-NS: a commercial product.
 - ▷ 11 design/size/complexity metrics.
 - High-risk subsets: nodes rll and rr
 characterization: Table 21.3 (p.361)
 - Design and control complexity as main predictors of high-risk.
- Key "selling" points:
 - ▷ intuitiveness and interpretation
 - compare to PCA, NN
 - ▷ quantitative & qualitative info.
 - ▷ hierarchy/importance/organization

New Technique: OSR

- OSR: optimal set reduction
 - ▷ pattern matching idea
 - clusters and cluster analysis
 - ▷ similar to TBM but different in:
 - pattern extraction vs. partition
- OSR: technique
 - ▷ pattern extraction
 - ▷ algorithm sketch: Fig 21.5 (p.362)
 - ▷ organization/modeling results:
 - no longer a tree, see example
 - general subsets, may overlap
 - illustration: Fig 21.6 (p.363)
- Details and some positive results: see Briand et al. (1992)

Risk Identification: Comparison

- Comparison: cost-benefit analysis
 ≈ comparing QA alternatives (Ch.17).
- Comparison area: benefit-related
 - ▷ accuracy
 - ▷ early availability and stability
 - constructive information and guidance for (quality) improvement
- Comparison area: cost-related
 - ▷ simplicity
 - ▷ ease of result interpretation
 - ▷ availability of tool support

Comparison: Accuracy

- Accuracy in assessment:
 - ▷ model fits data well
 - use various goodness-of-fit measures
 - ▷ avoid over-fitting
 - ▷ cross validation by review etc.
- Accuracy in prediction:
 - \triangleright over-fitting \Rightarrow bad predictions
 - ▷ prediction: training and testing sets
 - within project: jackknife
 - across projects: extrapolate
 - > minimize prediction errors

Comparison: Usefulness

- Early availability and stability
 - ▷ to be useful must be available early
 - ▷ focus on control/improvement
 - ▷ apply remedial/preventive actions early
 - ▷ track progress: stability
- constructive information and guidance
 - ▷ what: assessment/prediction
 - ▷ how to improve?
 - constructive information
 - guidance on what to do
 - ▷ example of TBRMs

Comparison: Usability

- Can't explain in a few words
 ⇒ difficulties with reception/deployment
- Simplicity & result interpretation?
 - ▷ technique easy to use/understand
 - ▷ what does it (the result) mean?
 - ▷ training effort involved
 - ▷ causal and other connections
- Tool and other support:
 - ▷ availability of easy-to-use tools
 - ▷ other support: process/personnel/etc.
 - ▷ direct impact on deployment

Summary & Recommendation

- Comparison summary and recommendation:
 - ▷ Summary: Table 21.4 (p.364)
 - ▷ Recommendation: TBM good balance.
 - ▷ Suite: Other technique with TBM.
- Lifecycle integration:
 - ▷ Process and data availability \Rightarrow inspection/testing/other QA data.
 - Experience/infrastructure/tools/etc. for implementation/technology transfer.
 - Similar techniques for other problems
 e.g., identifying effort, schedule risks.
 - ▷ Tailoring to individual process/product

Tree-Based ODC Data Analysis

- Continuation of ODC analysis:
 - ▷ IBM Toronto data from ODC (Ch.20)
 - \triangleright 1-way \rightarrow 2-way \rightarrow n-way analyses
 - combinatorial explosion
 - ▷ Better focus on n-1 linkage:
 - 1 response variable: impact
 - n (=6 here) predictor variables
 - \triangleright ODC attributes in Table 20.6 (p.347)
 - all except "severity" used
 - impact-severity analysis already done: see Table 20.7 (p.351)
- Tree-based ODC modeling
 - Classification trees
 (instead of regression trees)
 - ▷ Change in distribution

Tree-Based ODC Data Analysis

- Result interpretation:
 - ▷ Overall result: Fig 21.7 (p.366)
 - ▷ Dominant impact: tree nodes.
 - ▷ Impact distribution: bars.
 - ▷ Confidence: frequency and cardinality.
- Impact distribution results:
 - Primary partition: defect trigger
 - High homogeneity of right subtree
 - ▷ Problem identification: left subtree
 - ▷ Distribution: Fig 21.8 (p.367)
- Usage of modeling results:
 - ▷ Passive tracking and correction
 - Active problem identification and quality control