
IMPLEMENTATION OF SWITCHING CIRCUIT MODELS

AS VECTOR SPACE TRANSFORMATIONS

Approved by:

Dr. Mitchell A. Thornton

Dissertation Committee Chairman

Dr. Jennifer Dworak

Dr. Ping Gui

Dr. Theodore Manikas

Dr. Sukumaran Nair

IMPLEMENTATION OF SWITCHING CIRCUIT MODELS

AS VECTOR SPACE TRANSFORMATIONS

A Dissertation Presented to the Graduate Faculty of the

Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Computer Engineering

by

David Kebo Houngninou

M.S., Comp. Engineering, Washington University in St. Louis
B.S., Comp. Engineering, University of Evansville

December 16, 2017

Copyright (2017)

David Kebo Houngninou

All Rights Reserved

iii

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor Dr. Mitchell Thornton

for his continuous support during my Ph.D. study and my research, for his patience, moti-

vation, and great knowledge. His guidance helped me throughout conducting my research

and writing this thesis. I am grateful for his mentorship and the opportunity to develop my

teaching skills over the past few years.

Besides my advisor, I would like to thank the rest of my thesis committee, Dr. Sukumaran

Nair, Dr. Jennifer Dworak, Dr. Ping Gui, and Dr. Theodore Manikas, for their insightful

comments during my proposal which led me to explore further in my research from various

perspectives.

I would like to thank my wife Sheila Sagbo for her words of encouragement and her

continuous support over all these years.

Last but not least, I would like to thank my parents Denise and Etienne Houngninou for

the words of wisdom and for supporting me morally and spiritually throughout writing this

thesis and my life in general.

iii

Houngninou, David Kebo M.S., Comp. Engineering, Washington University in St. Louis
B.S., Comp. Engineering, University of Evansville

Implementation of Switching Circuit Models

as Vector Space Transformations

Advisor: Dr. Mitchell A. Thornton

Doctor of Philosophy degree conferred December 16, 2017

Dissertation completed December 11, 2017

Modeling of switching circuits is the foundation for many Electronic Design Automation

(EDA) tasks and is commonly used at various phases of the design flow for tasks such as

simulation, justification, and other analyses. State-of-the-art simulation tools are based on

discrete event algorithms using switching algebraic models and are highly optimized and

mature. Symbolic simulation may also be implemented using a discrete event approach, or

other approaches based on extracted functional models. The common foundation of modern

simulation tools is that of a switching or Boolean algebraic model that may be augmented

with timing information. Justification using switching circuit models are often based on

solving the satisfiability problem and can be computationally expensive. Alternative models,

such as the one proposed here have the potential to allow for advances in performance and

storage requirements in applications such as simulation and justification.

Recently, an alternative foundational model for conventional digital electronic circuits has

been proposed where the circuits are modeled as transfer functions in the form of matrices.

The essence of the new model is to represent information as an element in a vector space

rather than as a switching function variable. In this way, switching circuits are likewise

modeled as transformations from one vector space to another. We demonstrate that the

vector space model can be effectively used as the basis for symbolic simulation, justification,

and other applications.

A central issue in using the vector space model is that representations and manipulations

iv

of the models must not incur complexity any worse than that of algorithms based upon

traditional switching algebraic approaches. In particular we show that Algebraic Decision

Diagrams (ADDs) can be used to represent vector space models thus allowing the advan-

tages of the vector space approach to be realized while also ensuring the complexity of the

underlying algorithms are no worse than that of conventional switching algebraic models.

Spatial complexity is significantly reduced through the use of ADDs to represent the transfer

functions as compared to explicit representations and they serve to illustrate the viability of

the linear algebraic model in EDA applications.

A transfer function is a mathematical function relating the output or response of a system

to the input or stimulus. It is a concise mathematical model representing the input/output

behavior of a system, and it is widely used in many areas of engineering including system

theory and signal analysis. We implement a framework to build transfer function models

of digital switching functions using ADDs and demonstrate their application to simulation,

justification, and the computation of the algebraic normal form (ANF).

Cryptographic primitives may be composed of collections of switching functions. The Al-

gebraic Normal Form (ANF) of a cryptographic switching function is of general interest since

this form allows for the computation of many characteristics of interest to the cryptography

community. One interesting property of the ANF is that it allows for direct observation of

the algebraic degree of a switching function. We present a technique to determine the ANF

of switching functions through the traversal of a structural netlist with complexity O(N).

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . xiii

CHAPTER

1. INTRODUCTION . 1

1.1. The Study Contributions . 1

2. BACKGROUND . 4

2.1. Matrices, BDDs, and Related Operators . 4

2.2. Variable Reordering Methods . 7

2.3. Definitions and Mathematical Notations . 9

2.3.1. The Vector Space . 10

2.3.2. The Hilbert Space . 10

2.3.3. The Dirac Notation . 10

2.3.4. The Inner Product . 11

2.3.5. The Outer Product . 12

3. BUILDING THE TRANSFER FUNCTION MODEL . 13

3.1. Parsing the Netlist . 13

3.2. Fanout Detection . 14

3.3. Netlist Levelization . 14

3.4. Netlist Serial Partitioning . 15

3.5. Crossover Detection and Rows Permutations . 16

3.5.1. Crossover Detection using Linear Equations . 16

3.5.2. Computation of the Permutation Matrices . 17

3.6. Combining the Intermediate Partitions . 18

vi

3.7. Building the Transfer Function using Sparse Matrices . 18

3.7.1. Conversion of Matrices to Algebraic Decision Diagrams 25

3.8. Building the Transfer Function using Algebraic Decision Diagrams: the
Radix Polynomial Method . 27

3.8.1. Building a Library of BDDs using the CUDD Package 29

3.8.2. Building the Partitions BDDs . 30

3.8.3. Crossovers and Variable Reordering . 30

3.8.4. Algebraic Decision Diagrams Kronecker Product using a Radix
Polynomial . 32

3.8.5. Algebraic Decision Diagrams Direct Product . 33

3.8.6. Additional Structures Added to the CUDD Package 35

4. FUNCTIONAL SIMULATION USING THE TRANSFER FUNCTION MODEL 38

4.1. Functional Simulation using the Transfer Function Model 38

4.1.1. Simulation using a Monolithic Transfer Function 40

4.1.2. Simulation using an Array of Transfer Functions 41

4.1.3. Simulation using the Distributed Factored Form 43

4.2. Experimental Results . 45

4.3. Application of the Transfer Function Model to Sequential Circuits 48

5. JUSTIFICATION USING THE TRANSFER FUNCTION MODEL 56

5.1. Justification using the Transfer Matrices . 56

5.1.1. Justification using Column Vectors . 58

5.2. Justification using Algebraic Decision Diagrams . 59

5.2.1. Background . 59

5.2.2. The Vector Space . 60

5.3. Justification using the Distributed Factored Form . 62

5.4. Representation of the Justified Inputs as an ADD . 64

vii

6. ALGEBRAIC NORMAL FORM DEGREES COMPUTATION 69

6.1. Background on the Algebraic Normal Form . 69

6.1.1. The Algebraic Normal Form . 69

6.2. Method for Extracting the ANF from a Netlist . 71

6.2.1. Constants Modeled in the Switching Domain and the ANF Domain 71

6.2.2. Graph Traversal. 72

6.3. Computation of the Maximum Algebraic Degree . 76

6.3.1. Binomial Distribution of ANF Coefficients . 78

6.3.2. Experimental Results . 80

7. CONCLUSION. 82

APPENDIX

A. Transfer function: xor5.v . 84

B. Transfer function: majority.v . 85

C. Transfer function: c17.v . 86

D. Transfer function: rd53.v . 87

E. Transfer function: radd.v . 88

F. Transfer function: i3.v . 91

G. Code listing . 92

BIBLIOGRAPHY . 119

viii

LIST OF FIGURES

Figure Page

2.1 BDD variable reordering . 9

3.1 Schematic of benchmark circuit c17.v with partition cuts as vertical lines 15

3.2 Crossover detection using linear equations . 17

3.3 Computation of a crossover matrix . 17

3.4 Summary of primitive operator matrices . 23

3.5 A transfer function framework for F . 24

3.6 Sample circuit of 3 partitions . 25

3.7 Sample circuit of 3 partitions . 26

3.8 Corresponding SBDD for f1 and f2 . 27

3.9 Corresponding ADD for f1f2 . 27

3.10 A decision tree converted to a Binary Decision Diagram . 28

3.11 Primitive operator BDDs . 30

3.12 ADD Variable permutations . 31

3.13 Kronecker product or two ADDs . 33

3.14 Decision diagrams multiplication of circuit partitions . 34

3.15 ADD representation of a 2, 3 and 4 outputs fanout . 36

3.16 ADD representation of a crossover . 37

4.1 A transfer function framework for F (Monolithic method) . 41

4.2 A transfer function framework for F (Array method) . 42

4.3 Distributed factored form . 44

4.4 Simulation using the distributed vectors . 44

ix

4.5 Combinational block and sequential block . 49

4.6 Unrolling of the sequential circuit . 50

4.7 Iterations of vector multiplications . 50

4.8 Basic synchronous sequential circuit . 51

4.9 Synchronous sequential circuit unrolled on 3 cycles . 51

4.10 Registered version of c17 . 52

4.11 s27 combinational logic blocks . 53

4.12 s27 loop unrolling of two transfer functions . 54

4.13 s27 transfer function 1 . 54

4.14 s27 transfer function 2 . 55

5.1 Sample circuit . 60

5.2 Sample circuit . 61

5.3 Column vectors with row indices . 61

5.4 Justification on the output column vector |3〉 . 62

5.5 Primitive operator BDDs . 63

5.6 Backward traversal of circuit c17 . 63

5.7 c17.v transfer function ADD . 66

5.8 Justified inputs for output |0〉 . 66

5.9 c17.v transfer function ADD . 66

5.10 Justified inputs for output |1〉 . 66

5.11 c17.v transfer function ADD . 67

5.12 Justified inputs for output |2〉 . 67

5.13 c17.v transfer function ADD . 67

5.14 Justified inputs for output |3〉 . 67

6.1 Hasse diagram of values in the switching domain . 72

6.2 Hasse diagram of constant values in the ANF domain . 72

x

6.3 Benchmark circuit c17 . 75

6.4 Example of a Hybrid Netlist for ANF Computation . 75

6.5 Example of a Hybrid Netlist for ANF Computation a12345 . 76

6.6 Example of a Hybrid Netlist for ANF Computation a124 . 76

6.7 ANF coefficients in the Pascal Triangle for circuit c17 . 77

6.8 Example of a Hybrid Netlist for ANF Computation . 78

6.9 Binomial distribution . 79

6.10 Binomial distribution with a 50% variable reduction . 80

A.1 xor5.v schematic . 84

A.2 xor5.v matrix . 84

A.3 xor5.v schematic . 84

A.4 xor5.v ADD . 84

B.1 majority.v schematic . 85

B.2 majority.v matrix . 85

B.3 majority.v schematic . 85

B.4 majority.v ADD . 85

C.1 c17.v schematic . 86

C.2 c17.v matrix . 86

C.3 c17.v schematic . 86

C.4 c17.v ADD . 86

D.1 rd53.v schematic . 87

D.2 rd53.v matrix . 87

D.3 rd53.v schematic . 87

D.4 rd53.v ADD . 87

E.1 radd.v schematic . 88

E.2 radd.v Output o4 . 88

xi

E.3 radd.v Output o3 . 89

E.4 radd.v Output o2 . 89

E.5 radd.v Output o1 . 90

E.6 radd.v Output o0 . 90

F.1 i3.v schematic . 91

F.2 i3.v matrix . 91

xii

LIST OF TABLES

Table Page

2.1 Algorithms for basic operations on BDDs . 6

2.2 Linear algebra and bra-ket notation . 12

3.1 Example of truth table for f and g . 20

3.2 AND truth table using elements of elements H . 21

3.3 OR truth table using elements of elements H . 21

3.4 XOR truth table using elements of elements H . 21

3.5 NAND truth table using elements of elements H . 22

3.6 NOR truth table using elements of elements H . 22

3.7 XNOR truth table using elements of elements H . 22

3.8 BUFFER truth table using elements of elements H . 22

3.9 NOT truth table using elements of elements H . 23

4.1 Simulation output response (Monolithic method) . 46

4.2 Simulation output response (Array method) . 47

4.3 Simulation using the distributed factored form . 48

5.1 Justification using the distributed factored form . 64

5.2 ADD Pruning algorithm runtime . 68

6.1 Computation of the maximum algebraic degree . 81

xiii

This is dedicated to:

Chapter 1

INTRODUCTION

Switching theory provides a rich theoretical basis for modeling digital logic circuits. Tra-

ditionally, digital logic circuits are modeled using the axioms and postulates of switching

theory formulated in terms of a binary-valued Boolean algebra over discrete scalar-valued

switching functions. The switching theory framework has led to an extensive set of analysis

and synthesis methods that continue to be commonly used in all facets of modern digital cir-

cuit design activities. Using this new approach, we reformulate these mathematical models

in terms of linear transforms over vector spaces. Transfer functions describe the input-output

behavior of a system. We can obtain the system response with respect to a particular input

stimulus through a multiplicative operation among the stimulus and transfer function. In

our model, we use the transfer function model to represent a switching circuit and show how

the transfer function can be formulated based upon the topology of a structural representa-

tion of the switching circuit as well as other representations. This technique is described in

further details in Chapter 4. The inverse transfer function can be used to determine a cor-

responding input stimulus given an output response through a multiplicative operation. In

terms of digital logic network operations, these tasks are commonly referred to as simulation

and justification respectively.

1.1. The Study Contributions

In Chapter 2, we provide background information on linear algebra and the vector space

representation method. The conventional switching theory framework has led to an extensive

set of synthesis methods that are commonly used in modern digital circuit design. In our

approach, we reformulate these mathematical models in terms of linear transforms over vector

spaces. The first prototype used to compute the transfer function was implemented using

1

sparse matrices. To obtain the output response, we can multiply the input stimulus by the

transfer matrix. The fact that matrices can grow exponentially in size makes them unsuitable

for representing large functions with multiple variables. We show that it is more efficient to

represent transfer functions using Algebraic Decision Diagrams due to their compactness and

canonicity. We also explain how this new theory can be used as a part of an EDA tool for

representing and manipulating switching functions as transfer functions. The experimental

results validate our hypothesis by showing the timing and memory improvements achieved

by using decision diagrams.

Previous work [27] described a new theory for representing switching functions with

linear algebraic transfer functions. We have described the application of this theory to

common operations such as simulation and justification. Chapter 4 provides the detailed

steps involved in building the transfer function starting with a structural netlist. The theory

is equally applicable to combinational circuits and sequential circuits because the structure

of the underlying transfer functions remains the same.

Chapter 3 describes the use of our model to build a prototype simulation tool. We describe

how the simulator is implemented including relevant matrix-based models and ADD-based

algorithms that are employed to perform the computations. An important contribution of

this work is the creation of graph-based algorithms to efficiently implement the required

linear algebraic operations for tasks such as simulation, justification, and ANF computa-

tion. The system response with respect to a particular input stimulus is unique and can

be obtained through a multiplicative operation of the stimulus and the transfer function.

In Chapter 3, we describe three different approaches for the computation of simulation re-

sponses. Following the description of each implementation, we compare their performances

in terms of computation time and storage requirements.

Justification is the inverse problem of simulation. Knowing the output response and the

characterization of a logic network, we develop ADD-based methods to compute the corre-

sponding input stimuli. In Chapter 5, we demonstrate that the same transfer function can be

reused to perform justification using a single multiplication. Following the description of our

2

justification method and its implementation, we report performance in terms of computation

time and storage requirements.

Cryptographic primitives serve as the building blocks of larger cryptographic systems.

It is common to represent or model a cryptographic primitive of n inputs and m outputs

as a collection of r Boolean or switching functions. We are interested in computing the

Algebraic Normal Form (ANF) of a cryptographic switching function. This expression allows

us to extract the algebraic degree of a switching function in linear time. In cryptography,

knowing the degree of a switching function can aid in various cryptanalysis tasks and is a

valuable piece of information. However, computing the degree of a switching function using

the common switching algebraic model is well-known to require extensive computational

resources. Another contribution of this research is the provision of a technique that recovers

the ANF of switching functions through traversals of a structural netlist based upon use of

the vector space model. In Chapter 6, we provide background information, a definition of the

ANF, and a new method for its computation using the vector space model. In particular, we

show how a single ANF coefficient can be extracted through a single traversal of a structural

netlist.

