Software Quality Engineering:

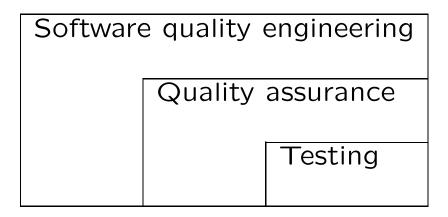
Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Part I. Overview and Basics

- General Book Information
- Quality: View/Measure/Model
- QA Activities/Alternatives
- From QA to SQE


Ch.1: Main Problems Addressed

- Deliver software system that...
 - \triangleright does what it is supposed to do.
 - \triangleright does the things correctly.
 - ▷ show/demonstrate/prove it ("does").
- Major difficulties for the above:
 - ▷ Size: MLOC products common
 - ▷ Complexity
 - Environmental stress/constraints
 - > Flexibility/adaptability expected
 - ▷ "no silver bullet", but...

SQE (software quality engineering) helps

Ch.1: SQE as Answer

- Major SQE activities:
 - ▷ Testing: remove defect & ensure quality
 - Other QA alternatives to testing
 - ▷ How do you know: analysis & modeling
- Scope and content hierarchy: Fig.1.1 (p.6).

Ch.1: Book Contents

- QA alternatives/activities: (and mapping to our Parts/Chapters)
 - ▷ Testing (Part II)
 - ▷ Other alternatives (Part III):
 - defect prevention (Ch.13)
 - inspection, review, analysis (Ch.14)
 - formal verification (Ch.15)
 - defect containment (Ch.16), etc .
 - ▷ Analysis and improvement (Part IV)
- Issues in different QA alternative
 - > Applicability and effectiveness
 - Dealing with quality problems/defects:
 prevention/removal/tolerance
 - ⊳ Cost
 - Comparison (Ch.17) and improvement (Part IV).

Ch.1: Usage and Readership

- Part I (overview/concept) should precede other (possibly parallel) parts.
- Dependency within each parts:
 - Essential: prior knowledge
 - ▷ Non-essential:
 - simple to complex
 - process/external order or sequence
 - top-down (and bottom-up?), etc.
 - ▷ Details: Fig 1.2 (p.10)
- Background knowledge needed:
 - ▷ CS/SE: object of study
 - ▷ math/statistics: modeling/analysis.
 - ▷ Details: Section 1.4

Ch.2: General Quality Views

- In Kitchenham & Pfleeger (1996):
 - ▷ Transcendental view: seen/not-defined.
 - ▷ User view: fitness for purpose.
 - ▷ Manufacturing view: conform to specs.
 - ▷ Product view: inherent characteristics.
 - ▷ Value-based view: willing to pay.
- In Prahalad & Krishnan (1999):
 - Conformance/adaptability/innovation
 - ▷ Traditional: conformance only
 - $\triangleright \Rightarrow$ service, manage expectations:
 - 0 defect \rightarrow 0 defection
 - ▷ Domain specific (for info. age?):
 - specificity, stability, evolvability

Ch.2: Quality Frameworks

- In various frameworks/mega-models
 - ▷ McCall: factors, criteria, and metrics
 - ▷ Basili: GQM (goal-question-metric)
 - ▷ SEI/CMM: process focus/levels
 - ▷ ISO 9000 series of standards
 - Dromey: component reflects Q-attributes
- ISO 9126 quality characteristics:
 - ▷ Functionality: what is needed?
 - ▷ Reliability: function correctly.
 - ▷ Usability: effort to use.
 - ▷ Efficiency: resource needed.
 - ▷ Maintainability: correct/improve/adapt.
 - ▷ Portability: one environment to another.
 - ▷ Adaptation in corporate definitions.
 - e.g. IBM's CUPRIMDSO.

Ch.2: Defining Quality

• Quality: views and attributes

View	Attribute	
	Correctness	Other
Customer	Failures:	Maintainability
(external)	reliability	Readability
	safety	Portability
	etc.	Performance
		Installability
		Usability, etc.
Developer	Faults:	Design
(internal)	count	Size
	distr	Change
	class	Complexity
	etc.	presentation
		control
		data, etc.

• SQE focus: correctness-related.

