Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 20. Defect Classification and Analysis

- General Types of Defect Analyses.
- ODC: Orthogonal Defect Classification.
- Analysis of ODC Data.

Defect Analysis

- Goal: (actual/potential) defect↓ or quality↑ in current and future products.
- General defect analyses:
 - Questions: what/where/when/how/why?
 - ▷ Distribution/trend/causal analyses.
- Analyses of classified defect data:
 - ▷ Prior: defect classification.
 - ▷ Use of historical baselines.
 - Attribute focusing in 1-way and 2-way analyses.
 - ▷ Tree-based defect analysis (Ch.21).

Defect in Quality Data/Models

- Defect data \subset quality measurement data:
 - \triangleright As part of direct Q data.
 - ▷ Extracted from defect tracking tools.
 - Additional (defect classification) data may be available.
- Defect data in quality models:
 - ▷ As results in generalized models (GMs).
 - As r.v. (response/independent variable)
 in product specific models (PSMs).
 - semi-customized models \approx GMs,
 - observation-based: r.v. in SRGMs,
 - predictive: r.v. in TBDMs.
 - (SRGMs/TBDMs in Ch.22/21.)

General Defect Analysis

- General defect analyses: Questions
 - ▷ What? identification (and classification).
 - type, severity, etc.,
 - even without formal classification.
 - ▷ Where? distribution across location.
 - ▷ When? discovery/observation
 - what about when injection? harder
 - pre-release: more data
 - post-release: more meaningful/sensitive
 - ▷ How/why? related to injection
 - \Rightarrow use in future defect prevention.
- General defect analyses: Types
 - \triangleright Distribution by type or area.
 - ▷ Trend over time.
 - ▷ Causal analysis.
 - ▷ Other analysis for classified data.

Defect Analysis: Data Treatment

- Variations of defect data:
 - ▷ Error/fault/failure perspective.
 - ▷ Pre-/post-release.
 - ▷ Unique defect?
 - ▷ Focus here: defect fixes.
- Why defect fixes (DF):
 - ▷ Propagation information.
 - ▷ Close ties to effort (defect fixing).
 - Pre-release: more meaningful.
 (post release: each failure occurrence.)

- Distribution: what, where, etc.
- What: Distribution over defect types.
 - ▷ Ties to quality views/attributes (Ch.2).
 - ▷ Within specific view: types/sub-types.
 - \triangleright Defect types \Leftarrow product's "domain".
 - ▷ IBM example: CUPRIMDSO.
- Important observation:
 - ▷ Skewed distribution, or 80:20 rule
 - \Rightarrow importance of risk identification
 - for effective quality improvement
 - Early indicators needed!
 (Cannot wait after defect discoveries.)

Error	Description	# of
Туре		Errors
A	permission denied	2079
В	no such file or directory	14
С	stale NFS file handle	4
D	client denied by server config.	2
E	file does not exist	28631
F	invalid method in request	0
G	invalid URL in req. connection	1
Н	mod_mime_magic	1
Ι	request failed	1
J	script not found or unable to start	27
K	connection reset by peer	0
all typ	es	30760

- Web example: Table 20.1 (p.341)
 - \triangleright defect = "error" in web community.
 - ▷ dominance of type E "missing files".
 - ▷ type A: further information needed.
 - \triangleright all other types: negligible.

- Further analysis of web example above:
 - ▷ for dominant type E "missing files"
 - ▷ web error distribution by file type
 - Table 20.2 (p.342)
 - ▷ again, skewed distribution!

Туре	Errors	%
.gif	12489	43.62
.class	4913	17.16
directory	4425	15.46
.html	3656	12.77
.jpg	1323	4.62
other	394	1.38
All	28631	100

(Table 20.3)							
DF=	0	1		2 3	4	5	6
module #	771	174	102	2 63	31	29	23
%	58.8	13.4	7.9	9 4.9	2.4	2.2	1.8
DF sum	0	174	204	1 189	124	145	138
%	0	7.4	8.6	5 8.0	5.2	6.1	5.8
(Table 20.3	contin	ued))				
DF=	7	8	9	10-19	20-3	37	all
module #	25	16	7	50	1	.4 12	295
%	1.9	1.2	0.5	3.9	1.	1 1	100
DF sum	175	128	63	673	41	.7 23	367
%	7.4	5.0	2.7	28.4	17.	6 1	100

- Where: Distribution over locations.
 - ▷ commonly by product areas
 - sub-product/module/procedure/etc.
 - ▷ IBM-LS: Table 20.3 (p.342) above
 - ▷ again, skewed distribution

(Table 20.4)

DF =	0	1	2	3	4	5	6
module #	23	131	112	120	99	94	68
%	2.3	13.2	11.3	12.1	9.9	9.4	6.8
DF sum	0	131	224	360	396	470	408
%	1.67	2.86	4.60	5.06	6.01	5.21	4.47

(Table 20.4 continued...)

