
CONTENTS

List of Figures xvii

List of Tables xxi

Preface xxv

PART I OVERVIEW AND BASICS

1 Overview 1

1.1 Meeting People’s Quality Expectations 1

1.2 Book Organization and Chapter Overview 4

1.3 Dependency and Suggested Usage 7

1.4 Reader Preparation and Background Knowledge 9

Problems 11

2 What Is Software Quality? 13

2.1 Quality: Perspectives and Expectations 13

2.2 Quality Frameworks and ISO-9126 16

2.3 Quality, Correctness, and Defects 18

2.3.1 Definitions: Error, fault, failure, and defect 18

2.3.2 Concepts and relations illustrated 19

2.3.3 Correctness-centered properties and measurements 20

2.4 A Historical Perspective of Quality 22

vii



viii CONTENTS

2.5 So, What Is Software Quality? 24

Problems 24

3 Quality Assurance 25

3.1 Classification: QA as Dealing with Defects 25

3.2 Defect Prevention 29

3.2.1 Education and training 29

3.2.2 Formal method 30

3.2.3 Other defect prevention techniques 31

3.3 Defect Reduction 32

3.3.1 Inspection: Direct fault detection and removal 32

3.3.2 Testing: Failure observation and fault removal 33

3.3.3 Other techniques and risk identification 34

3.4 Defect Containment 35

3.4.1 Software fault tolerance 35

3.4.2 Safety assurance and failure containment 36

3.5 Concluding Remarks 36

Problems 37

4 Quality Assurance in Context 39

4.1 Handling Discovered Defect During QA Activities 39

4.2 QA Activities in Software Processes 41

4.3 Verification and Validation Perspectives 44

4.4 Reconciling the Two Views 47

4.5 Concluding Remarks 49

Problems 50

5 Quality Engineering 51

5.1 Quality Engineering: Activities and Process 51

5.2 Quality Planning: Goal Setting and Strategy Formation 54

5.3 Quality Assessment and Improvement 57

5.4 Quality Engineering in Software Processes 57

5.4.1 Activity distribution and integration 58

5.4.2 Effort profile 59

5.5 Concluding Remarks 61

Problems 62

PART II SOFTWARE TESTING

6 Testing: Concepts, Issues, and Techniques 65

6.1 Purposes, Activities, Processes, and Context 65

6.2 Questions about Testing 69



CONTENTS ix

6.3 Functional vs Structural Testing: What to Test? 72

6.4 Coverage-Based vs Usage-Based Testing: When to Stop Testing? 76

6.5 Concluding Remarks 81

Problems 82

7 Test Activities, Management, and Automation 83

7.1 Test Planning and Preparation 83

7.1.1 Test planning: Goals, strategies and techniques 83

7.1.2 Testing models and test cases 84

7.1.3 Preparation of individual test cases 85

7.1.4 Test suite preparation and management 86

7.1.5 Preparation of test procedure 87

7.2 Test Execution and Measurement 88

7.2.1 Overall activities and management 88

7.2.2 Result checking: The oracle problem 89

7.2.3 Test measurement 90

7.3 Analysis and Followup 91

7.4 Activities, People, and Management 93

7.5 Test Automation 95

7.6 Concluding Remarks 98

Problems 99

8 Coverage and Usage Testing Based on Checklists and Partitions 101

8.1 Checklist-Based Testing and Its Limitations 101

8.2 Testing for Partition Coverage 105

8.2.1 Some motivational examples 105

8.2.2 Partition: Concepts and definitions 106

8.2.3 Testing decisions and predicates for partition coverage 107

8.3 Usage-Based Statistical Testing with Musa’s Operational Profiles (OPs) 109

8.3.1 The cases for usage-based statistical testing 109

8.3.2 Musa OP: Basic ideas 110

8.3.3 Using OPs for statistical testing and other purposes 112

8.4 Constructing Operational Profiles 113

8.4.1 Generic methods and participants 114

8.4.2 OP development procedure: Musa-1 116

8.4.3 OP development procedure: Musa-2 118

8.5 Case Study: OP for the Cartridge Support Software 119

8.5.1 Background and participants 120

8.5.2 OP development in five steps 120

8.5.3 Metrics collection, result validation, and lessons learned 122

8.6 Concluding Remarks 123



x CONTENTS

Problems 124

9 Input Domain Partitioning and Boundary Testing 127

9.1 Input Domain Partitioning and Testing 128

9.1.1 Basic concepts, definitions, and terminology 128

9.1.2 Input domain testing 130

9.1.3 Partition and boundary problems 130

9.2 Simple Domain Analysis and the Extreme Point Combination (EPC) Strategy 132

9.3 Testing Strategies Based on Boundary Analysis 135

9.3.1 Weak N × 1 strategy 135

9.3.2 Weak 1× 1 strategy 139

9.4 Other Boundary Test Strategies and Applications 140

9.4.1 Strong and approximate strategies 140

9.4.2 Other types of boundaries and extensions 141

9.4.3 Queuing testing as boundary testing 142

9.5 Concluding Remarks 144

Problems 145

10Coverage and Usage Testing Based on FSMs and Markov Chains 147

10.1 Finite-State Machines (FSMs) and Testing 148

10.1.1Overcoming limitations of simple processing models 148

10.1.2FSMs: Basic concepts and examples 149

10.1.3Representations of FSMs 151

10.2 FSM Testing: State and Transition Coverage 153

10.2.1Some typical problems with systems modeled by FSMs 153

10.2.2Model construction and checking for missing or extra states or transitions 154

