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Abstract

This paper presents a new approach to software re-
liability modeling by grouping data into clusters of ho-
mogeneous failure intensities. This series of data clus-
ters associated with different time segments can be di-
rectly used as a piecewise linear model for reliability as-
sessment and problem identification, which can produce
meaningful results early in the testing process. The dual
model fits traditional software reliability growth models
(SRGMs) to these grouped data to provide long-term
reliability assessments and predictions. These models
were evaluated in the testing of two large software sys-
tems from IBM. Comparing to existing SRGMs fitted
to raw data, our models are generally more stable over
time and produce more consistent and accurate relia-
bility assessments and predictions.

Keywords: Software reliability, data grouping,
cluster analysis, software reliability growth models
(SRGMs), input domain reliability models (IDRMs),
data cluster based reliability models (DCRMs).

1 Introduction

The reliability of a software system can be defined
as its probability of failure-free operations for a spe-
cific time period or for a given set of input under a
specific environment [11, 12]. Failures are behavioral
deviations caused by internal faults (or defects) in the
software. One fundamental assumption in reliability
analysis is the infeasibility of complete elimination of
faults in software systems. Therefore, failure-free op-
erations cannot be guaranteed, but only statistically
assured through the use of various software reliability
models.
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Two commonly used approaches to software reliabil-
ity analysis are: input domain approach using various
input domain reliability models (IDRMs) and time do-
main approach using various software reliability growth
models (SRGMs) [1, 5, 11, 14]. At product release
or other important project milestones, various IDRMs
based on repeated random sampling are often used
to assess product reliability and help make important
project decisions. During software testing, the effect of
reliability change (or growth) due to defect removal is
analyzed by various SRGMs to provide reliability as-
sessments and predictions.

In practical applications, it is common to have con-
siderable data fluctuations due to product and devel-
opment process dynamics and variations, which may
lead to unstable modeling results. Properly treated
or grouped data can generally reduce such fluctuations
and produce models that fit the observations better
and provide better reliability assessments and predic-
tions [2, 9, 16, 17].

After a brief examination of the suitability of exist-
ing SRGMs during testing for large software systems in
Section 2, we propose a new approach in Section 3: our
data cluster based reliability models (DCRMs). The
overall data are divided into different time segments,
with each segment possessing a homogeneous failure
intensity. This kind of grouped data can be used di-
rectly as piecewise linear models or fitted to traditional
SRGMs for product reliability analysis. Modeling re-
sults are compared in Section 4 to demonstrate the
superior stability and accuracy of our models in relia-
bility assessments and predictions. Finally, we summa-
rize the paper and discuss future research directions in
Section 5.

2 Reliability Analysis for Large Soft-

ware Systems

There are several common assumptions for various
SRGMs [5]: The software is assumed to be used in an
environment that resembles its actual usage by target
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customers, so that the analysis results can be extrapo-
lated to the likelihood of in-field product failures. Fail-
ure intervals or period failure counts are assumed to be
independent, which implies randomized testing. Time
is used as the basis to define reliability, which implies
equivalence of time units and requires proper time mea-
surement to reflect usage. We next characterize testing
for large software systems and examine the validity of
these assumptions.

This study is a continuation of a series of stud-
ies [18, 19, 20] for large commercial software systems,
which include relational database products, compilers,
and computing environments from IBM. A large soft-
ware system can generally be characterized by its large
size, usually exceeding several hundred thousand lines
of source code, high complexity, diverse functionality,
many components developed over a long period, large
user population, and diverse usage environments. The
overall testing effort, which usually lasts over several
months to more than a year, is divided into functional
areas and sub-phases to allow for test execution and
progress tracking on a smaller, more manageable scale.
Test activities and defect discoveries are generally as-
sociated with test runs or executions of specific test
cases.

Test workload usually varies considerably due to
various reasons, including: shifting focus of testing
among different functional areas and sub-phases, pro-
gression of test cases, learning curve and staff-level vari-
ations. Such large variations make usage independent
time measurements unsuitable for reliability modeling.
Based on our previous study of different time measure-
ments for reliability modeling [19, 20], two variations
of usage dependent time measurements are used in this
paper: 1) the number of test runs as the rough time
measurement; and 2) the detailed workload measure,
generically referred to as transactions. Both of these
measurements are referred to as usage time hereafter.

Because of the large size and the lack of precise
customer usage information due to diverse user pop-
ulation, a scenario-based testing strategy is commonly
used. The test scenarios consist of some randomized
workload executed within a framework that roughly de-
scribes customer usage situations. In addition, testing
is not only used to evaluate product quality, but also
used to help locate and remove defects (faults). Once a
failure is observed, usually a series of related test runs
are conducted to help isolate the failure cause(s) and
later to verify the defect fix(es).

Overall, this mixture of structured (centered around
the framework of scenarios) and clustered (focused on
fault localization and fixing) testing with some random-
ized workload, rather than purely randomized testing,

dominates for large software systems. However, we also
observe the following:

• Approximating scenario-based testing with random
testing: Despite the individual dependencies due
to testing according to scenarios, testing is gener-
ally conducted by many testers in parallel, inter-
leaving in some arbitrary fashion. As a result, the
overall testing still resembles random testing. The
key to this approximation is parallelism and in-
terleaving, randomized workload, and proper data
granularity.