DF =	7	8	9	10-19	20-49	>50	all
module #	50	38	32	147	68	13	995
%	5.0	3.8	3.2	14.8	6.8	1.3	100
DF sum	350	304	288	2109	2040	910	7824
%	3.89	3.68	3.07	26.96	26.07	11.63	100

- IBM-NS: Table 20.4 (p.343) above
 - yet another skewed defect distribution
- Extension: distribution by other locators
 e.g., types of sources or code, etc.

Defect Trend Analysis

- Trend as a continuous function:
 - ▷ Similar to Putnam model (Ch.19)
 - but customized with local data
 - ▷ Other analysis related to SRE
 - defect/effort/reliability curves
 - more in Ch.22 and related references.
 - Sometimes discrete analysis may be more meaningful (see below).
- Defect dynamics model:
 - ▷ Important variation to trend analysis.
 - ▷ Defect categorized by phase.
 - ▷ Discovery (already done).
 - ▷ Analysis to identify injection phase.

Defect Trend Analysis

Inj.	Removal Phase						
Phase	R	S	D	С	Т	Ρ	All
Requirements	10	22	8	0	5	2	47
Specification		10	20	2	0	1	33
Design			52	120	32	5	209
Coding				198	320	46	564
Testing					58	7	65
Post-release						2	2
All	10	32	80	320	415	63	920

- Defect dynamics model: Table 20.5 (p.344)
 - ▷ row: where (phase) injected
 - ▷ column: where (phase) removed/discovered
 - ▷ focus out-of-phase/off-diagonal ones!

Defect Causal Analysis

- Defect causal analyses: Types
 - ▷ Causal relation identified:
 - error-fault vs fault-failure
 - works backwards
 - ▷ Techniques: statistical or logical.
- Root cause analysis (logical):
 - ▶ Human intensive.
 - ▷ Good domain knowledge.
 - ▷ Fault-failure: individual and common.
 - Error-fault: project-wide effort focused on pervasive problems.
- Statistical causal analysis: \approx risk identification techniques in Ch.21.

ODC: Overview

- Development
 - ▷ Chillarege et al. at IBM
 - Applications in IBM Labs and several other companies
 - Recent development and tools
- Key elements of ODC
 - ▷ Aim: tracking/analysis/improve
 - Approach: classification and analysis
 - ▷ Key attributes of defects
 - ▷ Views: both failure and fault
 - Applicability: inspection and testing
 - ▷ Analysis: attribute focusing
 - ▷ Need for historical data

ODC: Why?

- Statistical defect models:
 - ▷ Quantitative and objective analyses.
 - ▷ SRGMs (Ch.22), DRM (Ch.19), etc.
 - ▷ Problems: accuracy & timeliness.
- Causal (root cause) analyses:
 - ▷ Qualitative but subjective analyses.
 - ▷ Use in defect prevention.
- Gap and ODC solution:
 - ▷ Bridge the gap between the two.
 - ▷ Systematic scheme used.
 - ▷ Wide applicability.

ODC: Ideas

- Cause-effect relation by type:
 - ▷ Different types of faults.
 - ▷ Causing different failures.
 - ▷ Need defect classification.
 - ▷ Multiple attributes for defects.

• Good measurement:

- ▷ Orthogonality (independent view).
- ▷ Consistency across phases.
- ▷ Uniformity across products.
- ODC process/implementation:
 - ▷ Human classification.
 - ▷ Analysis method and tools.
 - ▷ Feedback results (and followup).

ODC: Theory

- Semantic classification:
 - ▷ defect classes for a product
 - ▷ related-to/explain process
 - ▷ akin to event measurement
 - ▷ sufficient condition:
 - spanning set over process
 - formed by defect attributes
- Classification for cause-effect or views:
 - ▷ cause: type, trigger, etc.
 - ▷ effect: severity, impact, etc.
 - ▷ failure vs fault (internal cause) views
 - additional causal-analysis-related: source, where/when injected.
 - ▷ sub-population: environment data.

