Software Quality Engineering:

Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 2. What Is Quality?

- Perspectives and Expectations
- Quality Frameworks and ISO-9126
- Correctness, Defect, and Quality
- A Historical Perspective

Perspectives and Expectations

- General: "good" software quality
- Perspectives:
 people/subject's view, software as object
- Expectations: quality characteristics & level
- In Kitchenham & Pfleeger (1996):
 - ▶ Transcendental view: seen/not-defined.

 - ▶ Manufacturing view: conform to specs.
 - ▶ Product view: inherent characteristics.

Quality Perspectives

- Perspectives: subject and object
- Subject: people's perspectives
 - external/consumer: customers and users
 - internal/producer: developers, testers, and managers
 - b other: 3rd party, indirect users, etc.
 - □ users generalized: other systems etc.
- Objects of our study:
 - > software products, systems, and services
 - > stand-alone, embedded, etc.
 - ▷ affect quality definitions/expectations

Quality Expectations

- Expectations from different people
- External/consumer expectations:
 - ▷ "good enough" for the price
 - fit-for-use, doing the "right things"
 - conformance, doing "things right"
 - \Rightarrow validation and verification (V&V)
 - ▷ customer vs user (price?)

 - peneralized user: other hw/sw/system/etc.
- Expectations for different software:
 - □ peneral: functionality & reliability,
 - □ usability: GUI/end-user/web/etc.,

 - > safety: safety-critical systems, etc.

Quality Expectations

- Internal/producer:
 - ▷ "good enough" for the cost
 - mirror consumer side
 - functionality & correctness via V&V

 - > service related: maintainability

 - ▷ 3rd party: modularity
- Different expectations for different types of products and market segments too.
- Different QA/SQE activities needed.

ISO-9126 Quality Framework

- ISO 9126 quality characteristics:
 - ▶ Functionality: what is needed?
 - ▶ Reliability: function correctly.

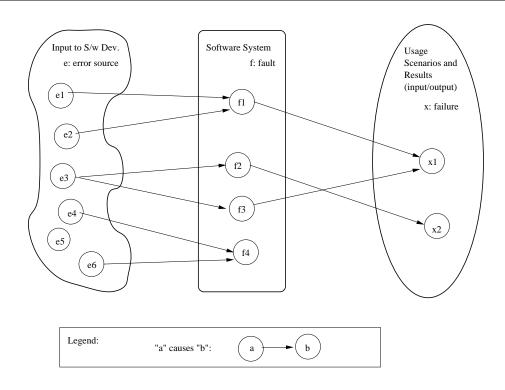
 - ▷ Efficiency: resource needed.
 - ▶ Maintainability: correct/improve/adapt.
 - ▶ Portability: one environment to another.
- Impact and limitations:
 - Characteristics into sub-characteristics

 - ▷ Strict hierarchy ⇒ other alternatives

Other Quality Frameworks

- Adaptation of ISO-9126:
 - > customized for companies
 - e.g., IBM's CUPRIMDSO.
 - > adapted to application domains
 - reliability, usability, security for Web

- Other quality frameworks/mega-models
 - ▶ McCall: factors, criteria, and metrics
 - ▶ Basili: GQM (goal-question-metric)


 - ▷ Dromey: component reflects Q-attributes
 - ▷ Defect-based view: common in industry
 - cost of defect: by Boehm, NIST, etc.

Correctness, Defect and Quality

- High quality ≈ low defect
 - > intuitive notion related to correctness
 - \triangleright quality problem \approx defect impact
 - widely accepted, but need better definitions
- Defect/bug definition
 - > failure: external behavior
 - deviation from expected behavior
 - - cause for failures
 - ▷ error: incorrect/missing human action
 - error source: conceptual mistakes etc.

 - ▷ bug/debug: problematic terms, avoid

Correctness, Defect and Quality

- Relations: errors \Rightarrow faults \Rightarrow failures not necessarily 1-1, Fig 2.1 (p.21) above
- Other issues:

Defining Quality in SQE

• Quality: views and attributes

View	Attribute	
	Correctness	Other
Customer	Failures:	Maintainability
(external)	reliability	Readability
	safety	Portability
	etc.	Performance
		Installability
		Usability, etc.
Developer	Faults:	Design
(internal)	count	Size
	distr	Change
	class	Complexity
	etc.	presentation
		control
		data, etc.

• SQE focus: correctness-related.

Quality: Historical Perspective

- Software vs other products/systems:
 - ▷ pre-software/IT: manufacturing process
 - ⇒ physical-object attributes (defects)
 - > service: manage expectations:
 - 0 defect \rightarrow 0 defection
 - ▶ IT and software: below
- The new meaning of quality in the information age (Prahalad & Krishnan 1999):

 - ▶ Traditional: conformance only
 - ▷ Domain specific (for info. age):
 - specificity, stability, evolvability

Quality: Historical Perspective

- A historical perspective of SE,
 in 4 stages (Musa & Everett, 1990):
 - black properties by the properties of t
 - > schedule: timely/orderly product intro

 - > reliability: meet user expectations
- Historical perspectives based on:

 - ▷ process maturity, etc.
- So, what is software quality?
 - many aspects/perspective, but correctness-centered in SQE