Ch.2: Defect and Quality

- Defect/bug definition
 - ▷ Failure: external behavior
 - deviation from expected behavior
 - Fault: internal characteristics
 - cause for failures
 - Error: incorrect/missing human action
 conceptual mistakes
 - Bug/debug: problematic terms, avoid
- Relations (not necessarily 1-1): errors ⇒ faults ⇒ failures: Fig 2.1 (p.21)
- Defect handling/resolution: Chapter 4.

Ch.3: Defect vs. QA

- QA: quality assurance
 - \triangleright QA as dealing with defects.
 - \triangleright Focus on correctness aspect of Q.
 - ▷ Many activities: testing & others
 - \triangleright How \Rightarrow classification
- How to deal with defects:
 - ▷ Prevention
 - ▷ Removal (detect them first)
 - Containment
- Classification illustrated: Fig 3.1 (p.30)

Ch.3: Error/Fault/Failure & QA

- Preventing fault injection
 - ▷ Causal/statistical/etc. analyses based
 - ▷ Preventive measures:
 - education, technology, process, tools
 - ▷ Formal verification (faults absent)
- Removal of faults
 - ▷ Inspection: faults discovered
 - ▷ Testing: failures trace back to faults
- Tolerance of faults
 - ▷ Local failure \Rightarrow global failure
 - Dynamic measures to tolerant faults

Ch.3: Defect Prevention Overview

- Error blocking
 - > Error: missing/incorrect actions
 - Direct intervention
 - ▷ Error blocked
 - \Rightarrow fault injections prevented
 - ▷ Rely on technology/tools/etc.
- Error source removal
 - ▷ Root cause analysis
 - \Rightarrow identify error sources
 - ▷ Removal through education/training/etc.
- Details: Chapter 13.

Ch.3: Formal Verification Overview

• Motivation

▷ Fault present:

- revealed through testing/inspection/etc.
- ▷ Fault absent: formally verify.
- Basic ideas
 - ▷ Behavior formally specified:
 - pre/post conditions, or
 - as mathematical functions.
 - ▷ Verify "correctness":
 - intermediate states/steps,
 - axioms and compositional rules.
 - ▷ Approaches: axiomatic/functional/etc.
- Details: Chapter 15.

Ch.3: Inspection Overview

- Artifacts (code/design/test-cases/etc.) from req./design/coding/testing/etc. phases.
- Informal reviews:
 - ▷ Self conducted reviews.
 - ▷ Independent reviews.
 - ▷ Orthogonality of views desirable.
- Formal inspections:
 - ▷ Fagan inspection and variations.
 - ▷ Process and structure.
 - ▷ Individual vs. group inspections.
 - ▷ What/how to check: techniques .
- Details: Chapter 14.

Ch.3: Testing Overview

- Product/Process characteristics:
 - ▷ Object: product type, language, etc.
 - ▷ Scale/order:
 - unit, component, system, ...
 - ▷ Who: self, independent, 3rd party
- What to check:
 - ▷ Verification vs. validation
 - External specifications (black-box)
 - Internal implementation (white/clear-box)
- Criteria: when to stop?
 - ▷ Coverage of specs/structures.
 - \triangleright Reliability \Rightarrow usage-based
- Much, much more in Part II.

Ch.3: Fault Tolerance Overview

- Motivation
 - Fault present but removal infeasible/impractical
 - \triangleright Fault tolerance \Rightarrow contain defects
- FT techniques: break fault-failure link
 - ▷ Recovery: rollback and redo
 - ▷ NVP: N-version programming
 - fault blocked/out-voted
- Details: Chapter 16.

Ch.3: Safety Assurance Overview

- Extending FT idea for safety:
 - ▷ FT: tolerate fault
 - ▷ Extend: tolerate failure
 - ▷ Safety: accident free
- Safety related concepts:
 - ▷ Accident: failure w/ severe consequences
 - ▷ Hazard: precondition to accident
- Safety assurance:
 - ▷ Hazard elimination/reduction/control
 - Damage control
- Details: Chapter 16.

Ch.4: QA in Context

- QA and the overall development context
 - Defect handling/resolution
 - Activities in process
 - Alternative perspectives:
 verification/validation (V&V) view
- Defect handling/resolution
 - ▷ Status and tracking
 - ▷ Causal (root-cause) analysis
 - ▷ Resolution: defect removal/etc.
 - Improvement: break causal chain

Ch.4: Defect Measurement and Analysis

- Defect measurement:
 - Parallel to defect handling
 - Where injected/found?
 - ▷ Type/severity/impact?
 - More detailed classification possible?
 - Consistent interpretation
 - Timely defect reporting
- Defect analyses/quality models
 - ▷ As followup to defect handling.
 - Data and historical baselines
 - Goal: assessment/prediction/improvement
 - Causal/risk/reliability/etc. analyses
- Details in Part IV.