• Run correlation due to defect fixing is limited to
a short period, due to the effort made to locate
and fix discovered defects quickly, usually within
a few days. In addition, hundreds or more defects
are discovered and fixed during testing for large
software systems. Such large number of defects,
each of which fixed within a short period, does not
lead to long-term dependencies among test runs.

To summarize, the overall testing process still resem-
bles random testing without long-term dependencies at
a coarse granularity, although there may be dependen-
cies among test runs within a short time window. The
short-term dependency implies that existing SRGMs
fitted to raw data may produce biased results because
period independence assumption is violated, and points
to the need for alternative ways to analyze product
reliability. The long-term independency suggests the
possibility of using properly treated data with existing
SRGMs. Data treatment usually involves data group-
ing [16, 17] or data censoring [2, 9]. The availability
of usage time associated with test runs and failure ob-
servations under our environment implies that we do
not need to use data censoring to screen or condense
data. Instead, appropriate data grouping technique(s)
can be used to contain the short-term dependency in
our data so that the grouped data will show little or no
long-term dependency, as described in the next section.

3 DCRMs: Model Construction and

Usage

We next derive our data cluster based reliability
models (DCRMs), describe their primary applications,
and examine their relations to existing models.

3.1 Clustering periods with homogeneous failure
intensities

The failure intensity (or failure rate) of a given time
period, defined to be the number of failures per unit
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Table 1. Failure intensity computation for an individual period

1. Determine the period P .

2. Identify each test run (run i) falling into the period (i ∈ P ).

3. Count the number of failures, f , for the period P .

4. Compute the time duration for the period, t, as the summation of the individual time for all the individual
runs, ti for the i-th run, falling into the period. That is, t =

∑

i∈P ti.

5. Compute the failure intensity, λ, as the number of failures divided by the time duration, i.e., λ = f/t.

Table 2. Segment failure rate computation for grouped data

0. Given: failure rate λj for individual period j of length tj .

1. Select the external delimiter dj for data point j. Let li and ui be the lower and upper bounds that
delineate segment i, i.e., li ≤ dj < ui.

2. Compute the total time Ti for segment i as Ti =
∑

j,li≤dj<ui
tj .

3. Compute the total failures Fi for segment i as Fi =
∑

j,li≤dj<ui
λjtj =

∑

j,li≤dj<ui
fj .

4. Compute the segment failure rate Λi for segment i as Λi = Fi/Ti

time, directly reflects the reliability of the software
product at that time [11, 12]. There are essentially
two ways to identify a period: 1) directly use the run
sequence information; and 2) use external delimiters,
commonly associated with calendar dates, weeks, etc.
For a given time period, the failure intensity can be
calculated as in Table 1.

When performing data grouping for our data, we
can group related test runs into the same cluster to re-
flect their short-term dependency, and group unrelated
runs into separate clusters to reflect their long-term
independency. Equivalently, the overall testing dura-
tion can be partitioned into different segments. Failure
rate Λi for a segment i can be computed from indi-
vidual failure rate and timing information associated
with test runs falling into the segment, as in Table 2.
To determine the boundaries between neighboring seg-
ments, content-based run dependency analysis can be
performed by examining the relations among individual
runs. However, such analysis could be too costly due to
the large amount of data to be examined. Automated
data grouping are needed for practical applications.

Because correlated runs typically lead to similar ob-
served behavior, we can group neighboring data points
with homogeneous failure intensities into the same seg-
ment and those with different failure intensities into
different ones. The grouping of individual data points

into such homogeneous clusters can be carried out us-
ing various statistical analysis techniques for cluster-
ing [21]. In this case, we have a single response vari-
able (failure intensity), and a single predictor variable
(time), a simplified clustering algorithm using tree-
based models [3] supported by a commercial tool S-
PLUS1 can be used. A brief summary of tree-based
modeling technique and its algorithm can be found in
the appendix.

When using tree-based models to find data clusters
of homogeneous failure intensities, we start with the
complete set of data, and recursively partition it into
smaller subsets. Conditions defined on usage time τ in
the form of τ < c or τ ≥ c defines a binary partition.
Each recursive partitioning selects a cutoff value c to
minimize the difference between the predicted (mean)
failure rates and the actual individual failure rates in
the partitioned subsets. However, the arithmetic mean
is no longer appropriate, because it gives the predicted
failure rate for segment i with Ni data points as:

∑

j λj

Ni

=

∑

j

fj

tj

Ni

which is generally different from Λi in Table 2, unless
all the tj ’s are equal. Instead, we can use the weighted

1S-PLUS is a trademark of Insightful Corporation.
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Figure 1. a. a DCRM1 at half-way of testing (left) and b. a DCRM1 at test completion (right)

average, an option available in the tool S-PLUS that
supports our tree-based modeling, with individual fail-
ure rates, λj ’s, weighted by the corresponding usage
time interval, tj ’s, i.e.,

∑

j tjλj
∑

j tj
=

∑

j fj
∑

j tj
=

Fi

Ti

= Λi

Consequently, these partitions derived from the cor-
responding tree-based model give us a series of seg-
ments. Different segments have different predicted
(mean) failure rates, while individual data points
within a segment have homogeneous failure rates close
to the predicted (mean) failure rate for the segment.