3

Chapter 2

BACKGROUND

2.1. Matrices, BDDs, and Related Operators

Switching theory is based on the mathematics of Boole as originally devised for symbolic

logic manipulation. We develop an alternative to the traditional switching theory model for

digital network representation and manipulation, using matrices as transfer function. Binary

Decision Diagrams (BDDs) are data structures that are widely used in the CAD industry. In

1980, R. E. Bryant [4] demonstrated that we can use a BDD as a canonical representation of

a Boolean function. He also demonstrated how to perform binary Boolean operations on two

BDDs. Previous research has also shown that binary decision diagrams are an efficient data

structure to represent almost any common Boolean function. They are usually smaller than

any other representation. As an example, for the n× n Walsh matrix, the BDD representa-

tion is of size complexity O(n log n) [12]. Later in 1988, Malik et al. [19] proposed a faster

way to carry out formal verification for a larger set of combinational networks compared to

existing verification systems. The authors proposed new variable ordering techniques that

are based on the topology of the multi-level network to improve the speed of testing. In

1992, further experiments revealed a relationship between binary decision diagrams and ma-

trices. Any BDD can be represented as a vector of length 2n or as a sparse matrix of size

2n−1 × 2n−1. BDDs are folded representations of the Shannon Cofactor Tree. Supposing a

Boolean function F of n variables x1, x2, . . . , xn:

F : {0, 1}n → {0, 1}

4

We define new Boolean functions of n− 1 variables as follows:

Fx1(x1, x2, . . . , xn) = F (1, x2, x3, . . . , xn)

Fx1′(x1, x2, . . . , xn) = F (0, x2, x3, . . . , xn)

Fxi and Fxi′ are the cofactors of F, and the Shannon Expansion is written as:

F (x1, x2, . . . , xn) = xi.Fxi + xi′ .Fxi′ (2.1)

The cofactors Fxi and Fx′i can be represented as a tree which is also a BDD. Each internal

node in the BDD is a subfunction. Each internal node has two children; the left child is

the cofactor with respect to xi
′, and the right child is the cofactor with respect to xi. The

overall function is a larger but compressed tree, because all isomorphic subtrees are folded

together into a single structure. The compression means that we merge internal nodes that

represent the same function into a single node. We can also write cofactors of a function

as a sparse matrix filled with binary numbers. Identical functions will map to the same

matrix. A Multi-Terminal Binary Decision Diagram (MTBDD) [12] is a variant of BDDs

that has arbitrary integer values at the leaf nodes instead of two leaves of 0 and 1. MTBDDs

represent functions from a Boolean space Bn onto a finite set RR̃. For a vector v of size

m, v is a function from the Boolean space Blogn onto the range of the vector, and can be

represented as a MTBDD. This background work shows that we can represent vectors as

BDDs and matrices as MTBDDs. The size of the MTBDD and its matrix are correlated.

Each path in the tree traverses log n nodes, where n is the number of rows in the matrix and

the space complexity is O(n).

We also investigated the type of operations over these data structures such as addition,

inner product, outer product, scalar multiplication, and composition. The work of Clarke and

Fujita [12] covered in details a set of operations such as vector multiplication, multiplication

of a vector by a vector, and multiplication of a matrix by a vector, multiplication of a

matrix by a matrix. [12] uses a procedure called Apply which takes as input two BDDs and

5

an operator. Randal E. Bryant [4] developed the procedure Apply. It provides the basic

method to perform operations on two Boolean functions. Apply is fully implemented in

CUDD, a package for BDD manipulation written in c that we use later for experimental

results in our research. Supposing two Boolean functions f1, f2 and a binary operator 〈op〉,

we define the function f1〈op〉f2 as:

[f1〈op〉f2](x1, . . . , xn) = f2(x1, . . . , xn)〈op〉f2(x1, . . . , xn)

The work of Randal E. Bryant [4] in 1986 introduced more algorithms to perform basic

operations on Boolean functions represented as BDDs; we summarized these operations in

Table 1. These algorithms use graph algorithms techniques such as ordered traversal, table

lookup, and vertex encoding. The time complexity of these algorithms closely depends on

the size of the graphs.

Procedure Result Time Complexity

Reduce G reduced by canonical form O(|G|· log(|G|)

Apply f1〈op〉f2 O(|G1|·|G2|)

Restrict f |xi=b O(|G|· log|G|)

Compose f1|xi=f2 O(|G1|2·|G2|)

Satisfy-one some element of Sf O(n)

Satisfy-all Sf O(n · |Sf |)

Satisfy-count |Sf | O(|G|)

Table 2.1. Algorithms for basic operations on BDDs

This background work is essential for our research because we reuse some of these opera-

tions to compute the output response of a circuit after building a transfer function. Supposing

a vector g and a matrix f , the multiplication of f and g is expressed as:

6

h(x1, . . . , xm) = f(x1, y1, . . . , xm, yn) ◦ g(y1, . . . , yn)

The matrix f performs a transformation of the vector g which represents our input vector

and the result becomes a new vector h which represents the output vector. The vector by

matrix multiplication looks like this:

 hx1′

hx1

 =

 fx1′y1′ fx1′y1

fx1y1′ fx1y1


 gy1′

gy1


Each element of the vector becomes:

hx1′ = fx1′y1′ ◦ gy1′ + fx1′y1 ◦ gy1

hy1 = fx1y1′ ◦ gy1′ + fx1y1 ◦ gy1

2.2. Variable Reordering Methods

A binary decision diagram is ordered if each variable is encountered at most once on

each path from the root to a leaf. We consider a decision diagram to be fully-reduced

if it does not contain duplicate nodes for a given level. The nodes at each level of the

diagram represent a variable. Variable reordering is essential especially for large directed

acyclic graphs because it helps reduce the number of nodes. Finding the optimal variable

ordering is an NP -complete problem [3]. There are two types of techniques for variable

reordering: static variable ordering and dynamic variable ordering. Static variable ordering

determines the order before constructing the BDD when dynamic variable ordering reorders

when building the BDD. Static variable ordering is faster but not as efficient as dynamic

reordering. Dynamic reordering can be more time consuming because it is done at runtime

but is very handy when it comes to size optimization.

7

Static variable reordering: In static reordering, algorithms search for the best order

by extracting topological data from the graph. We surveyed four main groups of static re-

ordering: Graph search algorithms, graph evaluation algorithms, decomposition algorithms,

and sample-based algorithms. In the graph search algorithm proposed by [19], we start by

assigning a level of zero to vertices with no edges and perform a breadth-first search to as-

sign an order to the other vertices. [11] also proposed some methods using depth-first and

breadth-first traversal from the outputs of the circuit to its inputs. Some of these algorithms

have limitations. For instance, the graph search algorithm proposed above was designed for

BDDs representing a single Boolean function. This approach would not be beneficial for

model checking nowadays, since we deal with large size BDDs. The research in [10] pro-

posed some reordering methods such as variable appending and variable interleaving. For

the variable appending method, we start by keeping track of a predefined priority order. The

outputs are reordered based on the order of the inputs. The variable interleaving method

interleaves the primary input variables that occur in multiple primary output lists. The al-

gorithm starts with the primary outputs in some predefined priority order. For each primary

output, we map a primary input that changes the value of that primary output and order

them in a list.

Dynamic variable reordering: For n variables there are n! different orders Dynamic

reordering techniques iteratively improve variable orders. If the size of the BDD exceeds

a threshold at runtime, we interrupt the operation, and we perform reordering. A popular

method of dynamic reordering uses the sifting minimization algorithm. This algorithm finds

the best position for a variable, assuming that the other variables are fixed. For n variables

in the BDD, there are n possible positions for a variable. The purpose of the algorithm is to

find the best position to reduce the size of the BDD. We gradually sift a variable down or up

in the tree structure. Sifting means that we swap a variable with its successor or predecessor

variable until we find the best size for the BDD [23]. Sifting has a complexity of O(n2).

Other dynamic variable ordering methods were also implemented and are widely used.

8

Figure 2.1. BDD variable reordering

[25] discussed a model for building BDDs. It starts by building a decision diagram for

all the input variables, then builds the BDD for the output of the gate fed by the primary

inputs. The resulting outputs are used to compute the BDDs of the next gates and so on

until we reach the outputs. Moving forward in this process, we compute the BDD of multiple

intermediate subfunctions. The technique developed in [25] relies on garbage collection for

memory optimization. It keeps a reference count of each internal node and each terminal

node. Since multiple functions can share the same subgraph, we increment the reference

count any time a new arc points to the node. In the same way, any time a node is freed,

we decrement the reference count. Garbage collection becomes useful when we need to

remove all unnecessary nodes with a reference count of 0. Later in our work, we propose

another method to build BDDs of combinational circuits using segments of the circuit called

partitions.

We surveyed and analyzed previous work about key topics such as formal logic verifica-

tion, canonical representation of Boolean functions, operations on Boolean functions, variable

reordering, and memory optimization. This background provides a solid set of references for

implementing our new method to build a transfer function model that uses binary decision

diagrams as the underlying data structure.

2.3. Definitions and Mathematical Notations

9

Building a transfer function consists of multiple steps starting from parsing a structural

netlist. The textual description of our benchmark circuits is in Verilog. The main steps

involved in the parsing process are: fanout detection, netlist levelization, netlist partitioning,

crossover detection, translating nets to sparse matrices or binary decision diagrams and

building partitions representing intermediate functions. Before we describe each step of

the process, we provide some definitions of the mathematical terms and notations used

recurrently in this work.

2.3.1. The Vector Space

Linear algebra is defined over a vector space. A vector space consists of a set of k- dimen-

sional vectors and the operations of scaling and addition. In other words, it is characterized

by a dimension and a set of vectors. The scaling operation is a multiplicative operation

with operands consisting of a scalar and a vector. The addition operation is performed over

two operand vectors within the space. Both operations yield a resultant vector. Vectors

are one-dimensional arrays of values or components, and the number of values comprising

a vector defines the vector space dimension in which they are members. The vector space

model offers a framework for binary networks, since they may be formulated using vectors

to represent units of information. For this research, the vector spaces we are focusing on

are finite-dimensioned Hilbert Spaces. For simulations using our transfer function model,

we will use canonical basis vectors which are vectors whose components are all zero-valued

except for a single-valued component.

2.3.2. The Hilbert Space

A Hilbert space is a particular vector space defined for an arbitrary dimension k, including

an infinite dimension, and that has a norm and inner product associated with it. Column

vectors that are members of a Hilbert space are denoted as v ∈ Hk and the corresponding

row vector as vT when the components of v are not complex-valued.

10

2.3.3. The Dirac Notation

We use the Dirac notation or “bra-ket” notation [9] to represent abstract vectors and

linear forms in mathematics. Rather than using over arrows conventionally used in physics

(~A), Dirac’s notation for a vector uses vertical bars and angular brackets: |A〉 .We express

a row vector v as 〈v| referred to as “bra-v” and a column vector w as |w〉 referred to as

“ket-w”. The “bra-ket” notation is convenient since we express the inner product as 〈v |w〉

and the outer product as |v〉 〈w|. These expressions are useful in the formulation of transfer

matrices that model digital logic networks. In this work we use a canonical vector space

basis consisting of ket-0 (|0〉) and ket-1 (|1〉). The Bra-ket notation is convenient when using

the vector space for simulation because the orientation of the bracket can indicate whether

the vector multiplication is an inner product or an outer product.

|0〉 =

1

0

 |1〉 =

0

1



2.3.4. The Inner Product

The inner product or dot product is a multiplication operation that produces a scalar

product of two operand vectors of the same dimension. In a vector space, it is a way to

multiply vectors together, with the result of this multiplication being a scalar.

The conventional notation for r-dimensional vectors x and y is:

x · y = xT · y =
r−1∑
i=0

xi · yi xT =

[
x0 x1 . . . xn

]
yT =

[
y0 y1 . . . yn

]

The following expression represents the inner product using bra-ket notation:

〈x | y〉 =
r−1∑
i=0

xi · yi 〈x| = xT |y〉 = y

A vector v may undergo a linear transformation that maps it to another space. Linear

11

transformations are expressed as vector-matrix multiplications where matrices are denoted

with capital letters such as A. The inner product product xT · y can be written as 〈x | y〉.

2.3.5. The Outer Product

The outer product is a multiplicative operation that can be used to multiply two tensors

regardless of their order. It can be performed for two vectors, or tensors of order one, of any

size. When we perform the outer product on a pair of vectors, we obtain a matrix or tensor

of order two.

Using bra-ket notation, the following expressions denote an outer product:

〈x · y| = 〈x| ⊗ 〈y| |x · y〉 = |x〉 ⊗ |y〉 〈x| 〈y| = |x〉 ⊗ 〈y|

The outer product is a non-commutative operation since 〈x| ⊗ 〈y| 6= 〈y| ⊗ 〈x| .

A comparison of conventional versus braket notation is shown in Table 2.2.

Table 2.2. Linear algebra and bra-ket notation

Operation Linear Algebra Bra-Ket

Inner product a · b = b · a 〈a | b〉 = 〈b | a〉

Outer product a⊗ b |a〉 〈b|

Direct product AB AB

Outer product A⊗B |A〉 〈B|

Vector/matrix product c = Ab |c〉 = A |b〉

Vector/matrix product cT = bTA 〈c| = 〈b|A

12

Chapter 3

BUILDING THE TRANSFER FUNCTION MODEL

3.1. Parsing the Netlist

To compute a transfer function representation of a switching function into a matrix

represented as an ADD, we first parse a structural netlist. In the work presented here, we

used the Verilog language to represent structural netlists. The Verilog parser is a program

that extracts information from structural multi-level combinational logic circuits written in

Verilog. This parser is developed in C language. It tokenizes every line in a Verilog file, and

invokes various callback methods.

The purpose of the parser is to read every line in the Verilog file and extract all the relevant

information from the netlist. The parser identifies all the fanouts in the netlist and rewrites

the netlist to include those fanouts. Next, the parser creates a C-language data structure with

variables such as a unique ID, the number of inputs, the number of outputs, the number

of gates, the number of partitions, and the number of crossovers. Statistical information

collected from the Verilog netlist can be used to estimate the amount of memory required

when building the transfer function. Each gate and each wire identified in the Verilog netlist

is represented internally in the C-language data structure. A gate has attributes such as a

unique ID, a name, the type of gate, the number of inputs, the number of outputs, and a

matrix representation in the form of a small ADD representation.

The information that the parser returns includes:

• The module name

• The list of instantiations in the module

• The list of inputs

13

• The list of outputs

• The list of internal wires

• The list of logic gates

3.2. Fanout Detection

Typically, the output of a logic gate is connected to the input(s) of one or more logic

gates. Whenever such an output drives two or more inputs of other gates, a structure known

as a fanout is present in the netlist. Fanout points are treated as network elements since

these structures have differing numbers of outputs. To obtain the correct transfer function,

we must account for fanouts encountered in the circuit. The input Verilog netlists are in

the form of a set of Boolean operators, and these netlists do not explicitly define fanouts

as is the case in other netlist languages like ISCAS85. The first step of the process is to

identify all the fanouts in the netlist and rewrite the netlist to include those fanouts. This

identification is done by parsing all the Boolean operators in the netlist and grouping all the

gates that have identical nets in their input port list. For every set of duplicate nets found,

we create a new fanout node with a unique identifier. The outputs of the fanouts have the

same values as the input. We assign each output wire of a fanout with a unique ID number.

3.3. Netlist Levelization

During event-driven simulation, gates are not always simulated in the order they are

listed in a netlist. To simulate a circuit, we start by assigning binary values to the primary

inputs and proceed by propagating those values until they reach the outputs. A single gate

is not simulated until all of its input values are set. If the output of a gate named ‘A’ drives

another gate named ‘B’, then the output of gate ‘B’ depends on the output of gate ‘A’. To

obtain the correct output value for gate ‘B’, the order of the simulation matters. In the case

above, gate ‘A’ must be simulated before gate ‘B’. The process of ordering and determining

the proper gate arrangement for simulation is called levelization. We begin this process by

14

assigning all primary inputs with an initial level value of zero. During a netlist traversal

from the primary inputs toward the outputs, the levelization process assigns a level number

to each net that is encountered. This identical to the method used in many structural netlist

simulation algorithms in conventional EDA tools. To levelize a structural circuit netlist, we

apply three rules:

1. A net or a wire can be assigned a level number only if its driving gate has been assigned

a level number.

2. A gate output net can be assigned a level number only if all its input nets have been

assigned level numbers.

3. The level number of a gate output net is the maximum of all its inputs’ level numbers

incremented by one. For instance, if a gate output net ‘D’ has two input net values

‘B’ and ‘C’ with level numbers 4 and 7 respectively, then the level number of gate ‘D’

is 8, i.e., max(4, 7) + 1.

To accomplish levelization, we implemented a recursive approach by applying the three

rules above starting from the primary inputs.

The purpose for performing levelization is to identify cuts in the netlist such that parti-

tions are formed. Levelization values identify where such cuts occur in the netlist through

grouping all nets that have identical levelization indices [27].

Figure 3.1. Schematic of benchmark circuit c17.v with partition cuts as vertical lines

3.4. Netlist Serial Partitioning

15

We group nets and gates with the same level numbers in parallel stages called partitions.

Partitioning separates the network into series or partitions of subcircuits. A partition is

made of the following types of elements: gates, fanins, fanouts and pass-through wires. All

the primitive logic gates whose output nets have the same level numbers are identified and

grouped in the same partition. Pass-through wires are wires that cross through a partition.

Completing the serial partitioning process requires two or more passes through the netlist and

is thus of temporal complexity O(n) where n is the number of nets. The spatial complexity is

also O(n) as the structural Verilog netlist is parsed into an internal graph memory structure

where nodes represent gates, primary inputs, and outputs. Graph edges correspond to the

topological nets in the circuit.

3.5. Crossover Detection and Rows Permutations

Crossovers are the intersections of conducting wires in a structural netlist. We can

represent multiple crossovers as a series of single crossovers. Levelization does not detect

crossovers, so we need an additional step to account for crossovers before the calculation of

the overall transfer function. The intermediate transfer functions in the form of permutation

matrices for crossovers are injected in between existing partition stages. In the case where

there is no crossover, the permutation matrix is an identity matrix.

3.5.1. Crossover Detection using Linear Equations

To identify crossovers between stages we use a set of linear equations (Figure 3.2). As

an example, consider two serial partitions: an origin partition and a destination partition.

All nets in the origin partition must have a mapping in the destination partition (from

outputs of stage m to inputs of stage m + 1). First, we assign an order to every net in

the origin partition, starting from the topmost element. Then, we assign an order to every

net in the destination partition, starting from the topmost element. The orders are used

as y-coordinates in a two-dimensional Cartesian coordinate map. Using these coordinates,

16

we compute a linear equation y = ax + b using each pair of nets mapping from the origin

to the destination partition. The equations are used to find the intersections of the lines.