10.2.3Testing for correct states and transitions 155

10.2.4Applications and limitations 157

10.3 Case Study: FSM-Based Testing of Web-Based Applications 157

10.3.1Characteristics of web-based applications 157

10.3.2What to test: Characteristics of web problems 158

10.3.3FSMs for web testing 159

10.4 Markov Chains and Unified Markov Models (UMMs) for Testing 161

10.4.1Markov chains and operational profiles 161

10.4.2From individual Markov chains to unified Markov models (UMMs) 162

10.4.3UMM construction 164

10.5 Using UMMs for Usage-based Statistical Testing 164

10.5.1Testing based on usage frequencies in UMMs 164

10.5.2Testing based on other criteria and UMM hierarchies 165

10.5.3Implementation, application, and other issues 166

10.6 Case Study Continued: Testing Based on Web Usages 167



CONTENTS xi

10.6.1Usage-based web testing: Motivations and basic approach 167

10.6.2Constructing UMMs for statistical web testing 168

10.6.3Statistical web testing: Details and examples 169

10.7 Concluding Remarks 171

Problems 172

11Control Flow, Data Dependency, and Interaction Testing 175

11.1 Basic Control Flow Testing (CFT) 176

11.1.1General concepts 176

11.1.2Model construction 178

11.1.3Path selection 180

11.1.4Path sensitization and other activities 181

11.2 Loop Testing, CFT Usage, and Other Issues 182

11.2.1Different types of loops and corresponding CFGs 182

11.2.2Loop testing: Difficulties and a heuristic strategy 184

11.2.3CFT Usage and Other Issues 186

11.3 Data Dependency and Data Flow Testing (DFT) 186

11.3.1Basic concepts: Operations on data and data dependencies 187

11.3.2Basics of DFT and DDG 188

11.3.3DDG elements and characteristics 189

11.3.4Information sources and generic procedure for DDG construction 191

11.3.5Building DDG indirectly 192

11.3.6Dealing with loops 194

11.4 DFT: Coverage and Applications 195

11.4.1Achieving slice and other coverage 195

11.4.2DFT: Applications and other issues 198

11.4.3DFT application in synchronization testing 199

11.5 Concluding Remarks 200

Problems 200

12Testing Techniques: Adaptation, Specialization, and Integration 203

12.1 Testing Sub-Phases and Applicable Testing Techniques 203

12.2 Specialized Test Tasks and Techniques 210

12.3 Test Integration 214

12.4 Test Integration Example: Hierarchical Web Testing 214

12.5 Concluding Remarks 217

Problems 219

PART III QUALITY ASSURANCE BEYOND TESTING

13Defect Prevention and Process Improvement 223

13.1 Basic Concepts and Generic Approaches 223



xii CONTENTS

13.2 Education and Training for Defect Prevention 226

13.3 Other Techniques for Defect Prevention 228

13.3.1Analysis and modeling for defect prevention 228

13.3.2Technologies, standards, and methodologies for defect prevention 229

13.3.3Software tools to block defect injection 230

13.4 Focusing on Software Processes 231

13.4.1Process selection, definition, and conformance 232

13.4.2Process maturity 232

13.4.3Process and quality improvement 234

13.5 Concluding Remarks 234

Problems 235

14Software Inspection 237

14.1 Basic Concepts and Generic Process 237

14.2 Fagan inspection 239

14.3 Other Inspections and Related Activities 242

14.3.1Inspections of reduced scope or team size 242

14.3.2Inspections of enlarged scope or team size 243

14.3.3Informal desk checks, reviews, and walkthroughs 244

14.3.4Code reading 245

14.3.5Other formal reviews and static analyses 246

14.3.6Tool support and process integration 247

14.4 Defect Detection Techniques and Inspection Effectiveness 247

14.5 Concluding Remarks 249

Problems 250

15Formal Verification 251

15.1 Basic Concepts: Formal Verification and Formal Specification 251

15.2 Formal Verification: Axiomatic Approach 254

15.2.1Formal logic specifications 254

15.2.2Axioms 255

15.2.3Axiomatic proofs and a comprehensive example 257

15.3 Other Approaches 259

15.3.1Weakest pre-conditions and backward chaining 260

15.3.2Functional approach and symbolic execution 260

15.3.3General observations 261

15.3.4Model checking and other approaches 262

15.4 Applications, Effectiveness, and Integration Issues 263

15.5 Concluding Remarks 265

Problems 266



CONTENTS xiii

16Fault Tolerance and Failure Containment 267

16.1 Basic Ideas and Concepts 267

16.1.1Ideas from other highly dependable systems 268

16.1.2Adoption and adaptation to computers and software 269

16.1.3Classification of techniques 269

16.2 Fault Tolerance with Recovery Blocks 270

16.3 Fault Tolerance with N-Version Programming 272

16.3.1NVP: Basic technique and implementation 272

16.3.2Ensuring version independence 273

16.3.3Applying NVP ideas in other QA activities 274

16.4 Failure Containment: Safety Assurance and Damage Control 275

16.4.1Hazard analysis using fault-trees and event-trees for accident prevention 275

