
238 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

Inspection/ 
Collection

Correction &
Followup

Planning &

re-inspection or next round/phase of inspection

exitentry
Preparation

Figure 14.1. Generic inspection process

executable programs before one can start performing inspection. Consequently, the urgent
need for QA and defect removal in the early phases of software development can be sup-
ported by inspection, but not by testing. In addition, various software artifacts available late
in the development can be inspected but not tested, including product release and support
plans, user manuals, project schedule and other management decisions, and other project
documents. Basically, anything tangible can be inspected.

Because of this wide variety of objects for inspection, inspection techniques also vary
considerably. For example, code inspection can use the program implementation details as
well as product specifications and design documents to help with the inspection. Inspection
of test plans may benefit from expected usage scenarios of the software product by its
target customers. Inspection of product support plans must take into account the system
configuration of the product in operation and its interaction with other products and the
overall operational environment. Consequently, different inspection techniques need to be
selected to perform effective inspection on specific objects.

Similarly, there are different degrees of formality, ranging from informal reviews and
checks to very formal inspection techniques associated with precisely defined individual
activities and exact steps to follow. Even at the informal end, some general process or
guidelines need to be followed so that some minimal level of consistency can be assured,and
adequate coverage of important areas can be guaranteed. In addition, some organizational
and tool support for inspection is also needed.

Generic inspection process

Similar to the generic QA process we described in Chapter 3, all three basic elements
of planning, execution, and followup are represented in the generic inspection process in
Figure 14.1.. The major elements are explained below:

• Planning and preparation: Inspection planning needs to answer the general questions
about the inspection, including:

– What are the objectives or goals of the inspection?

– What are the software artifacts to be inspected or the objects of the inspection?

– Who are performing the inspection?

– Who else need to be involved, in what roles, and with what specific responsi-
bilities?

– What are the overall process, techniques, and followup activities of the inspec-
tion?

In the inspection literature, the term “inspection” is often used to denote the inspection
meeting itself. Preparation for such meetings, as well as all the related activities lead-



Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005 261

Table 15.1. Example symbolic execution traces

part condition x y

if x > 0 x > 0
y ← x x

part condition x y

if x > 0 x ≤ 0
y ← −x −x

Symbolic execution plays an important role in this approach. For example, the different
traces of “if” statement through symbolic execution are used to determine parallel condi-
tional assignments. Similarly, “while” involves “if” in recursive definition, therefore also
involves corresponding symbolic execution. The functional nesting can be traced through
symbolic execution as well. For the above example of calculating the absolute values with

if x ≥ 0 then y ← x else y ← −x

we have the two traces in the symbolic execution in Table 15.1..
Full details about symbolic execution and its used in this verification approach can be

found in (Mills et al., 1987a). In essence, symbolic execution is a forward flow techniques,
contrasting with the backward chaining technique for the axiomatic and wp approaches.

15.3.3 General observations

Although we didn’t go through detailed examples for the functional and wp approaches,
and the proof procedures are somewhat different, several observations are true for all three
formal verification approaches, including:

• The difficulty of producing correctness proofs, particularly for loops, where the se-
lection of proper loop invariant plays an important role, but there isn’t a uniform
formula for doing the selection. Some heuristics based on people’s understanding,
prior knowledge, or insight, are typically used to select such invariants. Sometimes, a
trial-and-error strategy is necessary to consider multiple candidates before a workable
solution can be found.

• In general, many steps are involved in the correctness proofs, and the proof can be
fairly long and complicated even for relatively small-sized programs. As a rule of
thumb, the length of the proof is typically one order of magnitude longer than the
program itself.

• The proof process can generally benefit from some hierarchical structures and related
abstractions as guide for different parts, in much of the same way as stepwise abstrac-
tion used as a code reading techniques described in Chapter 14. These abstractions
can also help us in dealing with some of the difficulties noted above, such as deriving
loop invariant based on abstraction of the loop body.

The first two of the above observations make it difficult to apply formal verification tech-
niques on large-scale software products. In addition, we also need to deal with various other
aspects and complications for larger programs, including: arrays and functions, procedures,
modules, and other program components, and sometimes complications from things such
as physical limitations, side effects, and aliases. Because of these, various “partial” and/or
semi-formal verification techniques have been suggested, as described below.



