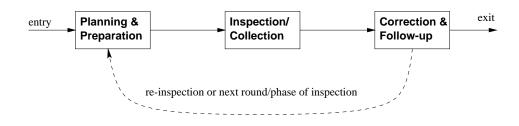
Software Quality Engineering:

Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 14. Inspection

- Basic Concept and Generic Process
- Fagan Inspection
- Other Inspection and Related Activities
- Other Issues


QA Alternatives

- Defect and QA:
 - ▷ Defect: error/fault/failure.
 - ▷ Defect prevention/removal/containment.
 - Map to major QA activities
- Defect prevention:
 Error blocking and error source removal.
- Defect removal:
 - ▷ Inspection this chapter.
 - ▶ Testing, etc.
- Defect containment: Fault tolerance and failure containment (safety assurance).

Inspection as Part of QA

- Throughout the software process
 - ▷ Coding phase: code inspection
 - Design phase: design inspection
 - ▶ Inspection in other phases and at transitions from one phase to another
- Many different software artifacts:
 - program code, typically
- Other characteristics:
 - ▶ People focus.
 - ▶ Not waiting for implemented system.
 - > Complementary to other QA activities.

Generic Inspection Process

- Generic process/steps: Fig 14.1 (p.238)
- 1. Planning and preparation (individual)
- 2. Collection (group/meeting)
- 3. Repair (followup)

Inspection Process Variations

• Overall planning:

- ▶ who? team organization/size/roles/etc.
- what? inspection objects
- ▷ objectives?
- number/coordination of multiple sessions?

• Technique

- ▶ for preparation (individual inspection)
- What to do with defects?

 - classify/analyze defects for feedback?
- Use of post-collection feedback?

- General description

 - ▶ Lead to other variations
 - Generic process and steps
- Six steps of Fagan inspection:
 - 1. Planning
 - 2. Overview (1-to-n meeting)
 - 3. Preparation (individual inspection)
 - 4. Inspection (n-to-n meeting)
 - 5. Rework
 - 6. Follow-up
- Mapping to generic inspection process in Fig 14.1 (p.238)

1. Planning

- ▷ Entry criteria: what to inspect
- Developers/testers from similar projects
- ▷ Effectiveness concerns (assumptions)
- ▷ Inspectors not authors

2. Overview

- > Author-inspectors meeting
- ▶ General background information
 - functional/structural/info., intentions
- ▶ Assign individual tasks:
 - coverage of important areas
 - moderate overlap

- 3. Preparation or individual inspection
 - ▶ Independent analysis/examination
 - Code as well as other document
 - ▶ Individual results:
 - questions/guesses
 - potential defects
- 4. Inspection (generic: collection)
 - Meeting to collect/consolidate individual inspection results
 - ▶ Team leader/meeting moderator (1)
 - Reader/presenter: summarize/paraphrase for individual pieces (assignment)
 - Defect identification, but not solutions, to ensure inspection effectiveness
 - No more than 2 hours
 - ▶ Inspection report

5. Rework

- > Author's response
- Defect fixing (solutions)

6. Follow-up

- ▶ Resolution verification by moderator
- ▶ Re-inspection?
- Fagan inspection in practice

 - Evaluation studies
 - > Variations and other inspections

Fagan Inspection: Findings

- Importance of preparation:
 - Most defect detected
 - Meetings to consolidate defects
 - $\triangleright \Rightarrow$ alternatives focusing on preparation.
- Other important findings:
 - > Important role of the moderator
 - ▶ Team size and #sessions tailored to env.
 - Prefer systematic detection techniques to ad-hoc ones
 - More use of inspection feedback/analysis

Other Inspection Methods

- Variations to Fagan inspection: size/scope and formality variations.
- Alternative inspection techniques/processes:

 - Meetingless inspections

 - ▶ Phased inspections
 - ▶ N-fold inspections
 - ▷ Informal check/review/walkthrough
 - Active design reviews
 - ▷ Inspection for program correctness

 - Code reading with stepwise abstraction

Reduced Size/Scope Inspection

- Two-person inspection
 - > Fagan inspection simplified
 - Author-inspector pair
 - reciprocal: mutually beneficial
 - > Smaller scale program
- Meetingless inspections
 - Importance of preparation (indiv. insp.)(most defects found during preparation)
 - > Empirical evidence
 - ▶ 1-on-1 instead of team meetings (or other feedback mechanisms)