16.4.2Hazard resolution for accident prevention 277

16.4.3Accident analysis and post-accident damage control 279

16.5 Application in Heterogeneous Systems 279

16.5.1Modeling and analyzing heterogeneous systems 279

16.5.2Prescriptive specifications for safety 281

16.6 Concluding Remarks 282

Problems 282

17Comparing Quality Assurance Techniques and Activities 285

17.1 General Questions: Cost, Benefit, and Environment 285

17.2 Applicability to Different Environments 289

17.3 Effectiveness Comparison 291

17.3.1Defect perspective 291

17.3.2Problem types 292

17.3.3Defect level and pervasiveness 293

17.3.4Result interpretation and constructive information 294

17.4 Cost Comparison 295

17.5 Comparison Summary and Recommendations 297

Problems 298

PART IV QUANTIFIABLE QUALITY IMPROVEMENT

18Feedback Loop and Activities for Quantifiable Quality Improvement 303

18.1 QA Monitoring and Measurement 304

18.1.1Direct vs indirect quality measurements 304

18.1.2Direct quality measurements: Result and defect measurements 306

18.1.3Indirect quality measurements: Environmental, product internal, and

activity measurements 306

18.2 Immediate Followup Actions and Feedback 308

18.3 Analyses and Followup Actions 309



xiv CONTENTS

18.3.1Analyses for product release decisions 309

18.3.2Analyses for other project management decisions 311

18.3.3Feedback to analyses and models themselves 312

18.3.4Longer term and broader scope followup actions 313

18.4 Implementation, Integration, and Tool Support 314

18.4.1Feedback loop: Implementation and integration 314

18.4.2A refined quality engineering process 315

18.4.3Tool support: Strategy, implementation, and integration 317

18.5 Concluding Remarks 320

Problems 320

19Quality Models and Measurements 323

19.1 Models for Quality Assessment 323

19.2 Generalized Models 324

19.3 Product-Specific Models 327

19.4 Model Comparison and Interconnections 328

19.5 Data Requirements and Measurement 330

19.6 Selecting Measurements and Models 333

19.7 Concluding Remarks 335

Problems 337

20Defect Classification and Analysis 339

20.1 General Types of Defect Analyses 339

20.1.1Defect Distribution Analysis 340

20.1.2Defect Trend Analysis and Defect Dynamics Model 343

20.1.3Defect Causal Analysis 344

20.2 Defect Classification and ODC 345

20.2.1ODC concepts 345

20.2.2Defect classification using ODC: A comprehensive example 346

20.2.3Adapting ODC to analyze web errors 347

20.3 Defect Analysis for Classified Data 348

20.3.1One-way analysis: Analyzing a single defect attribute 348

20.3.2Two-way and multi-way analysis: Examining cross-interactions 349

20.4 Concluding Remarks 350

Problems 351

21Risk Identification for Quantifiable Quality Improvement 353

21.1 Basic Ideas and Concepts 353

21.2 Traditional Statistical Analysis Techniques 355

21.3 New Techniques for Risk Identification 356

21.3.1Principal component and discriminant analyses 356



CONTENTS xv

21.3.2Artificial neural networks and learning algorithms 358

21.3.3Data partitions and tree-based modeling 359

21.3.4Pattern matching and optimal set reduction 362

21.4 Comparisons and Integration 363

21.5 Risk Identification for Classified Defect Data 365

21.6 Concluding Remarks 368

Problems 369

22Software Reliability Engineering 371

22.1 SRE: Basic Concepts and General Approaches 371

22.2 Large Software Systems and Reliability Analyses 372

22.3 Reliability Snapshots Using IDRMs 374

22.4 Longer Term Reliability Analyses Using SRGMs 377

22.5 TBRMs for Reliability Analysis and Improvement 380

22.5.1Constructing and using TBRMs 381

22.5.2TBRM Applications 382

22.5.3TBRM’s impacts on reliability improvement 384

22.6 Implementation and Software Tool Support 385

22.7 SRE: Summary and Perspectives 386

Problems 387

Index 401



Bibliography

Aldemir, T., Siu., N., Mosleh, A., Cacciabue, C., and Goktepe, P. G. (1994). Reliability and
Safety Assessment of Dynamic Process Systems. NATO ASI Series. Springer-Verlag,
New York.

Allen, F. E. and Cocke, J. (1972). Graph theoretic constructs for program control flow
analysis. Technical Report RC3923, IBM T. J. Watson Research Center.

Avižienis, A. A. (1995). The methodology of N-version programming. In Lyu, M. R.,
editor, Software Fault Tolerance, pages 23–46. John Wiley & Sons, Inc., New York.

Avritzer, A. and Weyuker, E. J. (1995). The automatic generation of load test suites and the
assessment of the resulting software. IEEE Trans. on Software Engineering, 21(9):705–
716.

Bachiochi, D. J., Berstene, M. C., Chouinard, E. F., Conlan, N. M., Danchak, M. M., Furey,
T., Neligon, C. A., and Way, D. (1997). Usability studies and designing navigational
aids for the World Wide Web. Computer Networks and ISDN Systems, 29(8-13):1489–
1496.

Basili, V. R. (1995). The experience factory and its relationship to other quality approaches.
In Zelkowitz, M. V., editor, Advances in Computers, Vol.41, pages 65–82. Academic
Press, San Diego, CA.

Basili, V. R. and Mills, H. D. (1982). Understanding and documenting programs. IEEE
Trans. on Software Engineering, 8(3):270–283.

388



BIBLIOGRAPHY 389

Basili, V. R. and Rombach, H. D. (1988). The TAME project: Towards improvement-
oriented software environments. IEEE Trans. on Software Engineering, 14(6):758–
773.

Basili, V. R., Zelkowitz, M. V., McGarry, F. E., Page, J., Waligora, S., and Pajerski, R.
(1995). SEL’s software process-improvement program. IEEE Software, 12(6):83–87.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, Mass.

Beck, K. (2003). Test-Driven Development. Addison-Wesley, Reading, Mass.

Behlandorf, B. (1996). Running a Perfect Web Site with Apache, 2nd Ed. MacMillan
Computer Publishing, New York.

Beizer, B. (1990). Software Testing Techniques, 2nd Ed. International Thomson Computer
Press, Boston, MA.

Beizer, B. (1995). Black-Box Testing: Techniques for Functional Testing of Software and
Systems. John Wiley & Sons, Inc., New York.

Beizer, B. (1998). Software is different. Software Quality Professional, 1(1):44–54.

Bhandari, I., Halliday, M., Tarver, E., Brown, D., Chaar, J., and Chillarege, R. (1993). A
case study of software process improvement during development. IEEE Trans. on
Software Engineering, 19(12):1157–1170.

Biffl, S. and Halling, M. (2003). Investigating the defect detection effictiveness and cost
benefit of nominal inspection teams. IEEE Trans. on Software Engineering,29(5):385–
397.

Binder, R. V. (2000). Testing Object Oriented Systems, Models, Patterns, and Tools. Addi-
son Wesley, Addison Wesley Longman Inc., One Jacob Way Reading, Massachusetts
01867.

Bisant, D. B. and Lyle, J. R. (1989). A two-person inspection method to improve program-
ming productivity. IEEE Trans. on Software Engineering, 15(10):1294–1304.

Black, R. (2004). Critical Testing Processes. Addison-weley, Reading, MA.

Blum, B. I. (1992). Software Engineering: A Holistic View. Oxford University Press, New
York, NY.