270 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

Saved
Dynamic
Contents

X

failure
detected

refresh
restore

refresh

execution flowcheckpoint checkpoint
rerun

Figure 16.1. Fault tolerance with recovery blocks

are some problems or suspected irregularities associated with this primary version. When
the backup is provided by the same program, we have the recovery block or checkpointing-
and-recovery technique described in Section 16.2. In the case where backup is provide
by a different program, if the program has the same functionality, we can consider it as
a combination of backup and duplication ideas. However, this backup program is more
likely to have somewhat different functionality than the primary program it backs up, for
example, with reduced functionality to allow for speedy recovery, or to have general backup
procedures that serves multiple purposes. All these and other fault tolerance techniques
and related topics are described in much more detail in (Lyu, 1995b).

Within failure containment techniques, we can focus either on the accident prevention
before accidents happen, or focus on damage control or reduction after accidents happen.
In the former case, we try to limit the scope and impact of failures so that they do not
lead to accidents. In the latter case, we try to reduce the accident damage through vari-
ous techniques. Both these categories are described in Section 16.4, and related analysis
techniques are also covered therein. All these and other failure containment techniques and
related topics on software safety and embedded systems are described in much more detail
in (Leveson, 1995).

16.2 FAULT TOLERANCE WITH RECOVERY BLOCKS

With the increasingly faster and faster processors, we may have the luxury of repeating
some computational tasks within a prescribed time limit without seriously affecting the
system performance. Under this circumstance, we can use recovery blocks to repeatedly
establish checkpoints, and repeat certain computational steps when dynamic problems are
observed or suspected, as described in this section.

Basic operations of systems using recovery blocks

The use of recovery blocks introduces duplication of software executions so that occasional
failures only cause loss of partial computational results but not complete execution failures.
For example, the ability to dynamically backup and recover from occasional lost or corrupted
transactions is built into many critical databases used in financial, insurance, health care,
and other industries. Figure 16.1. illustrates this technique, and depicts the major activities
involved:



272 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

unit
input output

version 1

version 2

version N

decision

Figure 16.2. Fault tolerance with NVP

while lower frequency leads to longer and more costly recovery. An optimal frequency
balances the two and incurs minimal overall cost. Alternative checkpoint strategies might
also be used, for example, performing partial checkpointing for only those contents that
are more likely to change more frequently than other contents. Therefore, the overall
performance could be improved.

Another issue is the maintenance and followup activities to normal operations. As we
noted before, repeated failures need to be dealt with by taking the system off-line for defect
analysis and fixing. However, for normal operations, some information about the re-runs
should be recorded and analyzed at a later time, either parallel to system operations or when
the system is off-line. The key determination is whether these re-runs are truly due to rare
environmental disturbances, or if software faults are to blame. In the latter case, the related
software faults need to be located and fixed at the earliest opportunity.

16.3 FAULT TOLERANCE WITH N-VERSION PROGRAMMING

N-version programming (NVP) is another way to tolerate software faults by directly in-
troducing duplications into the software itself (Avižienis, 1995). NVP is generally more
suitable than recovery blocks when timely decisions or performance are critical, such as in
many real-time control systems, or when software faults, instead of environmental distur-
bances, are more likely to be the primary sources of problems.

16.3.1 NVP: Basic technique and implementation

The basic technique is illustrated in Figure 16.2. and briefly described below:

• The basic functional units of the software system consist of N parallel independent
versions of programs with identical functionality: version 1, version 2, . . ., version
N.

• The system input is distributed to all the N versions.

• The individual output for each version is fed to a decision unit.

• The decision unit determines the system output using a specific decision algorithm.
The most commonly used algorithm is a simple majority vote, but other algorithms
are also possible.

The decision algorithm determines the degree of fault tolerance. For example, when the
simple majority rule is used, the system output would be the correct one as long as at least



276 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

Collision

AND

Fail to
Stop Other

object

OR

ABS engaged
but fail to stopnot engage

ABS did Driver
error

OR

problem
Software Other

problems
woreout

Breakpad

Figure 16.3. Fault-tree analysis (FTA) for an automobile accident

connected through logical connectors, AND, OR, NOT, to represent logical relations
among sub-conditions.

• The analysis follows a top-down procedure: starting with the top event and recursively
analyzing each event or condition to find out its logical conditions or sub-conditions.
The top event is usually associated with an accident and is represented as the root
node of the tree.