Each line intersection represents a crossover. By using the linear equation, we compute the

coordinates of each intersection. All crossovers must be processed in the order they occur.

Therefore, we use the x coordinates of each intersection point to sort the crossovers.

Figure 3.2. Crossover detection using linear equations

3.5.2. Computation of the Permutation Matrices

Once we detect crossovers, we need to construct the corresponding permutation matrices

as their models. To obtain the correct transfer function, crossovers must be processed in the

order in which they occur. Figure 3.3 shows an example arrangement of two crossings. We

process multi-wire crossovers one at a time. Lines labeled ‘I’ represent wires, lines labeled

‘C’ represent crossovers, and lines labeled ‘FO’ represent fanouts. The transfer function for

a wire is the identity matrix. The transfer function for a crossover is a predefined crossover

matrix.

Figure 3.3. Computation of a crossover matrix

17

In Figure 3.3, we have two crossovers. To compute the permutation matrix T we use the

following equation:

T = (FO ⊗ I ⊗ I) · (I ⊗ C ⊗ I) · (I ⊗ I ⊗ C)

3.6. Combining the Intermediate Partitions

The previous process of serial partitioning groups all nets and gates with the same level

numbers into a set of parallel stages. After the partitions are formed, there is a need to

compute their corresponding transfer function. To compute the transfer function for a par-

tition, we compute the outer product of all the parallel network elements starting from the

topmost element. Each partition transfer matrix requires p outer product operations where

p is the number of parallel elements. To build the overall transfer function, we multiply all

these partitions together in a particular order [27]. Starting from the leftmost partition, the

first partition is multiplied by the next one to form an intermediate transfer function. The

intermediate transfer function is then multiplied by the next partition in the serial sequence

and so on. A transfer function requires m direct product operations where m is the num-

ber of partitions. When a crossover partition is encountered, it must also be inserted into

the sequence at the appropriate point and multiplied as well. When calculating the overall

monolithic transfer function, we also take into account memory management. At every iter-

ation, once an intermediate function is calculated, we discard the previous partition to free

up unused memory. This technique is especially beneficial when dealing with large netlists.

3.7. Building the Transfer Function using Sparse Matrices

A sparse matrix is a matrix in which many of the elements are zero valued. The charac-

teristics of sparse matrices can be exploited to optimize the size and speed of computational

resources when they are manipulated. Since there are fewer non-zero elements than zeros,

less memory is required to store the data. Since our theory uses principles of linear algebra,

18

sparse matrices are an efficient data structure. In particular, using sparse matrices with a

larger number of zeros saves a significant amount of memory and speeds up the processing

of that data. Sparse matrices also have other significant advantages in terms of computa-

tional efficiency. There is no need to perform unnecessary low-level arithmetic since the set

is limited to {0, 1}. This increase in efficiency allows for performance improvements when

dealing with large netlists.

A transfer function matrix X is isomorphic to the truth table representation of that

function [27]. We use this principle to build a library of sub-matrices. We refer these blocks

as sub-matrices because we reuse them as building blocks to construct larger transfer matri-

ces. The most commonly used gates are AND, OR, XOR, BUF, NAND, NOR, XNOR, INV. In

addition to the traditional gates, we also account for fanouts and crossovers. Fanout points

are treated as network elements since these structures have differing numbers of outputs. To

represent a fanout as a matrix, we must first write a truth table, then perform the outer

product of the row vectors on each output. Crossovers are the intersections of conducting

wires. The permutation of the order of wires affects the correctness of the transfer function.

If we ignore crossovers during the transformation of the input vector into an output vector,

the network output response becomes incorrect because the order of the row vectors is in-

terchanged. To fix this problem, we must include some intermediate matrices representing

crossovers. These intermediate matrices are not intended to perform Boolean operations;

their purpose is to rearrange the order of the row vectors between two cascades. Crossover

transfer matrices are permutation matrices that are orthogonal rotations in the Hilbert space

Hn, or a vector space projection onto itself. To represent a crossover as a matrix, we must

write a truth table first then perform the outer product of the row vectors on each output.

The transfer function T representing the input-output relationship of a logic network F

is of the form in equation 3.6:

T =
2n∑
i=1

|xi〉 〈fi| (3.1)

19

To compute T , we must understand how to perform the conversion of a truth table to

a matrix. For example, Table 3.1 below shows how to convert a truth table for functions f

and g

x1 x2 f g

0 0 1 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 3.1. Example of truth table for f and g

We can compute the transfer function for this truth table using Equation 3.2. We can derive

T from the truth table using row vectors.

T =

[〈10|
〈10|
〈10|
〈01|

]
=


〈1|⊗〈0|

〈1|⊗〈0|

〈1|⊗〈0|

〈0|⊗〈1|

 =


[0 1]⊗[1 0]

[0 1]⊗[1 0]

[0 1]⊗[1 0]

[1 0]⊗[0 1]

 =


[0 0 1 0]

[0 0 1 0]

[0 0 1 0]

[0 1 0 0]

 (3.2)

T =
3∑
i=0

|xi〉 〈fi| = |0〉 〈2|+ |1〉 〈2|+ |2〉 〈2|+ |3〉 〈1| (3.3)

T =

 0 0 1 0

0 0 1 0

0 0 1 0

0 1 0 0

 (3.4)

The tables below summarizes the operations performed to obtain the sub-matrices for each

gate.

20

a b a⊗ b a b a⊗ b Matrix

〈0| 〈0| 〈0| [1 0] [1 0] [1 0] [
1 0
1 0
1 0
0 1

]
〈0| 〈1| 〈0| [1 0] [0 1] [1 0]

〈1| 〈0| 〈0| [0 1] [1 0] [1 0]

〈1| 〈1| 〈1| [0 1] [0 1] [0 1]

Table 3.2. AND truth table using elements of elements H

a b a⊗ b a b a⊗ b Matrix

〈0| 〈0| 〈0| [1 0] [1 0] [1 0] [
1 0
0 1
0 1
0 1

]
〈0| 〈1| 〈1| [1 0] [0 1] [0 1]

〈1| 〈0| 〈1| [0 1] [1 0] [0 1]

〈1| 〈1| 〈1| [0 1] [0 1] [0 1]

Table 3.3. OR truth table using elements of elements H

a b a⊗ b a b a⊗ b Matrix

〈0| 〈0| 〈0| [1 0] [1 0] [1 0] [
1 0
0 1
0 1
1 0

]
〈0| 〈1| 〈1| [1 0] [0 1] [0 1]

〈1| 〈0| 〈1| [0 1] [1 0] [0 1]

〈1| 〈1| 〈0| [0 1] [0 1] [1 0]

Table 3.4. XOR truth table using elements of elements H

21

a b a⊗ b a b a⊗ b Matrix

〈0| 〈0| 〈1| [1 0] [1 0] [0 1] [
0 1
0 1
0 1
1 0

]
〈0| 〈1| 〈1| [1 0] [0 1] [0 1]

〈1| 〈0| 〈1| [0 1] [1 0] [0 1]

〈1| 〈1| 〈0| [0 1] [0 1] [1 0]

Table 3.5. NAND truth table using elements of elements H

a b a⊗ b a b a⊗ b Matrix

〈0| 〈0| 〈1| [1 0] [1 0] [0 1] [
0 1
1 0
1 0
1 0

]
〈0| 〈1| 〈0| [1 0] [0 1] [1 0]

〈1| 〈0| 〈0| [0 1] [1 0] [1 0]

〈1| 〈1| 〈0| [0 1] [0 1] [1 0]

Table 3.6. NOR truth table using elements of elements H

a b a⊗ b a b a⊗ b Matrix

〈0| 〈0| 〈0| [1 0] [1 0] [0 1] [
0 1
1 0
1 0
0 1

]
〈0| 〈1| 〈1| [1 0] [0 1] [1 0]

〈1| 〈0| 〈1| [0 1] [1 0] [1 0]

〈1| 〈1| 〈0| [0 1] [0 1] [0 1]

Table 3.7. XNOR truth table using elements of elements H

a a Matrix

〈0| [1 0]
[1 0
0 1]

〈1| [0 1]

Table 3.8. BUFFER truth table using elements of elements H

22

a ¬a Matrix

〈0| [0 1]
[0 1
1 0]

〈1| [1 0]

Table 3.9. NOT truth table using elements of elements H

Figure 3.4. Summary of primitive operator matrices

The levelization process described in section 3.3 allows us to align network elements in

groups called partitions. There are two types of partition matrices; partitions of Boolean

functions and partitions of crossovers. Both matrices are built in the same manner. To build

a partition matrix, we start from the topmost gate in the partition and perform an outer

product of all sub-matrices in the partition. We can express the outer product as a matrix

product composed of elements that are scaled matrices as in the following equation.

A⊗B =

 a11B a12B a13B ... a1nB
a21B a22B a23B ... a2nB

...
...

...
...

...
ad1B ad2B ad3B ... adnB


The outer product is non-commutative: A⊗B 6= B⊗A. The dimensions of the two matrices

being multiplied together do not need to have any relation to each other, therefore we can

multiply any gate by any other.

Once all the partitions are computed, we multiply all the partitions matrices together

using the matrix inner product. In the equation below, the matrix F represents the transfer

23

function.

matrixF = matrixA×matrixB × . . .×matrixZ

To multiply two matrices, A and B, the number of columns in A must equal the number

of rows in B. This requirement enables us to identify all faulty cascade matrices when a

row/column mismatch occurs during the product. To demonstrate this process, we gener-

ated transfer function matrices using benchmarks from the ISCAS85 collection. Figure C.1

in the appendix shows the corresponding output matrix for the circuit c17.v. Figure 3.5

describes the model for a logic network characterized as a function F in the transfer function

framework. The inputs are denoted by an n-dimensional vector, |xi〉 ∈ Hn and the outputs

by a vector |fi〉 ∈ Hm. We represent the functional behavior of the circuit by the switching

function f(x1, . . . , xn) and the n×m transformation matrix F that serves as the specification

of the network transfer function.

Figure 3.5. A transfer function framework for F

As an example of computing the monolithic transfer function given a structural netlist,

consider the example circuit in Figure 3.6 that is composed of one AND gate and one inverter.

We partition the network into series or cascade. In this example, we identify three partitions

θ1, θ2, θ3. Because each partition is composed of a set of parallel elements, the signals on

each parallel line must be combined into a single element in Hw where logw is the number of

parallel network signals in a partition.We build each of the partition matrix using the outer

product of each network element. Next, we multiply each partition matrix using the direct

matrix multiplication operation.

24

Figure 3.6. Sample circuit of 3 partitions

We write the resulting transfer matrix as:

T = Tθ1 · Tθ2 · Tθ3

After partitioning, we calculate each partition transfer matrix using the outer product:

Tθ1 = AND =

[
1 0
1 0
1 0
0 1

]

Tθ2 = FANOUT = [1 0 0 0
0 0 0 1]

Tθ3 = INV ⊗ I = [0 1
1 0]⊗ [1 0

0 1] =

[
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
Next, we perform compute the direct product of the partition transfer matrices

Tθ1 · Tθ2 =

[
1 0
1 0
1 0
0 1

]
× [1 0 0 0

0 0 0 1] =

[
1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 1

]

Tθ1 · Tθ2 · Tθ3 =

[
1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 1

]
×
[

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
=

[
0 0 1 0
0 0 1 0
0 0 1 0
0 1 0 0

]

The resulting transfer matrix is T =

[
0 0 1 0
0 0 1 0
0 0 1 0
0 1 0 0

]

3.7.1. Conversion of Matrices to Algebraic Decision Diagrams

25

In the previous section the description of the process to compute the overall monolithic

transfer matrix for a netlist utilized explicit matrices. While moderate computational ef-

ficiency increases can be obtained through the exploitation of sparse matrix methods, the

resulting algorithms are still inferior to methods based upon conventional switching algebra

models. For the vector space method to be useful in a practical manner it is necessary to

reformulate these computations such that computational efficiencies exceed, or at least are

equal to, those used in conventional EDA methods based upon switching algebraic founda-

tions. A key contribution of this research is to utilize efficient graph-based algorithms where

matrices and vectors are represented as ADDs. To achieve this result, we formulated and

implemented all the linear algebraic calculations as efficient graph algorithms. Due to the

property of truth table isomorphism, the computational storage requirements for transfer

matrices are never worse than those used in conventional switching algebraic models since

every representation used in that ubiquitous theory is equally useful in the vector space

model.

ADDs represent transfer matrices with explicit row vectors. Shared Binary Decision

Diagrams (SBDDs) represent transfer matrices with factored row vectors. In both repre-

sentations, we interpret non-terminal nodes as matrix row vector indices. In the structure

of the SBDD, multiple graphs can share the same terminal nodes. In Figure 3.7, we first

interpret a sample circuit as a matrix, then as an SBDD, and finally as an ADD.

Figure 3.7. Sample circuit of 3 partitions

Using the method explained in Section 5.7.2 we compute the monolithic transfer matrix

representing the outputs f1 and f2 in the form of decision diagrams.

26

Tf1 =

[
0 1
0 1
0 1
1 0

]
=

[〈1|
〈1|
〈1|
〈0|

]
Tf2 =

[
1 0
0 1
0 1
0 1

]
=

[〈0|
〈0|
〈0|
〈1|

]
A 0 or 1 path from a vertex in a BDD is a decision on a variable. By reading each row of the

truth table of the above functions f1 and f2, we can draw the corresponding shared BDDs.

Each terminal node at the bottom of the graph is a mapping to a row in the matrix of f1

and f2.

Figure 3.8. Corresponding SBDD for f1 and f2

The Shared BDD can be merged into an ADD where the terminal nodes can have values

different from 〈0| and 〈1|. It is a representation of the overall transfer function.

T =

[
0 0 1 0
0 1 0 0
0 1 0 0
0 1 0 0

]
=

[〈2|
〈1|
〈1|
〈1|

]
⇒

Figure 3.9. Corresponding ADD for f1f2

3.8. Building the Transfer Function using Algebraic Decision Diagrams: the

27

Radix Polynomial Method

For the vector space method to have practical usefulness, it must not require worse com-

putational complexity in either runtime or storage requirements as compared to traditional

switching algebraic models. Two approaches for efficiently representing switching functions

are cube list representations and binary decision diagrams. Binary decision diagrams (BDD)

are widely used in logic synthesis and formal verification of integrated circuits. A BDD is

a graph representation that is in the form of a directed acyclic graph [5]. It has one root,

branch nodes, and terminal nodes. The root node represents the Boolean function, the leaf

nodes are either 0 or 1 and correspond to the constant Boolean functions. A BDD must obey

two main rules. First, the diagram must be ordered: this means that we must encounter

variables in the same order along the paths. Second, variables may occur at most once along

a given path. Additionally, the diagram must be reduced meaning that all redundant nodes

are removed, and that isomorphic subgraphs are shared. Figure 3.10 illustrates the difference

between a decision tree and a binary decision diagram.

Figure 3.10. A decision tree converted to a Binary Decision Diagram

Many tasks in synthesis, optimization, testing tools, design, and verification of digital

systems already manipulate large Boolean functions. However, to add value and improve-

ments to existing EDA tools, we need efficient ways of representing and manipulating such

large functions. For the implementation of switching circuit models as transfer functions,

we focus on the use of binary decision diagrams. Binary decision diagrams offer a canonical

representation of Boolean functions and can be compressed by using the reduction and re-

ordering rules. These attributes make BDDs suitable to save storage and improve efficiency

28

when dealing with large expressions. The worst-case complexity for BDD representations

is O(2n) where n is the number of dependent variables for switching functions. However,

it is well-known that most BDDs are very compact for functions of interest when they are

properly represented in reduced form. One motivation of this work is to take advantage

of the reordering and reduction rules and provide a compact and reduced representation of

functions. Due to truth table isomorphism, a compact BDD representation of a switching

function likewise can serve as a compact representation of the vector space transfer matrix.

BDDs have multiple extensions that were devised to further reduce storage requirements.

In our implementation, we use Algebraic Decision Diagrams (ADDs) also referred to as Multi-

Terminal Binary Decision Diagrams [12]. As an experimental tool, we use CUDD: the Colorado

University Decision Diagram Package written by Fabio Somenzi [25]. CUDD is a C/C + +

library for creating different types of decision diagrams including binary decision diagrams

(BDD), Zero-suppressed BDDs (ZDD), and algebraic decision diagrams (ADD).

3.8.1. Building a Library of BDDs using the CUDD Package

Using routines provided by CUDD, we built a library of BDDs corresponding to the most

common netlist elements. We can create BDDs for primitive logic gates such as AND, OR,

XOR, NOT using routines for conjunction, disjunction, and complementation. Algorithms

of polynomial complexity are already available in CUDD and referred to as Cudd bddAnd,

Cudd bddOr, Cudd bddXor, Cudd bddNot. These functions can be used to iteratively con-

struct new BDDs from existing ones. The operation is performed by creating a unique

variable for each gate input, referencing it, and applying the above routine to the inputs.

The functions return a pointer to the resulting BDD if successful. These small BDDs are

used as building blocks to compute larger partitions of parallel elements. Since we are now

dealing with binary decision diagrams rather than matrices, we implemented a new method

to compute the outer product of BDDs. We note that this form of the outer product is

also known as the Kronecker product and hence we use these terms interchangeably. This

multiplication is carried out by using a novel algorithm based upon a radix polynomial

29

interpretation. This is one of our key results in this research and is described in [14].

Figure 3.11. Primitive operator BDDs

3.8.2. Building the Partitions BDDs

After applying serial partitioning to the netlist, we obtain partitions containing gates,

fanins, fanouts and pass-through wires. To compute the transfer function for a partition,

we compute the Kronecker product of each element’s transfer matrix in BDD form. The

outer product of all the element matrices in BDD form is produced by starting from the

topmost element. In linear algebra, the outer product is the tensor product of two elements.