3.2 DCRM1: Data clusters as a piecewise linear
model

When represented graphically, the data clusters give
us a piecewise linear model for the cumulative fail-
ures, maintaining constant failure rate for each time
segment. We call this direct usage and interpreta-
tion “data cluster based reliability model, type 1”, or
DCRM1 for short. Fig. 1 is an example of a DCRM1
for product E studied in [20]. The cumulative fail-
ure arrivals are plotted against usage time (cumulative
transactions), with our DCRM1 shown as a piecewise
linear curve with dashed vertical lines to separate the
time segments.

In this product, time stamp for each test run is avail-
able, thus the precise order for the run sequence and
the corresponding cumulative usage time can be deter-
mined. The failure rate (Λi) over the time segments
i’s can be represented by discrete functions such as in
Table 3, taking different values for different time peri-
ods defined by their cutoff values for cumulative usage

Table 3. Data clusters (grouped data) accord-
ing to DCRM1

cumulative # of failure
segment τ cutoff failures runs rate (Λi)

1 0 0 0 NA
2 30261536 9 31 2.974e-07
3 123855436 18 30 9.616e-08
4 131290212 27 16 1.211e-06
5 160634323 34 12 2.385e-07
6 164363318 40 6 1.609e-06
7 202584007 63 34 6.018e-07
8 301334843 78 44 1.519e-07
9 302830110 81 6 2.006e-06

10 330965459 93 39 4.265e-07
11 355372545 98 22 2.049e-07
12 394683837 101 24 7.631e-08
13 542796251 104 56 2.025e-08
14 578748899 109 22 1.391e-07
15 650221776 110 12 1.399e-08
16 700575963 116 17 1.192e-07
17 756410215 116 14 0
18 793301593 122 12 1.626e-07
19 1318682282 128 58 1.142e-08

time. For example, the last segment (i = 19) with
Λi = 1.142 × 10−8 (or 1.142e-08 in the scientific no-
tation used hereafter) is delimited by the usage time
τ cutoffs, 793301593 ≤ τ < 1318682282. The cutoff
points for the partitions are determined by the corre-
sponding tree-based model, using point failure rate λj

(λj = 1/tj if j-th run within the segment is a failure
with transactions tj , and λj = 0 if it is a success, ac-
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cording to Table 1) as the response variable, and usage
time τ as the predictor variable.

When exact run sequence cannot be determined,
such as for product D studied in [18], the time index
used, instead of the cumulative usage time associated
with each run, can be used to delimit the partitions
and to build DCRM1.

3.3 interpreting DCRM1 results

The predicted failure rate for each segment in our
DCRM1 can be interpreted as applying various exist-
ing input domain reliability models (IDRMs) to a re-
stricted subset of data. For example, in the Nelson
model [14], one of the earliest IDRMs, the predicted
reliability R based on repeated random sampling with
n runs and f failures is given as:

R = 1 −
f

n
= 1 − λ

When test run count is used as the time measurement,
the predicted failure rate λ for each segment from our
DCRM1 is the same as Nelson model restricted to the
same segment.

The predicted reliability in the Brown-Lipow model
[1], another IDRM, is give by:

R = 1 −
∑

i

fi

ni

pi

where fi is the number of failures, ni number of runs,
and pi the probability, all for subdomain i. When
transaction is used as the time measurement, or when
individual periods are associated with multiple runs,
our DCRM1 for each segment is the same as the Brown-
Lipow model, if we make the following substitutions:
individual period j for subdomain i, measured usage
time interval tj for ni, and the ratio between tj to the
total usage time for this segment (tj/

∑

j tj) for pi.
Our DCRM1 is also related to several SRGMs. Simi-

lar to the Jelinski-Moranda SRGM [7], we assume con-
stant failure rate for each time period within a data
cluster. However, we do not assume a functional form
for failure rates over different time segments, in con-
trast to the fixed-size failure rate reduction after each
observed failure in the Jelinski-Moranda model. Our
model is data driven, similar to the approach in the
Littlewood-Verrall SRGM [10] where the failure rate
varies with latest observations. A key difference to
these SRGMs is that each time segment in our DCRM1
consists of multiple runs and possibly multiple failures,
while both Jelinski-Moranda and Littlewood-Verrall
models are time-between-failure (TBF) models, requir-
ing exactly one failure per period.

3.4 Using DCRM1 in reliability analysis

For any given time instance covered by the input
data, one and only one specific time segment used in
DCRM1 can be identified, because these segments form
a partition of the whole time period. The reliability as-
sessment is given by the corresponding predicted failure
rate from the model. In particular, the current relia-
bility can be assessed to be the predicted reliability for
the last time segment. For example, the estimated re-
liability for product E at the product release can be
characterized by its present failure rate of 1.142e-08
failures per transaction from its DCRM1. This last
time segment can also be directly extrapolated to pre-
dict reliability into the near future. However, to avoid
the risk of extending it too far into the next cluster, we
need alternative means to predict future reliability.

Another important usage of DCRM1 is its ability to
identify trouble spots or problematic areas. Certain
segments with abnormally high failure rates (symp-
tom of possible problems) can be easily detected by
DCRM1. These segments or run clusters are usually
related to likely problematic test scenarios, weak prod-
uct functional areas, or other trouble spots. Followup
analyses are generally needed to confirm the suggested
trouble spots by DCRM1 and to discover the root cause
for them, so that focused remedial actions can be ap-
plied to solve or alleviate the problems.

