
Tian: Software Quality Engineering Slide (Ch.8) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 8. Coverage and Usage Testing

Based on Checklists and Partitions

• Checklist-Based Testing

• Partitions and Partition Testing

• Usage-Based Testing with Musa’s OPs

• OP Development: Procedures/Examples

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 2

Checklists for Testing

• Ad hoc testing:

. “run-and-observe”

. How to start the run?

. Areas/focuses of “observations”?

. Implicit checklists may be involved.

• Explicit checklists:

. Function/features (external)

. Implementation (internal)

. Standards, etc.

. Mixed or combined checklists

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 3

Function Checklists

• Function/feature (external) checklists:

. Black-box in nature

. List of major functions expected

• Example: Table 8.1 (p.105)

. abnormal termination

. backup and restore

. communication

. co-existence

. file I/O

. gateway

. index management

. installation

. logging and recovery

. locking

. migration

. stress

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 4

Implementation Checklists

• Implementation (internal) checklists:

. White-box in nature

. At different levels of abstraction

– e.g., lists of modules/components/etc.

– statement coverage as covering a list

• Related: cross-cutting features/structures:

. Multiple elements involved.

. Examples: call-pairs, diff. parts that

cooperate/collaborate/communicate/etc.

• Other checklists:

. related to certain properties

– e.g., coding standards,

. hierarchical list, e.g., refined Table 8.1

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 5

Other Checklists

• Combined ×-list based on n attributes for

large products,

• Example: Table 8.2 (p.106)

Component Standards Items
s1 s2 · · · sn

c1
c2

...

cm

• Checklists in other forms:

. tree/graph/etc. ⇒ enumerate into lists

. certain elements of complex models

– e.g., lists of states and links in FSMs

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 6

Checklists: Assessment

• Key advantage: simplicity.

• Possible drawbacks of checklists:

. Coverage: need to fill “hole”.

. Duplication: need to improve efficiency.

. Complex interactions not modeled.

. Root cause: complexity

– contributing to all 3 problems above.

• Possible solutions:

. specialized checklists ⇒ partitions.

. alternatives to checklists: FSMs.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 7

Checklists to Partitions

• Examples: solving ax2 + bx + c = 0,

. solution: r =
−b ±

√

b2 − 4ac

2a
. input: a, b, c; output: r.

. 32 bits floating point numbers used

. input combinations:

232 × 232 × 232 = 296

• 3 solution partitions (Table 8.3, p.108):

Test Condition Input

Case d = b2 − 4ac a b c

1 d > 0 1 2 −1
2 d = 0 1 2 1
3 d < 0 1 2 3

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 8

Partitions: Ideas and Definitions

• Partitions: a special type of checklists

. Mutually exclusive ⇒ no overlaps.

. Collectively exhaustive ⇒ coverage.

. Address two problems of checklists.

(Third addressed by FSMs in Ch.10.)

• Partition of set S into subsets

G1, G2, . . . , Gn (Gi ⊂ S):

. Gi’s are mutually exclusive:

∀i, j, i 6= j ⇒ Gi ∩ Gj = ∅

. Gi’s are collectively exhaustive:

n
⋃

i=1

Gi = S.

• Each Gi forms an equivalent class (next).

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 9

Partitions: Formal Definitions

• Relation: An association of interest to some

observers among objects.

. R(A1, A2, . . . , An)

. Binary relations: R(A, B) or ARB.

most commonly used relations.

• Relational properties

. Transitivity: ARB ∧ BRC ⇒ ARC

e.g., “>” relation.

. Symmetry: ARB ∧ BRA

e.g., “is-neighbor-to” relation.

. Reflexivity: ARA

e.g., “=” relation.

• Equivalence relation:

All the above properties hold.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 10

Partition-Based Testing

• Different types of partition definitions:

. membership based partition definitions

. properties/relations used in definitions

. combinations

• Basic idea of partition-based testing:

. membership/equivalence-class analysis

⇒ defining meaningful partitions

. sampling from partitioned subsets

for different types of partitions

• Extending basic coverage to perform non-

uniform testing (later).

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 11

Partition-Based Testing

• Testing for membership in partitions:

. partitions: components in a subsystems

. testing via direct sampling,

e.g., sampling 1 component/subsystem

• Testing for general partitions:

. properties/relations used in definitions

. direct predicates on logical variables

– direct derivation of test cases

. operations on numerical variables

– sensitize (select) input values

• Testing for combinations of the above par-

tition definitions

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 12

Partition-Based Testing

• Testing predicates on logical variables:

. logical variable P as input

– 2 partitions/test-cases: P=T, P=F.

. P ∧ Q, with 2 partitions (outcomes):

– P ∧ Q = T , with P = T and Q = T .

