
106 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

Table 8.3. Sample test cases for the program solving the equation ax
2
+ bx + c = 0

test condition input
case d = b2 − 4ac a b c

1 d > 0 1 2 −1
2 d = 0 1 2 1
3 d < 0 1 2 3

a partition into three subsets defined by the three conditions on d. Such partitioned subsets
of input domains, or the set of possible input values, are called input sub-domains.

In this case, three test cases can be used, as illustrated in Table 8.3.. Notice that the choice
of specific test cases for each sub-domain that satisfy specific conditions is not unique.
However, if simple sub-domain coverage is the goal, then it doesn’t matter which one we
choose, because every point in a given sub-domain receives the same kind of treatment, or
belongs to the same equivalent class. In fact, this testing strategy directly corresponds to
the checklist-based testing, with the domain partition as the checklist, and each sub-domain
corresponding to a single element in the checklist.

This idea can be generalized to support partition-based testing for the general case: We
can sample one test case from inside each subset in the partition, thus achieving complete
coverage of all the subsets of corresponding equivalence classes. As illustrated in this
example, the key to partition-based testing is to define the partitions first and then try to
sensitize the test cases to achieve partition coverage.

8.2.2 Partition: Concepts and definitions

Partition is a basic mathematical concept, generally associated with set theory. Formally, a
partition of a set S is a division of a set into a collection of subsets G1, G2, . . . , Gn that
satisfies the following properties:

• The subsets are mutually exclusive, i.e., no two subsets share any common members,
or formally,

∀i, j, i 6= j ⇒ Gi ∩Gj = ∅

That is, the intersection of any such two subsets must necessarily be empty.

• The subsets are collectively exhaustive, i.e., they collectively cover or include all the
elements in the original set, or formally,

n
⋃

i=1

Gi = S

That is, the union of all subsets (Gi’s) is the set S.

Each of these subsets in a partition is called an equivalent class (or equivalence class),
where each member is the same with respect to some specific property or relation used to
define the subset. Formally, the specific relation for the members in an equivalent class is
symmetric, transitive, and reflexive, where,



Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005 107

• A symmetric relation is one that still holds if the order is changed. For a binary
relation R defined on two elements a and b, R is symmetric if R(a, b) ⇒ R(b, a).
For example, “=” is symmetric; but “>” is not.

• A transitive relation is one that holds in a relation chain. A transitive binary relation
R is one that R(a, b) ∧ R(b, c) ⇒ R(a, c). For example, “>” is transitive; but
“is-mother-of” is not.

• A reflexive relation is one that holds on every member by itself. A reflexive binary
relation R is one that R(a, a). For example, “=” is reflexive; but “>” is not.

Similarly, if a relation is not symmetric, not transitive, or not reflexive, we call it asymmetric,
intransitive, or irreflexive, respectively.

With these formal definitions and descriptions of partition in mind, we next examine
various uses of partitions and related ideas for software testing (White and Cohen, 1980;
Clarke et al., 1982; Weyuker and Jeng, 1991; Beizer, 1990).

8.2.3 Testing decisions and predicates for partition coverage

Since partitions are a special subclass of checklists, the types of partitions can closely
resemble the type of checklists we described in Section 8.1. However, we group them in a
different way according to the specific decisions associated use in defining different types
of partitions, as follows:

• Partitions of some product entities, such as external functions (black-box view),
system components (white-box view), etc. The definition of such partitions are
typically a simple “member” relation in sets, i.e., x ∈ S for x as a member of the set
S. As a concrete example, whether a component belongs to a sub-system or not is
easy to decide. The key is to ensure the partitioned subsets truly form a partition of
the original set of all entities. That is, they are mutually exclusive and collectively
exhaustive.

• Partitions based on certain properties, relations, and related logical conditions. These
partitions can be further divided into two sub-groups:

– Direct use of logical predicates, through logical variables (those take T/F or
True/False values) and connected through logical operators AND (∧), OR (∨),
or NOT (¬).

– Comparison of numerical variables using some comparison operators, such
as “<”, “=”, “≤”, “≥”, “>”, and “6=”. For example, all possible values (a
property) of a variable x can be partitions into two subsets S1, and S2 defined
by S1 ≡ {x : x < 0} and S2 ≡ {x : x ≥ 0}.