• We stop this recursive procedure at a terminal node under one of several conditions:

– The current node is well understood, therefore there is no need to analyzed it
further.

– We can not break a node into its sub-conditions any further (an atomic node).

– We do not have enough information to do so.

• The terminal nodes are associated with the so-called basic or primary events or condi-
tions represented as circles. The non-terminal nodes in-between are associated with
intermediate events or conditions represented as rectangles.

As an example of FTA, consider the collision between an object (representing an obstacle)
and an automobile that fails to stop, even though it is equipped with an anti-lock break system



278 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

Obstacle appears

No obstacle

Cruising

Break in time

No collision

Did not break in time

ABS did not work

ABS worked

Collision

Collision

No collision

Figure 16.4. Event-tree analysis (FTA) for an automobile accident

techniques, appropriate actions can be applied to negate the conditions, to disrupt the event-
chain, or otherwise provide a resolution to these hazards. Generic ways for hazard resolution
in accident prevention include the following:

• Hazard elimination through substitution, simplification, decoupling, elimination of
specific human errors, and reduction of hazardous materials or conditions. These
techniques are similar to the defect prevention and defect reduction techniques, but
with a focus on those controllable events or conditions (terminal nodes) involved in
hazardous situations based on FTA results.

• Hazard reduction through design for controllability (e.g., automatic pressure release
in boilers), use of locking devices (e.g., hardware/software interlocks), and failure
probability minimization using safety margins and redundancy. These techniques are
similar to the fault tolerance techniques, where local failures are contained without
leading to system failures. However, the actions are guided by FTA and ETA results
to focus on the key events, conditions, and sequences that are potentially related to
accidents.

• Hazard control through reducing exposure, isolation and containment (e.g., barriers
between the system and the environment), protection systems (active protection ac-
tivated in case of hazard), and fail-safe design (passive protection, fail in a safe state
without causing further damages). These techniques reduce the severity of failures,
therefore weakening the link between failures and accidents.

In the above hazard resolution activities, some specific results from FTA can be used.
For example, component replacement could be focus on those parts and areas that are linked
through FTA as conditions for accidents. The software components thus identified can be
the focus of formal verification activities, in the so called safety verification instead of
broad-based formal verification of all the system components. We can also design lock-in,
lock-out, and interlock devices, using a mixture of software and hardware technologies, to
negate logical relations represented in FTA to prevent related accidents from happening.
Similarly, some specific results from ETA can be used in hazard resolution, especially in
hazard reduction and hazard control strategies. For example, barriers created between the
critical and other paths, as well as other isolation and containment measures, can be applied
to break or disrupt the chain of events that can lead to accidents.



280 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

FSM rules

Equipment

Logical states

Physical process

Sensors Actuators 

Decoding Encoling

Physical Frame

Logical Frame

Figure 16.5. Two frame model for a CCSCS

For heterogeneous systems involving computers and related software, the software sub-
system and the physical subsystem demonstrate vastly different operational behavior and
characteristics. For example, common assumptions for hardware and equipment, such as
wear, aging, and decay, are not immediately applicable to software domain. Various mod-
els, such as the two-frame model (or TFM) (Yih and Tian, 1998), were developed to analyze
such systems.

In TFM, a heterogeneous system, such as a computer-controlled safety-critical system
(CCSCS), is divided into a logical subsystem (or logical frame) and a physical subsystem
(or physical frame). The logical subsystem corresponds to the computer controller, and
the physical subsystem is monitored and controlled by the computer controller through
sensors and actuators, as graphically illustrated in Figure 16.5.. TFM is similar to the “four
variable model” described in (Parnas and Madey, 1995), but the symmetry between the
two frames was highlighted instead of treating the software as the center and the physical
subsystem as the environment. This perspective also gives us a better way to analyze the
similarities and differences between the two frames to ensure and improve their safety. In
such a heterogeneous system, failures may involve many different scenarios, including:

• Software failures due to defects in software design and implementation, which can
be addressed to a large degree by QA techniques we have described so far in this
book.

• Hardware or equipment failures due to wear, decay, or other physical processes,
which is the main subject of traditional reliability and safety engineering, and can be
largely addressed by related techniques.

• Communication/interface failures due to erroneous interactions among different sub-
systems or components.



Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005 281

(set 1)

sensors
(set 2) predicted

state
software
entities

physical
state

alarm for
inconsistencies

physical
system

digital

sensors

controller
actuators

prescription
monitor

Figure 16.6. Prescription monitor for safety assurance

Most computer-related accidents in CCSCS can be traced back to problems in the in-
terface or interactions among the components of the systems, particularly between the
computer controller and the surrounding environment (Mackenzie, 1994). Therefore, haz-
ard analyses focusing on the interaction/interface problems were performed to develop a
technique for hazard prevention and safety improvement.

16.5.2 Prescriptive specifications for safety

In TFM, the commonly noted interface/interaction problems are mostly manifested as frame
inconsistency problems. The primary causes for these inconsistencies can be identified to
be the fundamental differences between the logical and physical frames, as follows:

• Physical states generally demonstrate regular behavior or form total functions accord-
ing to physical laws; while the discrete software states usually form partial functions.

• There are typically invariants or limits reflecting physical laws, which, when imple-
mented in software, may be violated or surpassed in failure situations.

However, because of the ultimate flexibility offered by software, if we could derive some
prescriptive specifications as maintainable formal assertions for the logical frame, we can
effectively keep the logical frame consistent with its physical frame, thus preventing various
hazardous conditions from occurring. The logical subsystem could be enhanced to include a
prescription monitor, illustrated in Figure 16.6.. The prescription monitor takes input from
both the logical and physical subsystems, automatically checks prescriptive specifications
to assure system integrity, and sounds alarms or carries out emergency actions if any of
these assertions is violated.

A series of experiments was conducted to evaluate the effectiveness of this technique.
based on report of actual scenarios of a nuclear accident. 19 hazard situations were tested in
the simulated nuclear reactor control system,covering a wide variety of errors representative
of realistic situations. In all the 19 instances, errors have been successfully detected on the
spot by checking the prescriptive specifications developed above.

The approach above can be interpreted as using formal methods, in particular model
checking, on CCSCS. However, system modeling and hazard analysis play a very important
role in identifying the areas to focus, possible prescriptive specification, as well as the
checking of these properties. This approach can be considered as a specific adaptation of
the comprehensive approach in (Leveson, 1995) where hazard analysis and identification



298 Software Quality Engineering c©Jeff Tian, to be published by John Wiley, 2005

Table 17.9. General comparison for different QA alternatives

QA alternative Applicability Effectiveness Cost

testing code occasional failures medium
defect prevention known causes systematic problems low
inspection s/w artifacts scattered faults low ∼ medium
formal verification formal spec. fault absence high
fault tolerance duplication rare-cond. failures high
failure containment known hazards rare-cond. accidents highest

in Chapter 20 can be performed to identify systematic problems and select specific
preventive actions to deal with the identified problems.

• Inspection and testing are applicable to different situations, and effective for different
defect types at different defect levels. Therefore, inspection can be performed first
to lower defect levels by directly detecting and removing many localized and static
faults, then testing can be performed to remove the remaining faults related to dy-
namic scenarios and interactions. To maximize the benefit-to-cost ratio, various risk
identification techniques covered in Chapter 21 can be used to focus inspection and
testing effort on identified high-risk product components.

• Software safety assurance (especially hazard and damage control), fault tolerance, and
formal verification techniques cost significantly more to implement than traditional
QA techniques. However, if consequence of failures is severe and potential damage
is high, they can be used to further reduce the failure probability, or to reduce the
accident probability or severity.

The comparison of the applicability, effectiveness, and cost of these QA alternatives
in this chapter can help software professionals choose appropriate QA alternatives and
related techniques, and tailor or integrate them for specific applications. Together with
the measurement and analysis activities described in Part IV, they can help us arrive at an
optimal strategy for software QA and achieve quantifiable quality improvement.

Problems

17.1 In software engineering literature, there are various studies comparing different QA
alternatives and techniques based on empirical data. Scan through some recent publications
and read some articles on this topic, and compare their results with the general comparisons
described in this chapter.

17.2 Most empirical studies mentioned above typically compare one QA alternative to
another (e.g., inspection vs testing), or compare different techniques within a general cat-
egory (e.g., different inspection processes or techniques). Can you replicate some of these
studies in your work?

17.3 Can you use the comparison questions listed in this chapter to compare individual
testing techniques?

17.4 How would the applicability of different QA alternatives be different when other
software processes (non-waterfall ones) are used?