– P ∧ Q = F , 1 test case from 3 pairs:

{(P=T, Q=F); (P=F, Q=T); (P=F, Q=F)}

• Testing comparisons on numerical variables:

. x > 0, many possible test cases

– x = 101: a specific test case

. combinations: satisfy all conditions, e.g.,

– (x > 0) ∧ (y < 100), select x, y values

individually, say x = 101 and y = 21;

– (x > 0) ∧ (x ≤ 100), select x value to

satisfy both conditions, say x = 17.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 13

Partition-Based Testing

• Testing multiple sets of partitions:

. Divide-and-conquer.

. Model as stages.

. Combination (cross-product) of the stages.

– e.g. binary partitions P followed by Q:

four combinations: TT, TF, FT, FF.

• General: an m-way partition followed by an

n-way partition: m × n combinations.

• Coordinated sensitization often needed,

similar to for (x > 0) ∧ (x ≤ 100) above.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 14

Partition-Based Testing

• Extensions to basic ideas:

. Sampling from partitioned subsets.

. Coverage of partitions: non-uniform?

. Testing based on related problems:

– usage-related problems?

– boundary problems?

. Testing based on level/hierarchy/etc.?

• Usage-related problems:

. More use ⇒ failures more likely

. Usage information in testing

⇒ (Musa’s) operational profiles (OPs)

• Boundary problems:

Input domain boundary testing (Ch.9).

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 15

Usage-Based Statistical Testing

• Usage based statistical testing (UBST) to

ensure reliability.

• Reliability: Probability of failure-free oper-

ation for a specific time period or a given

set of input under a specific environment

. Reliability: customer view of quality

. Probability: statistical modeling

. Time/input/environment: OP

• OP: Operational Profile

. Quantitative characterization of the way

a (software) system will be used.

. Generate/execute test cases for UBST

. Realistic reliability assessment

. Development decisions/priorities

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 16

UBST: General Issues

• General steps:

. Information collection.

. OP construction.

. UBST under OP.

. Analysis (reliability!) and followup.

• Linkage to development process

. Construction: Requirement/specification,

and spill over to later phases.

. Usage: Testing techniques and SRE

• Procedures for OP construction necessary

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 17

UBST: Primary Benefit

• Primary benefit:

. Overall reliability management.

. Focus on high leverage parts

⇒ productivity and schedule gains:

– same effort on most-used parts

– reduced effort on lesser-used parts

– reduction of 56% system testing cost

– or 11.5% overall cost (Musa, 1993)

• Gains vs. savings situations

. Savings situation: AT&T (above)

– reliability goal within reach

– not to over test lesser-used parts

. Gains situation: more typical

– re-focusing testing effort

– constrained reliability maximization

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 18

UBST: Other Benefits

• Introducing new product

. Highly-used features quickly

. Lesser-used: subsequent releases

• Better communications/customer relations

. Customer perspective & involvement

⇒ closer ties to customers

. More precise requirement/specification

. Better training focus

• High return on investment:

. OP cost, “average” 1 staff-month

– 10 developers, 100KLOC, 18 months

– sub-linear increase for larger ones

. Cost-benefit ratio: 10

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 19

OP: Concepts and an Example

• Profile: Disjoint alternatives and their

probabilities (sorted in decreasing order).

• Example: Table 8.4, p.112

– file type usage OP for SMU/SEAS

File type Hits % of total
.gif 438536 57.47%
.html 128869 16.89%
directory 87067 11.41%
.jpg 65876 8.63%
.pdf 10784 1.41%
.class 10055 1.32%
.ps 2737 0.36%
.ppt 2510 0.33%
.css 2008 0.26%
.txt 1597 0.21%
.doc 1567 0.21%
.c 1254 0.16%
.ico 849 0.11%
Cumulative 753709 98.78%
Total 763021 100%

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 20

OP: Concepts and an Example

.gif .html directory .jpg .pdf .class .ps .ppt .css .txt .doc .c .ico

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

• OP often as a graph,

e.g., Fig 8.1 (p.113).

– attractive alternative to table earlier.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 21

OP Characteristics and Usage

• Uneven distribution: basis for UBST to en-

sure product reliability

(otherwise uniform sampling adequate)

• Usage of OPs in UBST:

. Pure random sampling rare

– requires dynamic (on-the-fly) decisions

– might interfere with system functions

. More often: pre-prepared test cases

– “pseudo” randomness

. Other variations:

– normal cases and then perturbations

– use of adjustable thresholds

. #operations↑↑ ⇒ cutoff threshold.

• OP sometimes directly used in reliability

evaluations and improvement.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 22

Developing OP

• OP: operations & their probabilities.

– probability: partition that sum up to 1.

• Obtaining OP information:

. identify distinct operations as disjoint

alternatives.

. assign associated probabilities

– occurrences/weights ⇒ probabilities.

. in two steps or via an iterative procedure

• OP information sources:

. actual measurement.