The use of DCRM1 in problem identification can
be combined with our earlier work on tree-based re-
liability models (TBRMs) [18]. In building TBRMs,
we used both time domain and input domain informa-
tion associated with individual runs as predictors to
identify and improve problematic areas. The reliabil-
ity for a subset of runs was defined as the number of
failures over the number of runs. That reliability defi-
nition is extended in this paper to cover more general
cases where individual data points correspond to vari-
able numbers of runs or time is measured using entities
other than runs. This generalization allows us to build
general TBRMs to link input and time domain infor-
mation to observed failure rates for general situations,
thus making our TBRMs more widely applicable.

Reliability growth can be qualitatively represented
by the gradual reduction of failure rates as we move
from earlier segments to later ones, although some fluc-
tuations in segment failure rates are expected. How-
ever, if these kinds of “out-of-place” segments are a per-
sistent phenomenon, it is an indication that the prod-
uct is not ready for release yet. For example, Fig. 1a
represents a series of data clusters, with a generally
increasing trend in failure rates over successive time
segments, clearly indicating the instability of the prod-
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uct up to that time. In fact, more than half (67) of the
total testing defects (128) were yet to be found in the
following few weeks. Without additional testing to de-
tect and remove those additional defects, the product
would have caused many problems to target customers.
This use of DCRM1 is similar to trend analysis for soft-
ware failure data in [8], where the super-additive curve
for Fig. 1a could indicate the same general conclusion.
A quantitative assessment of reliability growth can be
carried out using DCRM2 to be described next.

3.5 DCRM2: Fitting SRGMs to data clusters

The lack of an assumed functional form among fail-
ure rates in different segments is both the strength and
weakness of our DCRM1: On the positive side, it leads
to a robust model, being able to fit to almost any data,
and the modeling results can be used for many pur-
poses. On the negative side, DCRM1 is hard to use
for reliability predictions or for quantitative evaluation
of reliability growth. DCRM1 also lacks parameters
that have meaningful physical interpretations, such as
N , the estimated total faults in the software system in
various software reliability growth models (SRGMs).

To compensate for these weaknesses, we can extend
our DCRM1 to include its dual model, our data cluster
based reliability model, type 2, or DCRM2 for short, by
fitting selected SRGMs to the data clusters as grouped
data. To account for the different sizes of data clus-
ters, we weigh each cluster by the number of individ-
ual data points it represents when fitting SRGMs in our
DCRM2. For example, we can fit a specific SRGM, the
Goel-Okumoto (GO) model [6], to the 19 segments in
Table 3 as 19 data points, as shown in Fig. 2, where
the fitted model is labeled DCRM2.GO.

Our use of grouped data in DCRM2 is similar to
Schneidewind’s approach where data-sensitive group-
ings and weights were selected to produce better fit-
ted models [16]. Because short-term dependencies are
generally isolated to within the same segments by our
DCRM1, testing associated with different segments are
now essentially independent because of the lack of long-
term dependencies. This situation matches well the
general assumption of independent testing periods for
general SRGMs [5], providing justifications to the ap-
proach we use in DCRM2. In contrast, this assump-
tion of independent testing periods is less likely be be
satisfied by the raw data because of short-term depen-
dencies.
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Modeling Result Summary: 
==============

 m(t) = N (1 - exp(-b*t)) 
	 N= 133.1 

	 b= 2.928e-09 
==============

 failure rate: 8.203e-09 
MTBF: 121906288 

R^2: 33807

Figure 2. DCRM2: model fitted to grouped
data

3.6 Selecting SRGMs for DCRM2 applications

Among the SRGMs, time-between-failure (TBF)
ones fit models to inter-failure intervals as input data,
and failure count (FC) ones fit models to failure counts
and associated period lengths as input data [11, 12].
For DCRM2, grouped testing periods, or time segments
in DCRM1, and associated failure counts are used as
input data in various SRGMs. Since each segment con-
sists of multiple test runs, and possibly multiple failure
observations, TBF models are not suitable. Only FC-
SRGMs can be used on such grouped data.

Among the FC-SRGMs, many treat the failure ar-
rivals as a non-homogeneous Poisson process (NHPP),
with the number of failures N(t) for a given time in-
terval [0, t] give as:

P (N(t) = n) =
m(t)n

n!
e−m(t)

where m(t) is the mean function. Different choices of
m(t) result in different NHPP models. Some commonly
used NHPP models include:

• Goel-Okumoto (GO) model [6], with m(t) =
N(1− e−bt), where the model parameter N is the
estimated total number of defects and b the con-
stant for model curvature.

• Logarithmic Poisson model by Musa and Okumoto
(MO model) [13], with m(t) = 1

θ
log(λ0θt + 1),

where the parameters are λ0, the estimated initial
failure rate, and θ, the constant for model curva-
ture.
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Table 4. Cumulative data for the last 8 weeks of testing
week F − 7 F − 6 F − 5 F − 4 F − 3 F − 2 F − 1 F

cumulative failures 102 104 109 116 122 125 128 128
cumulative transactions 4.59e08 5.43e08 6.14e08 7.01e08 9.77e08 1.08e08 1.25e09 1.32e09

• S-shaped model [22] and Schneidewind model [15].

Although S-shaped model can generally fit the calen-
dar time failure data better than most other models,
once proper usage time measurement is selected, it con-
sistently over-estimates product reliability by a large
margin compared to other models in our previous ap-
plications [19, 20]. Schneidewind model [15] requires
equal length for each observation period, — an assump-
tion clearly violated by our grouped data. Therefore,
S-shaped model and Schneidewind model were not se-
lected for our analysis.

