Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 19. Quality Models and Measurements

- Types of Quality Assessment Models.
- Comparing Quality Assessment Models.
- Data Requirements and Measurement
- Measurement and Model Selection.

QA Data and Analysis

- Generic testing process:
 - ▷ Test planning and preparation.
 - ▷ Execution and measurement.
 - ▷ Test data analysis and followup.
 - \triangleright Related data \Rightarrow quality \Rightarrow decisions
- Other QA activities:
 - ▷ Similar general process.
 - \triangleright Data from QA/other sources (Ch.18).
 - ▷ Models used in analysis and followup:
 - provide timely feedback/assessment
 - prediction, anticipating/planning
 - corrective actions \Rightarrow improvement

QA Models and Measures

- General approach
 - ▷ Adapt GQM-paradigm.
 - ▷ Quality: basic concept and ideas.
 - \triangleright Compare models \Rightarrow taxonomy.
 - \triangleright Data requirements \Rightarrow measurements.
 - ▷ Practical selection steps.
 - ▷ Illustrative examples.
- Quality attributes and definitions:
 - \triangleright Q models: data \Rightarrow quality
 - ▷ Correctness vs. other attributes
 - Our definition/restriction:
 being defect-free or of low-defect
 - Examples: reliability, safety, defect count/density/distribution/etc.

Quality Analysis

- Analysis and modeling:
 - \triangleright Quality models: data \Rightarrow quality
 - a.k.a. quality assessment models
 or quality evaluation models
 - Various models needed
 - > Assessment, prediction, control
 - Management decisions
 - Problematic areas for actions
 - Process improvement
- Measurement data needed
 - Direct quality measurements:
 success/failure (& defect info)
 - ▷ Indirect quality measurements:
 - activities/internal/environmental.
 - ▷ Indirect but early quality indicators.
 - ▷ All described in Chapter 18.

Quality Models

- Practical issues:
 - Applicability vs. appl. environment
 - Goal/Usefulness: information/results?
 - ▷ Data: measurement data required
 - Cost of models and related data
- Type of quality models
 - ▷ Generalized: averages or trends
 - Product-specific: more customized
 - ▷ Relating to issues above

Generalized Models: Overall

- Model taxonomy: Fig 19.1 (p.324).
 - ▷ Generalized:
 - overall, segmented, and dynamic
 - ▷ Product-specific:
 - semi-customized: product history
 - observation-based: observations
 - measurement-driven: predictive

Generalized Models: Overall

- Key characteristics
 - ▷ Industrial averages/patterns ⇒ (single) rough estimate.
 - ▷ Most widely applicable.
 - ▷ Low cost of use.
- Examples: Defect density.
 - ▷ Estimate total defect with sizing model.
 - ▷ Variation: QI in IBM
 - (counting in-field unique defect only)
- Non-quantitative overall models:
 - ▷ As extension to quantitative models.
 - Examples: 80:20 rule, and other general observations.

Generalized Models: Segmented

- Key characteristics:
 - ▷ Estimates via product segmentation.
 - \triangleright Model: segment \rightarrow quality.
 - ▷ Multiple estimates provided.
- Example: Table 19.1 (p.326)

Pro	duct	Failure	rate	Reliability
Тур	е	(per ho	our)	Level
safe	ty-critical	< 10	-7	ultra-high
com	imercial	10 ⁻³ to	10^{-7}	moderate
aux	liary	> 10	-3	low

- Other applications.
 - ▷ Commonly used in software estimation.
 - ▷ Example: COCOMO models.

Generalized Models: Dynamic

- Example: Putnam model Fig 19.2 (p.326) Rayleigh curve for failure rate: $r = 2Bate^{-at^2}$
- Overall/average trend over time.
 - Often expressed as a mathematical function or an empirical curve.
 - Combined models possible,
 e.g., segmented dynamic models.

Product-Specific Models (PSM)

- Product-specific models (PSMs):
 - Product-specific info. used
 (vs. none used in generalized models)
 - ▷ Better accuracy/usefulness at cost ↑
 - ▷ Three types:
 - semi-customized
 - observation-based
 - measurement-driven predictive
- Connection to generalized models (GMs):
 - Customize GMs to PSMs with new/refined models and additional data.
 - Generalize PSMs to GMs with empirical evidence and general patterns.
 - \triangleright Illustrated in Fig 19.1 (p.324).

PSM: Semi-Customized

- Semi-customized models:
 - ▷ Project level model based on history.
 - ▷ Data captured by phase.
 - ▷ Both projections and actual.
 - ▷ Linear extrapolation.
- Example: DRM in Table 19.2 (p.327)

Requirement	Design	Coding	Testing	Support
5%	10%	35%	40%	10%

- Related extensions to DRMs:
 - ▷ Defect dynamics model in Ch.20,
 - ▷ ODC defect analyses in Ch.20:
 - 1-way distribution/trend analysis
 - 2-way analysis of interaction.