• Combinations of the above basic types are also commonly used in decision making.
For example, the sub-domain of non-negative integers less than 21 can be specified as
(x ∈ I)∧ (x ≥ 0)∧ (x < 21), where I denotes the set of integers. The values range
is also conveniently represented as [0, 21), as we see in mathematical literature.

For the first type of partitions, the testing would be essentially the same as for checklist-
based testing: we simply select one item for testing at a time from the subset as a represen-
tative of the corresponding equivalent class until we have exhausted all the subsets.



108 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

For the other types of partitions above, testing would involve some sensitization in
determining the input variables and their values in consultation with the specific conditions
or logical predicates used to define each partitioned subset. For example, to satisfy both
conditions (x ≥ 0) and (x < 21) for the subset [0, 21) above, we might as well select
x = 10. Notice that in each subset, there might be many elements. Partition-based testing
selects one from each subset as the representative for the subset based on the equivalence
relations defined.

In addition, the conditions for partitions, or the logical predicate values, are often closely
related to either the product specifications (black-box view) or actual implementations
(white-box view). For example, we might specify that a function works for certain data
types, such as the distinction between integer arithmetic operations and floating point ones
in most numerical computing systems. Similarly, many conditional statements in programs
may be related to some partitioning conditions, such as those used to guard unexpected
input. For example, most arithmetic software packages would not accept divide by 0 as
legitimate input. In general, such domain partitions can be represented by simple decisions
in product specification or multiple decisions in program code. When multiple decisions
are involved, decision trees or decision tables can be used. Therefore, we can consider
decision testing and related predicate testing as part of the general partition-based testing.

The above combinations of partition definitions can often be mapped to a series of de-
cisions made along the way of program execution. These decisions in a sequence can be
represented by a decision tree, starting from the initial decision, progressing through inter-
mediate decisions, until we finish with a final decision and program termination. Some-
times, the decision can be organized into stages, with the same question asked at each stage
regardless of the previous decisions. This would result in a uniform decision tree. Alter-
natively, some of the later decisions and questions asked may be dependent on the earlier
ones, resulting in a non-uniform decision tree.

In either case, we can use the unique path property, from the initial decision node to the
last decision outcome to enumerate all the series of decisions, and treat each unique path as
a sub-domain and derive test cases to cover each sub-domain. In this way, a decision tree is
equivalent to a hierarchical checklist, but with the items of each checklist at each decision
point form a partition. For example, in the hierarchical checklist using test scenario classes,
scenario numbers, and variation numbers in Section 8.1 can be interpreted as a three-level
decision tree, and test cases can be selected to cover these individual variations from specific
scenarios in different scenario classes.

The key to deriving coverage based testing for such decisions is to select values to make
the test execution follow specific decision paths. For example, if we have decisions using
logical variables P and Q in two stages, then we can realize the four combinations:

• P ∧Q or TT, i.e., P = True and Q = True.

• P ∧ ¬Q or TF, i.e., P = True and Q = False.

• ¬P ∧Q or FT, i.e., P = False and Q = True.

• ¬P ∧ ¬Q or FF, i.e., P = False and Q = False.

For a specific combination, if other numerical variables are involved, we need to select
the numerical variable values to make them satisfy the conditions. For example, to select
a test for (x ≥ 0) ∧ (x < 21), we can choose x = 10, that satisfies both (x ≥ 0) and
(x < 21). In more complicated situations, we might want to generate a list of candidate test
cases based on one condition, and then use other conditions to eliminate certain elements



Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005 109

from this initial candidate list. In this example, we might start with a list like {1, 10, 100,
. . .}, and the second condition would reduce it to {1, 10}, and we can finally select 10 or
x = 10 as our test case to cover this specific decision combination.

8.3 USAGE-BASED STATISTICAL TESTING WITH MUSA’S OPERATIONAL
PROFILES (OPS)

One important testing technique, the usage-based statistical testing with Musa’s operational
profiles (OPs) (Musa, 1993; Musa, 1998), shares the basic model with partition testing
techniques, and enhances it to include probabilistic usage information. We next describe
Musa OPs and their usage in testing.

