Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 22. Software Reliability Engineering

- Concepts and Approaches
- Existing Approaches: SRGMs & IDRMs
- Assessment & Improvement with TBRMs
- SRE Perspectives

What Is SRE

- *Reliability:* Probability of failure-free operation for a specific time period or input set under a specific environment
 - ▷ Failure: behavioral deviations
 - ▷ Time: how to measure?
 - Input state characterization
 - ▷ Environment: OP
- Software reliability engineering:
 - ▷ Engineering (applied science) discipline
 - ▷ Measure, predict, manage reliability
 - Statistical modeling
 - ▷ Customer perspective:
 - failures vs. faults
 - meaningful time vs. development days
 - customer operational profile

Assumption: SRE and OP

- Assumption 1: OP, to ensure software reliability from a user's perspective.
- OP: Operational Profile
 - Quantitative characterization of the way
 a (software) system will be used.
 - ▷ Test case generation/selection/execution
 - Realistic assessment
 - > Predictions (minimize discontinuity)
- OP topics in SQE book:
 - ▷ Chapter 8: Musa's OP
 - flat list with probabilities
 - tree-structured OP
 - dev. procedures: Musa-1/Musa-2
 - Chapter 10: Markov chains and
 UMMs (unified Markov models)

Other Assumptions in Context

- Assumption 2: Randomized testing
 - Independent failure intervals/observations
 - Approximation in large software systems
 - Adjustment for non-random testing
 - \Rightarrow new models or data treatments
- Assumption 3: Failure-fault relation
 - \triangleright Failure probability \sim # faults
 - Exposure through OP-based testing
 - Possible adjustment?
 - Statistical validity for large s/w systems

Other Assumptions and Context

- Assumption 4: time-reliability relation
 - ▷ time measurement in SRGMs
 - ▷ usage-dependent vs. usage-independent
 - ▷ proper choice under specific env.
- Usage-independent time measurement:
 - ▷ calendar/wall-clock time
 - ▷ only if stable or constant workload
- Usage-dependent time measurement:
 - ▷ for systems with uneven workload
 - ▷ execution time Musa's models
 - ▷ alternatives: runs, transactions, etc.

Workload for Products D

- Fig 22.1 (p.374): IBM product D workload
 - ▷ number of test runs for each day
 - ▷ wide variability
 - need usage-dependent time measurement
 - # of runs used

Workload for Products E

• Fig 22.2 (p.375): IBM product E workload

- ▷ number of transactions for each run
- ▷ again, wide variability
- need usage-dependent time measurement
 - # of transactions used

Input Domain Reliability Models

- IDRMs: Current reliability snapshot based on observed testing data of *n* samples.
- Assessment of current reliability.
- Prediction of future reliability (limited prediction due to snapshot)
- Management and improvement
 - ▷ As acceptance criteria.
 - ▷ Risk identification and followups:
 - reliability for input subsets
 - remedies for problematic areas
 - preventive actions for other areas

Nelson's IDRM

• Nelson Model:

- \triangleright Running for a sample of *n* inputs.
- \triangleright Randomly selected from set E:

$$E = \{E_i : i = 1, 2, \dots, N\}$$

Sampling probability vector:

$$\{P_i : i = 1, 2, \dots, N\}$$

- $\triangleright \{P_i\}$: Operational profile.
- \triangleright Number of failures: f.
- Estimated reliability:

$$R = 1 - r = 1 - \frac{f}{n} = \frac{n - f}{n}$$

 \triangleright Failure rate: r.

• Repeated sampling without fixing.

IDRM Applications

Nelson model for a large s/w system
– succ. segments: Table 22.1 (p.376)

Segment	rn Range	\widehat{R}_i	$\widehat{\lambda}_i$
1	$0 < rn \leq 137$	0.241	0.759
2	$137 < rn \leq 309$	0.558	0.442
3	$309 < rn \leq 519$	0.176	0.824
4	$519 < rn \leq 1487$	0.454	0.546
5	$1487 < rn \leq 1850$	0.730	0.270
6	$1850 < rn \leq 3331$	0.930	0.070

- Nelson model for web applications
 - daily error rates: Table 22.2 (p.377)

Daily Error Rate	min	max	mean	std dev	rse
errors /hits	0.0287	0.0466	0.0379	0.00480	0.126
errors /day	501	1582	1101	312	0.283