ODC Example: Table 20.6 (p.347)

Label	Name	Possible values or categories & labels
imp	impact	c=capability, u=usability, p=performance,
		r=reliability, in=installation, ma=maint.,
		im=implementation, mi=migration,
		<pre>sec=security, ser=service, std=standard</pre>
trig	trigger	i=installation, m=migration, s=stress,
		a=ad-hoc, b=backup, c=communications,
		f=file i/o, co=coexistence,
		e=exception, ss=startup/shutdown,
		hc=h/w config., sc=s/w config.,
		o=normal operation
sev	severity	range from 1 (highest)
		to 4 (lowest) in severity
wk	week	week detected, from project start
ftype	fix	s=specification, hld=high-level design,
	type	lld=low-level design, c=code,
		b=build process, o=other product
act	action	a=add, d=delete, c=change
src	code	b=base, v=vendor, n=new, c=changed,
	source	i=incremental, s=scaffolded,
		p=previous defect fix
inj	phase	p=previous release, s=specification,
	injected	hld=high-level design, lld=low-level design,
		c=coding, ut=unit test, ft=function test,
		st=system test, d=customer usage

ODC Attributes: Failure-View

- Defect trigger:
 - ▷ Associated with verification process
 - similar to test case measurement
 - collected by testers
 - ▷ Trigger classes
 - product specific
 - black box in nature
 - pre/post-release triggers
- Other attributes:
 - ▷ Impact: e.g., IBM's CUPRIMDSO.
 - ▷ Severity: low-high (e.g., 1-4).
 - ▷ Detection time, etc.

ODC Attributes: Cause/Fault-View

- Defect type:
 - ▷ Associated with development process.
 - ▷ Missing or incorrect.
 - ▷ Collected by developers.
 - ▷ May be adapted for other products.
- Other attributes:
 - ▷ Action: add, delete, change.
 - ▷ Number of lines changed, etc.

ODC Attributes: Cause/Error-View

- Key attributes:
 - ▷ Defect source: vendor/base/new code.
 - ▷ Where injected.
 - ▷ When injected.
- Characteristics:
 - ▷ Associated to additional causal analysis.
 - ▷ (May not be performed.)
 - Many subjective judgment involved (evolution of ODC philosophy)
- Phase injected: rough "when".

Adapting ODC for Web Error Analysis

- Continuation of web testing/QA study.
- Web error = observed failures, with causes already recorded in access/error logs.
- Key attributes mapped to ODC:
 - \triangleright Error type = defect impact.
 - types in Table 20.1 (p.341)
 - response code (4xx) in access logs
 - \triangleright Referring page = defect trigger.
 - individual pages with embedded links
 - classified: internal/external/empty
 - focus on internal problems
 - \triangleright Missing file type = defect source
 - different fixing actions to follow.
- May include other attributes for different kinds of web sites.

ODC Analysis: Attribute Focusing

- General characteristics
 - ▷ Graphical in nature
 - ▷ 1-way or 2-way distribution
 - Phases and progression
 - Historical data necessary
 - ▷ Focusing on big deviations
- Representation and analysis
 - ▷ 1-way: histograms
 - ▷ 2-way: stack-up vs. multiple graphics
 - Support with analysis tools

ODC Analysis Examples

- 1-way analysis: Fig 20.1 (p.349)
 - Defect impact distribution for an IBM product.
 - ▷ Uneven distribution of impact areas!
 ⇒ risk identification and focus.

ODC Analysis Examples

• 1-way analysis: Fig 20.2 (p.350)

- ▷ web error trend analysis.
- ▷ context: compare to usage (reliability).
- ▷ stable operational reliability

Impact	Severity			
	1	2	3	4
Capability	2	12	13	1
Documentation	0	1	14	10
Installability	0	6	6	4
Maintainability	0	6	19	7
Migration	0	0	0	1
Performance	1	1	3	0
Reliability	27	96	66	7
Security	1	3	3	0
Service	0	0	4	4
Standards	0	1	2	1
Usability	0	10	44	19

ODC Analysis Examples

- 2-way analysis: Table 20.7 (p.351)
 - ▷ Defect impact-severity analysis.
 - ▷ IBM product study continued.
 - Huge contrast: severity of reliability and usability problems!

ODC Process and Implementation

- ODC process:
 - ▷ Human classification
 - defect type: developers,
 - defect trigger and effect: testers,
 - other information: coordinator/other.
 - ▷ Tie to inspection/testing processes.
 - ▷ Analysis: attribute focusing.
 - ▷ Feedback results: graphical.
- Implementation and deployment:
 - ▷ Training of participants.
 - ▷ Data capturing tools.
 - ▷ Centralized analysis.
 - ▷ Usage of analysis results.

Linkage to Other Topics

- Development process
 - ▷ Defect prevention process/techniques.
 - ▷ Inspection and testing.
- Testing and reliability:
 - Expanded testing measurement
 - Defects and other information:
 - Environmental (impact)
 - Test case (trigger)
 - Causal (fault)
 - Reliability modeling for ODC classes