Boehm, B. and Basili, V. R. (2001). Software defect reduction top 10 list. IEEE Computer,
34(1):135–137.

Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall, Englewood Cliffs,
New Jersey.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE
Computer, pages 61–72.

Boehm, B. W. (1991). Software risk management: Principles and practices. IEEE Software,
8(1):32–41.



390 BIBLIOGRAPHY

Bowers, N. (1996). Weblint: Quality assurance for the World-Wide Web. Computer Net-
works and ISDN Systems, 28(7-11):1283–1290.

Briand, L. C., Basili, V. R., and Hetmanski, C. J. (1993). Developing interpretable models
with optimal set reduction for identifying high-risk software components. IEEE Trans.
on Software Engineering, 19(11):1028–1044.

Briand, L. C., Bunse, C., and Daly, J. W. (2001). A controlled experiment for evaluating
quality guidelines on the maintainability of object-oriented designs. IEEE Trans. on
Software Engineering, 27(6):513–530.

Brooks, F. P. (1987). No silver bullet, essence and accidents of software engineering. IEEE
Computer, 20(4):10–19.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniver-
sary Edition. Addison-Wesley Publishing Company, Reading, MA.

Brown, J. R. and Lipow, M. (1975). Testing for software reliability. In Proc. Int. Conf.
Reliable Software, pages 518–527, Los Sangeles, CA.

Burnstein, I. (2003). Practical Software Testing. Springer-Verlag, New York.

Buss, E. and Henshaw, J. (1992). Experiences in program understanding. Technical Report
TR-74.105, IBM PRGS Toronto Laboratory.

Card, D. N. and Glass, R. L. (1990). Measuring Software Design Quality. Prentice Hall,
Englewood Cliffs, New Jersey.

Cárdenas-Garcı́a, S. R., Tian, J., and Zelkowitz, M. V. (1992). An application of decision
theory for the evaluation of software prototypes. Journal of Systems and Software,
19(1):27–39.

Cárdenas-Garcı́a, S. R. and Zelkowitz, M. V. (1991). A management tool for evaluation of
software designs. IEEE Trans. on Software Engineering, 17(9):961–971.

Chaar, J., Halliday, M., Bhandari, I., and Chillarege, R. (1993). In-process evaluation for
software inspection and test. IEEE Trans. on Software Engineering, 19(11):1055–
1070.

Charette, R. (1989). Software Engineering Risk Analysis and Management. McGraw Hill,
New York.

Chen, M. H., Lyu, M. R., and Wong, W. E. (2001). Effect of code coverage on software
reliability measurement. IEEE Trans. on Reliability, 50(2):165–170.

Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., and Wong, M.-Y.
(1992). Orthogonal defect classification — a concept for in-process measurements.
IEEE Trans. on Software Engineering, 18(11):943–956.

Chow, T. S. (1978). Testing software design modeled by finite-state machines. IEEE Trans.
on Software Engineering, 4(3):178–187.

Chruscielski, K. and Tian, J. (1997). An operational profile for the cartridge support soft-
ware. In Proc. 8th Int. Symp. on Software Reliability Engineering, pages 203–212.



BIBLIOGRAPHY 391

Clark, L. A. and Pregibon, D. (1993). Tree based models. In Chambers, J. M. and Hastie,
T. J., editors, Statistical Models in S, chapter 9, pages 377–419. Chapman & Hall,
London.

Clarke, L. A. (1976). A system to generate test data and symbolically execute programs.
IEEE Trans. on Software Engineering, 2(3):215–222.

Clarke, L. A., Hassel, J., and Richardson, D. J. (1982). A close look at domain testing.
IEEE Trans. on Software Engineering, 8:380–390.

Cohen, E. I. (1978). A Finite Domain-Testing Strategy for Computer Program Testing. PhD
thesis, Ohio State University.

Denning, P. J. (1992). What is software quality? Communications of the ACM, 35(1):13–15.

Deo, N. (1974). Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall, Englewood Cliffs, New Jersey.

Dijkstra, E. W. (1968). Go To statement considered harmful. Communications of the ACM,
11(3):147–148.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy, and formal derivation of
programs. Communications of the ACM, 18(8):453–457. EWD472.

Dromey, R. G. (1995). A model for software product quality. IEEE Trans. on Software
Engineering, 13(2):146–162.

Dromey, R. G. (1996). Cornering the chimera. IEEE Software, 13(1):33–43.

Dugan, J. B. (1995). Software system analysis using fault trees. In Lyu, M. R., editor,
Handbook of Software Reliability Engineering, pages 615–659. McGraw-Hill, New
York.

Dunsmore, A., Roper, M., and Wood, M. (2003a). The development and evaluation of
three diverse techniques for object-oriented code inspection. IEEE Trans. on Software
Engineering, 29(8):677–686.

Dunsmore, A., Roper, M., and Wood, M. (2003b). Practical code inspection techniques for
object-oriented systems: An experimental comparison. IEEE Software, 20(4):21–29.

Duran, J. W. and Ntafos, S. C. (1984). An evaluation of random testing. IEEE Transactions
On Software Engineering, SE-10(4):438–444.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program development.
IBM Systems Journal, 3:182–211.

Farr, W. J. and Smith, O. D. (1991). Statistical modeling and estimation of reliability
functions for software (SMERFS) users guide. Technical Report NSWC TR 84-373,
Revision 2, Naval Surface Warfare Center.

Fenton, N. and Pfleeger, S. L. (1996). Software Metrics: A Rigorous and Practical Ap-
proach, 2nd Edition. PWS Publishing.

Frankl, P. G., Hamlet, R. G., Littlewood, B., and Strigini, L. (1998). Evaluating testing
methods by delivered reliability. IEEE Trans. on Software Engineering, 24(8):586–
601.



392 BIBLIOGRAPHY

Frankl, P. G. and Weyuker, E. J. (2000). Testing software to detect and reduce risk. Journal
of Systems and Software, 53(3):275–286.

Fromme, B. (1998). Web software testing: Challenges and solutions. In InterWorks’98.