Therefore, the product u⊗v is equivalent to a matrix multiplication u ·vT . Starting from the

matrix representing the topmost partition element, we multiply it by the transpose of the

next matrix in the stage. Each operation is carried in pair, so the resulting matrix is then

multiplied by the transpose of the following matrix and so on until we reach the bottommost

element in the partition. The BDD representing a switching function is isomorphic to the

matrix representation of the same function. Since our implementation focuses more on nodes

reduction and reordering, we interpret each network element as BDDs rather than matrices.

For the multiplication of BDD, we use a radix polynomial [14] as described in detail in a

following section.

30

3.8.3. Crossovers and Variable Reordering

The transfer function relies on the topology of the network, therefore, we must account

for crossovers. Between partitions, we can detect one or more crossovers. The occurrence

of crossovers is higher in circuits with more wires. When additional crossing wires are

encountered, we can reorder the variables by inserting permutation matrices. Another way

to process crossovers is by permuting variables in the partitions following the crossovers.

This is can be achieved using function in CUDD function Cudd addPermute. This function

takes an array containing the wires order and creates a new ADD with permuted variables.

Each entry in the array corresponds to a unique variable in the manager. Cudd addPermute

returns a pointer to the resulting ADD.

Figure 3.12. ADD Variable permutations

Crossovers are translated into row permutations. The rows in the decision diagram of

figure 3.12 represent the variables of the function. The diagram contains four rows a, b, c

and d. Our variable reordering technique consists of swapping the position of the variables

every time a crossover occurs. When one our more crossing wires are identified between

two partitions, we create array entries. These entries are the variables in both partitions.

The order of the entries in the array will determine how to reorder the following partitions

accordingly. The ith entry of the array is the index of the variable that is to substitute the

ith variable. After the permutations are completed, CUDD returns a pointer to the new ADD

with permuted variables and discards the previous one.

31

3.8.4. Algebraic Decision Diagrams Kronecker Product using a Radix Polynomial

An algebraic decision diagram is a binary decision diagram whose terminal nodes can

be arbitrary integer values instead of just 0 and 1 [2]. It is a suitable data structure to

represent and manipulate large sparse matrices efficiently. Since it shares similar attributes

with BDDs, we can easily convert one diagram type to another and vice versa. CUDD provides

integer and floating point multiplication in algebraic decision diagrams. If f and g are two

0-1 ADDs, the function returns the inner product f ·g. This operation is done using a routine

called Cudd AddTimes. We modify the latter function to implement the Kronecker product.

For example, let F be an ADD representing a function of n1 variables and m1 outputs.

Let G be an ADD representing a function of n2 variables and m2 outputs. The resulting

Kronecker product Z = F ⊗ G is an ADD of n1 + n2 variables. For each path in ADD Z,

the corresponding terminal node is calculated using the following expression:

Zterminal = 2m2 · Fterminal +Gterminal

Using the APPLY procedure developed by Bryant [4] with the above operator, we build

the resultant graph Z. The procedure APPLY takes two decision diagrams and an operator

〈op〉 and generates the reduced graph F 〈op〉G. The algorithm proceeds from the root nodes

of each input graph downward to the terminal nodes. The advantage of this procedure is

that it provides a canonical and compressed tree as a result. The time complexity of the

Kronecker product is O(|F |.|G|) where |F | and |G| represent the number of vertices in the

graph F and G respectively.

To get the diagram representing the outer product of two ADDs we use the following

formula:

cuddV (Z) = 2m2 · cuddV (F) + cuddV (G) (3.5)

cuddV(F) and cuddV(G) represent the two operands ADDs. cuddV(Z) is a pointer to

the resulting ADD and represents the result of the multiplication. The following algorithm

32

shows the required steps for performing the Kronecker product of two Decision Diagram F

and G:

Algorithm 1: Kronecker product of two ADDs

Input: ADD F and ADD G
Output: ADD Z representing the resultant graph F ⊗G

1 m2 ← number of outputs of G
2 foreach paths in Z from root to terminal do
3 F [i]← terminal node in F
4 G[i]← terminal node in G
5 Z[i]← 2m2 · F [i] +G[i]
6 Build ADD Z

7 return Z;

Figure 3.13 illustrates the Kronecker product of an OR gate with an AND gate.

Figure 3.13. Kronecker product or two ADDs

3.8.5. Algebraic Decision Diagrams Direct Product

The direct product is also a necessary operation to obtain the overall transfer function. In

the same way as for matrices, we multiply all partitions together starting from the leftmost

one. The multiplication of two decision diagrams is a row transformation of the multiplier

diagram by the multiplicand diagram. Since we formulated our transformation over the

vector space, the values of the rows in the multiplicand ADD are used as pointers to the

33

rows in the multiplier ADD. The following rules apply to the multiplication of two decision

diagrams:

• The number of variables in the resulting decision diagram is equal to the number of

variables in the multiplicand diagram

• The direct multiplication of two decision diagrams is non-commutative

• The direct multiplication of decision diagrams is associative

Figure 3.14. Decision diagrams multiplication of circuit partitions

Figure 3.14 shows the partition cuts of a circuit made of two AND logic gates. This circuit

is parsed in two cascades. The first cascade is composed of an AND gate and a wire. It is

represented by an ADD of three variables a, b, c and four terminal constants 0, 1, 2, 3. The

second cascade is composed of an AND gate. It is represented by an ADD of two variables c′

and c and two terminal constants 0 and 1. Both partitions are multiplied together to produce

an ADD of three variables and two terminal constants 0 and 1. The result represents the

transfer function of the logic circuit and is isomorphic to the truth table of a three-input

AND gate.

The multiplication algorithm includes two cases: the multiplication of an ADD by an

ADD (matrix-by-matrix product), and the multiplication of a constant by an ADD (vector-

by-matrix product). n1 is the number of variables in the multiplicand node F and n2 is the

number of variables in the multiplier node G. Building the resulting ADD involves several

34

calls to the Cudd_addIte method. Cudd_addIte(f, g, h) is an algorithm that builds the

graph for the composing two functions. It allows us to derive the functions for a logic network

or expression containing repeated structures. The ITE Boolean operation stands for if-then-

else. It takes three arguments. The two arguments g and h are the Boolean functions to be

combined, and the argument f is the resulting function. In CUDD, the unique table of nodes

is implemented by a hash table. The pointer to f and the two children functions g and h is

stored in the entry corresponding to the key (f, g, h). The composition is defined as follow:

Cudd_addIte(f, g, h) = f · g + f
′ · h (3.6)

Algorithm 2: ADD multiplication of two nodes

Input: ADD F and ADD G
Output: ADD Z representing the resultant graph F ×G

1 if n1 is equal to 0 then
. F is a constant node

2 Z ← terminal node of G for variable assignment F

3 else if n1 is greater than 0 then
4 foreach paths in F from root to terminal do
5 Zpaths[i]← variable assignment F
6 Zterminals[i]← terminal node of G for variable assignment F

7 Build ADD Z

8 return Z;

In our prototype simulator, we experiment with two approaches for computing the output

response. In the first approach, we formulate the overall circuit transfer function in the form

of a single graph that we refer to as the “monolithic ADD”. The second method omits the step

of computing the transfer function as a block and instead retains an array of multiple ADDs

where each represents the transfer function for an individual serial stage of the partitioned

netlist. This implementation and comparison of two vector space simulation methods using

decision diagram representations is another key result of this research and is described in

detail below as well as in [15].

35

3.8.6. Additional Structures Added to the CUDD Package

To represent all network elements as binary decision diagrams, we added some additional

structures to the CUDD library. Fanout and crossovers are treated as network elements since

these structures have differing numbers of outputs. These functions are essential for building

the partitions. Fanouts are electrical nodes in which a single conducting wire carries a signal

that drives two or more conductors. The fanout ADD represents all the inputs driven by

the output of a logic gate. Fanout functions take one argument n, where n is the number of

fanout wires and returns the corresponding ADD.

DdNode *retval = Cudd_addIte(gbm, var, Cudd_addConst (gbm,

(CUDD_VALUE_TYPE)coef), Cudd_addConst(gbm, (CUDD_VALUE_TYPE)0));

For every fanout, if the input is 0, the output is 0, else if the input is 1, the output is

2N − 1. Figure 3.15 shows the diagrams for some 2, 3 and 4 outputs’ fanouts.

Figure 3.15. ADD representation of a 2, 3 and 4 outputs fanout

The next structure that we added is the ADD for a crossover. Crossovers perform a

permutation of two or more rows in the transfer function. The crossover function returns a

ADD representing two crossing wires.

Figure 3.16 shows both functions and their corresponding diagram.

36

Figure 3.16. ADD representation of a crossover

37

Chapter 4

FUNCTIONAL SIMULATION USING THE TRANSFER FUNCTION MODEL

4.1. Functional Simulation using the Transfer Function Model

Simulation and justification are core operations in EDA tools. In our proposed method,

they can be formulated within the context of a linear algebraic circuit model. Logic sim-

ulation is widely used to check that a synthesized netlist meets the expected functional

specifications and meets some timing constraints. It can be applied to test generation and

fault simulation as well. In a compiled-code simulation, every gate is evaluated once at each

simulation. In an event-driven simulation, gates are evaluated only when an event occurs

at their inputs. Our goal with this model is to use a transfer function model to perform

simulation. After computing the transfer function for a netlist, we can determine its output

response using a vector-matrix direct product. The output response of a logic network stim-

ulated by input 〈xq| and modeled by transfer matrix T is denoted by 〈fq| and is computed

using the following equation:

〈fq| = 〈xq| .T (4.1)

The output response can be decomposed to determine individual output elements by ex-

pressing the output response in terms of a bra notation and then converting the value to a

binary string [27]. Deriving the transfer matrix using Equation 4.1 is exponentially complex

since it involves the determination of 2n terms through the use of a simulation tool or some

other means. Fortunately, we can determine the transfer matrix of a given logic network

through the use of transfer matrices of individual network elements and their corresponding

interconnections. We use benchmarks from the ISCAS85 for experimental results.

For simulation using BDD, we use a similar approach. The technique with BDD uses a

monolithic Boolean combination. For this purpose, we use the compose operator developed

38

by [4]. The algorithm composes two independent functions and generates a unified BDD.

Supposing the graphs f and g represent the BDD for two independent partitions, we can

compose f and g by replacing each vertex v in f by the graph of g. Next, we simultaneously

replace each branch to a terminal vertex in g with a branch to the children of v depending

on the value of the terminal vertex. The composition can be expressed in terms of Boolean

operations, according to the following expression, derived from the Shannon expansion the-

orem:

f |xi=g= g.f |xi=1+(¬g).f |xi=0

In our proposed method, each partition in the netlist represents a function on its own.

Starting from the primary inputs, we will compose of all the partition graphs until reaching

the outputs. The graph obtained from the output represents the output response. For a

netlist made of n serial partitions, n+1 composition must be performed to obtain the output

response.

The concept of a transfer function model for digital circuits is devised such that the input

stimulus and the output response are represented by an element in a finite dimensioned

Hilbert vector space. The following section on simulation of switching circuits describes

the use of the transfer function model to implement and evaluate a prototype simulation

tool. The prototype parses a structural netlist in Verilog and constructs the transfer matrix

for the netlist in the form of a BDD. Constructing the transfer function of a structural

circuit description requires partitioning the netlist into a serial cascade of parallel stages,

constructing the transfer matrices of each stage, and combining the stages using a matrix

direct product [14]. The advantage of our simulation approach is that it supports symbolic

simulation wherein any of the outputs, or subsets of the outputs, can be represented as

taking on both binary values simultaneously. In one extreme, all possible input values can

be symbolically simulated with one vector-matrix computation. In the other extreme, a

single input assignment can be simulated with one vector-matrix product.

The transfer function concept as described in [27] provided the theoretical background for

simulation. The corresponding transformation from the input stimulus vector space to the

39

output response vector space is given by a matrix. In [28] these theoretical results are further

extended to cover non-binary switching circuits and to characterize the transfer functions

representing switching circuits in spectral domains. To reduce the spatial complexity and

improve the performance of applications based on the linear algebraic approach, we use

binary decision diagrams (BDDs) to represent vectors and matrices. The implementation

of the theory using BDDs is described in [14] where we provided algorithms for parsing

a structural netlist into a BDD transfer function, and included required operations such

as the inner product of vectors, the direct vector-matrix product, and the outer product of

matrices. [14] also provided some experimental results for the generation of transfer functions

as Binary Decision Diagrams and made a comparison of the compactness of the diagrams

using variable ordering techniques such as sifting.

The following sections describe how the simulator is implemented including the relevant

matrix-based and BDD-based algorithms. We experimented with different methods to per-

form simulation using transfer functions and vectors [15]. Following the implementation, we

describe the evaluation of each simulation method in terms of time and storage requirements.

4.1.1. Simulation using a Monolithic Transfer Function

The monolithic method consists of formulating the overall circuit in the form of a single

decision diagram. After applying serial partitioning to the netlist and building all partitions,

we can combine all the partitions by multiplying them together. This method uses the ADD-

by-ADD multiplication algorithm presented in equation 2 to combine all the partitions of

the netlist into a single block, then multiplies it by the input stimulus to obtain the output

stimulus. The advantage of this method is that we can represent the entire function as one

diagram, and simulate for all input combinations in a single iteration. The downside of

building a monolithic transfer function is the high memory usage. The monolithic transfer

function does not take full advantage of garbage collection.

All nodes in an algebraic decision diagram are stored in hash tables also called unique

tables. The hash table guarantees that each node is canonical in the function. This property

40

also makes decision diagrams canonical. The CUDD manager or DdManager is the collection

of all the unique tables and other auxiliary data structures. Prior to simulation, we initialize

the DdManager with parameters such as the number of variables, the cache size and the

maximum memory size allocatable to the nodes. To build the resulting decision diagram, the

CUDD memory manager must keep track of all previous partitions. The spatial complexity for

multiplying two partitions is O(|F |.|G|); therefore, simulating netlists with a large number of

variables and a large number of unique nodes can consume substantial amounts of physical

memory.

Figure 4.1. A transfer function framework for F (Monolithic method)

Figure 4.1 shows a high-level overview of the transfer function framework. For a circuit of

n variables, we incrementally built an ADD of n variables. The input vector 〈x| is composed

of 〈x1|, 〈x2|, ..., 〈xn| and determines the variable assignment for the simulation. We use the

variable assignment from vector 〈x| to traverse the ADD F downward starting from variable

x1 and ending on variable xn. The simulation consists of a vector by matrix multiplication,

and the result is a vector. The output vector of the simulation, 〈f |, is composed of 〈f1|, 〈f2|,

..., 〈fn|.

4.1.2. Simulation using an Array of Transfer Functions

Rather than building the entire transfer function at once and in one block, as described

in the monolithic method, this method performs multiple simulations incrementally starting

from the primary inputs. The array method consists of performing multiple vector-matrix

multiplications over each partition to obtain the output response. The input vector 〈x| is

composed of 〈x1|, 〈x2|, ..., 〈xn| and determines the variable assignment for the simulation.

41

A circuit with m partitions requires m intermediate simulations.

CUDD frequently uses garbage collection for better memory management and to reclaim

memory that is no longer in use. After initialization, the CUDD manager keeps track of all

unique nodes (internal and terminal) using a reference count. The count is incremented every

time a new branch points to a node and it is decremented when a node is released. When

a node reaches a reference count of zero, it is considered dead. Every time we build a new

partition, the DdManager automatically increases the reference count through a method

called Cudd Ref . After that partition i is simulated, we obtain an intermediate output vector

fi and move forward to the next partition i + 1. The previous diagram is no longer needed

and can be released or dereferenced by making a call to the method CuddRecursiveDeref .

The dereferencing scheme is very useful when dealing with netlists with multiple partitions

because only one partition is stored in memory at a time.

The benefit of this technique is that we can free up the nodes of previous cascades after

each iteration. Since we use only one partition at a time, building the output response

incrementally is ideal for reducing memory usage and increasing the speed of simulation;

however, we never end up computing the entire function. In contrast to the monolithic

method, we must run a new simulation for every variable assignment of the inputs to test.

The experimental results show a comparison of both techniques by providing time and storage

requirements.

Figure 4.2. A transfer function framework for F (Array method)

Figure 4.4 shows a high-level overview of the array of transfer functions. The array is

comprised of smaller diagrams with fewer nodes. The number of inputs and outputs varies

between each partition. With every new simulation, we are required to build a new array of

42

functions.

4.1.3. Simulation using the Distributed Factored Form

The transfer function characterizing a switching network can be expressed in distributed

factored form and represented by a set of interconnected transfer functions that are the

network elements. This form, when represented graphically, has the same topology as the

switching network netlist. Simulation using the distributed vectors consists of traversing

the circuit in a distributed manner. Starting from the inputs, we traverse the circuit by

simulating each logic gate one at a time. Each gate has its own function and can be simulated

individually. As presented in Figure 3.11, we reuse our own library of BDDs comprising all

logic gates. The distributed vectors are an efficient way to perform simulation for multiple

reasons. This method does not require building intermediate diagrams for partitions; it uses

the smallest transfer function possible, which are the transfer functions of the logic gates.

The previous simulation methods, the monolithic transfer function (see 4.1.1) and the array

of transfer functions (see 4.1.2) required the need for multiple row permutations to process

crossover wires. With the distributed distributed factored form there is no need to process

crossovers since we are not multiplying partitions. Intermediate crossover partitions are not

needed because there is no row transformation involved.