PSM: Observation-Based

- Observation-based models:
 - Detailed observations and modeling
 - Software reliability growth models
 - Other reliability/safety models
- Model characteristics
 - ▷ Focus on the effect/observations
 - Assumptions about the causes
 - ▷ Assessment-centric
 - Example: Goel-Okumoto NHPP SRGM
 - functional relation: $m(t) = N(1-e^{-bt})$
 - observed failures over time
 - curve fitting
 - reliability assessment/prediction
 - management decisions: exit criteria

PSM: Predictive

- Measurement-driven predictive models
 - Establish predictive relations
 - Modeling techniques:
 regression, TBM, NN, OSR etc.
 - ▷ Risk assessment and management
- Model characteristics:
 - ▷ Response: chief concern
 - Predictors: observable/controllable
 - Linkage quantification

PSM: Predictive Model Example

Product	Subset	#Modules	Mean-DF
LS	Irrr	16	9.81
	rlr	53	10.74
	rr	17	22.18
	whole		
	product	1296	1.8
NS	rIII	8	55.0
	rr	5	77.0
	whole		
	product	995	7.9

- Example: Table 19.3 (p.329)
 - ▷ tree-based defect modeling
 - > substantially different high-risk areas
 - ▷ identification and remedial actions

Model Summary

Model	Sub-	Primary	Applicability
Туре	Туре	Result	
general	ized	rough	all
quality		quality	or by
models		estimates	industry
	overall	overall	across
		product	industries
		quality	
	segmented	industry-	within
		specific	an
		quality	industry
	dynamic	quality	trend
		trend	in
		over time	all
product	z-specific	better	specific
quality		quality	product
models		estimates	
	semi-	quality	prev→cur
	customized	extrapolation	release
	observation-	quality	current
	based	assessments	product
	measurement-	quality	both
	driven	predictions	above

• Summary: Table 19.4 (p.329)

Model Applications

- Applications:
 - $\triangleright \neg$ data \Rightarrow GMs as early choices.
 - \triangleright Data arrival \Rightarrow phase in PSMs:
 - special case: historical data
 - \Rightarrow semi-customized models.
 - ▷ Model customization within application.
- Model customization (from generalized to product-specific) in connection with model applications.
- Model generalization:
 - ▷ data/results accumulation
 - > generalized model possible?
 - > mathematical function/empirical trend

Relating Models to Measurements

- Data (Ch. 18) required by quality models:
 - Direct quality measurements
 - to be assessed/predicted/controlled
 - Indirect quality measurements
 - means to achieve the goal
 - environmental, activity, product-internal
 - Data requirement by models:
 summarized in Table 19.5 (p.331)

Model	Sub-	Measurement
Туре	Туре	Data
generalized		industrial averages
	overall	average: all industries
seg	mented	average: own industry
C	ynamic	trend: all industries
product-specific		product-specific data
semi-cust	omized	rough historical data
obser	based	current observations
meas	driven	current & historical data

Relating Models to Measurements

- Data requirement of GMs:
 - \triangleright Quality averages/patterns: \overline{Q}
 - No measurements from current project
- Data requirement of PSMs:
 - \triangleright All use direct quality measurements: Q
 - related to other measurements: M
 - as relations: $Q \sim M$
 - or as functions: Q = f(M)
 - Measurement-driven models:
 - -M =all measurements
 - Semi-customized models:
 - -M = environmental measurements
 - Observation-based models:
 - -M =activity measurements
 - Various other secondary uses

Relating Models to Measurements

- Relating models to measurements:
 Fig 19.3 (p.332) chapter summarized.
- Can also be examined from the direction of measurements-models forward links.

Model/Measurement Selection

- Customize GQM into 3-steps
- Step 1: Quality goals
 - ▷ Restricted, not general goals
- Step 2: Quality models
 - Model characteristics/taxonomy
 - Model applicability/usefulness
 - Data requirement/affordability
- Step 3: Quality measurements
 - Model-measurements relations
 - Detailed model information

Selection Example A

- Goal: rough quality estimates
- Situation 1:
 - ▷ No product specific data
 - Industrial averages/patterns
 - ▷ Commercial tools: SLIM etc.
 - Product planning stage
 - Defect profile in lifecycle
 - Use generalized models
- Situation 2:
 - ▷ Data from related products
 - ▷ DRM for legacy products
 - ▷ ODC profile for IBM products
 - Semi-customized models

Selection Example B

- Goal: customer-view of quality in system testing
- Quality model:
 - ▷ SRGMs: info. about reliability
 - > Assessment: customer-view
 - Prediction: project management
 - Decisions: exit criteria
 - Affordability: data and modeling
- Quality measurements:
 - Reliability: failure-free operation for a given time under a specific environment
 - Result: success/failure measurement
 - Time measurement: reflect activity
 - Environment: implicitly assumed

Selection Example B

- Fig 19.4 (p.335): SRGM, an observationbased model, selected for Example B
 - > reliability assessed/predicted
 - ▷ time = transactions

Selection Example C

- Goal: testing process/quality improvement, but SRGMs inadequate
- Selecting TBRM in Fig 19.5 (p.336) to focus on reliability improvement

Selection Example C

- TBRM: improvement focus
 - what's wrong: risk identification
 - what to do: remedial actions
- Data attributes: Table 19.6 (p.336)
 - ▷ Result: success/failure measurement
 - ▷ Timing info.: time-domain analysis
 - Input state: input-domain analysis

Timing: calendar date (*year, month, day*), *tday* (cumulative testing days since the start of testing), and *rsn* (run sequence number, uniquely identifies a run in the execution sequence).

Input state: *SC* (scenario class), *SN* (scenario number), *log* (corresponding to a sub-product with a separate test log) and *tester*.

Result: *result* indicator of the test run, with 1 indicating success and 0 indicating failure.

Summary and Perspectives

- Practical need for quality measurement and model selection
- Viable approach
 - \triangleright Model characteristics \Rightarrow taxonomy
 - Model data requirement:
 different types of quality measurements
 - Selection steps: customized GQM
 - ▷ Viability: examples
- Perspective and future work:
 - ▷ Refined taxonomy
 - ▷ Relating models to measurements:
 - more details and specific info.
 - Lifecycle activities and support
 - ▷ Automation?