Garg, V. K. (1999). IS-95 CDMA & CDMA 2000: Cellular/PCS Systems Implementation.
Prentice-Hall, Englewood Cliffs, New Jersey.

Gerhart, S. A., Craigen, D., and Ralston, T. (1994). Experience with formal methods in
critical systems. IEEE Software, 11(1):20–28.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2003). Fundamentals of Software Engineering,
2nd Edition. Prentice Hall, Englewood Cliffs, NJ.

Gilb, T. and Graham, D. (1993). Software Inspection. Addison-Wesley Longman, London.

Goel, A. L. (1985). Software reliability models: Assumptions, limitations, and applicability.
IEEE Trans. on Software Engineering, 11(12):1411–1423.

Goel, A. L. and Okumoto, K. (1979). A time dependent error detection rate model for
software reliability and other performance measures. IEEE Trans. on Reliability,
28(3):206–211.

Goodenough, J. B. and Gerhart, S. A. (1975). Toward a theory of test data selection. IEEE
Trans. on Software Engineering, 1:156–173.

Gries, D. (1987). The Science of Programming. Springer-Verlag.

Guttag, J. V., Horowitz, E., and Musser, D. R. (1978). Abstract data types and software
validation. Communications of the ACM, 21(12).

Hamlet, D., Mason, D., and Woit, D. (2001). Theory of software reliability based on com-
ponents. In Proc. 23rd Int. Conf. on Software Engineering, pages 361–370, Toronto,
Canada.

Hamlet, D. and Taylor, R. (1990). Partition testing does not inspire confidence. IEEE Trans.
on Software Engineering, 16(12):1402–1411.

Hamlet, R. G. (1977). Testing programs with the aid of a compiler. IEEE Trans. on Software
Engineering, 3:279–290.

Hatton, L. (1998). Does OO sync with how we think? IEEE Software, 15(3):46–54.

Henley, E. J. and Kumamoto, H. (1981). Reliability Engineering and Risk Assessment.
Prentice-Hall, Englewood Cliffs, New Jersey.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580.

Holmes, J. S. (2003). Identifying code-inspection improvements using statistical black belt
techniques. Software Quality Professional, 6(1):4–14.

Horgan, J. R. and Mathur, A. P. (1995). Software testing and reliability. In Lyu, M. R.,
editor, Handbook of Software Reliability Engineering, pages 531–566. McGraw-Hill,
New York.



BIBLIOGRAPHY 393

Howden, W. E. (1976). Reliability of the path analysis testing strategy. IEEE Trans. on
Software Engineering, 2(3):208–215.

Howden, W. E. (1980). Functional testing. IEEE Trans. on Software Engineering, SE-
6(2):162–169.

Howden, W. E. (1982). Weak mutation testing and completeness of test sets. IEEE Trans.
on Software Engineering, SE-8:371–379.

Humphrey, W. (1998). The software quality profile. Software Quality Professional, 1(1):8–
18.

Humphrey, W. S. (1989). Managing the Software Process. Addison-Wesley, Reading, MA.

Humphrey, W. S. (1995). A Discipline for Software Engineering. Addison-Wesley, Reading,
MA.

Huo, Q., Zhu, H., and Greenwood,S. (2003). A multi-agent software environment for testing
web-based applications. In Proc. 27th Int. Computer Software and Applications Conf.,
pages 210–215, Dallas, Texas.

IBM (1991). Programming Process Architecture, Version 2.1. IBM.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Number
STD 610.12-1990. IEEE.

ISO (2001). ISO/IEC 9126-1:2001 Software Engineering – Product Quality – Part 1:
Quality Model. ISO.

Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial.
IEEE Computer, 29(3):31–44.

Jelinski, Z. and Moranda, P. L. (1972). Software reliability research. In Freiberger, W.,
editor, Statistical Computer Performance Evaluation, pages 365–484. Academic Press,
New York.

Jeng, B. and Weyuker, E. J. (1994). A simplified domain-testing strategy. ACM Trans. on
Software Engineering and Methodology, 3(3):254–270.

Kallepalli, C. and Tian, J. (2001). Measuring and modeling usage and reliability for statis-
tical web testing. IEEE Trans. on Software Engineering, 27(11):1023–1036.

Kan, S. H. (2002). Metrics and Models in Software Quality Engineering, 2/e. Addison-
weley, Reading, MA.

Kaner, C., Falk, J., and Nguyen, H. Q. (1999). Testing Computer Software. John Wiley &
Sons, Inc., New York.

Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd Ed.
Academic Press, New York.

Khoshgoftaar, T. M., Allen, E. B., Kalaichelvan, K. S., and Goel, N. (1996). Early quality
prediction: A case study in telecommunications. IEEE Software, 13(1):65–71.

Khoshgoftaar, T. M. and Szabo, R. M. (1996). Using neural networks to predict software
faults during testing. IEEE Trans. on Reliability, 45(3):456–462.



394 BIBLIOGRAPHY

King, S., Hammond, J., Chapman, R., and Pryor, A. (2000). Is proof more cost-effective
than testing. IEEE Trans. on Software Engineering, 26(8):675–686.

Kitchenham, B. and Pfleeger, S. L. (1996). Software quality: The elusive target. IEEE
Software, 13(1):12–21.

Knight, J. C. and Myers, E. A. (1992). An improved inspection technique. Communications
of the ACM, 36(11):51–61.

Knuth, D. E. (1973). The Art of Computer Programming. Addison-Wesley, Reading, MA.

Koru, A. G. and Tian, J. (2003). An empirical comparison and characterization of high defect
and high complexity modules. Journal of Systems and Software, 67(3):153–163.

Koru, A. G. and Tian, J. (2004). Defect handling in medium and large open source software
projects. IEEE Software, 21(4):54–61.

Krishnan, M. S. and Kellner, M. I. (1999). Measuring process consistency: Implications
for reducing software defects. IEEE Trans. on Software Engineering, 25(6):800–815.

Kung, D. C., Hsia, P., and Gao, J. (1998). Testing Object-Oriented Software. IEEE Computer
Society Press, Los Alamitos, California.