The method works as follows: According to the variable assignment, every input is

assigned a constant value either 〈0| or 〈1|. In CUDD these values can be set using calls to

Cudd_ReadOne or Cudd_ReadZero. Next, we simulate all the logic gates within the first

partition encountered. By referring to the levelization process described in section 3.3, we

can ensure that all the gates are simulated in the order they are listed in the netlist. The

output row vectors of the first partition are fed to the logic gates of the next partition. The

same steps are repeated for the subsequent partitions until the traversal reaches the outputs.

Figure 4.3 shows the simulation of logic gates in the first two partitions of circuit c17 for an

arbitrary variable assignment.

43

Figure 4.3. Distributed factored form

We experimented with two ways to perform simulation using the distributed factored

form. Starting from the primary inputs, we can simulate each logic gate individually. As

with an event-driven simulation, we must make sure that every logic gets simulated at the

right time using the correct net value. Each partition is simulated in order so that all the

nets are updated at the same time.

Figure 4.4. Simulation using the distributed vectors

Another way to distribute the vectors for simulation is to start from the outputs and

traverse the circuit backwards using recursion. Starting from the outputs, we recurse over

all inputs of the gates encountered until reaching the primary inputs. As opposed to the

monolithic and the array methods, the distributed method creates a unique decision diagram

for each output. Because there is only one output for each diagram the terminal nodes for

each decision diagram are 〈0| and 〈1|.

44

4.2. Experimental Results

We experimented with each simulation method and collected data such as memory usage

and timing. Because the partitioning process is identical for all methods, the number of

partitions remains the same. To test the prototype simulator, we use a set of benchmark

circuits. Two-level benchmark netlists are converted into multi-level combinational logic

circuits in the form of a Verilog structural netlist. For all tests, the inputs are represented

as row vectors. The output response is obtained using two different methods. The two-level

benchmark netlists are converted into multi-level combinational logic circuits in the form of

a Verilog structural netlist before we apply the technique to them. We convert the native

.pla files into corresponding Verilog files using Synopsys Design Compiler. The converted

files are then in the form of a set of two-level Boolean equations expressed in Verilog syntax.

The multilevel netlists are saved as structural Verilog descriptions and used as input to a

parser that computes the corresponding binary decision diagrams. For this experiment, we

use variable ordering algorithms for building the BDDs. The CUDD package offers multiple

dynamic reordering algorithms. BDDs and ADDs, which share the same unique table, are

simultaneously reordered for efficiency. These algorithms iteratively improve variable order

to avoid the BDDs size grows out of boundaries during computation. The first algorithm

uses variable reordering and the second one does not use variable reordering. The table

below summarizes timing data, the total number of nodes, and memory usage for the use of

sifting variable reordering.

45

Table 4.1. Simulation output response (Monolithic method)

Benchmark
Inputs/

Outputs

of

partitions

of

nodes

Memory

(MB)

Time to

build

partitions (ms)

Time to

build

ADD (ms)

Time to

simulate

(ms)

xor5.v 5/1 6 11 8.77 0.44 2.67 0.01

c17.v 5/2 12 12 8.90 0.57 4.88 0.02

majority.v 5/1 12 9 8.98 1.09 5.10 0.01

test1.v 3/3 16 10 8.92 0.86 5.49 0.01

rd53.v 5/3 18 21 9.29 1.21 10.48 0.04

con1.v 7/2 14 15 19.07 2.14 175.67 0.01

radd.v 8/5 28 109 19.12 4.91 296.04 0.03

rd73.v 7/3 24 71 19.34 5.56 76.96 0.01

mux.v 21/1 26 145 33.77 7.61 43.47 0.01

c432.v 36/7 57 451 41.08 240.60 945.89 0.08

c499.v 41/32 16 442 43.14 246.50 850.11 0.09

c1355.v 41/32 16 451 48.12 291.14 928.19 0.12

c880.v 60/26 67 895 67.90 1412.62 6580.10 0.21

c5315.v 178/123 80 1286 83.47 3150.11 7783.62 0.37

c2670.v 233/140 99 1560 97.01 6521.43 8195.09 0.58

46

Table 4.2. Simulation output response (Array method)

Benchmark
Inputs

Outputs

of

partitions

Memory

(MB)

Time to build

partitions (ms)

Time to build

ADDs (ms)

Time to

simulate (ms)

xor5.v 5/1 6 8.70 0.44 0.17 0.01

c17.v 5/2 12 8.79 0.57 0.70 0.03

majority.v 5/1 12 8.84 1.09 1.01 0.04

test1.v 3/3 16 8.81 0.86 0.84 0.03

rd53.v 5/3 18 9.06 1.21 2.70 0.07

con1.v 7/2 14 18.82 2.14 65.11 0.44

radd.v 8/5 28 21.08 4.91 195.43 0.54

rd73.v 7/3 24 11.72 5.56 21.37 0.19

mux.v 21/1 26 16.19 7.61 429.69 1.90

c432.v 36/7 57 18.42 240.60 619.09 2.78

c499.v 41/32 16 17.22 246.50 1150.11 2.01

c1355.v 41/32 16 21.15 291.14 1142.30 45.29

c880.v 60/26 67 25.42 1412.62 7100.60 5.21

c5315.v 178/123 80 37.17 3150.11 8752.80 9.75

c2670.v 233/140 99 49.01 6521.43 9450.20 12.87

Table 4.1 and table 4.2 summarize timing data, the total number of nodes, and memory

usage for the monolithic method and the array method. The motivation for comparing

these two approaches is that the monolithic ADD is larger and requires more memory for

representation but only requires a single vector-matrix product computation to obtain the

output response. In contrast, the array of ADDs method results in less required storage but

requires k vector-matrix computations to compute an output response vector. Furthermore,

it is not necessary to compute the entire array of ADDs in the latter method since only a

single serial stage is computed at a time. For both methods, crossovers between partitions

are handled by reordering variables accordingly in the corresponding ADD.

47

Table 4.3. Simulation using the distributed factored form

Benchmark
Inputs

Outputs

of

partitions

Time to build

partitions (ms)

Time to

simulate (ms)

xor5.v 5/1 6 0.44 0.12

c17.v 5/2 12 0.57 0.13

majority.v 5/1 12 1.09 0.23

test1.v 3/3 16 0.86 0.25

rd53.v 5/3 18 1.21 0.36

con1.v 7/2 14 2.14 0.53

radd.v 8/5 28 4.91 0.52

rd73.v 7/3 24 5.56 0.56

mux.v 21/1 26 7.61 2.84

c432.v 36/7 57 240.60 48.06

c499.v 41/32 16 246.50 51.82

c1355.v 41/32 16 291.14 45.29

c880.v 60/26 67 1412.62 422.19

c5315.v 178/123 80 3150.11 5837.03

c2670.v 233/140 99 6521.43 9387.50

Table 4.3 shows timing requirements for the distributed method. Except for the netlist

traversal, no additional computation such as fanout detection, crossover detection, or row

permutations is required.

4.3. Application of the Transfer Function Model to Sequential Circuits

Sequential circuits are another type of logic circuits in which the output depends on

the input variable assignment and the previous state of the circuits. The states, previous

state, present state, and next state, are logic values of the circuit, which are temporarily

stored. The states are stored in memory elements such as registers or flip-flops. There is

a finite number of states that the circuit can be in. At every clock cycle, the next state

48

can be determined as a function of the current state and the current inputs. We extended

the transfer function model to apply to sequential circuit as well. The topology of the

circuit presented above remains the same. Figure 4.5 below illustrates a state machine that

includes a combinational block and a sequential block. The sequential block uses memory

and registers as storage elements. The circuit has both external inputs and internal inputs

that depend on the previous state output.

Figure 4.5. Combinational block and sequential block

To adapt our model to sequential circuits, we can unroll the sequential circuit into a larger

combinational circuit, then perform the composition or multiplication of the blocks at every

cycle. The multiplication of every sub-function can be achieved using the algorithm defined

in equation 2. Knowing there are a finite number of states in the circuit, the number of

multiplication is equal to n, where n represents the number of states. Figure 4.6 illustrates

the process of unrolling the sequential circuit.

49

Figure 4.6. Unrolling of the sequential circuit

Starting with an initial input vector representing the primary inputs, we build the transfer

function for the combinational logic block using the proposed method in [14]. On the first

cycle, we perform the multiplication of the input by the transfer function representing the

combinational circuit. Multiplying a vector by a matrix performs a linear transformation of

the input vector, so the output of the transfer function is also a vector. On the next cycle,

we reuse that output vector as the input to the same transfer function combined with some

new external inputs. We repeat the same process for multiple cycles.

Figure 4.7. Iterations of vector multiplications

Example 4.1 The example in Figure 4.8 is a basic synchronous sequential circuit. Let’s

assume an execution of 3 clock cycles. In this example, we are modeling the combinational

circuit as a transfer matrix to show the linear transformation on the input vectors in each

cycle.

50

Figure 4.8. Basic synchronous sequential circuit

Figure 4.9 shows how the sequential circuit is unrolled from time t = 0 to t = 3.

Figure 4.9. Synchronous sequential circuit unrolled on 3 cycles

At time t=0, let 〈x1| = 〈1| and 〈x2| = 〈1| be the primary input vectors.

We multiply the input vectors by the transfer function representing the Exclusive-OR:

〈f1| = 〈11| · T = [0 0 0 1]×
[

1 0
0 1
0 1
1 0

]
= [1 0] = 〈0|

At time t=1, an external input vector 〈x3| = 〈1| comes in.

We multiply the input vector by the transfer function representing the Exclusive-OR:

〈g1| = 〈01| · T = [0 1 0 0]×
[

1 0
0 1
0 1
1 0

]
= [0 1] = 〈1|

At time t=2, an external input vector 〈x3| = 〈0| comes in.

51

We multiply the input vector by the transfer function representing the Exclusive-OR:

〈h1| = 〈10| · T = [0 0 1 0]×
[

1 0
0 1
0 1
1 0

]
= [0 1] = 〈1|

At time t=3, the resulting output vector for the sequential circuit is: 〈1| �

Example 4.2 The example in Figure 4.10 is a modified version of the benchmark circuit

c17. Both outputs are registered. In this example, we will model the combinational circuit

as a decision diagram to show the linear transformation on the input vectors in each cycle.

Figure 4.10. Registered version of c17

�

When unrolling the sequential circuit, we are performing the same operation over multiple

cycles. The complexity of the transfer function is O(n2) for n variables. Assuming we are

running for t cycles, the absolute complexity would increase to t × O(n2). The relative

complexity remains O(n2).

For sequential circuits that have multiple registers breaking the combinational path, we

need to build transfer functions for each of the combinational blocks in the circuit. To apply

our current topology to sequential circuits, we would need to modify the parser to handle

states. While reading the netlist, the parser must be able to identity all the combinational

52

logic block that are separated by registers. Each combinational logic block is treated as a

sub-circuit; therefore, it must have an independent transfer function. The challenge during

the parsing process is to locate all the sub-circuits separated by registers.

We experimented with benchmark circuits for ISCAS89. These netlists where written

to test sequential test pattern generation algorithms. They are relatively larger and more

complex than the previous benchmarks from ISCAS85. “s” means that the circuit is syn-

chronous, sequential, and the suffix number is the number of interconnect lines among the

circuit primitives. There is no functional description of these circuits. The type of circuits

in the benchmark: are 4-bit multipliers, traffic-light controllers, PLD devices. Other circuits

such as s1238 are combinational circuits with randomly inserted flip-flops.

During the traversal, the parser splits the netlist into multiple sub-circuits. Each com-

binational block has two types of inputs; the primary inputs and the feedback inputs from

blocks. After identifying each subcircuits we can build the transfer function using the meth-

ods presented in Chapter 4.1.1

Example 4.3 We experimented with circuit s27 which is a sequential circuit of 10 gates

and 3 D Flip-Flops. During the traversal, the parser splits the netlist into 2 sub-circuits. The

first transfer function includes the logic before the registers and the second function includes

the logic after the registers. Figure 4.11 shows the schematic of s27 with both sub-circuits.

Figure 4.11. s27 combinational logic blocks

53

To simulate s27 over n cycles, we need to unroll the circuit n. Since s27 has 2 monolithic

functions, we would perform 2×n simulations to get the output. The primary inputs are G2,

G0, G11, and G13. The feedback inputs are G11 and G12. Figure 4.12 shows the schematic

of s27 with both sub-circuits.

Figure 4.12. s27 loop unrolling of two transfer functions

The ADD of transfer function 1 and transfer function 2 are displayed below.

Figure 4.13. s27 transfer function 1

54

Figure 4.14. s27 transfer function 2

�

55

Chapter 5

JUSTIFICATION USING THE TRANSFER FUNCTION MODEL

Justification is the inverse problem of simulation. Given the output response and the

characterization of a logic network the objective is to compute the corresponding input

stimuli. The advantage of using a transfer function matrix is that we can easily perform

justification by using the transpose of the matrix. By formulating a method for justification

within the linear algebraic framework, we obtain the input vector 〈x| from the following

equation:

〈x| = 〈f |T−1 (5.1)

The theory for performing justification using the vector space model is given in [27]. In our

implementation of the theory, we use the ADD representation to perform justification. A

significant outcome of this portion of the research is that we show justification is performed

with the same complexity as that of simulation as described in the previous Chapters. When

justification is performed using traditional switching theory models, high complexity is often

required when satisfiability algorithms are employed which are known to have inefficiencies

in the worst case.

5.1. Justification using the Transfer Matrices

Some EDA tasks require the determination of an input stimulus given a transfer func-

tion and an output response. Using an output response and the characterization of a logic

network, we are interested in computing the corresponding input stimuli. Solving the justi-

fication problem contributes to multiple design and analysis applications such as synthesis,

verification, and test. We can perform justification using the vector space model without re-

sorting to creating multiple variable assignments or backtracking. In the vector space model,

56

we perform simulation using a single vector-matrix multiplication. The same method applies

to justification which can also be performed using a vector-matrix multiplication.

To formulate a method for justification within the linear algebraic framework, we solve

Equation 5.5 for the input vector 〈x|.

〈x| = 〈f |T−1 (5.2)

A naive approach to the justification problem requires the inverse matrix T−1 be formu-

lated. However, this is generally not possible since T is usually not of full rank and T−1

only exists if the network is reversible. In other words, the transfer matrix T which is also

the simulation matrix, must be of full rank to obtain T−1. A large number of switching

networks do not meet these requirements; therefore, justification would not be possible us-

ing this method because we cannot compute the inverse matrix T−1. Our first approach

consists of using the Moore-Penrose pseudo-inverse T+. Depending on the number of rows

and columns, N and M respectively, the system can be over-specified or under-specified. To

obtain the pseudo-inverse T+, we solve Equation 5.3:

T+ =


(T ∗ · T)−1T ∗

T ∗ · (TT ∗)−1
(5.3)

T ∗ represents the transpose of T . The multiplication (T ∗T) represents the Gram matrix

and is denoted as gram(T). The Gram matrix is always invertible and is in the form of a

diagonal matrix. Because gram(T) is diagonal, the inverse gram(T)−1 is also diagonal. All

the components of the gram(T)−1 are the multiplicative inverses of the values on gram(T).

Due to this fact, the multiplicative inverses of the Grammian are simply constants and can

be ignored for the the purpose of computing input justifications. We can avoid computing

the pseudo-inverse altogether by using the matrix transpose T ∗. The justification T J matrix

is thus obtained using Equation 5.4:

57

T J = T T (5.4)

The example below shows how we can use the justification matrix for a 2-input AND gate

and an output vector 〈0|.

Example 5.1

TNAND =

[
1 0
1 0
1 0
0 1

]
T J = [1 1 1 0

0 0 0 1]

〈x1x2| = 〈f | · T J = [1 0]× [1 1 1 0
0 0 0 1] = [1 1 1 0]

�

The row vector resulting from the multiplication shows that 3 input vectors cause an

output vector 〈0|.

[1 1 1 0] = 〈00|+ 〈01|+ 〈10|

5.1.1. Justification using Column Vectors

The first method to perform justification consisted of using the transpose matrix T T .

Another approach to justification consists of representing the input stimulus and output

response as column vectors instead of row vectors. By reusing the same transfer function T ,

we can determine the corresponding input stimulus. This method avoids the need for extra

computation to build the transpose matrix.

|x〉 = T · |f〉 (5.5)

Example 5.2

TNAND =

[
1 0
1 0
1 0
0 1

]

58

|x1x2〉 = T · |f〉 =

[
1 0
1 0
1 0
0 1

]
× [10] =

[
1
1
1
0

]
�

The column vector resulting from the multiplication shows that 3 input vectors cause an

output vector |0〉.

[
1
1
1
0

]
= |00〉+ |01〉+ |10〉

5.2. Justification using Algebraic Decision Diagrams

5.2.1. Background

Just as with matrices, we can perform justification using decision diagrams and their

terminal node vectors. An ADD has a root, branch nodes, and terminal nodes. The root is

the Boolean function, the branch nodes represent the variables, and terminal nodes, which

are constants, represent the output. Our objective with justification is to get the combination

of all possible input vectors that can evaluate to an output.

Previous backtracking algorithms have been proposed to extract the cubes of a Decision

Diagram. Because of the compactness of decision diagrams, multiple variable assignments are

merged to the same path. Redundant nodes are also removed for optimization. [25] proposed

a recursive algorithm called OneSat to find one satisfiable assignment for a formula. The

procedure takes three arguments and computes one cube in the function. The first argument

is the root node. The second argument is the complementation parity of the path. This

value is generally set to 1, because the IF decision is 1 and the THEN decision is 0. The third

argument is an array containing the variables. The OneSat algorithm is presented below:

In the following section, we propose a method to perform justification without any addi-

tional traversal of the graph. However, this procedure requires that we modify the structure

of the ADD nodes by including some additional information in the leaf node or terminal

59

Algorithm 3: OneSat algorithm to find one variable assignment

1 if v is terminal node then
2 return p;
3 sat[v → index] = 1
4 if OneSat(v → T, p, sat) then
5 return 1 ;
6 sat[v → index] = 0
7 if v → E is complemented then
8 complement p;
9 return OneSat(v → E, p, sat);

nodes.