On the other hand, GO and MO models have been
successfully used by us to analyze product reliability
in [19, 20]. They also complement each other nicely,
as suggested by Musa [12] and confirmed by our pre-
vious experience: The GO model is usually slightly
optimistic and the MO model slightly pessimistic, pro-
viding a pair of upper and lower bounds for reliability
estimates. In addition, our assumptions of homoge-
neous testing segments, and independence among the
separate segments, match well with the model assump-
tions. Consequently, we primarily use GO and MO
models in subsequent reliability analyses. We label the
DCRM2 obtained by fitting GO or MO models to our
grouped data as DCRM2.GO or DCRM2.MO respec-
tively.

With such modeling results, we can quantitatively
assess product reliability by examining the estimated
failure rate and other quantities, predict future relia-
bility by extending the fitted model into the future,
evaluate reliability growth by comparing the end relia-
bility with the beginning reliability, estimate time and
resource to reach a given reliability goal, and help with
product release decisions.

4 Modeling Result Analysis and Com-

parison

Our DCRMs constructed above can be used to fulfill
various practical needs for product reliability analysis.
We next evaluate the effectiveness of these models in
practical applications, and compare them to other al-
ternatives.

4.1 Product and modeling alternatives

The primary object of this performance study is
product E developed in the IBM Software Solutions
Toronto Laboratory we studied previously in [20] for
workload and reliability measurement. Detailed test
measurement is available for product E, including
transactions and time-stamp for each test run, and re-
lated failure observations.

Another product, product D, from the same orga-
nization we studied in [18], is also used in this study
to cross validate various results. However, test runs
in product D are only loosely associated with testing
days, which are, in effect, already grouped by testing
days. For example, an average of 25.2 runs took place
per day for product D. Therefore, although DCRMs
can be built for this kind of product, the data group-
ing effect are not expected to be as visible as that for
individual runs, as will be seen later in this section.

The main alternatives to our DCRMs are existing
SRGMs fitted to raw data. As described in Section 3,
our DCRM2 are primarily used with GO and MO mod-
els. Therefore, the primary models for our result com-
parison are:

• DCRM1 applied to products D and E.

• GO and MO models fitted to the original or raw
data from products D and E.

• DCRM2.GO and DCRM2.MO fitted to data clus-
ters identified by DCRM1 above.

To strike a balance between modeling overhead and
the need for timely feedback, weekly modeling activi-
ties were carried out during testing for these products.
To make our comparison meaningful to actual testing
environment, we attempted to fit different models to
successive data set and compare their performance on
a weekly basis in this study. In the case where com-
parative results are similar, we only present one set of
results, and state the validity of the same patterns or
observations.

4.2 Model applicability and points for result com-
parison

Our two-staged approach, data clustering through
DCRM1 and fitting existing SRGMs to grouped data
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Table 5. Goodness-of-fit (R2) values for different models
week F − 7 F − 6 F − 5 F − 4 F − 3 F − 2 F − 1 F

DCRM1 382 390 456 443 453 521 582 566
GO (raw) 12971 17891 22072 24483 25773 26723 26871 26925

DCRM2.GO 14260 22178 24588 25743 26767 27563 27626 27662
MO (raw) 13061 18784 25006 30366 36254 44201 48483 50794

DCRM2.MO 14401 24218 28640 32119 37459 45065 50116 53196

through DCRM2, is in contrast to the approach of
deriving general models to handle the general failure
correlations in [4]. Although our approach is not as
universally applicable as [4], it is easy to apply, uses
existing SRGMs, and fits well with the application en-
vironments for the products we studied. In addition,
the basic assumptions for our DCRMs can be easily
satisfied under the testing environment for many large
software systems, making our approach applicable to a
wide variety of environments.

Our DCRM1 can be fitted to any data set as long
as the required data, individual failure rate λi and us-
age time τ (or other time period delimiters) are avail-
able. Once these data are collected, right after testing
started, DCRM1 can be produced. This early appli-
cability is unique to DCRM1 as compared to other al-
ternatives, because typically SRGMs can only be pro-
duced for the later part of testing when failure arrivals
stabilize to a degree to demonstrate a general trend of
reliability growth or a sub-additive cumulative failure
curve [8].

For product E, this general trend of reliability
growth only became observable by the last 8 weeks
before product release, which represent less than one
third of the total testing weeks. Consequently, the GO
model can only be fitted to data accumulated up to
those weeks. Similarly, only the last 8 weeks produced
meaningful fitted MO models. Some earlier fits were
available, but with θ < 0, signaling reliability decline
instead of reliability growth, which cannot be used to
predict the overall trend of reliability growth. As ex-
pected, DCRM2.GO and DCRM2.MO also started to
fit for the last 8 weeks of testing.

As a result, subsequent comparisons of modeling re-
sults for product E are based on models produced for
the last 8 weeks of testing. We mark the last week
as F (for final week before product release), and the
preceding weeks as F − 1 back to F − 7. A model pro-
duced for a particular week Wi uses data cumulatively
up until the end of that week. The actual data at the
end of these weeks are summarized in Table 4. Model
performances can be compared using models fitted to
these data sets.

For product D, the overall failure arrivals seem to

be more stable and better resemble general reliability
growth trend. Consequently, various SRGMs can be
fitted to either the raw data or the grouped data rela-
tively early, after approximately one third of the way
into testing. This allows us extended time period for
our performance comparison.