. customer surveys.

. expert opinion.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 23

Developing OP

• Actual measurement for OP construction:

. Most accurate but also most costly.

. Limitations for new products.

. Legal/IP issues.

• Overcoming difficulties for new products:

. Measurement for similar products.

. Necessary adjustment.

• Overcoming legal/IP difficulties:

. Similar to new product strategy above?

. Voluntary participation:

– “out” participation: beta testing,

– “in” participation: ECI in IBM

. Use of existing logs/records/etc.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 24

Developing OP

• Customer surveys:

. Less accurate/costly than measurement.

. But without the related difficulties.

. Key to statistical validity:

– large enough participation

– “right” individuals completing surveys

. More important to cross-validate

– see example study in Section 8.5.

• Expert opinion:

. Least accurate and least costly.

. Ready availability of internal experts.

. Use as a rough starting point.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 25

Developing OP

• Who should develop OP?

. System engineers

– requirement ⇒ specification

. High-level designers

– specification ⇒ product design

. Planning and marketing

– requirement gathering

. Test planners (testing)

– users of OP

. Customers (implicitly assumed)

– as the main information source

• Key: those who can help us

. identify distinct alternatives (operations)

. assign associated probabilities

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 26

Developing OP

• One OP or multiple OPs?

. One OP for each homogeneous group

of users or operations:

– user group or market segmentation

– groups of operations (op. modes)

. Fundamental differences ⇒ split

. Hybrid strategy often useful:

– develop separate OPs

– merged OP for overall picture

– both types offer valuable info.

• Development procedure (2 variations)

. Top-down/Musa-1: (Musa, 1993)

. Musa-2: Musa 1998 book (Chapter 3)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 27

OP Development: Musa-1

• One OP for each homogeneous group of

users or operations.

• Top-down procedure focusing on external

users and their product usage.

• Generic steps:

1. Find the customer profile.

2. Establish the user profile.

3. Define the system modes.

4. Determine the functional profile.

5. Determine the operational profile.

• First two steps external view;

last three steps internal view.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 28

Musa-1.1: Finding the Customer Profile

• Differentiate customer from users

. Customer: acquisition of software

. User: using software

• Weight assignment:

. By #customers

. By importance/marketing concerns, etc.

• Example: Table 8.5 (p.118)

Customer Type Weight

corporation 0.5
government 0.4
education 0.05
other 0.05

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 29

Musa-1.2: Establishing the User Profile

• Breakdown of customer groups

. Different usages of user groups

. Merging similar users across customers

• Weighting factor assignment for user weights

within customer types:

. by users (equal usage intensity)

. by usage frequency

. other factors also possible

• Comprehensive user profile derivation:

weighted sum of individual user profiles

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 30

Musa-1.2: Establishing the User Profile

User User Profile by Customer Type Overall
Type ctype com gov edu etc User

weight 0.5 0.4 0.05 0.05 Profile
end user 0.8 0.9 0.9 0.7 0.84
dba 0.02 0.02 0.02 0.02 0.02
programmer 0.18 – – 0.28 0.104
third party – 0.08 0.08 – 0.036

• Example: Table 8.6 (p.119)

. row: user type

. column: user profile in a customer type

. customer profile used to calculate

comprehensive user profile:

0.8 × 0.5 (com) + 0.9 × 0.4 (gov) +

0.9 × 0.05 (edu) + 0.7 × 0.05 (etc)

= 0.84

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 31

Musa-1.3: Defining System Modes

• System mode

. A set of functions/operations

. For operational behavior analysis

. Practicality: expert for system mode

• Example modes

. Business use mode

. Personal use mode

. Attendant mode

. System administration mode

. Maintenance mode

. Probabilities (weighting factors)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 32

Musa-1.4: Determining Functional Profile

• Identifying functions

. Function: high-level task/work of the

projected system in the requirement.

. Input domain partitions/combinations

. Hardware/OS/system configuration

. Base on environmental variables

• Creating/consolidating function list

. From system requirement

. From prototypes/previous release/user

manual etc.

• Determining occurrence probabilities

. Measurement and adjustment

. Functions ⇔ operations

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 33

Musa-1.5: Determining OP

• Refining functional profile into OP

• Defining operations

. Operation: implemented task/work that

can be used as part of system test plan

. Defining the input space

. Partitioning input space into operations

. Typically: 1 function ⇒ n operations

• Obtaining occurrence probabilities

. In-field measurement

. Estimation for new systems or added

functionalities using symbolic models or

prototypes

. Help from functional probabilities

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 34

OP Development: Musa-2

• One OP for each operational mode

(testing under specific modes in practice)

• General idea:

. Op. group: coarse → fine → individual.

. Focus: internal users (testers).

• Generic steps:

1. Identify initiators of operations.

2. Tabular or graphical representation.

3. Operations lists:

initiators → consolidated.