5.2.2. The Vector Space

The transfer function model presented in chapters 2 and 4 represented inputs variables

as row vectors 〈i| and the outputs as row vectors 〈f |. When performing simulation, we

traverse the graph according to the variable assignment and the return value in a row vector

of n elements, where n is the number of variables. To perform justification using the vector

space, we will represent the terminal nodes as column vectors |f〉.

Example 5.3 The following circuit in figure 5.1 has three inputs and two outputs.

Figure 5.1. Sample circuit

Figure 5.5 shows the circuit’s transfer matrix and its corresponding Algebraic Decision

Diagram. The function has four output vectors 〈0|,〈1|,〈2|, and〈3| .

60

Figure 5.2. Sample circuit

The next step consists of interpreting the terminal row vectors as column vectors. While

building the decision diagram, we update each terminal node with the row indexes of each

cube. This is achieved by modifying the node struct in CUDD by adding an array of indices

to each terminal node. The array is of type char, and each index is of 1-bit size.

Figure 5.3. Column vectors with row indices

The advantage of using column vector is that we can extract all the satisfiable variable

assignments combined into a single row vector. Figure 5.4 shows how we can extract the

corresponding input vector using the justification ADD.

61

Figure 5.4. Justification on the output column vector |3〉

The corresponding input vectors are extracted as follows:

[1 0 1 0 1 0 0 0] = 〈0|+ 〈2|+ 〈4|

�

5.3. Justification using the Distributed Factored Form

The method described above, based on a monolithic ADD would work for circuits with

a small number of inputs. When dealing with larger circuits with a large number of inputs,

the overall ADD would grow exponentially in size because all the row indexes would be

stored in the terminal nodes. Because the size of decision diagram structure matters in our

implementation, we use an alternative method based on the distributed factored form. Using

the distributed factored form, we perform a backward traversal at the level of each logic gate.

For justification of an output, we traverse the circuit backward starting from that output

and distribute vectors all the way to the primary inputs. The advantage of the distributed

factored form is that we use smaller independent decision diagrams without the need to build

the entire transfer function. Before proceeding, we need to modify the existing library of

decision diagrams. Each decision diagram from the library is now updated to contain row

62

indices. For each 2-input logic gate, there is a maximum of 4 row indices to add to the

terminal nodes.

Figure 5.5. Primitive operator BDDs

The following example shows a backward traversal of circuit c17. During the parsing

step, we replace all logic gates by their corresponding ADD.

Figure 5.6. Backward traversal of circuit c17

63

Table 5.1. Justification using the distributed factored form

Benchmark
Inputs

Outputs

of

partitions

Time to build

partitions (ms)

output

to justify

Time to

justify (ms)

xor5.v 5/1 6 0.44 xor5 9.18

c17.v 5/2 12 0.57 n22 10.21

majority.v 5/1 12 1.09 o0 11.29

test1.v 3/3 16 0.86 o1 12.34

rd53.v 5/3 18 1.21 o0 12.47

con1.v 7/2 14 2.14 f0 16.62

radd.v 8/5 28 4.91 o0 19.59

rd73.v 7/3 24 5.56 o2 19.66

mux.v 21/1 26 7.61 q 21.89

c432.v 36/7 57 240.60 N223 63.12

c499.v 41/32 16 246.50 N724 69.29

c1355.v 41/32 16 291.14 G1324 59.90

c880.v 60/26 67 1412.62 N388 536.98

c5315.v 178/123 80 3150.11 G5193 6141.21

c2670.v 233/140 99 6521.43 N398 10182.03

Table 5.1 shows timing requirements for the distributed method. Except for the back-

ward traversal of the netlist, no additional computation such as fanout detection, crossover

detection, or row permutations is required. The values above are based on the justification

for output values |1〉. We can verify the correctness of the computed inputs but performing

simulation using each row vector. The computed justified input values are represented as a

list of row indices.

Example 5.4 c17 justified inputs for n22 = |1〉 are [0.1.4.5.8.9.12.13.16.17.20.21.22.23] �

5.4. Representation of the Justified Inputs as an ADD

64

An alternative to represent all justified inputs is to prune the Algebraic Decision Diagram

of the monolithic transfer function. We can prune the monolithic transfer function using a

backtracking algorithm to include all the satisfiable variable assignments in a single decision

diagram. The resulting decision diagram would have one terminal node representing the

output under test. This method is based on a combination of the recursive algorithms

OneSat and SatHowMany developed by Somenzi in [25].

Algorithm 4: OneSat algorithm to find one variable assignment

1 if v is terminal node then
2 return p;
3 sat[v → index] = 1
4 if OneSat(v → T, p, sat) then
5 return 1 ;
6 sat[v → index] = 0
7 if v → E is complemented then
8 complement p;
9 return OneSat(v → E, p, sat);

Now that we can identify variable assignments, we need to identify the shortest traversal

to prune the Decision Diagram.

Algorithm 5: SatHowMany algorithm to find the number of traversals (variable as-
signments)

1 if v is a terminal node then
2 return 2n;
3 if v is in the unique table then
4 return result from the unique table;
5 countT = SatHowMany[v → T, n]
6 countE = SatHowMany[v → E, n]
7 if v → E is complemented then
8 countE = 2n − countE
9 count = (countT + countE) / 2;

10 insert (v, count) in table;
11 return count;

The complexity of this algorithm relies on the total number of nodes visited. The number

of visited nodes is at most 2n+ 1; therefore the complexity is n.

65

Example 5.5 On a circuit such a c17 we can use the backtracking algorithm presented

above to pruning the transfer functions for each justification of the output values |0〉, |1〉,

|2〉 and |3〉

Figure 5.7. c17.v transfer function ADD Figure 5.8. Justified inputs for output |0〉

Justification for the output |0〉 involves the traversal of 5 internal nodes if the transfer

function.

Figure 5.9. c17.v transfer function ADD Figure 5.10. Justified inputs for output |1〉

Justification for the output |1〉 involves the traversal of 5 internal nodes if the transfer

function.

66

Figure 5.11. c17.v transfer function ADD Figure 5.12. Justified inputs for output |2〉

Justification for the output |2〉 involves the traversal of 5 internal nodes if the transfer

function.

Figure 5.13. c17.v transfer function ADD Figure 5.14. Justified inputs for output |3〉

Justification for the output |3〉 involves the traversal of 7 internal nodes if the transfer

function.

�

The following table shows the timing requirements for the pruning algorithm applied to

some benchmark circuits.

67

Table 5.2. ADD Pruning algorithm runtime

Benchmark
Inputs/

Outputs

of

partitions

of

nodes

Memory

(MB)

Time to

build

partitions (ms)

Time to

build

ADD (ms)

Time to

prune

ADD (ms)

xor5.v 5/1 6 11 8.77 0.44 2.67 1.12

c17.v 5/2 12 12 8.90 0.57 4.88 1.21

majority.v 5/1 12 9 8.98 1.09 5.10 1.34

test1.v 3/3 16 10 8.92 0.86 5.49 1.40

rd53.v 5/3 18 21 9.29 1.21 10.48 1.59

con1.v 7/2 14 15 19.07 2.14 175.67 1.81

radd.v 8/5 28 109 19.12 4.91 296.04 1.93

rd73.v 7/3 24 71 19.34 5.56 76.96 2.21

mux.v 21/1 26 145 33.77 7.61 43.47 2.98

c432.v 36/7 57 451 41.08 240.60 945.89 3.83

c499.v 41/32 16 442 43.14 246.50 850.11 3.21

c1355.v 41/32 16 451 48.12 291.14 928.19 3.01

c880.v 60/26 67 895 67.90 1412.62 6580.10 4.08

c5315.v 178/123 80 1286 83.47 3150.11 7783.62 4.30

c2670.v 233/140 99 1560 97.01 6521.43 8195.09 4.87

The pruning algorithm based one backtracking is efficient because of the canonicity of

the unique table used in CUDD (See [26]). The unique table consists of as many hash tables

as there are variables in use. The above method is able to recurse starting from the termi-

nals to the root nodes. From a performance point of view, without the hash tables in the

CUDD framework, the justification procedure would have a runtime of O(2n). According to

the experimental results, the unique table of the decision diagram enables us to keep the

complexity at O(n) for pruning the ADD.

68

Chapter 6

ALGEBRAIC NORMAL FORM DEGREES COMPUTATION

6.1. Background on the Algebraic Normal Form

Cryptographic primitives serve as the building blocks of larger cryptographic systems. It

is common to represent or model a cryptographic primitive of n inputs and m outputs as

a collection of r Boolean or switching functions of the form fi : B → B. B represents the

binary set of scalars, B = {0, 1} .

The Algebraic Normal Form (ANF) allows for direct observation of the algebraic degree of

the switching function. We can obtain the ANF by parsing and traversing a structural netlist.

Due to both the usefulness of the ANF and the complexity in extracting it, we are motivated

to find a technique that allows for the extraction of the ANF from a structural netlist. In

this chapter, we present a technique whereby an ANF coefficient can be extracted through

a traversal of a netlist of N gates or operators with complexity O(N). Another difficulty

is that computation of the ANF is a computationally expensive process. A function of the

form fi : B → B is characterized by an ANF coefficient vector a that is comprised of 2n

elements, ai where ai ∈ B. Therefore, explicit storage of a results in an exponentially sized

vector. For the largest values of n, explicit computation methods run exponentially and are

prohibitively expensive.

Our switching function may be an exact model of a portion of an electronic circuit or

software algorithm comprising a cryptographic primitive, or it may be a switching function

used to model a portion of a primitive. In some cases, the switching function may not be

fully specified.

6.1.1. The Algebraic Normal Form

69

Switching functions are of the form fi : B → B where B = {0, 1} and n is a positive

integer representing the number of dependent variables of f . Each switching function f , can

be characterized in a variety of normal forms. Normal forms are canonical in the sense that

any unique fully specified switching function has one and only one normal form. Due to

the canonicity property, normal forms are convenient for use in equivalence proofs and other

common tasks in the design and analysis of information processing methods.

As an example, a small switching function where n = 3 is used to illustrate these common

representations where each ith valuation of fi is denoted by mi where mi ∈ B. The specific

symbolic form for the sum of minterms (SOM) representation of a switching function where

n = 3 is given in Equation 6.1.

f = m0 · x1 · x2 · x3 +m1 · x1 · x2 · x3 +m2 · x1 · x2 · x3 +m3 · x1 · x2 · x3

+m4 · x1 · x2 · x3 +m5 · x1 · x2 · x3 +m6 · x1 · x2 · x3 +m7 · x1 · x2 · x3
(6.1)

The algebraic normal form utilizes two operators only, the conjunctive logical-AND op-

erator as a product and the disjunctive modulo-2 additive operator commonly referred to

as the Exclusive-OR. All literals are present in positive polarity form only so the unary

inversion/logical-NOT operator is not present. The symbolic ANF for a general switching

function where n = 3 can also be written where the coefficients are ai ∈ B. In this case, each

conjunctive product term or monomial formed by the function literals takes on a different

form as shown in Equation 6.2.

f = a0 · (1)⊕ a1 · x1 ⊕ a2 · x2 ⊕ a3 · x3 ⊕ a12 · x1 · x2

⊕a13 · x1 · x3 ⊕ a23 · x2 · x3 ⊕ a123 · x1 · x2 · x3
(6.2)

According to Equation 6.2, the overall degree of a particular switching function is the

maximum degree monomial present in the ANF representing that function. We can repre-

sent a linear transformation using the linear algebraic notation where m represents a column

vector whose components are mi ∈ B and where a represents a corresponding column vector

whose components are ai ∈ B. The transformation then takes the form a = R ·m where R is

70

the characterizing linear transformation matrix. In many cases, structural netlist represen-

tations of switching functions are much more compact than other forms of representation,

particularly as the number of dependent variables n increases. Representing switching func-

tions as a structural netlist causes the n dependent variables to be represented as n inputs

to the netlist and the value of the switching function fi is represented as the netlist output.

The matrices R are also known as the positive-polarity Reed-Muller (PPRM) transfor-

mation matrices, and the vector of ANF coefficients, as the PPRM spectrum. From this

point of view, the vector a characterizing a switching function is referred to as the ANF

spectrum and is the same as the PPRM spectrum.

For a circuit with a single variable, the Reed-Muller matrix is represented as follows:

R1 = [1 0
1 1]

For a circuit with three variables, the Reed-Muller matrix is represented as follows:

R3 = [1 0
1 1]⊗ [1 0

1 1]⊗ [1 0
1 1]

For a circuit with n variables, the Reed-Muller matrix is represented as follows:

Rn =
n
⊗
j=1
·R1

6.2. Method for Extracting the ANF from a Netlist

6.2.1. Constants Modeled in the Switching Domain and the ANF Domain

In our linear algebraic model presented here, we model constants as elements of H. We

model the constant element 〈0| ∈ H as 〈0| = [1, 0] and 〈1| ∈ H as 〈1| = [0, 1]. We also amend

the elements of H resulting in H+ = {H, 〈∅| , 〈t|}. The additional elements 〈∅| and 〈t| are

included for the purpose of developing the transfer function model for a logic network and

71

their inclusion is convenient in analysis of the modeled network. Qualitatively, the element

〈∅| can be considered as the inexistence of either 〈0| or 〈1|, while the element 〈t| represents

an element that is simultaneously both 〈0| and 〈1| so that 〈t| = 〈0| + 〈1|. In using H+, we

denote a lattice algebra by a Hasse diagram. Figure 6.1 contains the Hasse diagram for the

elements of the set H+.

Figure 6.1. Hasse diagram of values in the switching domain

Figure 6.2. Hasse diagram of constant values in the ANF domain

6.2.2. Graph Traversal

Our methodology allows for a structural netlist to be modeled as a transfer function over

Hilbert vector spaces of finite dimension rather than the more common model of collections of

Boolean algebraic switching functions [14]. In this alternative formulation, individual gates

are represented as transfer matrices, and the structural interconnection dictates whether the

individual gate or operator transfer matrices are combined using either the direct matrix

product or the outer matrix product. This model requires that binary values be modeled as

72

bra or ket vectors rather than constants in B.

We represent the elements in B in the linear algebraic framework as elements in a finite-

dimensioned Hilbert vector space, H, where B = 0, 1 and H1 = 0, 1. The notation 〈0| and

〈1| represent the row vectors or “bras” [〈1| 〈0|] and [〈0| 〈1|] respectively in accordance with

the bra-ket notation of [9].

The ANF can be calculated from a transfer matrix representing a switching function

in linear algebraic form by a direct matrix product of an appropriately dimensioned Reed-

Muller transformation matrix followed by computing the modulus-2 of each component in

the resultant vector [16].

Example 6.1 ANF Computation of circuit c17

Consider the example switching function of output n22 of benchmark circuit c17 whose

transfer matrix is given in Equation 6.4. Since Tn22 is of dimension 32 × 4, the appropri-

ately dimensioned Reed-Muller transformation matrix is R5. The direct product is given in

Equation 6.4.

R5Tn22 =



1 0
1 1 0
1 0 1 0
1 1 1 1 0
1 0 0 0 1 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 1 1 0
1 0 1 0 0 0 0 0 1 0 1 0
1 1 1 1 0 0 0 0 1 1 1 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1





1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1



=



1 0
2 0
1 1
2 2
2 0
4 0
2 2
4 4
2 0
4 0
2 2
4 4
4 0
8 0
4 4
8 8
2 0
4 0
2 2
4 4
4 0
8 0
5 3
10 6
3 1
6 2
3 5
6 10
6 2
12 4
7 9
14 18



(6.3)

�

The resulting 32 × 2 matrix contains the ANF values when mapped into the linear al-

73

gebraic domain. The rightmost column vector of the resultant product matrix represents

the ANF of the candidate function, and the leftmost represents the ANF of the complement

of the candidate function. To obtain the actual ANF vector of the candidate function, the

modulus-2 of the rightmost column vector is computed as shown below.



a0
a5
a4
a45
a3
a35
a34
a345
a2
a25
a24
a234
a23
a235
a234
a2345
a1
a15
a14
a145
a13
a135
a134
a1345
a12
a125
a124
a1245
a123
a1235
a1234
a12345



=



0 mod 2
0 mod 2
1 mod 2
2 mod 2
0 mod 2
0 mod 2
2 mod 2
4 mod 2
0 mod 2
0 mod 2
2 mod 2
4 mod 2
0 mod 2
0 mod 2
4 mod 2
8 mod 2
0 mod 2
0 mod 2
2 mod 2
4 mod 2
0 mod 2
0 mod 2
3 mod 2
6 mod 2
1 mod 2
2 mod 2
5 mod 2
10 mod 2
2 mod 2
4 mod 2
9 mod 2
18 mod 2



=



0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
1
0
1
0
1
0
0
0
1
0



(6.4)

To extract a single ANF value, we perform a traversal of the graph representing the

circuit diagram. The technique involves interpreting the netlist in a hybrid form where

individual gates are represented as an interconnection of small transfer matrices of each

gate. As presented in figure 6.3, we can replace each logic gates by its corresponding matrix.

A particular ANF coefficient is then computed by propagating (i.e., simulating) a particular

variable assignment when propagated through the network [16]. However, the values must

be transformed into the ANF domain. This is accomplished by inserting the R1 matrix

at each primary input. Figure 6.4 illustrates the example gate level diagram of c17 with

each gate replaced by its corresponding transfer matrix and the primary inputs and outputs

represented by appropriate matrices that enable the calculation of ANF coefficients. The

following example illustrates how the netlist can be traversed to extract ANF coefficients.