4.3 Goodness-of-fit comparison

When interpreted as a piecewise reliability model
such as in Fig. 1, our DCRM1 conforms well with the
actual observations. In addition, for the numerous data
sets we studied for various different products, only a
few segments (say, around 5 to 10) are enough to pro-
duce fitted models that fit the observations better than
traditional SRGMs. On the other hand, DCRM2 us-
ing the same SRGMs on the grouped data is expected
to fit the raw data slightly worse that those directly
fitted to the raw data, because the model parameters
were optimized to fit a different data set.

This comparison can be quantified by the various
goodness-of-fit statistics computed for different fitted
models. One commonly used such statistic is the sum-
of-residual-squares R2: Let fi be the cumulative fail-
ures for the ith data point, and f̂i be the predicted
cumulative failures by the fitted model. Then the
goodness-of-fit measure R2 can be calculated as:

R2 =
∑

i

(fi − f̂i)
2

The smaller the calculated R2, the better the model
fit.

Table 5 shows the R2 values for the fitted models for
the last 8 weeks of testing for product E. At the end
of testing, the fitted DCRM1 has R2 = 566; while for
the GO and MO model fitted to the same data, the R2

values are 26925 and 50794 respectively. In general,
R2 values for DCRM1 are significantly smaller than
those for SRGMs fitted to the raw data. However, the
difference in R2 values between SRGMs fitted to raw
data and those fitted to the grouped data are similar,
with a typical difference of about 5%. Similar patterns
in R2 values are also observed in product D.
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Table 6. Reliability assessment (failure rate ×10−8) comparison
week F − 7 F − 6 F − 5 F − 4 F − 3 F − 2 F − 1 F

DCRM1 1.545 2.025 7.069 11.86 0 1.055 1.312 1.142
(n) (30) (56) (26) (18) (6) (30) (50) (58)

GO (raw) 22.05 14.89 9.789 6.493 2.650 1.718 .9914 .7983
DCRM2.GO 20.62 10.97 8.330 6.375 2.786 1.895 1.113 .8784

MO (raw) 22.59 16.77 12.67 9.852 6.488 5.165 4.191 3.863
DCRM2.MO 21.30 13.29 11.11 9.476 6.439 5.156 3.991 3.608

R2 values for DCRM1 over different data sets and
time intervals are also more stable as compared to those
for fitted SRGMs. Because of the lack of an assumed
overall functional form in DCRM1, any pattern can
be fitted fairly closely by DCRM1. This is in sharp
contract to SRGMs, where a general reliability growth
pattern with gradual flattening is expected. Otherwise,
the SRGMs won’t fit, or fit badly, with huge R2 values.

In deriving our DCRM1, a constant failure intensity
is assumed for each cluster of test runs associated with
a variable-time window to isolate short-term dependen-
cies within the data cluster. This assumption is statis-
tically validated by the close conformance between the
actual failure intensities and the predicted failure in-
tensities for different time segments, as indicated by
the small R2 values for our DCRM1 in Table 5.

4.4 Reliability assessment comparison

With DCRM1, the current reliability can be assessed
to be the predicted reliability for the last segment. This
kind of assessments can be provided by DCRM1 con-
sistently from the very beginning of testing to the end.
For the last 8 weeks of testing for product E, the cur-
rent reliability can also be provided by the estimated
failure rates by the fitted DCRM2 or by SRGMs fit-
ted to the raw data. The reliability assessments from
all these five alternatives (DCRM1, GO, DCRM2.GO,
MO, and DCRM2.MO) are given in Table 6. These reli-
ability assessments generally converge to similar values
towards the end of testing. Assessments provided by
DCRM2 are also more stable than those by its counter-
part SRGM fitted to raw data. The same observations
are also true for product D.

Notice that for DCRM1, the size of the last segment,
n, or the number of test runs, is also given in Table 6,
so that the reliability assessment results can be inter-
preted accordingly. In general, a larger n gives us a
higher confidence in assessment result than a smaller
n.

The estimated reliability for product E by its
DCRM1 at product release can be characterized by
its failure rate of 1.142e-08 failures per transaction

from Table 6, which is in between those estimated by
GO models (7.983e-09 by raw GO and 8.784e-09 by
DCRM2.GO) and MO models (3.863e-08 by raw MO
and 3.608e-08 by DCRM2.MO). This and other results
from Table 6 demonstrate that DCRM1 can give us
a fairly accurate assessment of product reliability dur-
ing testing, provided that enough data points (obser-
vations) are included in the last segment. More im-
portantly, in the early part of testing, e.g., before week
F−7 for product E, DCRM1 is the only model that can
provide any meaningful reliability assessments among
the five alternatives, because no SRGMs can be fitted
to these early data sets.

4.5 Prediction accuracy comparison

Prediction accuracy can be evaluated by using only
part of the data as the training set and the rest as the
testing set. For example, in product E we have iden-
tified various cutoff points in Table 4, the last 8 weeks
of testing where consistent SRGMs can be fitted to cu-
mulative observations. We can use models fitted to
data accumulated up to week Wi to predict additional
failures by week Wj for any j ≥ i, and compare these
predictions to the actual observations.