8.3.1 The cases for usage-based statistical testing

The many sub-domains for large software systems may include many different operations
for each sub-domain. In such situations, the equivalence relation as represented by partition
testing described earlier in this chapter represents a uniform sampling of one test point from
each sub-domain. However, if operations associated with one particular sub-domain are
used more often than others, each underlying defect related to this sub-domain is also more
likely to cause more problems to users than problems associated with other sub-domains.

This likelihood for problems to customers,or related system failures defined accordingly,
is captured in software product reliability. As already introduced in Chapter 2, reliability is
defined to be the probability of failure-free operations for a specific time period or a specific
input set (Musa et al., 1987; Lyu, 1995a; Tian, 1998). The best way to assess and ensure
product reliability during testing is to test the software product as if it is used by customers
through the following steps:

• The information related to usage scenarios, patterns, and related usage frequency by
target customers and users needs to be collected.

• The information collected above needs to be analyzed and organized into some models
— what we call operational profiles (OPs) — for use in testing.

• Testing needs to be performed in accordance with the OPs.

• Testing results can be analyzed to assess product reliability and provide feedback to
the testing and the general software development process.

Most of the common testing related activities were described in Chapter 7, and relia-
bility analysis is described in Chapter 22. Therefore, we concentrated on the information
collection, OP construction, and it usage in testing in the rest of this chapter.

Like most test activities, the actually testing is typically performed late in the overall
product development process, and the model construction could be and should be started
much earlier. Usage-based statistical testing actually pushes both these activities to the
extremes at both ends as compared with most other testing techniques. On the one hand,
the operational profiles (OPs) need to be constructed with customer and user input. It
makes more sense to start them right at the requirement analysis phase, or even earlier, in
the product planning and market assessment phase. On the other hand, testing according
to customer usage scenarios and frequencies captured in OPs can not be performed until
most of the product components have been implemented. Therefore, such OP-based testing



110 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

Table 8.4. Usage frequencies (hits) and probabilities (% of total) for different file types for
SMU/SEAS

File type Hits % of total

.gif 438536 57.47%

.html 128869 16.89%
directory 87067 11.41%
.jpg 65876 8.63%
.pdf 10784 1.41%
.class 10055 1.32%
.ps 2737 0.36%
.ppt 2510 0.33%
.css 2008 0.26%
.txt 1597 0.21%
.doc 1567 0.21%
.c 1254 0.16%
.ico 849 0.11%

Cumulative 753709 98.78%

Total 763021 100%

could only be performed in the very late sub-phases of testing, such as in the integration,
system, or acceptance testing sub-phases.

8.3.2 Musa OP: Basic ideas

According to Musa (Musa, 1993; Musa, 1998), an operational profile, or an OP for short,
is a list of disjoint set of operations and their associated probabilities of occurrence. It is a
quantitative characterization of the way a software system is or will be used. As a simple
example, consider the usage of www.seas.smu.edu, the official web site for the School
of Engineering (which used to be called School of Engineering and Applied Science, or
SEAS) of Southern Methodist University (SMU/SEAS). Table 8.4. gives the OP for this
site, or the number of requests for different types of files by web users over 26 days and the
related probabilities.

The “operations” represented in the operational profiles are usually associated with
multiple possible test cases or multiple runs. Therefore, we typically assume that each
“operation” in an OP can be tested through multiple runs without repeating the exact exe-
cution under exactly the same environment. In a sense, each operation corresponds to an
individual sub-domain in domain partitions, thus representing a whole equivalence class.
In this example, each item in the table, or each operation, represents a type of file requested
by a web user, instead of individual web pages. Of course, we could represent each web
page as an operation, but it would be at a much finer granularity. When the granularity is too
fine, the statistical testing ideas may not be as applicable, because repeated testing may end
up repeating a lot of the same test runs, which adds little to test effectiveness. In addition,
such fine-granularity OPs would be too large to be practical. For example, the number of
individual web pages on an average web site would be more than tens of thousands, while
the number of file types is usually limited to a hundred or so, including many variations



136 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

definition of ε distance, we can detect boundary shift problems in the weak N × 1 input
domain testing strategy (Cohen, 1978; White and Cohen, 1980) summarized below:

• For each sub-domain boundary in a n-dimensional input space,n linearly independent
boundary points are selected as the ON points.