74

Figure 6.3. Benchmark circuit c17

The following figure shows the replacement of each logic gate by its corresponding transfer

matrix.

Figure 6.4. Example of a Hybrid Netlist for ANF Computation

Example 6.2 Extracting a12345 Coefficient from Netlist

In Figure 6.6 we extract the ANF coefficient a12345 by initially assigning the input values

〈x1x2x3x4x5| = 〈11111| and prepending the netlist primary inputs with the Reed-Muller

matrix R5 to ensure that the input value assignments are transformed to the ANF domain.

The input assigned values are then propagated through the network by multiplying each row

vector with the transfer matrix encountered. For those transfers matrices with j multiple

inputs, the individual values on each line are combined into a single vector of dimension 2j

(i.e., a vector in Hj) through the use of the outer product operator ⊗. Because the outer

product operation is not commutative, it is important to order the operands by using the

topmost value in the netlist as the leftmost factor and the bottommost value in the netlist

as the rightmost factor. The values that are propagated through the netlist are highlighted

in red font.

75

Figure 6.5. Example of a Hybrid Netlist for ANF Computation a12345

�

Example 6.3 : Extracting a124 Coefficient from Netlist

In Figure 6.6 the ANF coefficient a124 is extracted by initially assigning the input values

〈x1x2x4| = 〈11010| and prepending the netlist primary inputs with the R5 matrix to ensure

that the input value assignments are transformed to the ANF domain. The input assigned

values are then propagated through the network by multiplying each row vector with the

transfer matrix encountered. The values that are propagated through the netlist are shown

in red font.

Figure 6.6. Example of a Hybrid Netlist for ANF Computation a124

�

6.3. Computation of the Maximum Algebraic Degree

76

To determine the maximum algebraic degree of a netlist, we propagate multiple input

variable assignments through the network. For each assignment of n input variables, we set

k variables to 〈1| with k representing the algebraic degree. The number of test cases follows

a binomial distribution. The ith row of the Pascal’s triangle is the number of combinations

Ck (n choose k) with i going from 1 to n. The binomial coefficients nCk represent the number

of variable assignments required for each degree k computation.

(
n

k

)
= nCk =

n!

k! (n− k)!
(6.5)

Figure 6.7 shows the distribution of ANF coefficients in the Pascal Triangle for the 5

variables of circuit c17.

Figure 6.7. ANF coefficients in the Pascal Triangle for circuit c17

To reduce the computation time of the degree search, one preliminary step is to prune

the search space by identifying all input variables that the output depends on. The pruning

method consists of performing n traversals, where n is the number of input variables. The

simulations are performed in the switching domain using a combination of the total vectors

〈t| and the null vector 〈∅|. Example 6.4 shows how to find the dependent input variables

among x1, x2, x3, x4, and x5 for an output f .

Example 6.4 : Extracting dependent input variables for output f

Assuming the netlist has five input variables x1, x2, x3, x4, and x5 each of the input

77

variables is assigned to 〈∅|, one at a time, while the remaining variables are assigned to 〈t|.

The advantage of the pruning method is that it runs in linear time. For n = 5 variables

we perform five simulations successively in the switching domain by assigning the following

input values to the input vectors:

〈x1x2x3x4x5| = 〈∅tttt|

〈x1x2x3x4x5| = 〈t∅ttt|

〈x1x2x3x4x5| = 〈tt∅tt|

〈x1x2x3x4x5| = 〈ttt∅t|

〈x1x2x3x4x5| = 〈tttt∅|

For each set of assigned values, if the output f evaluates to the null vector 〈∅|, then the

f depends on the variable xi assigned to 〈∅|. �

Figure 6.8 shows the traversal of c17 for the variable in 〈∅tttt| in the switching domain:

Figure 6.8. Example of a Hybrid Netlist for ANF Computation

After the traversal, both outputs N22 and N23 of c17 become 0; this means that outputs

N22 and N23 depend on input N2.

6.3.1. Binomial Distribution of ANF Coefficients

The overall degree of a particular switching function is the maximum degree monomial

present in the ANF representing that function. To find the maximum degree, we must per-

form multiple traversals using multiple combinations of variable assignments. The number of

78

elements in each equivalence class, or the cardinality, is a set of integers that are binomially

distributed. We collected the runtime to generate 2n coefficients for circuits with n coeffi-

cients. The binomial distribution is a discrete probability distribution; therefore, a random

switching function should have ANF coefficients ai that are binomially distributed.

Figure 6.9. Binomial distribution

Figure 6.9 shows the distribution of the number of test cases required for a graph with

n variables. When the number of input variable set to 〈1| approaches n
2

the number of

combinations gets larger. The pruning method presented can help improve the maximum

degree search time by reducing the number of variables. Figure 6.10 shows the binomial

distribution after pruning with a 50% variable reduction for the same circuit.

79

Figure 6.10. Binomial distribution with a 50% variable reduction

6.3.2. Experimental Results

The experimental results in Table 6.1 show the maximum algebraic degrees for some

outputs of ISCAS85 benchmark circuits. The reduction scheme allows to lower the number

of variable assignments before proceeding to the degree search. Only the dependent variables

of the tested output are changed, while all the independent variables remain fixed to one. The

reduction of the number of variable assignments has allowed noticeable timing improvement

on some outputs.

80

Table 6.1. Computation of the maximum algebraic degree

Benchmark

circuit

Inputs/

Outputs
#gates Output

Maximum

degree

Degree

search time (ms)

Optimized degree

search time (ms)
Speedup

majority.v 5/1 13 o0 5 2.69 2.26 16%

test1.v 3/3 14 o2 n/a n/a n/a n/a

rd53.v 5/3 22 o1 1 32.03 31.41 2%

con1.v 7/2 28 f0 7 4.04 2.92 28%

radd.v 8/5 33 o2 6 59.09 55.12 7%

cm163a.v 16/5 45 t 15 50.29 48.06 4%

dk17.v 10/11 154 o0 6 2456.93 2453.89 0%

pcle.v 19/9 61 v 18 25.7 24.69 4%

mux.v 21/1 55 v 21 10.92 10.71 2%

cm85a.v 11/3 59 o1 10 55.57 54.45 2%

x2.v 10/7 60 l 9 7.67 7.23 6%

sct.v 19/15 100 b0 18 64.67 63.15 2%

misex2.v 25/18 130 z 25 4.87 2.71 44%

alu2b.v 10/8 142 o2 9 66.16 65.89 1%

c432.v 36/7 160 n223 19 19210.74 3146.91 84%

c499.v 41/32 202 N724 41 110.32 106.22 4%

c880a.v 60/26 383 n388 60 0.96 0.889 7%

c1355.v 41/32 546 g1324 41 89.12 85.12 4%

c1908 33/25 880 n2753 33 140.52 138.47 1%

c2670 233/140 1269 n398 233 1.6 1.47 8%

c3540 50/22 1669 n1713 50 2.84 2.72 4%

c5315 178/123 2307 n709 178 3.15 2.8 11%

c6288 32/32 2416 N545 32 1.58 0.55 65%

c7552 207/108 3513 N387 207 4.2 3.84 9%

81

Chapter 7

CONCLUSION

We have described how we can use the theory in [27] to efficiently manipulate switching

circuits using BDDs and ADDs. Our approach consists of representing a digital logic network

as a transfer function using a sparse matrix or a decision diagram. To obtain an output

response for a simulation, we represent the input stimulus as a vector, and the transfer

function can linearly transform that input vector into an output vector. The advantage

of computing transfer functions is that we can use the same function framework for both

digital network simulation and the reverse process, justification. Our method represents the

resulting transfer function as a binary decision diagram by merging all the BDD partitions

either by multiplication or composition operations. The attributes of these diagrams are the

ability to have a more compressed representation of the transfer function especially when

dealing with large netists, the ability to use multiple variable reordering algorithms, and the

benefits of a smaller memory footprint.

Two versions of the simulator were implemented with one optimizing runtime and the

other optimizing memory usage. In order to make use of the theoretical results of [27] in

a practical manner, ADDs are used to represent the matrices and vectors. A new tensor

multiplication algorithm was formulated as an operation over matrices represented as ADDs

and was shown to be very efficient in that it only required the traversal of a single path in

each of the two operands ADDs. This tensor multiplication algorithm enabled the two can-

didate simulation methods to have reasonable and competitive runtimes and memory usage

statistics. These results indicate that the linear algebraic theory can be used as a practi-

cal and reasonable alternative to conventional switching algebra models for digital circuit

EDA tools. We also demonstrated how to adapt our model to simulate sequential circuits

by performing a simulation for each sequential input. The complexity remains the same for

82

combinational and sequential circuits with the sequential circuit requiring a simulation to

be performed for each new input vector, just as is the case for combinational circuits.

ANF (Algrebraic Normal Form) coefficients are very useful in analyzing switching func-

tion models of cryptographic primitives. They can be used to determine how closely the

function approximates a random function or the linearity. A method for the calculation of

ANF coefficients both as a complete set or as individual coefficients through a traversal of a

structural netlist model of a cryptographic switching function is described. Furthermore, we

have described a method for estimating the ANF coefficients when the candidate switching

function is only partially known. Input/output observation pairs of a candidate and un-

known switching function may be used to construct a netlist that estimates the switching

function of interest.

Future research involves applying the vector space method to other applications common

in EDA tools. An immediate area of research is to incorporate timing into the switching

circuit models. This can potentially be accomplished by modifying the transfer matrix

elements to contain values corresponding to time delays rather than the value ‘1.’

One very promising avenue for future work involves incorporating this approach into

mixed-signal simulators. Currently mixed-signal simulators use a hybrid approach where

the digital portion uses conventional discrete event simulation and the analog portion uses

traditional techniques such as SPICE. Then these two often disparate simulation results must

somehow be combined into a single output. The vector space method offers the possibility to

produce a truly unified approach since it is based upon the use of transfer functions which is

a common model for analog circuitry. Thus the potential to produce an overall mixed-signal

transfer function and hence a unified simulation process is promising.

83

Appendix A

Transfer function: xor5.v

Figure A.1. xor5.v schematic

F =



1 0
0 1
0 1
1 0
0 1
1 0
1 0
0 1
0 1
1 0
1 0
0 1
1 0
0 1
0 1
1 0
0 1
1 0
1 0
0 1
1 0
0 1
0 1
1 0
1 0
0 1
0 1
1 0
0 1
1 0
1 0
0 1



Figure A.2. xor5.v matrix

Figure A.3. xor5.v schematic

Figure A.4. xor5.v ADD

84

Appendix B

Transfer function: majority.v

Figure B.1. majority.v schematic

F =



1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
0 1
0 1
1 0
0 1
1 0
0 1
1 0
0 1
0 1
0 1
1 0
0 1
0 1
0 1
0 1
0 1
0 1
0 1



Figure B.2. majority.v matrix

Figure B.3. majority.v schematic

Figure B.4. majority.v ADD

85

Appendix C

Transfer function: c17.v

Figure C.1. c17.v schematic

F =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0



Figure C.2. c17.v matrix

Figure C.3. c17.v schematic
Figure C.4. c17.v ADD

86

Appendix D

Transfer function: rd53.v

Figure D.1. rd53.v schematic

F =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0



Figure D.2. rd53.v matrix

Figure D.3. rd53.v schematic
Figure D.4. rd53.v ADD

87

Appendix E

Transfer function: radd.v

Figure E.1. radd.v schematic

Figure E.2. radd.v Output o4

88

Figure E.3. radd.v Output o3

Figure E.4. radd.v Output o2

89

Figure E.5. radd.v Output o1

Figure E.6. radd.v Output o0

90

Appendix F

Transfer function: i3.v

Figure F.1. i3.v schematic

F =

[
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

]

Figure F.2. i3.v matrix

91

Appendix G

Code listing

/**

* Main program

* @param argc, *argv[]

*/

int main (int argc, char *argv[])

{

int input_row=0, output_row=0, reed_muller=0, round=2, i=0, j=0;

int id=0, crossover_mode=0, option=0, simulation=-1, justification=0;

int n, vars, found;

int inputs[99];

int mode = MATRIX_MODE; /*By default the mode is MATRIX_MODE*/

char filename[30], verilog[100], format[50];

struct timeval startTime;

double endTime=0, partitionsTime=0, ddTime=0, simulationTime=0, justificationTime=0,

cumulativeTime=0;

long rows=0, decimal=0;

kroneckerTime=0, reorderingTime_arr=0, simulationTime_arr=0;

debug=false; /*Testing mode*/

verbosity=4; /*Level of details in DD printing*/

DdNode *output;

DdNode *tmp=NULL;

coefficient* anf_coefficients;

if (argc != 2) {

printf("Usage: ./transfer <config file>\n"); /* Check for a verilog input file */

//exit(1);

}

92

read_config(argv[1], verilog, format, &option, &input_row, &output_row, &crossover_mode,

&simulation, &justification, &reed_muller); /*Read a configuration file from the command

line*/

printf("\n**** CONFIGURATION ****\n \tVerilog file: %s\n \tTransfer function format: %s\n

\tSimulation type: %d\n \tInput row: %d\n********************\n\n", verilog, format,

simulation, input_row);

circuit c = (circuit)calloc(1,sizeof(struct circuit_)); /*Declare an instance of a circuit */

c->name = strdup(verilog); /*Set circuit name*/

system("exec rm -r cascades/* inputs/* transparent/* add/* bdd/*"); /*Clean up directories*/

if (strcmp(format, "dd") ==0) /*In mode 1 no matrix is created*/

mode = 1;

parse_verilog_file (c, c->name, mode); /*Parse the verilog file */

levelizer_r1 (c); /*Levelize the circuit round #1*/

while (!levelization_completed (c)) { /*Keep levelizing until full completion*/

levelizer_rn (c, round); /*Levelize the circuit fully with n rounds*/

round++;

}

gettimeofday(&startTime, NULL); // Start timer

partitions (c); /*Create an array of partitions*/

stopTimer (&partitionsTime, startTime); // Stop timer

gbm = Cudd_Init(0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHE_SLOTS,0); /* Initialize a new BDD manager. */

Cudd_ReduceHeap(gbm, CUDD_REORDER_SYMM_SIFT, 3000); // Dynamic reordering by sifting method

Cudd_SetBackground(gbm, Cudd_ReadPlusInfinity(gbm)); // Change the background to infinity

(Default value was zero)

switch (simulation) {

case DEGREE_SEARCH:

vars = c->inputcount; // Number of input variables

93

int out = atoi(argv[2]); // Output under test

int k = atoi(argv[3]); // Degree

int *active = (int *) malloc(vars * sizeof(int)); // Array of active inputs

/* OPTIMIZED DEGREE SEARCH */

for (out=0; out < c->outputcount; out++){ // Perform a degree search on each output

found =0;

int active_vars = reduce_search_space (c, out, active); // reduce the search space for

each output

k = active_vars; // Set the degree for the search equal to the

number of active variables

cumulativeTime = 0; // Reset time

gettimeofday(&startTime, NULL); // Start the timer for simulation

for (i=k; i>0; i--) {

found = degree_search_opt (c, active_vars, i, active, out); // Degree search from

higher degrees

fprintf(stderr, "******* FOUND = %d ***********\n\n", found);

if (found) break;

}

stopTimer(&cumulativeTime, startTime); // Stop the timer for simulation

fprintf(stderr,"Cumulative time: %.6f ms\n\n\n", cumulativeTime);

}

/* END OPTIMIZED DEGREE SEARCH */

free (active); // Free memory

break;

case MATRIX_MONOLITHIC:

matrix_direct_product (c); /*Direct matrix product of each cascade stages*/

matrix inputVector = (matrix)malloc(sizeof(struct matrix_)); /*Input vector for the

simulation*/

build_vector (inputVector, c->inputcount, input_row); /*Build input row vector*/

gettimeofday(&startTime, NULL); // Start timer

94

direct (inputVector, c->transfer); /*Simulation: multiply the input row vector by the

transfer function matrix*/

stopTimer(&simulationTime, startTime); // Stop timer

if (justification==MATRIX_JUSTIFICATION) {

matrix transposeMatrix = (matrix)malloc(sizeof(struct matrix_)); /*Transpose matrix*/

transpose (c->transfer, transposeMatrix); // Build the transpose matrix

matrix outputMatrix = (matrix)malloc(sizeof(struct matrix_)); /*Output matrix*/

build_vector (outputMatrix, c->outputcount, input_row);

gettimeofday(&startTime, NULL); // Start timer

direct (outputMatrix, transposeMatrix); /*Multiply the input row vector by a transfer

matrix*/

stopTimer(&simulationTime, startTime); // Stop timer

free_matrix (transposeMatrix, transposeMatrix->rows); /*Free the transpose matrix*/

free_matrix (outputMatrix, outputMatrix->rows); /*Free the output matrix*/

}

free_matrix (c->transfer, ROWS); /*Free the transfer matrix*/

free_matrix (inputVector, inputVector->rows); /*Free the input matrix*/

break;

case MATRIX_DEBUG:

gettimeofday(&startTime, NULL); // Start timer

debug=true;

matrix_direct_product (c); /*Direct matrix product of each cascade stages*/

stopTimer(&simulationTime, startTime); // Stop timer

break;

case DD_MONOLITHIC:

gettimeofday(&startTime, NULL); // Start timer

transferFunction (c, DD_MONOLITHIC, 0, crossover_mode); /*Build the entire transfer

function DD first*/

stopTimer(&ddTime, startTime); // Stop timer

gettimeofday(&startTime, NULL); // Start timer

output = Cudd_addMultiply(gbm, Cudd_addConst (gbm, (CUDD_VALUE_TYPE)input_row),

c->transfer_dd); /*Simulation: Get the corresponding terminal constant in the DD

Transfer function DD*/

95

stopTimer(&simulationTime, startTime); // Stop timer

print_all (output, "./add/output.dot", 4,"\n\nOutput response (Monolithic method) \n");

if (justification==DD_JUSTIFICATION) {

gettimeofday(&startTime, NULL); // Start timer

Cudd_ddJustification(gbm, c->transfer_dd, output_row);

stopTimer(&justificationTime, startTime); // Stop timer

}

if (NULL != c->transfer_dd)