Let fij be the number of actual failures observed

between weeks Wi and Wj ; and f̂ij be the number
of failures for the same period predicted by a fitted
SRGM. Then the prediction error between the two, eij ,

is given by eij = f̂ij − fij . The collection of these pre-
diction accuracy evaluation results eij ’s can be summa-
rized in a upper triangular table, such as in Table 7 for
DCRM2.GO for product E. Similar prediction accuracy
results were also calculated for the GO and MO models
fitted to the raw data, as well as for DCRM2.MO.

To better compare the prediction accuracy and
present the results in a more easily interpretable form,
we produced various graphs for the model pairs. Fig. 3
compares predicted failures between model weeks Wi,
F − 7 ≤ i ≤ F and the final week F for DCRM2.GO
and GO. Fig. 3a (left figure) is a comparison of abso-
lute accuracy, plotting side-by-side the prediction er-
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Table 7. Error in predicted additional failures by DCRM2.GO
model prediction week (W2)

week (W1) F − 7 F − 6 F − 5 F − 4 F − 3 F − 2 F − 1 F
F − 7 0 16.7 30.1 45.8 89.6 103.6 125.5 133.4
F − 6 NA 0 7.2 14.7 31.2 35.3 40.5 42.1
F − 5 NA NA 0 6.57 20.3 23.5 27.4 28.6
F − 4 NA NA NA 0 12.7 15.6 19.1 20.2
F − 3 NA NA NA NA 0 2.46 5.42 6.27
F − 2 NA NA NA NA NA 0 2.60 3.33
F − 1 NA NA NA NA NA NA 0 0.68

F NA NA NA NA NA NA NA 0
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Figure 3. a. absolute prediction error (left) and b. relative prediction error (right) for DCRM2.GO &
GO

rors by the two different types of models, eiF (GO) and
eiF (DCRM2.GO). Fig. 3b (right figure) is a comparison
of relative accuracy, plotting the difference in absolute
prediction errors by the two types of models, i.e., it
shows the values of |eiF (GO)|− |eiF (DCRM.GO)| over
different i values from F − 7 to F .

As can be clearly seen from Fig. 3, DCRM2.GO
consistently performs better or equally to GO. In gen-
eral, comparing predictions by DCRM2.GO fitted to
the data grouped by DCRM1 against that of GO fitted
to the raw data, and comparing DCRM2.MO to MO,
showed that DCRM2 consistently performed better or
equally to it’s counterpart using the same SRGM on the
raw data. The same observation is also true for prod-
uct D. However, since the raw data for product D are
already grouped by testing days, the data grouping ef-
fect according to our data clusters is not as pronounced
as in product E.

As mentioned before, reliability predictions in our
approach are primarily performed by DCRM2, al-

though DCRM1 can also be used for some short-term
predictions by extending the last segment into the fu-
ture. To compare the prediction accuracy of this lat-
ter usage, we also produced short-term predictions for
individual runs (for product E) or individual testing
days (for product D) in the week immediately follow-
ing the modeling week, and compared these predictions
to that by DCRM2 and by SRGMs fitted to raw data.
The prediction accuracy of these models in such short-
term predictions are roughly comparable, but no model
consistently outperforms others. However, in the early
part of testing, e.g., before week F − 7 for product E,
DCRM1 is the only model available to provide reliabil-
ity predictions. Therefore, this usage of extending the
last segment of DCRM1 as future reliability predictions
still play an important role in reliability predictions.
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4.6 Model stability comparison

It is desirable for reliability models to have good
stability, so that consistent modeling results over time
can be obtained and used to track reliability progress
and to avoid erratic actions. For various SRGMs, the
model stability can be reflected by the stability of their
parameters estimated from data. This is particularly
true when the estimated parameters have some phys-
ical meaning, such as N in the GO model, indicating
the estimated total number of defects in the system
under testing.

Fig. 4 plots the parameters N (left plot) and b (right
plot) in the GO and DCRM2.GO models over the last 8
weeks of testing for product E. The estimated parame-
ters for the GO model are based on the raw data; while
that for the DCRM2.GO is based on the data clusters
or grouped data. Fig. 4 clearly demonstrates the better
stability for our DCRM2 as compared to correspond-
ing SRGM based on the raw data. For product D, the
same observation holds for the parameter N , but for
parameter b, the stabilities are about the same. The
stability of parameters for other models (MO and and
DCRM2.MO for products E and D) also shows similar
trend: Those based on grouped data are either more
stable or equally stable as those based on the raw data.

4.7 Model sensitivity to segment size and data
weight

We also examined other factors and their effect on
model performance. In our DCRM1, Ts represents a
lower bound on the length of the partitioned segments
that can be selected to reflect short-term dependencies.
Any data subset S of size |S| < Ts will not be parti-

tioned further. Usually short-term dependencies last
over several test runs, thus Ts values of less than 10
would not make too much sense. Therefore, we selected
Ts at 10, 20, and 40 for product E and compared the
modeling results. Lower Ts yields more data clusters in
DCRM1, and can be better used to analyze local vari-
ations. However, for DCRM2 based on these different
data grouping thresholds, almost identical performance
results were obtained. These performance results never
differ by more than a few percentage points (typically
within 5% of each other), well below the difference be-
tween these models and SRGMs fitted to the raw data.
Consequently, we recommend using Ts = 10 to allow
for a good combination of good performance results for
DCRM2 and effective usage of DCRM1 to analyze lo-
cal variations. In fact, all the results presented so far
are for the DCRMs with Ts = 10, except Fig. 1 and
Table 3, where Ts = 40 is used to illustrate the ma-
jor data clusters and the concept of DCRMs without
having to show too many data segments.

