
Tian: Software Quality Engineering Slide (Ch.12) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 12. Testing Techniques:

Adaptation, Specialization, and

Integration

• Adaptation to Test Sub-phases

• Specialized Testing Techniques

• Integration and Web Testing Case Study

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 2

Applications of Testing Techniques

• Major testing techniques covered so far:

. Ad hoc (non-systematic) testing.

. Checklist-based testing.

. Partition-based coverage testing.

. Musa’s OP for UBST.

. Boundary testing (BT).

. FSM-based coverage testing.

. Markov chains and UMMs for UBST.

. Control flow testing (CFT).

. Data flow testing (DFT).

• Application and adaptation issues:

. For different purposes/goals.

. In different environments/sub-phases.

. Existing techniques: select/adapt.

. May need new or specialized techniques.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 3

Testing Sub-Phases

specifications

regressionHigh−level
design

verifyLow−level
design

verify

Coding &
unit test

Component
test

Customer
requirements

other
V&V
activities

Integration
test

System
test

validate

test
acceptance

Product verify/validate

test
diagnosis

beta test

useOperational

test

• Annotated V-model for testing sub-phases:

Fig 12.1 (p.204)

. solid box: original sub-phase

. dashed box:

added sub-phase or specialized testing

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 4

Testing Sub-Phases

• Original sub-phases in V-model:

. Operational use (not testing, strictly).

. System test for product specification.

. Integration test for high-level design.

. Component test for low-level design.

. Unit test for program code.

• Additional sub-phases/specialized testing:

. Diagnosis test through all sub-phases.

. Beta test for limited product release.

. Acceptance test for product release.

. Regression test for legacy products.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 5

Unit Testing

• Key characteristics:

. Object: unit (implemented code)

– function/procedure/subroutine in

C, FORTRAN, etc.

– method in OO languages

. Implementation detail ⇒ WBT.

(BBT could be used, but less often.)

. Exit: coverage (reliability undefined).

• Commonly used testing techniques:

. Ad hoc testing.

. Informal debugging.

. Input domain partition testing and BT.

. CFT and DFT.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 6

Component Testing

• Key characteristics:

. Object: component (⊃ unit), 2 types.

. I. collection of units in C/FORTRAN/etc.

– implementation detail ⇒ WBT.

. II. class in OO languages

– reusable component ⇒ BBT.

. Exit: coverage (sometimes reliability).

• Commonly used testing techniques:

. for traditional systems (component I)

≈ unit testing, but at larger scale

. for OOS/COTS/CBSE (component II)

≈ system testing, but at smaller scale

– see system testing techniques later

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 7

Integration Testing

• Key characteristics:

. Object: interface and interaction among

multiple components or subsystems.

. Component as a black-box (assumed).

. System as a white-box (focus).

. Exit: coverage (sometimes reliability).

• Commonly used testing techniques:

. FSM-based coverage testing.

. Other techniques may also be used.

. Sometimes treated as ⊂ system testing

⇒ see system testing techniques below.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 8

System Testing

• Key characteristics:

. Object: whole system and the overall

operations, typically from a customer’s

perspective.

. No implementation detail ⇒ BBT.

. Customer perspective ⇒ UBST.

. Exit: reliability (sometimes coverage).

• Commonly used testing techniques:

. UBST with Musa or Markov OPs.

. High-level functional checklists.

. High-level FSM, possibly CFT & DFT.

. Special case: as part of a “super”-system

in embedded environment

⇒ test interaction with environment.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 9

Acceptance Testing

• Key characteristics:

. Object: whole system.

– but defect fixing no longer allowed.

. Customer acceptance in the market.

. Exit: reliability.

• Commonly used testing techniques:

. Repeated random sampling without

defect fixing.

(≈ assumption for IDRMs, Ch.22.)

. UBST with Musa or Markov OPs.

. External testing services/organizations

may be used for system “certification”.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 10

Beta Testing

• Key characteristics:

. Object: whole system

. Normal usage by customers.

. Exit: reliability.

• Commonly used testing techniques:

. Normal usage.

. Ad hoc testing by customers.

(trying out different functions/features)

. Diagnosis testing by testers/developers

to fix problems observed by customers.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 11

Testing Sub-Phases: Comparison

• Key characteristics for comparison:

. Object and perspectives.

. Exit criteria.

. Who is performing the test.

. Major types of specific techniques.

• “Who” question not covered earlier:

. Dual role of programmers as testers in

unit testing and component testing I.

. Customers as testers in beta testing.

. Professional testers in other sub-phases.

. Possible 3rd party (IV&V) to test reusable

components & system acceptance.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 12

Testing Sub-Phases: Summary

• Summary: Table 12.1 (p.209)

Sub-phase Persp. Stopping Who Tech.

unit WBT coverage programmer db,
s-list,
BT,
CFT,
DFT

component
type-I WBT coverage programmer s-list,

BT,
CFT,
DFT

type-II BBT both tester/3p BT,
CFT,
DFT

integration WBT coverage tester FSM,
CFT,
DFT

system BBT both tester f-list,
FSM,
Musa,
Markov

acceptance BBT usage tester/3p Musa,
Markov

beta BBT usage customer normal
usage

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 13

Specialized Testing

• Specialized testing tasks:

. Some do not fit into specific sub-phases.