Kuvaja, P., Simila, J., Krzanik, L., Bicego, A., Koch, G., and Saukonen, S. (1994). Soft-
ware Process Assessment and Improvement: the BOOTSTRAP Approach. Blackwell
Publishers, Oxford, UK.

Leveson, N. G. (1995). Safeware: System Safety and Computers. Addison-Wesley, Reading,
MA.

Li, Z. and Tian, J. (2003). Analyzing web logs to identify common errors and improve web
reliability. In Proc. IADIS International Conference on e-Society, pages 235–242,
Lisbon, Portugal.

Lu, P. and Tian, J. (1993a). Applying software reliability engineering in large-scale software
development. In Proc. 3rd Int. Conf. on Software Quality, pages 323–330, Lake Tahoe,
Nevada.

Lu, P. and Tian, J. (1993b). Software reliability engineering experience in the
IBM Toronto Laboratory. In Proc. IBM Software Engineering ITL Conf., pages 459–
467, Toronto, Canada.

Luqi (1989). Software evolution through rapid prototyping. IEEE Computer, pages 13–25.

Lutz, R. R. and Mikulski, I. C. (2004). Ongoing requirements discovery in high-integrity
systems. IEEE Software, 21(2):19–25.

Lyu, M. R., editor (1995a). Handbook of Software Reliability Engineering. McGraw-Hill,
New York.

Lyu, M. R., editor (1995b). Software Fault Tolerance. John Wiley & Sons, Inc., New York.

Lyu, M. R. and Avižienis, A. A. (1992). Assuring design diversity in N-version software:
A design paradigm for N-version programming. In Meyer, J. F. and Schlichting, R. D.,



BIBLIOGRAPHY 395

editors, Dependable Computing for Critical Applications 2. Springer-Verlag, New
York.

Ma, L. and Tian, J. (2003). Analyzing errors and referral pairs to characterize common
problems and improve web reliability. In Proc. 3rd International Conference on Web
Engineering, pages 314–323, Oviedo, Spain.

Mackenzie, D. (1994). Computer-related accidental death: An empirical exploration. Sci-
ence and Public Policy, pages 233–248.

Maddux, R. (1985). A study of program structure, Ph.D. dissertation. PhD thesis, University
of Waterloo.

Malaiya, Y. K., Li, M. N., Bieman, J. M., and Karcich, R. (2002). Software reliability
growth with test coverage. IEEE Trans. on Reliability, 51(4):420–426.

Malaiya, Y. K. and Srimani, P. K. (1990). Software Reliability Models: Theoretical Devel-
opments, Evaluation & Applications. IEEE Computer Society Press, Los Alamitos,
California.

DeMillo, R. A., McCracken, W. M., Martin, R. J., and Passafiume, J. F. (1987). Software
Testing and Evaluation. Benjamin/Cummings, Menlo Park, CA.

McAllister, D. F. and Vouk, M. A. (1995). Fault-tolerant software reliability engineering.
In Lyu, M. R., editor, Handbook of Software Reliability Engineering, pages 567–614.
McGraw-Hill, New York.

McCabe, T. J. (1976). A complexity measure. IEEE Trans. on Software Engineering,
2(6):308–320.

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell System Technical
Journal, 34:1045–1079.

Miller, E. (2000). The Website Quality Challenge. Software Research Inc.

Miller, E. F. and Howden, W. E. (1981). Tutorial: Software Testing and Validation Tech-
niques, 2nd Ed. IEEE Computer Society.

Mills, H. D. (1972). On the statistical validation of computer programs. Technical Report
72-6015, IBM Federal Syst. Div.

Mills, H. D., Basili, V. R., Gannon, J. D., and Hamlet, R. G. (1987a). Principles of Computer
Programming: A Mathematical Approach. Alan and Bacon, Inc., Boston, MA.

Mills, H. D., Dyer, M., and Linger, R. C. (1987b). Cleanroom software engineering. IEEE
Software, 4(5):19–24.

Moore, E. F. (1956). Gedanken experiments on sequential machines. Automata Studies.
Annals of Mathematical Studies #34.

Munson, J. C. and Khoshgoftaar, T. M. (1992). The detection of fault-prone programs.
IEEE Trans. on Software Engineering, 18(5):423–433.

Musa, J. D. (1975). A theory of software reliability and its application. IEEE Trans. on
Software Engineering, 1(3):312–327.



396 BIBLIOGRAPHY

Musa, J. D. (1993). Operational profiles in software reliability engineering. IEEE Software,
10(2):14–32.

Musa, J. D. (1998). Software Reliability Engineering. McGraw-Hill, New York.

Musa, J. D. and Everett, W. W. (1990). Software-reliability engineering: Technology for
the 1990s. IEEE Software, 7(6):36–43.

Musa, J. D., Iannino, A., and Okumoto, K. (1987). Software Reliability: Measurement,
Prediction, Application. McGraw-Hill, New York.

Musa, J. D. and Okumoto, K. (1984). A logarithmic Poisson execution time model for
software reliability measurement. In Proc. 7th Int. Conf. on Software Engineering,
pages 230–238, Orlando, FL.

Myers, G. J. (1979). The Art of Software Testing. John Wiley & Sons, Inc., New York.

Nelson, E. (1978). Estimating software reliability from test data. Microelectronics and
Reliability, 17(1):67–73.

Offutt, J. (2002). Quality attributes of web applications. IEEE Software, 19(2):25–32.

Oivo, M. and Basili, V. R. (1992). Representing software engineering models: The TAME
goal oriented approach. IEEE Trans. on Software Engineering, 18(10):886–898.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058.

Parnas, D. L. and Madey, J. (1995). Functional documentation for computer systems. Sci.
Comput. Program, 25(1):41–61.

Parnas, D. L. and Weiss, D. M. (1985). Active design reviews: Principles and practices. In
Proc. 8th Int. Conf. on Software Engineering, pages 215–222. IEEE Computer Society
Press.