4. Determine the occurrence rate.

5. Determine the occurrence probability.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 35

OP Development: Musa-2

1. Identify initiators of operations

. Who are the users of the system?

human users, other hw/sw/network/etc.

. Consolidate across organizations or

customer types

2. Tabular vs graphical representation

. Tabular: operation-probability pairs.

. Graphical: stages/steps of operation

– operation = a path in graph/tree

– probability for branching

(joint prob = product of indiv. prob.)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 36

OP Development: Musa-2

3. Operations lists:

. Initiators ⇒ indiv. op. lists

. Consolidation ⇒ overall op. lists

. Proper granularity adjustment:

– possible split/merge

4. Determine the occurrence rate

. Measurement (and survey?)

. Tabulation

5. Determine the occurrence probability

. Normalized occurrence rate

. 0 ≤ pi ≤ 1 and
∑

i pi = 1

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 37

OP Development: Musa-2 Example

probabilityStage 1: Start up Stage 2: Other use

bookmarked

bookmarked

30/200 = 0.15
mixture
10/200 = 0.05

linked

linked
80/800 = 0.1

mixture

160/800 = 0.2

200/1000 = 0.2

Y

default

customized
800/1000 = 0.8

560/800 = 0.7

160/200 = 0.8

0.08

0.01

0.03

0.16

0.16

0.56

Operation sequence

default-linked

default-bookmarked

default-mixture

customized-linked

customized-bookmarked

customized-mixture

X

• Example: Fig 8.2, p.121

. a tree-structured OP

. graphical (not tabular) representation

. far right: equivalent flat OP

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 38

Comparison: Musa-1 vs. Musa-2

• Generic steps:

. Musa-1: customer → user → sys. modes

→ functional → operational

. Musa-2: initiator → representation →

list → rate → probability

• Comparison

. Size/environment/population differences.

. One OP for each distinguished group

– Musa-1: user or operation group,

– Musa-2: operational modes.

. Musa-1: 5 profiles, refined along.

. Musa-2: different elements for 1 profile.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 39

OP Construction: A Case Study

• Background:

. Former CSE 5314 student

. Course project: OP development

. Application of Musa-1

. Chruscielski/Tian: ISSRE’97 paper

(IEEE-ISSRE’97 best paper award)

• Problem and key decisions:

. Product: LMTAS/CSS

. Product characteristics ⇒ OP type

– menu selection/classification type

– flat instead of Markovian

. Result OP, validation, and application

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 40

OP Case Study

• Participants:

. Software Product Manager

. Test Engineers

. Systems Engineers

. Customers

. Chruscielski: pulling it together

. Tian: technical advising

. Chruscielski/Tian: documentation

• Information gathering

. Interview Software Product Manager

to identify target customers

. Customer survey/questionnaire

to obtain customer usage information

. Preparation, OP construction and

followup

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 41

OP Case Study

• Customer profile:

. US Air Force and other AFs

. Similar customers/usage ⇒ one OP

• User profile: Table 8.7 (p.123)

User Marketing Frequency Total
Group Concerns of Use Weighting Factor
Air Force Pilot 0.85 0.05 0.45
Flight Test Support 0.10 0.80 0.45
Avionics System Test 0.05 0.15 0.1

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 42

OP Case Study

• User profile weighting:

. User groups & marketing concerns.

. Profile reflects both.

. Idea applicable to other steps:

– profile can be importance weighted

• System modes

. No significant difference in op.

. By-pass: proceed to functional profile

• Functional/operational profile:

. CSS: functions ≈ operations

. Flat structure/choices ⇒ implicit profile

(function-usage% vs. prob(op-sequence))

. OPs: for both individual user groups

and comprehensive

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 43

OP Case Study

• Analysis and followup

. Cross-validation: Peer review by

Software Product Manager, System

Engineers and Test Engineers

. Classification of usage frequencies

found to be useful (table below)

. Followup actions

• Table 8.8 (p.134) classified usage.

High Medium-high Medium-low Low
[75%, 100%] [50%, 75%) [25%, 50%) [0%, 25%)
DTC Load DTC Read Wpn Prof RetrCanned
Inventory Delete Hot Keys Save Canned
Save Retrieve Route Comm DTC Test
Route Planning Retr/Save SCL
Print Help

Base Default
FCR
Mstr Mode

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.8) 44

Alternative Usage Models

• Motivation: enhance flat OP

. Complicated operations involve many

steps/stages in the end-to-end chain

. Ability to use existing models and

structural information

. Ability to use localized knowledge

. Local information easy to gather

• Markov OP: Basic ideas

. Markov chain for usage information

. State: operations/functions

. Transition: probabilistic

– reflects usage sequence/frequency

– history independent (Markovian)

– but reflects local usage info.

. Details in Chapter 10.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)


