Software Quality Engineering:

Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 22. Software Reliability Engineering

- Concepts and Approaches
- Existing Approaches: SRGMs & IDRMs
- Assessment & Improvement with TBRMs
- SRE Perspectives

What Is SRE

- Reliability: Probability of failure-free operation for a specific time period or input set under a specific environment
 - ▶ Failure: behavioral deviations
 - ▶ Time: how to measure?
 - ▶ Input state characterization
 - ▷ Environment: OP
- Software reliability engineering:

 - ▶ Measure, predict, manage reliability
 - Statistical modeling
 - - failures vs. faults
 - meaningful time vs. development days
 - customer operational profile

Assumption: SRE and OP

- Assumption 1: OP, to ensure software reliability from a user's perspective.
- OP: Operational Profile
 - Quantitative characterization of the way a (software) system will be used.
 - ▶ Test case generation/selection/execution
 - ▶ Realistic assessment
 - Predictions (minimize discontinuity)
- OP topics in SQE book:
 - - flat list with probabilities
 - tree-structured OP
 - dev. procedures: Musa-1/Musa-2
 - Chapter 10: Markov chains and UMMs (unified Markov models)

Other Assumptions in Context

- Assumption 2: Randomized testing
 - ▶ Independent failure intervals/observations
 - Approximation in large software systems
 - Adjustment for non-random testing
 - ⇒ new models or data treatments
- Assumption 3: Failure-fault relation
 - \triangleright Failure probability \sim # faults

 - ▶ Possible adjustment?
 - Statistical validity for large s/w systems

Other Assumptions and Context

- Assumption 4: time-reliability relation
 - Time measurement in SRGMs
 - ▶ Usage-dependent vs. usage-independent
 - > Proper choice under specific env.
- Usage-independent time measurement:
 - ▷ Calendar/wall-clock time
 - ▷ Only if stable or constant workload
- Usage-dependent time measurement:

 - Most systems with uneven workload
 e.g., Fig 22.1 & Fig 22.2 (pp.374-375)

Input Domain Reliability Models

- IDRMs: Current reliability snapshot based on observed testing data of *n* samples.
- Assessment of current reliability.
- Prediction of future reliability (limited prediction due to snapshot)
- Management and improvement
 - ▶ As acceptance criteria.
 - ▶ Risk identification and followups:
 - reliability for input subsets
 - remedies for problematic areas
 - preventive actions for other areas

Nelson's IDRM

- Nelson Model:
 - \triangleright Running for a sample of n inputs.
 - \triangleright Randomly selected from set E:

$$E = \{E_i : i = 1, 2, \dots, N\}$$

Sampling probability vector:

$$\{P_i: i=1,2,\ldots,N\}$$

- $\triangleright \{P_i\}$: Operational profile.
- \triangleright Number of failures: f.
- ▷ Estimated reliability:

$$R = 1 - r = 1 - \frac{f}{n} = \frac{n - f}{n}$$

- \triangleright Failure rate: r.
- Repeated sampling without fixing.

Other IDRMs and Applications

- Brown-Lipow model:
 - ▷ Explicit input state distribution.
 - \triangleright Known probability for sub-domains E_i
 - $\triangleright f_i$ failures for n_i runs from subdomain E_i

$$R = 1 - \sum_{i=1}^{N} \frac{f_i}{n_i} P(E_i)$$

- Application examples
 - Nelson model for a large s/w system
 - succ. segments: Table 22.1 (p.376)
 - Nelson model for web applications
 - daily error rates: Table 22.2 (p.377)

Time Domain Measures and Models

- Reliability measurement
 - ▶ Reliability: time & probability
 - > Result: failure vs. success

 - ▶ Failure intensity (rate): alternative
- S/w reliability growth models (SRGMs):
 - Reliability growth due to defect removal based on observed testing data.

 - Data: time-between-failure (TBF) vs. period-failure-count (PFC) models

Basic Functions (Time Domain)

- Failure distribution functions:
 - $\triangleright F(t)$: cumulative distribution function (cdf) for failure over time
 - $\triangleright f(t)$: prob. density function (pdf) f(t) = F'(t)
- Reliability-related functions:
 - \triangleright Reliability function R(t) = 1 F(t)

$$R(t) = P(T \ge t) = P(\text{no failure by } t)$$

Hazard function/rate/intensity

$$z(t)\Delta t = P\{t < T < t + \Delta t | T > t\}$$

Jelinski-Moranda (de-eutrophication) model:

$$z_i = \phi(N - (i - 1))$$

Other Basic Definitions

- MTBF, MTTF, and reliability
 - ▶ Mean time to failure (MTTF)

$$MTTF = \int_0^\infty t f(t) dt = \int_0^\infty R(t) dt$$

- ▶ Mean time between failures (MTBF)
 - = MTTF for memoryless process
 - similarly defined
- good summary measure of reliability
- Reliability-hazard relation:

$$R(t) = e^{-\int_0^t z(x)dx}$$

$$z(t) = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{R(t)}$$

Other Basic Functions

- Overall failure arrival process:
 (as compared to individual failures)
- NHPP (non-homogeneous Poisson process):
 - Most commonly used for modeling
 - \triangleright Probability of n failures in [0,t]:

$$P(N(t) = n) = \frac{m(t)^n}{n!}e^{-m(t)}$$

- $\triangleright m(t)$: mean function
- \triangleright Failure rate/intensity $\lambda(t)$:

$$\lambda(t) = m'(t) = \frac{dm(t)}{dt}$$

Other processes: Binomial, etc.