• The OFF point will be “on the open side of boundary” (White and Cohen, 1980), i.e.,
it will always receive different processing than that for the ON points. Therefore, we
have two situations:

– If the boundary is a closed boundary with respect to the sub-domain under
consideration, the OFF point will be outside the sub-domain or be an exterior
point.

– If the boundary is an open boundary with respect to the sub-domain under
consideration, the OFF point will be inside the sub-domain or be an interior
point.

In either of the above cases, the OFF point will be ε distance away from the boundary.

• In general, an interior point is also sampled as the representative of the equivalence
class representing all the points in the sub-domain under consideration, resulting in
(n + 1)× b + 1 test points for each domain with b boundaries.

Weak N × 1 strategy: Other detectable problems

In addition to the boundary shift problem, other problems can be detected as well, which
we describe in general terms here. However, the readers might want to refer to concrete
examples given later when examining general descriptions below:

• Closure problems can be easily detected because such problems will be manifested as
ON and OFF points receiving the same processing instead of the expected different
processing. For an open boundary, the ON points should receive exterior processing
while the OFF point should receive interior processing. A closure problem would
cause ON points to receive interior processing. For a closed boundary, the ON
points should receive interior processing while the OFF point should receive exterior
processing. A closure problem would cause ON points to receive exterior processing.

• Boundary tilt and other boundary changes can be easily detected by the ON and OFF
points because any such change would result in some or all the ON points not on
the boundary anymore. For each of these ON points falling off the boundary, the
part of boundary associated with it is either pushed inward or outward, which can be
detected the same way as the boundary shift problem we described above.

• Missing boundary would be detected by the same processing received by the ON and
OFF points as opposed to the different processing expected.

• Extra boundary would likely be detected by the different processing associated with
some of the ON or OFF points for different boundaries. For each boundary, there
will be an OFF point or n ON points which receive interior processing. Let’s call
these ON or OFF points that receive interior processing “IN” points. All these IN
points as well as the selected interior test point should received the same processing.



PROBLEMS 145

• Weak 1× 1 uses few test points and can detect most of the boundary problems most
of the time. Therefore, it should be a primary candidate for boundary testing.

• When high quality requirements need to be met or specific types of problems that
weak 1× 1 can not address are suspected, weak N × 1 or other testing strategies can
be selectively used.

• If inconsistencies exist in some boundaries, strong testing strategies can be used to
select one set of test points for each boundary segment.

• When non-linear boundaries are involved, some approximate testing strategies can be
used, where one set of test points is used for each segment in the linear approximations
of non-linear boundaries.

In addition to its original applications in testing input domain partitions, the basic idea of
boundary testing can be applied to other situations where a logical boundary exist between
different information processing needs. One such concrete example is the queuing testing
we described in Section 9.4, where the upper and lower bounds of the queue buffer can be
tested. Additional examples of this nature will be included in Chapter 11 when we apply
boundary testing ideas to testing loops.

There are some practical problems with various boundary testing strategies, particularly
in the choice of OFF points and related ε-limits. OFF point selection for closed domain
might extend into undefined territory to cause system crash if the system is not robust enough
to guard against unexpected input. In addition, coincidental correctness is common. For
example, when different processing gives same results, much of the basis for our problem
detection is taken away. These testing strategies are also limited by their simple processing
models for more complex interactions. We examine alternative testing strategies based on
more complicated models in subsequent chapters.

Problems

9.1 Define the terms: input, input space, input vector, test point, input domain, domain
partition, sub-domain, boundary, boundary point, interior point, exterior point, vertex point,
under-defined point, over-defined point.

9.2 Give some concrete examples in drawing for the boundary problems in a 2-dimensional
space.

9.3 Of the different boundary problems, which ones are observed most often at your
work?

9.4 If we have three sub-domains defined byf(x1, x2, . . . , xn) < K, f(x1, x2, . . . , xn) =
K, and f(x1, x2, . . . , xn) > K respectively. Define the boundaries, and discuss how
boundary problems would be different in this case.

9.5 So far, we have assumed that each sub-domain is connected. A disconnected sub-
domain consists of several disconnected parts or regions. What would be the effect of
disconnected sub-domains on boundary problems, and how would you perform boundary
testing for them?

9.6 For some of the programs/projects your are working on, find some domain/sub-
domain or boundary problems, apply the different boundary testing strategies described in
this chapter, and discuss the result.