Other IDRMs and Applications

- Brown-Lipow model:
 - ▷ explicit input state distribution.
 - \triangleright known probability for sub-domains E_i
 - $\triangleright f_i$ failures for n_i runs from subdomain E_i

$$R = 1 - \sum_{i=1}^{N} \frac{f_i}{n_i} P(E_i)$$

- would be the same as Nelson model for representative sampling
- IDRM applications
 - ▷ overall reliability at acceptance testing
 - ▷ reliability snapshots over time:
 - in Nelson model examples earlier
 - ▷ reliability for input subsets: in TBRMs

Time Domain Measures and Models

- Reliability measurement
 - ▷ Reliability: time & probability
 - ▷ Result: failure vs. success
 - > Time/input measurement
 - ▷ Failure intensity (rate): alternative
 - ▷ MTBF/MTTF: summary measure
- S/w reliability growth models (SRGMs):
 - Reliability growth due to defect removal based on observed testing data.
 - Reliability-fault relations
 - ▷ Exposure assumptions
 - Data: time-between-failure (TBF) vs. period-failure-count (PFC) models

Basic Functions (Time Domain)

- Failure distribution functions:
 - F(t): cumulative distribution function
 (cdf) for failure over time
 - ▷ f(t): prob. density function (pdf) f(t) = F'(t)
- Reliability-related functions:

▷ Reliability function R(t) = 1 - F(t)

 $R(t) = P(T \ge t) = P(\text{no failure by } t)$

Hazard function/rate/intensity

$$z(t)\Delta t = P\{t < T < t + \Delta t | T > t\}$$

• Jelinski-Moranda (de-eutrophication) model:

$$z_i = \phi(N - (i - 1))$$

Other Basic Definitions

• MTBF, MTTF, and reliability

▷ Mean time to failure (MTTF)

$$\mathsf{MTTF} = \int_0^\infty t f(t) dt = \int_0^\infty R(t) dt$$

Mean time between failures (MTBF)

= MTTF for memoryless process

similarly defined

▷ good summary measure of reliability

• Reliability-hazard relation:

$$R(t) = e^{-\int_0^t z(x)dx}$$
$$z(t) = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{R(t)}$$

Other Basic Functions

- Overall failure arrival process: (as compared to individual failures)
- NHPP (non-homogeneous Poisson process):
 - Most commonly used for modeling
 - \triangleright Probability of *n* failures in [0, t]:

$$P(N(t) = n) = \frac{m(t)^n}{n!}e^{-m(t)}$$

▷ m(t): mean function ▷ Failure rate/intensity $\lambda(t)$:

$$\lambda(t) = m'(t) = \frac{dm(t)}{dt}$$

• Other processes: Binomial, etc.

Commonly Used NHPP Models

Goel-Okumoto model

$$m(t) = N(1 - e^{-bt})$$

- -N: estimated # of defects
- -b: model curvature
- S-shaped model:

$$m(t) = N(1 - (1 + bt)e^{-bt})$$

- allow for slow start
- may be more descriptive
- Musa-Okumoto execution time model:

$$m(\tau) = \frac{1}{\theta} \log(\lambda_0 \theta \tau + 1)$$

– emphasis: execution time τ

SRGM Applications

- Assessment of current reliability
- *Prediction* of future reliability and resource to reach reliability goals
- Management and improvement
 - ▷ Reliability goals as exit criteria
 - ▷ Resource allocation (time/distribution)
 - Risk identification and followups:
 - reliability (growth) of different areas
 - remedies for problematic areas
 - preventive actions for other areas

SRGM Application Example

- SRGM example: Fig. 22.3 (p.380)
 - \triangleright IBM product D, # of runs as workload
 - ▷ Goel-Okumoto (GO) and S-shape SRGMs

Assessing Existing Approaches

- Time domain reliability analysis:
 - ▷ Customer perspective.
 - ▷ Overall assessment and prediction.
 - ▷ Ability to track reliability change.
 - ▷ Issues: assumption validity.
 - ▷ Problem: how to improve reliability?
- Input domain reliability analysis:
 - ▷ Explicit operational profile.
 - ▷ Better input state definition.
 - ▶ Hard to handle change/evolution.
 - ▷ Issues: sampling and practicality.
 - Problem: realistic reliability assessment?

TBRMs: An Integrated Approach

- Combine strengths of the two.
- TBRM for reliability modeling:
 - ▷ Input state: categorical information.
 - \triangleright Each run as a data point.
 - ▷ Time cutoff for partitions.
 - Data sensitive partitioning
 - \Rightarrow Nelson models for subsets.
- Using TBRMs:
 - ▷ Reliability for partitioned subsets.
 - ▷ Use both input and timing information.
 - ▷ Monitoring changes in trees.
 - ▷ Enhanced exit criteria.
 - ▷ Integrate into the testing process.