Commonly Used NHPP Models

Goel-Okumoto model

$$m(t) = N(1 - e^{-bt})$$

- -N: estimated # of defects
- − b: model curvature
- S-shaped model:

$$m(t) = N(1 - (1 + bt)e^{-bt})$$

- allow for slow start
- may be more descriptive
- Musa-Okumoto execution time model:

$$m(\tau) = \frac{1}{\theta} \log(\lambda_0 \theta \tau + 1)$$

– emphasis: execution time au

SRGM Applications

- Assessment of current reliability
- Prediction of future reliability and resource to reach reliability goals
- Management and improvement
 - Reliability goals as exit criteria

 - ▶ Risk identification and followups:
 - reliability (growth) of different areas
 - remedies for problematic areas
 - preventive actions for other areas
- Examples: Fig. 22.3 (p.380) and Section 22.4.

Assessing Existing Approaches

- Time domain reliability analysis:

 - ▷ Overall assessment and prediction.
 - ▷ Ability to track reliability change.
 - ▷ Issues: assumption validity.
 - ▶ Problem: how to improve reliability?
- Input domain reliability analysis:
 - ▷ Explicit operational profile.
 - ▶ Better input state definition.
 - ▶ Hard to handle change/evolution.
 - ▶ Issues: sampling and practicality.
 - Problem: realistic reliability assessment?

TBRMs: An Integrated Approach

- Combine strengths of the two.
- TBRM for reliability modeling:
 - ▶ Input state: categorical information.
 - ▶ Each run as a data point.
 - > Time cutoff for partitions.
 - Data sensitive partitioning
 - ⇒ Nelson models for subsets.

• Using TBRMs:

- ▶ Reliability for partitioned subsets.
- ▶ Use both input and timing information.
- Monitoring changes in trees.
- ▷ Enhanced exit criteria.
- ▷ Integrate into the testing process.

TBRMs

- Tree-based reliability models (TBRMs):
 TBM using all information.
- Response: Result indicator r_{ij} .
 - $\triangleright r_{ij} = 1$ for success, 0 for failure.
 - ▶ Nelson model for subsets:

$$s_i = \frac{1}{n_i} \sum_{j=1}^{n_i} r_{ij} = \frac{n_i - f_i}{n_i} = \hat{R}_i$$
 or

$$s_i = \frac{\sum_{j=1}^{n_i} t_{ij} s_{ij}}{\sum_{j=1}^{n_i} t_j} = \frac{\sum_{j=1}^{n_i} r_{ij}}{\sum_{j=1}^{n_i} t_j} = \frac{S_i}{T_i} = \hat{R}_i.$$

- Predictors: Timing and input states.
 - Data sensitive partitioning.
 - ▶ Key factors affecting reliability.

TBRMs: Interpretation & Usage

- Interpretation of trees:
 - Predicted response: success rate.(Nelson reliability estimate.)
 - > Time predictor: reliability change.
 - > State predictor: risk identification.
- Change monitoring and risk identification:
 - ▷ Change in predicted response.
 - ▶ Through tree structural change.
 - ▶ Identify high risk input state.
 - Additional analyses often necessary.
 - ▷ Enhanced test cases or components.
 - ▷ Examples: Fig 22.4 and 22.5 (p.383).

TBRM Impact

- Evaluation/validation with SRGMs:
 - > Trend of reliability growth.
 - Stability of failure arrivals.
 - Estimated reliability: see below
- Quantitative impact evaluation:
 - \triangleright Product purity level ρ at exit:

$$\rho = \frac{\lambda_0 - \lambda_T}{\lambda_0} = 1 - \frac{\lambda_T}{\lambda_0}$$

- ▶ Result comparison:
 - TBRMs used in D
 - but not in A, B, and C.
- ⊳ Fig 22.6 & Table 22.3 (p.384)

Integrated Approach: Implementation

- Modified testing process:
 - Additional link for data analysis.
 - ▶ Process change and remedial actions.
- Activities and Responsibilities:
 - ▷ Evolutionary, stepwise refinement.
 - ▷ Collaboration: project & quality orgs.
 - ▷ Experience factory prototype (Basili).
- Implementation:
 - ▶ Passive tracking and active guidance.
 - ▶ Periodic and event-triggered.
 - ⊳ S/W tool support

Implementation Support

- Types of tool support:
 - Data capturing
 - mostly existing logging tools
 - modified to capture new data
 - Analysis and modeling
 - SMERFS modeling tool
 - S-PLUS and related programs
 - Presentation/visualization and feedback
 - S-PLUS and Tree-Browser
- Implementation of tool support:
 - Existing tools: minimize cost
 - internal as well as external tools
 - New tools and utility programs
 - - loosely coupled suite of tools
 - connectors/utility programs

SRE Perspectives

- New models and applications
 - ▷ Expand from "medium-reliable" systems.
 - New models for new application domains.
 - Data selection/treatment
- Reliability improvement

 - Predictive (early!) modeling for risk identification and management
- Other SRE frontiers:
 - Coverage/testing and reliability
 - Reliability composition and maximization