
Tian: Software Quality Engineering Slide (Ch.7) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 7. Testing Activities,

Management, and Automation

• Major Testing Activities

• Test Management

• Testing Automation

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 2

Test Planning and Preparation

• Major testing activities:

. test planning and preparation

. execution (testing)

. analysis and followup

• Test planning:

. goal setting

. overall strategy

• Test preparation:

. preparing test cases & test suite(s)

(systematic: model-based; our focus)

. preparing test procedure

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 3

Test Planning

• Goal setting and strategic planning.

• Goal setting

. quality perspectives of the customer

. quality expectations of the customer

. mapping to internal goals and concrete

(quantified) measurement.

. e.g., customer’s correctness concerns

⇒ specific reliability target

• Overall strategy, including:

. specific objects to be tested.

. techniques (and related models) to use.

. measurement data to be collected.

. analysis and followup activities.

. key: plan the “whole thing”!

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 4

Test Preparation

• Procedure for test preparation

. preparing test cases (model-based)

– individual test cases

– test case allocation

. preparing test procedure

– basis for test procedure

– order, flow, followup

• General concepts

. test run: operation instances

. input variable: test point

. input space:

all possible input variable values

. test case: static object + input to

enable test to start-execute-finish.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 5

Individual Test Case Preparation

• Individual test cases (micro-level) vs. test

suite (macro-level)

• From multiple sources:

. actual runs (usage-based).

. implementation-based (white-box).

. specification-based (black-box).

. may use similar/earlier products.

. (direct) record and replay (less often).

. (via) formal models (OP, CFT, BT, etc.)

• Defining input values (model ⇒ test cases):

. initial/intermediate/interactive input

(expected output too?)

. exercise path/slice/track/etc

. in testing terminology: sensitization

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 6

Test Cases Based on Formal Models

• Most organized, systematic test cases are

derived from formal testing models:

. directly via newly constructed models.

. indirectly via exist test cases, etc.

• Model construction steps:

. information source identification and data

collection

. analysis and initial model construction

. model validation and improvement

• Model usage:

. defining test cases.

(details with individual models/techniques)

. indirectly in analysis/followup (Part IV).

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 7

Test Suite Preparation

• Test suite (macro-level)

. existing suite: what and where?

– suitability? selection/screening?

. construction/generation of new ones

. organization & management:

often hierarchical, e.g., sc, sn, vn.

• Adding new test cases

. estimate # of new test cases

. specify new (individual) test cases

. integrate to existing test cases

• Allocation to systems/operations

. OP-/structure-based allocation

. both old and new test cases in suite

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 8

Test Procedure Preparation

• Key consideration: sequencing:

. general: simple to complex.

. dependency among test cases.

. defect detection related sequencing.

. sequence to avoid accident.

. problem diagnosis related sequencing.

. natural grouping of test cases.

• Other considerations:

. effectiveness/efficiency concerns.

. smooth transition between test runs.

. management/resource/personnel/etc.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 9

Test Execution

• Major testing activities:

. test planning and preparation

. execution (testing)

. analysis and followup

• Test execution:

. execution planning and management

. related activities: important part

– failure identification and measurement

– other measurement

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 10

Test Execution

• General steps

. allocating test time (& resources)

. invoking test

. identifying system failures

(& gathering info. for followup actions)

• Allocating test time

. OP-based: systems/features/operations

– also coverage concerns for critical parts

. coverage-based: func./struc. areas

. alternative: bottom-up approach

– individual test cases ⇒ test time

– sum-up ⇒ overall allocation

– by OP or coverage areas

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 11

Test Execution

• Invoking test (OP-based)

. OP ⇒ input variables (test points)

. follow probabilistic distributions

(could be dynamically determined)

. sequence (what to test first?):

COTS, product, supersystem

• Invoking test (coverage-based)

. organize sensitized testcases

. sequence ⇐ coverage hierarchies

• Common part: Retest due to

. defect fix ⇒ verify fix

. code-base or feature change

. general regression test

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 12

Test Execution

• Identifying system failures (oracle problem):

. similar for OP-/coverage-based

. analyze test output for deviations

. determine: deviation = failure ?

. handling normal vs. failed runs

– non-blocking failure handling

• Solving oracle problem:

. theoretically undecidable.

. some cases obvious: crash, hang, etc.

. practically based on heuristics:

– product domain knowledge

– cross-checking with other products

– implementation knowledge & internals

– limited dynamic consistency checking

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 13

Test Execution

• Failure observation and measurement:

. Determine: deviation = failure ?

. Establish when failure occurred

– used in reliability and other analysis

. Collect failure information (e.g., ODC):

– what/where/when/severity/etc.

• Defect handling and test measurement:

. defect status and change (controlled)

. information gathering during testing

. Followup activities:

– fix-verification cycle

– other possibilities (defer, invalid, etc.)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 14

Test/Failure Measurement

• Example template: (Table 7.1, p.93)

– information collected at test execution

• rid – run identification, consisting of:

. sc – scenario class,

. sn – scenario number,

. vn – variation number with a particular sce-
nario,

. an – attempt number for the specific scenario
variation

• timing – start time t0 and end time t1

• tester – the tester who attempted the test run

• trans – transactions handled by the test run

• result – result of the test run (1 indicates success
and 0 for failure)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 15

Testing Analysis and Followup

• Major testing activities:

. test planning and preparation

. execution (testing)

. analysis and followup

• Test analysis and followup:

. execution/other measurement analyzed

. analysis results as basis for followup

. feedback and followup:

– decision making (exit testing? etc.)