Paulk, M., Weber, C. V., Garcia, S. M., Chrissis, M. B., and Bush, M. W. (1993). Key
practices of the capability maturity model, version 1.1. Technical Report CMU/SEI-
93-TR-24, DTIC Number ADA263432, Software Engineering Institute.

Paulk, M. C., Weber, C. V., Curtis, B., and Chrissis, M. B. (1995). The Capability Maturity
Model: Guidelines for Improving the Software Process. Addison-Wesley, Reading,
MA.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice Hall,
Englewood Cliffs, New Jersey.

Pfleeger, S. L. and Hatton, L. (1997). Investigating the influence of formal methods. IEEE
Computer, 30(2):33–43.

Pfleeger, S. L., Hatton, L., and Howell, C. C. (2002). Solid Software. Prentice Hall, Upper
Saddle River, New Jersey.

Porter, A. A. and Johnson, P. M. (1997). Assessing software review meetings: Results
of a comparative analysis of two experimental studies. IEEE Trans. on Software
Engineering, 23(3):129–145.



BIBLIOGRAPHY 397

Porter, A. A. and Selby, R. W. (1990). Empirically guided software development using
metric-based classification trees. IEEE Software, 7(2):46–54.

Porter, A. A., Siy, H., and Votta, L. G. (1996). A review of software inspections. In
Zelkowitz, M. V., editor, Advances in Computers, Vol.42, pages 39–76. Academic
Press, San Diego, CA.

Porter, A. A. and Votta, L. G. (1997). What makes inspections work. IEEE Software,
14(5):99–102.

Prahalad, C. K. and Krishnan, M. S. (1999). The new meaning of quality in the information
age. Harvard Business Review, 77(5):109–118.

Pratt, J. W., Raiffa, H., and Schlaifer, R. (1965). Introduction to Statistical Decision Theory.
McGraw-Hill, New York.

Pratt, T. W. and Zelkowitz, M. V. (2001). Programming Languages: Design and Imple-
mentation. Prentice-Hall, Inc., Upper Saddle River, New Jersey.

Prechelt, L. (2000). An empirical comparison of seven programming languages. IEEE
Computer, 33(10):23–29.

Putnam, L. H. (1978). A general empirical solution to the macro software sizing and
estimation problem. IEEE Trans. on Software Engineering, pages 345–361.

Ramamoorthy, C. V. and Bastani, F. B. (1982). Software reliability: Status and perspectives.
IEEE Trans. on Software Engineering, 8(4):359–371.

Raymond, E. S. (1999). The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly and Associates, Sebastopol, CA,
95472, USA.

Reichheld Jr., F. F. and Sasser, W. E. (1990). Zero defections: Quality comes to services.
Harvard Business Review, 68(5):105–111.

Rosenblum, D. S. and Weyuker, E. J. (1997). Using coverage information to predict the cost-
effectiveness of regression testing strategies. IEEE Trans. on Software Engineering,
23(3):146–156.

Rothermel, G. and Harrold, M. J. (1996). Analyzing regression test selection techniques.
IEEE Trans. on Software Engineering, 22(8):529–551.

Seaman, C. B. and Basili, V. R. (1997). Communication and organization in software
development: An empirical study. IBM Systems Journal, 36.

Seaman, C. B. and Basili, V. R. (1998). Communication and organization: An empirical
study of discussion in inspection meetings. IEEE Trans. on Software Engineering,
24(7):559–572.

Selby, R. W., Basili, V. R., and Baker, F. T. (1987). Cleanroom software development: An
empirical evaluation. IEEE Trans. on Software Engineering, SE-13(9):1027–1037.

Selby, R. W. and Porter, A. A. (1988). Learning from examples: Generation and evaluation
of decision trees for software resource analysis. IEEE Trans. on Software Engineering,
14(12):1743–1757.



398 BIBLIOGRAPHY

Shneiderman, B. (1977). Measuring computer program quality and comprehension. Int. J.
of Man-Machine Studies, 9.

Shneiderman, B. (1980). Software Psychology. Winthrop Publishers, Cambridge, MA.

Spiliopoulou, M. (2000). Web usage mining for web site evaluation. Communications of
the ACM, 43(8):127–134.

StatSci (1993). S-PLUS Programmer’s Manual, Version 3.2. StatSci, A Division of Math-
Soft, Inc., Seattle, Washington.

Tai, K.-C. (1984). A program complexity metric based on data flow information in control
graphs. In 7th Int. Conf. on Software Engineering, pages 239–248, Orlando, Florida.

Tanik, M. M. and Yeh, R. T. (1989). Rapid prototyping in software development. IEEE
Computer, pages 9–10.

Thayer, R., Lipow, M., and Nelson, E. (1978). Software Reliability. North-Holland.

TIA/EIA (1994). Mobile Station-Base Station Compatibility Standard for Dual Mode Wide-
band Spread Spectrum Cellular System, Version 0.04. TIA/EIA/IS-95-A.

Tian, J. (1995). Integrating time domain and input domain analyses of software reliability
using tree-based models. IEEE Trans. on Software Engineering, 21(12):945–958.

Tian, J. (1996). An integrated approach to test tracking and analysis. Journal of Systems
and Software, 35(2):127–140.

Tian, J. (1998). Reliability measurement, analysis, and improvement for large software
systems. In Zelkowitz, M. V., editor, Advances in Computers, Vol.46: The Engineering
of Large Systems, chapter 4, pages 159–235. Academic Press, San Diego, CA.

Tian, J. (1999). Measurement and continuous improvement of software reliability through-
out software life-cycle. Journal of Systems and Software, 47(2-3):189–195.

Tian, J. (2000). Risk identification techniques for defect reduction and quality improvement.
Software Quality Professional, 2(2):32–41.

Tian, J. (2001). Quality assurance alternatives and techniques: A defect-based survey and
analysis. Software Quality Professional, 3(3):6–18.

Tian, J. (2002). Better reliability assessment and prediction through data clustering. IEEE
Trans. on Software Engineering, 28(10):997–1007.

Tian, J. (2004). Quality-evaluation models and measurements. IEEE Software, 21(3):84–91.