Ch.4: QA in Software Processes

- Mega-process: initiation, development, maintenance, termination.
- Development process components: requirement, specification, design, coding, testing, release.
- QA in waterfall process: Fig 4.1 (p.45)
 - QA in testing phase/sub-phases
 (V-model in sub-phases: Fig 4.2, p.49)
 - Defect prevention in early phases
 - Defect removal in middle/late phases
 - Defect containment in late phases
 - ▷ Phase transitions: inspection/review/etc.
 - ▷ QA scattered throughout the process

Ch.4: QA in Software Processes

- Process variations and QA:
 - ▷ Alternative to waterfall
 - ▷ Iterative: QA in iterations/increments;
 - Spiral: QA and risk management;
 - Mixed/synthesized: case specific;
 - More evenly distributed QA activities
- QA in maintenance processes:
 - ▷ Focus on defect handling;
 - Some defect containment activities for critical or highly-dependable systems;
 - Data for future QA activities
- QA scattered throughout all processes

Ch.4: V&V

- Validation: w.r.t. requirement (what?)
 - > Appropriate/fit-for-use/ "right thing"?
 - Scenario and usage inspection/testing;
 - System/integration/acceptance testing;
 - ▷ Beta testing and operational support.
- Verification: w.r.t. specification/design (how?)
 - > Correct/ "doing things right"?
 - Design as specification for components;
 - ▷ Structural and functional testing;
 - ▷ Inspections and formal verification.
- V&V in software process: Fig 4.2 (p.49).

Ch.4: V&V vs DC View

- Two views of QA:
 - ⊳ V&V view
 - ▷ DC (defect-centered) view in this book
 - Interconnected: mapping possible?
- Mapping between V&V and DC view:
 - ▷ V&V after commitment (defect injected already)
 ⇒ defect removal & containment focus
 ▷ Verification: more internal focus
 ▷ Validation: more external focus
 - ▷ In V-model: closer to user or developer?
- Mapping: Table 4.1 (p.51)

Ch.5: QA to QE

- QA activities need additional support:
 - Planning and goal setting
 - ▷ Management:
 - When to stop?
 - Adjustment and improvement, etc.
 - All based on assessments/predictions
- Assessment of quality/reliability/etc.:
 - Data collection needed
 - Analysis and modeling
 - Providing feedback for management
- Overall process: Fig 5.1 (p.54)
 Software quality engineering (SQE)

Ch.5: QE Activities

- Idea/activities similar to QIP.
- Major activities:
 - ▷ Pre-QA planning;
 - \triangleright QA: covered previously (Ch.3 & 4);
 - Post-QA analysis and feedback
 (maybe parallel instead of "post-")
- Pre-QA planning:
 - ▷ Quality goal
 - ▷ Overall QA strategy:
 - QA activities to perform?
 - Measurement/feedback planning

Ch.5: Pre-QA Planning

- Setting quality goal(s):
 - Identify quality views/attributes
 - Select direct quality measurements
 - ▷ Assess quality expectations vs. cost
- Forming a QA strategy
 - Individual strength/weakness/cost of QA alternatives matched against goals
 - Measurement/feedback planning:
 - define measurements & collect data
 - preliminary choices of models/analyses
 - feedback & followup mechanisms, etc.

Ch.5: Analysis and Feedback

- Measurement:
 - Defect measurement as part of defect handling process
 - Other related measurements
- Analyses: quality/other models
 - Data and historical baselines
 - Goal: assessment/prediction/improvement
 - Focus on defect/risk/reliability analyses
- Feedback and followup:
 - Frequent feedback: assessments/predictions
 - Possible improvement areas
 - Used in management and improvement
- Details in Part IV.

Ch.5: QE Context and Cost

- QE activities in software processes:
 - Different start/end time
 - Different sets of activities and focuses
 - ▷ In waterfall process: Fig 5.2 (p.61)
 - ▷ In other processes: slight variations
- QE activity/effort distribution/dynamics:
 - Different focus in different phases
 - Different levels (qualitatively)
 - Different build-up/wind-down patterns
 - ▷ In waterfall process: Fig 5.3 (p.63)
 - In other processes: similar but more evenly distributed