. Different goals (other than reliability).

. Non-standard application environment.

• Our coverage:

. Defect diagnosis testing.

. Defect-based testing.

. Regression testing.

. Testing beyond programs.

. Testing for other goals/objectives.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 14

Defect Diagnosis Testing

• Context of defect diagnosis testing:

. In followup to discovered problems by

customers or during testing.

. Pre-test: understand/recreate problems.

. Test result: faults located.

. Followup with fault removal and

re-run/re-test to confirm defect fixing.

• Defect diagnosis testing:

. Typically involve multiple related runs.

. Problem recreation as the starting point.

. Perturbation and observation.

. Domain knowledge important.

. More recorded defect information

⇒ less reliance on defect diagnosis.

. Defect-based techniques (below) useful.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 15

Defect-Based Testing

• General idea and generic techniques:

. Focus: discovered or potential defects

(and related areas).

. Ad hoc testing based on defect guesses.

. Risk identification ⇒ risk-based testing.

(Part IV, esp. Ch.21)

. Defect injection and mutation testing.

• Defect injection and testing:

. Inject known defect (seed known fault).

. Test for both seeded and ingenuous faults.

. Missed faults ⇒ testing technique↑.

. Also used in reliability modeling.

• Mutation testing ≈ defect injection testing,

but systematic mutants used.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 16

Regression Testing

• Context of regression testing:

. In software maintenance and support:

– ensure change 6⇒ negative impact.

. In legacy software systems:

– ensure quality of remaining functions,

– during development/product update,

– new part ≈ new development,

– focus: integration sub-phase & after.

. Re-test to verify defect fixing as well as

no unintended consequences.

• Regression testing techniques:

. Specialized analysis of change: ∆-analysis.

. Focused testing on (new) ∆-part.

. Integration of old and new.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 17

Other Specialized Testing

• Testing beyond programs:

. Embedded and heterogeneous systems:

– test interactions with surroundings.

. Web testing, in case study later.

• Testing to achieve other goals:

. Performance testing;

. Stress testing;

. Usability testing, etc.

• Dynamic analysis and related techniques:

. Simulation to reduce overall cost.

. Prototyping, particularly in early phases.

. Timing and sequencing analysis.

. Event-tree analysis (ETA), Chapter 16.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 18

Test Integration

• General idea:

. Many activities and tasks.

. Different techniques.

. Individual advantages and limitations.

. Much commonality exists.

. Possibility of integration?

• Test integration: Advantages

. combined strength ⇒ benefit↑.

. common elements ⇒ cost↓.

. flexibility↑.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 19

Hierarchical Web Testing

• Case study from Chapter 10 continued:

. Web navigation modeled by FSMs.

. UBST using UMMs to overcome state

explosion problem of FSMs.

. Guiding existing web testing.

(they typically focus on a small unit/facet)

. Lack of structure for overall hits

⇒ use of simplified OPs (Musa OPs)

• Overall approach:

. Top-tier: flat (Musa) OP.

. Middle-tier: UMMs.

. Bottom-tier: existing web testing.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 20

Existing Web Testing

• Web functionality testing:

. Focus on the web components identified

in Ch.10.

. HTML syntax checking via various tools.

. Link checking.

. Form testing.

. Verification of end-to-end transactions.

. Java and other program testing.

• Beyond web functionality testing:

. Load testing.

. Usability testing.

. Browse rendering.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 21

Web Testing (from Ch.10)

• Testing web navigations:

. FSM-based testing in Chapter 10.

. Web crawling via robots.

• UMMs for web testing (Chapter 10).

. Availability/usage of web logs.

. Some observations:

– skewed top hit pages and x-references

– the impact of structural hierarchy

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 22

Hierarchical Web Testing

• Overall approach:

. Top-tier: flat (Musa) OP

– for simplicity and skewed distribution.

. Middle-tier: UMMs

– importance of highly used navigations.

. Bottom-tier: existing web testing

– no need to re-invent wheels

• Implementation support:

. TAR (top access report) ⇒ top-tier

. CPR (call-pair report) to form clusters

⇒ middle tier UMMs

. UMM refinement ⇒ bottom-tier

– low-level Markov chains and

– traditional (WBT-)testing models

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.12) 23

Hierarchical Web Testing

• Implementation of the hierarchical web test-

ing strategy: Fig 12.2 (p.218)

Top Top Access Report (TAR)
Level a flat list of frequently accessed

services in ranking order
(may be grouped by interconnection
in customer usage scenarios)

Middle Unified Markov Models (UMMs)
Level for groups of TAR entries linked

by CPR (call-pair report)
(may be expanded into lower-
level UMMs or other models)

Bottom Detailed UMMs/other Models
Level associated with frequently visited

or critical nodes of UMMs
(may correspond to testing
models other than UMMs)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)