Gilb Inspection (Expanded Fagan)

- Key: A "process brainstorming" meeting

 - parallel to edit (rework)
 - ▷ aim at preventive actions/improvement

Other characteristics

- Clearly identified input,checklists/rules extensively used
- Output include change request and suggested process improvement, in addition to inspected documents.
- More emphasis on feedback loop: more closely resemble our SQE process (Fig 5.1, p.54)

Other Expanded Fagan Inspections

Phased inspections

- Multiple phases/meetings
- Dynamic team make-up

N-fold inspections

- ▶ Idea similar to NVP
- ▷ N parallel inspections, 1 moderator
- Duplications ⇒ cost↑
- ▷ Discussed in connection to NVP (Ch.16)

Informal Inspection

- Desk check (self conducted):
 - > Should focus on conceptual problems
 - Use tools for problems with syntax/spelling/format/etc.
- Informal review (by others):
 - ⊳ Similar to desk check, but by others
 - Benefit from independent/orthogonal views
 - Group reviews for phase transitions

• Walkthroughs:

- More organized, but still informal
- ▶ Leading role of author/moderator
- Less preparation by other participants than in inspection

Formal Inspection: Code Reading

```
1
       input(x);
                                                    y \leftarrow x;
                                          2
2
       if(x > 0) then
                                                 if(x > 0) then
3
            y \leftarrow x;
                                          3
                                                 else
4
                                          4
                                                 output(y);
       else
5
                                          5
                                                    y \leftarrow -x;
            y \leftarrow -x:
       output(y);
                                                 input(x);
```

- Program comprehension: Fig 14.2 (p.245)
 - ▷ a program (left) and its permutation (right)
 - different effort in comprehension

 - ▷ experience factor (expert vs novice)
- Related to top-down design and code reading/abstraction (bottom-up)

Formal Inspection: Code Reading

- Code reading
 - b focus on code
 c
 - > optional meetings
- Code reading by stepwise abstraction
 - > basis: program comprehension studies
 - > variation to code reading
 - formalized code reading technique
 - top-down decomposition and bottom-up abstraction
 - > recent evidence of effectiveness

Formal Inspection: ADR & Correctness

- Active design reviews (ADR)
 - > Another formal inspection, for designs
 - ▷ Inspector active vs. passive
 - Author prepares questionnaires
 - More than one meeting
 - Scenario based (questionnaires)
 - Overall ADR divided into small ones
- Inspection for program correctness
 - > Correctness (vs. questionnaire) of:
 - topology (decomposition, hierarchy)
 - algebra (equivalence of refinements)
 - invariance (variable relations)
 - robustness (error handling)

Extending Inspection: Analysis

• Inspection as analysis

- ▶ Program/document/etc. analysis
- ▶ Inspection as statics analysis
- ▶ Testing as dynamic analysis

Other analyses

- Static: algorithm, decision table, boundary value, control flow, data flow, etc.
- Dynamic: symbolic execution, simulation, prototyping, timing, in-field execution, etc.
- Covered in SQE (various chapters), with pointers in Section 14.3.5.
- Detailed reference: Wallace et al 1996 (NIST Special Publication 500-234) available online

Defect Detection Techniques

- Ad-hoc vs. systematic ones below: checklist-/scenario-/abstraction-based.
- Checklist-based inspection:
 - ▷ Similar to testing checklists (Ch.8).
 - ▶ Basic types: artifact-/property-based.
- Scenario-based inspection:
 - ▷ Similar to usage-based testing.
 - > Scenarios ties multiple components.
 - ▶ More a usage/external view.
 - Suitable for OOS.
- Abstraction-based inspection: Similar to code reading with stepwise abstraction.

Implementation and Effectiveness

- Implementation support:
 - Process and communication support
 - Repository management tools
 - Defect tracking and analysis as followup
 - Still human intensive
- Effectiveness studies
 - ▶ Measurement: defect or effort
 - > Defect detection technique important
 - ▷ Inspector skills/expertise also important

 - Many individual variations

Summary

- Key advantages:
 - Wide applicability and early availability
 - ▷ Complementary to testing/other QA
 - Many techniques/process to follow/adapt
 - ▷ Effective under many circumstances
- Key limitations:
 - > Human intensive
 - Dynamic/complex problems and interactions: Hard to track/analyze.
 - ▶ Hard to automate.
- Comparison to other QA: Chapter 17.