– adjustment and improvement.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 16

Testing Analysis and Followup

• Input to analysis

. test execution information

. particularly failure cases

. timing and characteristics data

• Analysis and output

. basic individual (failure) case

– problem identification/reporting

– repeatable problem setup

. overall reliability and other analysis?

(Chapter 22 and Part IV)

• Followup activities

. defect analysis and removal (& re-test).

. decision making and management.

. test process and quality improvement.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 17

Testing Analysis and Followup

• For individual test runs:

. success: continue with normal testing.

. failure: see below.

• Analysis and followup for failed runs:

. understanding the problem

by studying the execution record.

. recreating the problem (confirmation).

. problem diagnosis

– may involve multiple related runs.

. locating the faults.

. defect fixing (fault removal)

– commonly via add/remove/modify code

– sometimes involve design changes

. re-run/re-test to confirm defect fixing.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 18

Testing Analysis and Followup

• Analysis and followup for overall testing:

. reliability analysis and followup.

. coverage analysis and followup.

. defect analysis and followup.

. focus of Part IV.

• Analyses: Different focuses:

. overall reliability and coverage for usage-

based and coverage-based testing.

. detailed defect analysis.

• Followup activities: Similar.

. decision making and management.

. test process and quality improvement.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 19

Test Management

• People’s roles/responsibilities in formal and

informal testing.

• In informal testing:

. “run-and-observe” by testers.

. “plug-and-play” by users.

. informal testing with ad-hoc knowledge

. deceptively “easy”, but not all failures

or problems easy to recognize.

• In formal testing:

. testers, and organized in teams.

. management/communication structure.

. role of “code owners” (multiple roles?)

. 3rd party (IV&V) testing.

. career path for testers.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 20

Test Management

• Test team organization:

. vertical: project oriented

– product domain knowledge,

– staffing/resource management hard.

. horizontal: task oriented

– even distribution of staff/resources

– lack of internal knowledge/expertise

. Mixed models might work better.

• Users and 3rd party testers:

. user involvement in beta-testing and other

variations (e.g., ECI in IBM)

. IV&V with 3rd party testing/QA

. impact of new technologies:

– CBSE, COTS impact

– security, dependability requirements.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 21

Test Automation

• Basic understanding:

. automation needed for large systems.

. fully automated: impossible.

. focus on specific needs/areas.

• Key issues to consider:

. specific needs and potentials.

. existing tools available/suitable?

– related: cost/training/etc.

. constructing specific tools?

. additional cost in usage & support.

. impact on resource/schedule/etc.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 22

Test Automation

• Automation by test activity areas:

. automated test planning&preparation.

. automated test execution.

. automated test measurement, analysis,

and followup.

. slightly different grouping due to tightly

coupling for measurement & analysis.

• Automation for test execution.

. many debuggers: semi-automatic.

. task sequencing/scheduling tools.

. load/test generator: script ⇒ runs

. generally easier to obtain test scripts.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 23

Test Automation: JUnit Example

• P. Louridas, “JUnit: Unit Testing and Cod-

ing in Tandem” IEEE Software, Vol.22,

No.4., pp.12-15, July/Aug., 2005.

(A nice short survey about JUnit.)

• JUnit example (Fig.1 in paper above)

. JUnit test setup:

initialize some complex numbers

. JUnit test cases:

– execution using “assertEquals(x, y)”

– base test case: x, y numbers

– general cases: “expected” = op-result?

.
∑

test cases ⇒ test suite

• Still need:

. oracle/“expected” above

. test cases ⇐ techniques (Ch.8∼12)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 24

Test Automation

• Automation for test planning/preparation:

. test planning: Human intensive not much

can be done (≈ inspection and FV).

. test model construction: similar to above.

– automation possible at a small scale.

. test case generation: focus.

• Test case generation:

. from test model to test cases.

. specific to individual techniques

– e.g., cover checklist items, paths, etc.

. various specific tools.

. key: which specific testing technique sup-

ported by the specific tool?

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 25

Test Automation

• Test measurement, analysis, and followup.

. analyses dictate measurements needed.

. most common: reliability/coverage.

. defect measurement needed in most cases:

– defect tracking tools.

• Reliability analysis related tools:

. analysis/modeling tools.

. collecting execution/input/etc. data.

. more in Chapter 22.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 26

Test Automation

• Coverage-based testing: measuring cover-

age and compare to pre-set goals.

• Test coverage steps:

. preparation: program instrumentation.

. measurement step: run and collect data.

. analysis step: analysis for coverage.

• Test coverage tools:

. different levels/definitions of coverage

⇒ different tools.

. example tools:

– McCabe: execution (control flow) path

– S-TCAT: functional coverage

– A-TAC: data flow coverage.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 27

Test Automation: Coverage Example

 Source
Program

Reference
 Listing

Tracefiles

S−TCAT Reports

Instrument−
tation

Compile
and Run

Generate
 Reports

Instrumented
 Program

• Test coverage analysis with S-TCAT

(Fig 7.1, p.100).

. S-TCAT: functional coverage

. results: 2 reports:

1. list of covered functions

2. function-#times-used

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

Tian: Software Quality Engineering Slide (Ch.7) 28

Summary

• Test activities:

. planning&preparation: focus of Part II.

. execution&measurement: common.

. analysis&followup: focus of Part IV.

• Test management:

. different roles and responsibilities.

. good management required.

• Test automation:

. set realistic expectations.

. specific areas for automation, esp. in

execution, measurement, and analysis.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)

