Software Quality Engineering:

Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 6. Testing Overview

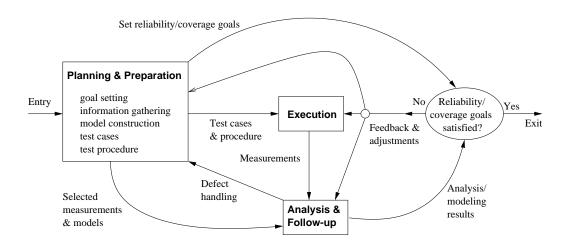
- Testing: Concepts & Process
- Testing Related Questions
- Major Testing Techniques

Testing and QA Alternatives

- Defect and QA:
 - ▷ Defect: error/fault/failure.
 - ▷ Defect prevention/removal/containment.
 - Map to major QA activities
- Defect prevention:
 Error blocking and error source removal.
- Defect removal:
 - ▶ Testing Part II, Ch.6-12.
 - ▷ Inspection, etc.
- Defect containment: Fault tolerance and failure containment (safety assurance).

QA and Testing

- Testing as part of QA:
 - Activities focus on testing phase


 - > One of the most important part of QA
 - defect removal: Fig 3.1 (p.30)
- Testing: Key questions:
 - Why: quality demonstration vs. defect detection and removal
 - → How: techniques/activities/process/etc.
 - View: functional/external/black-boxvs. structural/internal/white-box

Testing: Why?

- Original purpose: demonstration of proper behavior or quality demonstration.
 - pprox "testing" in traditional settings.
 - > evidence of quality or proper behavior.
- New purpose: defect detection & removal:
 - mostly defect-free software manufacturing vs. traditional manufacturing.
 - p flexibility of software (ease of change; sometimes, curse of change/flexibility)

Testing: How

- How? Run-observe-followup (particularly in case of failure observations)
- Refinement
 - \Rightarrow generic process below (Fig 6.1, p.69)

 Generic testing process as instantiation of SQE process in Fig 5.1, p.54.

Testing: Activities & Generic Process

- Major testing activities:
 - b test planning and preparation
 - ▷ execution (testing)
 - > analysis and followup
- Link above activities ⇒ generic process:
 - ▷ planning-execution-analysis-feedback.
 - ▷ entry criteria: typically external.
 - ▷ exit criteria: internal and external.
 - - but we focus on strategies/techniques.

Testing: Planning and Preparation

• Test planning:

- poal setting based on customers' quality perspectives and expectations.
- overall strategy based on the above and product/environmental characteristics.

Test preparation:

- preparing test cases/suites:
 - typically based on formal models.
- preparing test procedure.
- More details in Chapter 7.

Testing: Execution

- General steps in test execution
 - ▷ allocating test time (& resources)

 - identifying system failures(& gathering info. for followup actions)
- Key to execution: handling both normal vs. abnormal cases
- Activities closely related to execution:
 - failure identification: test oracle problem
 - > data capturing and other measurement
- More details in Chapter 7.

Testing: Analysis and Followup

- Analysis of testing results:
 - result checking (as part of execution)
 - > further result analyses
 - defect/reliability/etc. analyses.
 - \triangleright other analyses: defect \sim other metrics.
- Followup activities:
 - feedback based analysis results.

 - - decision making (exit testing, etc.)
 - test process improvement, etc.
- More details in Chapter 7 (for activities) and Part IV (for mechanisms/models/etc.).

Testing: How?

- How to test?
 - refine into three sets of questions
 - ▷ basic questions
 - > testing technique questions
 - activity/management questions
- Basic questions addressed in Ch.6:
 - ▶ What artifacts are tested?
 - ▶ What to test?
 - from which view?
 - related: type of faults found?

Testing Technique Questions

- Testing technique questions:
 - ▷ specific technique used?
 - systematic models used?
 - related model questions (below)
 - > adapting technique from other domains?
 - integration for efficiency/effectiveness↑?
- Testing model questions:
 - ▶ underlying structure of the model?
 - main types: list vs. FSM?
 - ▶ how are these models used?
- Major techniques: Chapters 8–11.

Test Activity/Management Questions

- Addressed already: Generic process and relation to QA and software processes.
- Other activity/management questions:
 - > Who performs which specific activities?
 - ▶ When can specific activities be performed?
 - ▶ Test automation? What about tools?
 - Artifacts used for test management?
 - ▷ General environment for testing?
 - ▶ Product type/segment?
- Most questions answered in Chapter 7.
 Integration issues addressed in Chapter 12.

Functional vs. Structural Testing

- Key distinction: Perspective on what need to be checked/tested.
- Functional testing:
 - > tests external functions.
 - as described by external specifications
 - ▷ black-box in nature;
 - functional mapping: input \Rightarrow output
 - without involving internal knowledge
- Structural testing:
 - ▶ tests internal implementations.
 - components and structures.
 - white-box in nature;
 - "white" here = seeing through
 - ⇒ internal elements visible.
 - ⊳ really clear/glass/transparent box.

Black-Box vs. White-Box View

- Object abstraction/representation:
 - \triangleright high-level: whole system \approx black-box.
 - \triangleright low-level: individual statements, data, and other elements \approx white-box.
 - - function/subroutine/procedure,
 module, subsystem, etc.
 - method, class, super-class, etc.
- Gray-box (mixed black-/white-) testing:
 - > many of the middle levels of testing.
 - - procedures individually as black box,
 - procedure interconnection \approx white-box at module level.

White-box Testing

- Program component/structure knowledge (or implementation details)
 - statement/component checklist
 - ⊳ path (control flow) testing
- Applicability
 - b test in the small/early

 - > can also model specifications
- Criterion for stopping

 - > occasionally quality/reliability goals.

Black-box Testing

- Input/output behavior
 - ▷ specification checklist.
 - b testing expected/specified behavior
 - finite-state machines (FSMs)
 - white-box technique on specification
 - functional execution path testing.
- Applicability
 - ▷ late in testing: system testing etc.
- Criteria: when to stop
 - > traditional: functional coverage

When to Stop Testing

- Resource-based criteria:
 - Stop when you run out of time.
 - Stop when you run out of money.
 - \triangleright Irresponsible \Rightarrow quality/other problems.
- Quality-based criteria:
 - > Stop when quality goals reached.
 - Direct quality measure: reliability
 - resemble actual customer usages
 - > Indirect quality measure: coverage.
 - ▷ Other surrogate: activity completion.
 - Above in decreasing desirability.

Usage-Based Testing and OP

- Usage-based statistical testing:
 - ▷ actual usage and scenarios/information
 - ▷ captured in operational profiles (OPs)
 - ▷ simulated in testing environment (too numerous ⇒ random sampling)
- Applicability

 - ▷ particularly system/acceptance testing.
 - □ use with s/w reliability engineering.
- Termination criteria: reliability goals

Coverage-Based Testing

- Coverage-based testing:
 - systematic testing based on formal (BBT/WBT) models and techniques
 - > coverage measures defined for models
 - b testing managed by coverage goals
- Applicability
 - ▷ all stages of testing.
 - > particularly unit and component testing.
 - > later phases at high abstraction levels.
- Termination criteria: coverage goals

Steps in Systematic Testing

- Instantiation of Fig 6.1 (p.69), but,
 - ▶ with a formalized strategies/goals,
 - based on formal models and techniques,
 - > managed by termination criteria.
- Steps in model construction and usage:
 - Define the model, usually represented as graphs and relations.
 - "Check" individual elements:
 - "Test": derive (sensitize) test cases and then execute them.
 - ▶ Result checking and followup.
- Specifics on model construction and usage in individual testing techniques: Ch.8–11.