Tian, J. and Henshaw, J. (1994). Tree-based defect analysis in testing. In Proc. 4th Int.
Conf. on Software Quality, McLean, Virginia.

Tian, J. and Lin, E. (1998). Unified Markov models for software testing, performance eval-
uation, and reliability analysis. In 4th ISSAT International Conference on Reliability
and Quality in Design, Seattle, Washington.

Tian, J., Lu, P., and Palma, J. (1995). Test execution based reliability measurement and mod-
eling for large commercial software. IEEE Trans. on Software Engineering,21(5):405–
414.



BIBLIOGRAPHY 399

Tian, J., Ma, L., Li, Z., and Koru, A. G. (2003). A hierarchical strategy for testing web-
based applications and ensuring their reliability. In Proc. 27th Int. Computer Software
and Applications Conf. (1st IEEE Workshop on Web-based Systems and Applications),
pages 702–707, Dallas, Texas.

Tian, J. and Nguyen, A. (1999). Statistical web testing and reliability analysis. In Proc. 9th
Int. Conf. on Software Quality, pages 263–274, Cambridge, MA.

Tian, J., Nguyen, A., Allen, C., and Appan, R. (2001). Experience with identifying and char-
acterizing problem prone modules in telecommunication software systems. Journal
of Systems and Software, 57(3):207–215.

Tian, J. and Palma, J. (1997). Test workload measurement and reliability analysis for large
commercial software systems. Annals of Software Engineering, 4:201–222.

Tian, J. and Palma, J. (1998). Analyzing and improving reliability: A tree based approach.
IEEE Software, 15(2):97–104.

Tian, J. and Troster, J. (1998). A comparison of measurement and defect characteristics of
new and legacy software systems. Journal of Systems and Software, 44(2):135–146.

Tian, J., Troster, J., and Palma, J. (1997). Tool support for software measurement, analysis,
and improvement. Journal of Systems and Software, 39(2):165–178.

Trivedi, K. S. (2001). Probability and Statistics with Reliability, Queuing, and Computer
Science Applications, 2nd Edition. John Wiley & Sons, Inc., New York.

Troster, J. and Tian, J. (1995). Measurement and defect modeling for a legacy software
system. Annals of Software Engineering, 1:95–118.

Troster, J. and Tian, J. (1996). Exploratory analysis tools for tree-based models in software
measurement and analysis. In Proc. 4th Int’l Symp. on Assessment of Software Tools,
pages 7–17, Toronto, Ontario, Canada.

Tsoukalas, M. Z., Duran, J. W., and Ntafos, S. C. (1993). On some reliability estimation
problems in random and partition testing. IEEE Trans. on Software Engineering,
19(7):687–697.

van Solingen, R. and Berghout, E. (1999). The Goal/Question/Metric Method: A Practical
Method for Quality Improvement of Software Development. McGraw-Hill.

Vatanasombut, B., Stylianou, A. C., and Igbaria, M. (2004). How to retain online customers.
Communications of the ACM, 47(6):65–69.

Venables, W. N. and Ripley, B. D. (1994). Modern Applied Statistics with S-Plus. Springer-
Verlag, New York.

Vixie, P. (1999). Open Sources: Voices from the Open Source Revolution, chapter Software
Engineering, pages 91–100. O’Reilly & Associates, Inc, Sebastopol, CA, 95472, USA.

Voas, J. (1998). Software Fault Injection - Inoculating Programs Against Errors. Wiley
Computer Publishing.

Voas, J. M. (1999). Certifying software for high-assurance environments. IEEE Software,
16(4):48–54.



400 BIBLIOGRAPHY

Voas, J. M. (2000). Developing a usage-based software certification process. IEEE Com-
puter, 16(8):32–37.

von Mayrhauser, A. (1990). Software Engineering: Methods and Management. Academic
Press, San Diego, CA.

Wallace, D. R., Ippolito, L. M., and Cuthill, B. (1996). Reference Information for the
Software Verification and Validation Process. Number NIST Special Publication 500-
234. NIST.

Weiser, M. D. (1984). Program slicing. IEEE Trans. on Software Engineering, 10:352–357.

Weyuker, E. J. (1998). Testing component-based software: A cautionary tale. IEEE Soft-
ware, 15(5):54–59.

Weyuker, E. J. and Jeng, B. (1991). Analyzing partition test strategies. IEEE Trans. on
Software Engineering, 17(7):703–711.

Weyuker, E. J., Ostrand, T. J., Brophy, J., and Prasad, R. (2000). Clearing a career path for
software testers. IEEE Software, 17(2):76–82.

White, L. J. and Cohen, E. I. (1980). A domain strategy for computer program testing.
IEEE Trans. on Software Engineering, 6:247–257.

Whittaker, J. A. (2001). Software’s invisible users. IEEE Software, 18(3):84–88.

Whittaker, J. A. and Poore, J. H. (1993). Markov analysis of software specifications. ACM
Trans. on Software Engineering and Methodology, 2(1):93–106.

Whittaker, J. A. and Thomason, M. G. (1994). A Markov chain model for statistical software
testing. IEEE Trans. on Software Engineering, 20(10):812–824.

Wiener, R. (1998). Watch your language! IEEE Software, 15(3):55–56.

Wirth, N. (1995). A plea for lean software. IEEE Computer, 28(2):64–68.

Yamada, S., Ohba, M., and Osaki, S. (1983). S-shaped reliability growth modeling for
software error detection. IEEE Trans. on Reliability, 32(5):475–478.

Yih, S. and Tian, J. (1998). Developing and checking prescriptive specifications for safety
improvement. Microprocessors and Microsystems, 21(10):587–594.

Zelkowitz, M. V. (1988). Resource utilization during software development. Journal of
Systems and Software, 8:331–336.

Zelkowitz, M. V. (1993). Role of verification in the software specification process. In
Yovits, M. C., editor, Advances in Computers, Vol.36, pages 43–109. Academic Press,
San Diego, CA.

Zhao, L. and Elbaum, S. (2003). Quality assurance under the open source development
model. Journal of Systems and Software, 66(1):65–75.