In DCRM2, SRGMs fitted to grouped data typically
require the use of data weights, because different seg-
ments usually cover vastly different time periods, num-
bers of runs, or numbers of failures. For example, the
last segment in Fig. 1 is significantly longer (in usage
time or transactions) and represents more observations
(58 runs, see Table 3) than many segments near the
beginning (e.g., segments 6 and 9 with 6 runs each).
Several possible data cluster weighting schemes can be
considered:

• No weights. Each data cluster is used as an un-
weighted data point, resulting in larger clusters
being severely under-represented. For the prod-
ucts we studied, this scheme resulted in models
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that perform even worse than models fitted to the
raw data.

• Point weights. Each data cluster is weighted by
the number of individual data points it represents.
This is the weighting scheme we used for all our
DCRM2 models discussed so far, which resulted in
consistently good modeling results.

• Time interval weights. Each data cluster is
weighted by the length of the time interval it cov-
ers. This scheme typically produces similar results
to the point weighting scheme. But the results are
not as stable, because some test runs with sub-
stantially longer usage time and the corresponding
data clusters can overwhelm other data clusters.

Based on these results, we recommend point weights to
be used with our DCRM2.

5 Conclusions and Perspectives

Short-term dependency and lack of long-term de-
pendency among test runs and related failure data are
commonly observed in large software systems. In this
paper, we developed our data cluster based reliabil-
ity models (DCRMs) to deal with reliability analysis
under such environments. We grouped test runs and
associated failures into clusters of homogeneous failure
intensities to reflect this short-term dependency and to
isolate this dependency within the cluster. These data
clusters form a piecewise linear model, our DCRM1,
that can be directly used to assess product reliability
and identify problematic areas. Our DCRM2 fits ex-
isting software reliability growth models (SRGMs) to
these data clusters as grouped data, to provide long-
term reliability assessments and predictions.

The grouping of data in our DCRM1 is automat-
ically done using the tree-based modeling technique
supported by a commercial tool S-PLUS and our util-
ity programs. Our DCRM1 fits actual failure data bet-
ter than traditional SRGMs and provides modeling re-
sults that can help us evaluate product reliability and
identify anomalies throughout the testing process, es-
pecially during the early part of testing before SRGMs
can be fitted to testing data. Our DCRM2 comple-
ments our DCRM1 by providing results about reliabil-
ity growth and overall reliability based on the complete
testing data grouped by our DCRM1. For the IBM
products we studied, the fitted DCRM2 consistently
outperformed corresponding SRGMs fitted to the raw
data in prediction accuracy and model stability.

There are many research issues that we would like
to address in the near future: A detailed comparative

study is conducted in parallel with this study, com-
paring our DCRMs to other data grouping methods
commonly used in practical applications. The prelimi-
nary results indicate that our approach performs better
than other data grouping methods in most cases. Fur-
ther work in tool support can make it easier to deploy
our approach in diverse industrial environments. In-
tegration of this research with our previous work on
tree-based reliability models [18] could lead to a more
effective way to measure and improve reliability. Once
proven effective and perfected in these followup studies,
our approach can be deployed in industry to effectively
analyze and improve reliability for many large software
systems.
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Appendix: Tree-Based Modeling

Tree-based modeling is a statistical analysis tech-
nique that attempts to establish predictive relations
through recursive partitioning [3]. In tree-based mod-
els, modeling results are represented in tree structures.
Each node in a tree represents a set of data, which is
recursively partitioned into smaller subsets. The data
used in such models consist of multiple attributes, with
one attribute identified as the response variable and
several other attributes identified as predictor variables.
(However, only one predictor variable, usage time τ , is
used in this paper.) Recursive partitioning minimizes
the difference between predicted response values and
the observed response values. The specific tree con-
struction algorithm supported by S-PLUS and used in
this paper is summarized below:

0. Initialization. Initialize a list, Slist, for the data
sets to be partitioned, with the complete data set
as the singleton element. Select the size and ho-
mogeneity thresholds Ts and Th for the algorithm.

1. Overall control. Repeatedly remove a data set
from Slist and execute step 2 until Slist be-
comes empty.

2. Size test. If |S| < Ts, stop; otherwise, execute
steps 3 through 6. |S| is the number of data points
in set S.

12



3. Defining binary partitions. A binary partition di-
vides S into two subsets using a split condition de-
fined on a specific predictor p with a cutoff value
c. Data points with p < c form one subset (S1)
and those with p ≥ c form another subset (S2).

4. Computing predicted responses and prediction de-
viances. The predicted response value v(S)
for a set S is the average over the set; i.e.,
v(S) = 1

|S|

∑

i∈S(vi); and the prediction deviance

is D(S) =
∑

i∈S (vi − v(S))
2
, where vi is the re-

sponse value for data point i.

5. Selecting the optimal partition. Among all the pos-
sible partitions (all predictors with all associated
cutoffs), the one that minimizes the deviance of
the partitioned subsets is selected; i.e., the parti-
tion with minimized D(S1) + D(S2) is selected.

6. Homogeneity test: Stop if this partitioning cannot
improve prediction accuracy beyond a threshold

Th, i.e., stop if
(

1 − D(S1)+D(S2)
D(S)

)

≤ Th; other-

wise, append S1 and S2 to Slist.
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