TBRMs

- Tree-based reliability models (TBRMs): TBM using all information.
- Response: Result indicator r_{ij} .
 - ▷ $r_{ij} = 1$ for success, 0 for failure. ▷ Nelson model for subsets:

$$s_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} r_{ij} = \frac{n_{i} - f_{i}}{n_{i}} = \hat{R}_{i} \quad \text{or}$$
$$s_{i} = \frac{\sum_{j=1}^{n_{i}} t_{ij} s_{ij}}{\sum_{j=1}^{n_{i}} t_{j}} = \frac{\sum_{j=1}^{n_{i}} r_{ij}}{\sum_{j=1}^{n_{i}} t_{j}} = \frac{S_{i}}{T_{i}} = \hat{R}_{i}$$

- Predictors: Timing and input states.
 - ▷ Data sensitive partitioning.
 - ▷ Key factors affecting reliability.

TBRMs: Interpretation & Usage

- Interpretation of trees:
 - Predicted response: success rate.
 (Nelson reliability estimate.)
 - ▷ Time predictor: reliability change.
 - ▷ State predictor: risk identification.
- Change monitoring and risk identification:
 - ▷ Change in predicted response.
 - ▷ Through tree structural change.
 - ▷ Identify high risk input state.
 - ▷ Additional analyses often necessary.
 - ▷ Enhanced test cases or components.

TBRMs at Different Times

• Fig 22.4 (p.383): an early TBRM.

high-risk areas identified by input
early actions to improve reliability

TBRMs at Different Times

- Fig 22.5 (p.383): a late TBRM.
 - \triangleright high-risk areas \approx early runs
 - \triangleright uniformly reliable \Rightarrow ready for release

TBRM Impact

- Evaluation/validation with SRGMs:
 - ▷ Trend of reliability growth.
 - ▷ Stability of failure arrivals.
 - Estimated reliability: see below
- Quantitative impact evaluation:

 \triangleright Product purity level ρ at exit:

$$\rho = \frac{\lambda_0 - \lambda_T}{\lambda_0} = 1 - \frac{\lambda_T}{\lambda_0}$$

Important: deployment
 all successor products at IBM

TBRM Result Comparison

• Fig 22.6 (p.384): TBRMs used in D

▷ better reliability growth in D▷ compare to A, B, and C (no TBRMs)

TBRM Result Comparison

• Table 22.3 (p.384): quantitative comparison with ρ

Purification	Product			
Level $ ho$	А	В	С	D
maximum	0.715	0.527	0.542	0.990
median	0.653	0.525	0.447	0.940
minimum	0.578	0.520	0.351	0.939

Where:
$$\rho = \frac{\lambda_0 - \lambda_T}{\lambda_0} = 1 - \frac{\lambda_T}{\lambda_0}$$

 λ_0 : failure rate at start of testing λ_T : failure rate at end of testing

Integrated Approach: Implementation

- Modified testing process:
 - ▷ Additional link for data analysis.
 - ▷ Process change and remedial actions.
- Activities and Responsibilities:
 - ▷ Evolutionary, stepwise refinement.
 - ▷ Collaboration: project & quality orgs.
 - ▷ Experience factory prototype (Basili).
- Implementation:
 - ▷ Passive tracking and active guidance.
 - ▷ Periodic and event-triggered.
 - ▷ S/W tool support

Implementation Support

- Types of tool support:
 - ▷ Data capturing
 - mostly existing logging tools
 - modified to capture new data
 - ▷ Analysis and modeling
 - SMERFS modeling tool
 - S-PLUS and related programs
 - Presentation/visualization and feedback
 - S-PLUS and Tree-Browser
- Implementation of tool support:
 - Existing tools: minimize cost
 - internal as well as external tools
 - New tools and utility programs
 - ▷ Tool integration
 - loosely coupled suite of tools
 - connectors/utility programs
 - ▷ Overall strategy: Ch.18 (Section 18.4)

SRE Perspectives

- New models and applications
 - ▷ Expand from "medium-reliable" systems.
 - ▷ New models for new application domains.
 - Data selection/treatment
- Reliability improvement
 - ▷ Followup to TBRMs
 - Predictive (early!) modeling for risk identification and management
- Other SRE frontiers:
 - Coverage/testing and reliability
 - Reliability composition and maximization