Cudd_RecursiveDeref(gbm, c->transfer_dd);

if (NULL != output)

Cudd_RecursiveDeref(gbm, output);

break;

case DD_ARRAY1:

gettimeofday(&startTime, NULL); // Start timer

transferFunction (c, DD_ARRAY1, input_row, crossover_mode); /*Build the output response

incrementally*/

stopTimer(&simulationTime, startTime); // Stop timer

if (NULL != c->transfer_dd)

Cudd_RecursiveDeref(gbm, c->transfer_dd);

printf ("\n >>>>>>>>>>>>>>>>>>>>. %.6f ms \n", kroneckerTime);

ddTime = kroneckerTime + reorderingTime_arr;

simulationTime = simulationTime_arr;

break;

case DD_ARRAY2:

csc=0;

nodeArray = (DdNode **)calloc(999, sizeof(DdNode*));

output = Cudd_addConst (gbm, (CUDD_VALUE_TYPE)input_row);

gettimeofday(&startTime, NULL); // Start timer

transferFunction (c, DD_ARRAY2, 0, crossover_mode); /*Build the output response

incrementally*/

stopTimer(&ddTime, startTime); // Stop timer

gettimeofday(&startTime, NULL); // Start timer

for (i=0; i < csc; i++) {

96

tmp = Cudd_addMultiply(gbm, output, nodeArray[i]);

Cudd_Ref(tmp);

Cudd_RecursiveDeref(gbm, output);

Cudd_RecursiveDeref(gbm, nodeArray[i]);

output = tmp;

}

stopTimer(&simulationTime, startTime); // Stop timer

print_all (output, "./add/output.dot", 4,"\n\nOutput response (Array 2 method) \n");

free(nodeArray);

if (NULL != c->transfer_dd)

Cudd_RecursiveDeref(gbm, c->transfer_dd);

if (NULL != output)

Cudd_RecursiveDeref(gbm, output);

break;

case DD_DISTRIBUTED:

switch (option) {

case CONSTANT: // Set inputs to be constants (Simulation)

for (i=0; i < c->inputcount; i++) {// Create BDD variables for the inputs.

inputs[i] = 1; // Temporary set all inputs to 1

id = getID(c->inputs[i], c); // Get the ID number of an input variable

printf("Input wire name: %s \n", getWire(id,c)->name);

getWire(id,c)->dd = (inputs[i] == 0) ? Cudd_ReadZero(gbm) : Cudd_ReadOne(gbm); //

Input is either constant 0 or constant 1

Cudd_Ref(getWire(id,c)->dd);

sprintf(filename, "./inputs/input_%d.dot", i);

print_all (Cudd_BddToAdd(gbm, getWire(id,c)->dd), filename, 4, "Input");

}

gettimeofday(&startTime, NULL); // Start timer

distributed_dd (c); /*Crawl in the circuit, starting from the primary inputs*/

stopTimer(&simulationTime, startTime); // Stop timer

for (i=0; i < c->outputcount; i++) {

id = getID(c->outputs[i], c); // Get the ID number of an output variable

97

printf("\nOutput wire name: %s \n", getWire (id,c)->name);

sprintf(filename, "./bdd/distributed_bdd_%d.dot", i);

print_all (Cudd_BddToAdd(gbm, getWire(id,c)->dd), filename, 4, "Distributed

method"); // Convert the BDD to an ADD

}

break;

case VARIABLE: // Set inputs to be variables

/*Create a DD variable for all the primary inputs*/

for (i=0; i < c->inputcount; i++) {

id = getID(c->inputs[i], c); // Get the ID number of an input variable

printf("Input wire name: %s \n", getWire(id,c)->name);

getWire(id,c)->dd = Cudd_bddNewVar(gbm); // Create a unique DD node representing a

primary input variable

Cudd_Ref(getWire(id,c)->dd);

sprintf(filename, "./inputs/input_%d.dot", i);

print_all (Cudd_BddToAdd(gbm, getWire(id,c)->dd), filename, 4, "Input");

}

/*End Create a DD variable for all the primary inputs*/

/*Build a DD for each output of the circuit*/

gettimeofday(&startTime, NULL); // Start timer

distributed_dd (c); /*Crawl in the circuit, starting from the primary inputs*/

stopTimer(&simulationTime, startTime); // Stop timer

/*End Build a DD for each output of the circuit*/

for (i=0; i < c->outputcount; i++) {

id = getID(c->outputs[i], c); // Get the ID number of an output variable

printf("\nOutput wire name: %s \n", getWire (id,c)->name);

sprintf(filename, "./bdd/distributed_bdd_%d.dot", i);

print_all (Cudd_BddToAdd(gbm, getWire(id,c)->dd), filename, 4, "Distributed

method"); // Convert the BDD to an ADD

}

break;

default:

break;

98

}

/*End distributed traversal*/

fprintf(stderr,"\n\nSimulation time: %.6f ms\nCumulative time: %.6f ms\n\n",

simulationTime, cumulativeTime);

break;

case DD_RECURSIVE:

for (i=0; i < c->inputcount; i++) {// Create BDD variables for all the primary inputs.

id = getID(c->inputs[i], c); // Get the ID number of an input variable

printf("Input wire name: %s \n", getWire(id,c)->name);

getWire(id,c)->dd = Cudd_bddNewVar(gbm); // Create a unique DD node representing a

primary input variable

Cudd_Ref(getWire(id,c)->dd);

sprintf(filename, "./inputs/input_%d.dot", i);

print_all (Cudd_BddToAdd(gbm, getWire(id,c)->dd), filename, 4, "Input");

}

printf("\n\n******** Creating BDD recursively starting from the outputs ********\n\n");

for (i=0; i < c->outputcount; i++) {

id = getID(c->outputs[i], c); // Get the ID number of an output variable

printf("\n\n\n---- Output wire name: %s ----\n", getWire (id,c)->name);

gettimeofday(&startTime, NULL); // Start timer

recursive_bdd (getWire(id,c), c); // Build the BDD recursively

stopTimer(&endTime, startTime); // Stop timer

ddTime += endTime; // Accumulate DD computation time

sprintf(filename, "./bdd/bdd_%d.dot", i);

print_all (Cudd_BddToAdd(gbm, getWire(id,c)->dd), filename, 2, "Recursive method"); //

Convert the BDD to an ADD

}

printf("\n\n******** End of creating BDD recursively starting from the outputs

********\n\n");

if (justification==DD_JUSTIFICATION) {

print_all (getWire(id,c)->dd, filename, 4, "getWire(id,c)->dd");

gettimeofday(&startTime, NULL); // Start timer

Cudd_ddJustification(gbm, getWire(id,c)->dd, output_row);

stopTimer(&justificationTime, startTime); // Stop timer

99

}

break;

case SEQUENTIAL:

transferFunction (c, DD_MONOLITHIC, 0, crossover_mode); /*Build the entire transfer

function DD first*/

int cycles = 4;

int invars = c->inputcount;

int outvars = c->outputcount;

int *seq_inputs = (int *) malloc(invars * sizeof(int)); // Inputs

int *seq_outputs = (int *) malloc(outvars * sizeof(int)); // Outputs

getBinary (input_row, invars, seq_inputs, 0); // Convert a row to binary

for (i=0; i < cycles; i++) {

output = Cudd_addMultiply(gbm, Cudd_addConst (gbm, (CUDD_VALUE_TYPE)input_row),

c->transfer_dd); /*Simulation: Get the corresponding terminal constant in the DD

Transfer function DD*/

getBinary ((int) cuddV(output), outvars, seq_outputs, 0);

seq_inputs[0] = seq_outputs[1]; // Update inputs

input_row = getDecimal (invars, seq_inputs);

print_all (output, "./add/output.dot", 4,"\n\nOutput response (Monolithic method) \n");

}

if (NULL != c->transfer_dd)

Cudd_RecursiveDeref(gbm, c->transfer_dd);

if (NULL != output)

Cudd_RecursiveDeref(gbm, output);

free (seq_inputs);

free (seq_outputs);

break;

case DD_CASCADES_ONLY:

c->transfer_dd = Cudd_ReadZero(gbm);

100

transferFunction (c, DD_CASCADES_ONLY, 0, 0); /*Build the entire transfer function DD

first*/

break;

default:

printf("\n\n NO OPERATION PERFORMED \n\n"); /* Check for a verilog input file */

}

printf("\nNodes in the unique table: %d | Manager memory: %lu bytes | Nodes with non-zero

reference counts: %d\n", Cudd_ReadKeys(gbm), Cudd_ReadMemoryInUse(gbm),

Cudd_CheckZeroRef(gbm));

info_dd (gbm, "./info.txt"); //Print out statistics and settings for a CUDD manager

Cudd_Quit(gbm);/*Shut down the DdManager*/

printf("\n Partitioning time: %.6f ms\n DD building time: %.6f ms\n Simulation time: %.6f ms\n

Justification time: %.6f ms\n\n", partitionsTime, ddTime, simulationTime,

justificationTime);

fprintf(stderr,"\n\nSimulation time: %.6f ms\nCumulative time: %.6f ms\n\n", simulationTime,

cumulativeTime);

/*Dereferencing and deallocations*/

for (i=0; i < c->outputcount; i++)

free (c->outputs[i]);

for (i=0; i < c->inputcount; i++)

free (c->inputs[i]);

for (i=0; i < c->nodecount; i++)

free (c->nodes[i]);

free(c->nodes);

for (i=0; i < c->wirecount; i++) {

if (mode==MATRIX_MODE) { // Only in matrix mode, free the allocated matrix and vector

free_matrix(c->wires[i]->m, c->wires[i]->m->rows); /*Free the wire matrix*/

free_matrix(c->wires[i]->v, c->wires[i]->v->rows); /*Free the wire vector*/

}

free (c->wires[i]->name);

101

free (c->wires[i]->type);

free (c->wires[i]);

}

free(c->wires);

for (i=0; i < STATIC_ARR_MAX; i++) {

for(j=0; j < STATIC_ARR_MAX; j++) {

free (c->crossovers[i][j]);

}

}

for (i=0; i < STATIC_ARR_MAX; i++) {

for(j=0; j < STATIC_ARR_MAX; j++) {

if(NULL != c->partition[i][j]) {

free (c->partition[i][j]->name);

free (c->partition[i][j]->type);

}

free (c->partition[i][j]);

}

}

free (c->name);

free (c); /*Deallocate memory used by the circuit*/

/*End Dereferencing and deallocations*/

return 0;

}

/**Function**

Synopsis [Create a ADD from different sizes of fanouts]

Description [The Else branch is always a zero (0)

Depending on the number of fanouts the Then branch varies between: (3 or 7 or 15 or 31 etc.)]

102

@param the number of fanout branches

**/

DdNode * Cudd_fanout (int fanouts)

{

DdNode *var = Cudd_addNewVar(gbm); /*Root node of the fanout*/

Cudd_Ref(var);

int coef = pow(2, fanouts)-1; /*Calculate the max value depending on the number of fanouts*/

DdNode *retval = Cudd_addIte(gbm, var, Cudd_addConst (gbm, (CUDD_VALUE_TYPE)coef),

Cudd_addConst(gbm, (CUDD_VALUE_TYPE)0)); /*Else branch=0, Then branch=(3 or 7 or 15 or 31

etc.)*/

Cudd_RecursiveDeref(gbm,var);

return retval;

}

/**Function**

Synopsis [Creates a ADD for a crossover]

Description [A crossover is the intersection (crossing) of two wires

The terminal nodes of a crossover ADD are 0, 2, 1 and 3]

@param none

**/

DdNode * Cudd_crossover ()

{

DdNode *var1 = Cudd_addNewVar(gbm); /*First variable in the crossover DD*/

Cudd_Ref(var1);

DdNode *var2 = Cudd_addNewVar(gbm); /*Second variable in the crossover DD*/

Cudd_Ref(var2);

DdNode *node1 = Cudd_addIte(gbm,var2, Cudd_addConst (gbm, (CUDD_VALUE_TYPE)2),

Cudd_addConst(gbm, (CUDD_VALUE_TYPE)0)); /*Else branch=0, Then branch=2*/

Cudd_Ref(node1);

DdNode *node2 = Cudd_addIte(gbm,var2, Cudd_addConst (gbm, (CUDD_VALUE_TYPE)3),

Cudd_addConst(gbm, (CUDD_VALUE_TYPE)1)); /*Else branch=1, Then branch=3*/

Cudd_Ref(node2);

103

DdNode *retval = Cudd_addIte(gbm,var1, node2 ,node1);

Cudd_RecursiveDeref(gbm,var1);

Cudd_RecursiveDeref(gbm,var2);

Cudd_RecursiveDeref(gbm,node1);

Cudd_RecursiveDeref(gbm,node2);

return retval;

}

/**Function**

Synopsis [Prints a dd summmary]

Description [pr = 0 : prints nothing

pr = 1 : prints counts of nodes and minterms

pr = 2 : prints counts + disjoint sum of product

pr = 3 : prints counts + list of nodes

pr > 3 : prints counts + disjoint sum of product + list of nodes]

@param the dd node

**/

void print_dd (DdNode *dd, int n, int pr, char *name)

{

printf("%s\n", name);

printf("DdManager nodes: %ld | ", Cudd_ReadNodeCount(gbm)); /*Reports the number of live nodes

in BDDs and ADDs*/

printf("DdManager vars: %d | ", Cudd_ReadSize(gbm)); /*Returns the number of BDD variables in

existance*/

if(NULL !=dd) {

printf("DdNode nodes: %d | ", Cudd_DagSize(dd)); /*Reports the number of nodes in the BDD*/

printf("DdNode vars: %d | ", Cudd_SupportSize(gbm, dd)); /*Returns the number of variables

in the BDD*/

}

printf("DdManager reorderings: %d | ", Cudd_ReadReorderings(gbm)); /*Returns the number of

times reordering has occurred*/

printf("DdManager memory: %ld bytes\n\n", Cudd_ReadMemoryInUse(gbm)); /*Returns the memory in

use by the manager measured in bytes*/

104

if (Cudd_SupportSize(gbm, dd) > 20 && verbosity >1) {

pr = 1;

printf("\nCaution: DD is too large to print (%d vars), verbosity has been reduced to 1

!\n\n", Cudd_SupportSize(gbm, dd));

}

Cudd_PrintDebug(gbm, dd, n, pr); // Prints to the standard output a DD and its statistics:

number of nodes, number of leaves, number of minterms.

}

/**Function**

Synopsis [Writes a dot file representing the argument DDs]

Description []

@param the dd node and the filename

**/

void write_dd (DdNode *dd, char* filename)

{

FILE *outfile; // output file pointer for .dot file

outfile = fopen(filename,"w");

DdNode **ddnodearray = (DdNode**)malloc(sizeof(DdNode*)); // initialize the function array

ddnodearray[0] = dd;

if (NULL != dd) {

Cudd_DumpDot(gbm, 1, ddnodearray, NULL, NULL, outfile); // dump the function to .dot file

}

fclose (outfile); // close the file */

free(ddnodearray);

}

/**Function**

Synopsis [Prints a dd summary and writes a dot file representing the argument DDs]

Description []

105

@param the dd node and the filename

**/

void print_all (DdNode *dd, char* filename, int pr, char *name)

{

print_dd(dd,2,pr, name); /*Print expansion dd to standard out*/

write_dd(dd, filename); /*Write current expansion ADD to file*/

}

/**Function**

Synopsis [Prints out statistics and settings for a CUDD manager]

Description []

@param the dd manager and the filename

**/

void info_dd (DdManager *dd, char* filename)

{

FILE *outfile; // output file pointer for .dot file

outfile = fopen(filename,"w");

Cudd_PrintInfo (gbm, outfile);

fclose (outfile); // close the file

}

/**Function**

Synopsis [Build a crossover DD for one cascade according to the position of the crossover DD]

Description [Given a permutation in an array ’permut’, this function creates a new ADD with

permuted variables.

There should be an entry in the array ’permut’ for each variable in the manager. The i-th entry

of permut holds the index of the variable that is to substitute the i-th variable.

Returns a pointer to the resulting ADD if successful; NULL otherwise.

permut [index] = mapping; this formula doesnt work

permut [mapping] = index; this formula works]

106

@param a circuit c, the current cascade n, the mode 0:monolithic / 1:array

**/

DdNode * crossover_reordering (circuit c, int n, DdNode *node)

{

int order=0, k=0;

int rootIndex = (int) Cudd_NodeReadIndex(node); // Index of the first variable in the node

int managerVars = Cudd_ReadSize(gbm); // Number of variables in the manager

int* permut = malloc((managerVars) * sizeof(int)); // Array of permutation variables

for(k=0; k < managerVars; k++) // Initialization: there should be an entry in array permut for

each variable in the manager

permut[k]= k;

int index = rootIndex;

printf("\nnode index: %d, node vars: %d\n", rootIndex, Cudd_SupportSize(gbm, node));

// This loop fills out the array of permutation variables with variables indexes

while (c->partition[n][order] != NULL) {

printf("\nc->partition[%d][%d]: %s, order: %d, mapping: ", n, order,

c->partition[n][order]->name, c->partition[n][order]->order);

for(k=0; k < c->partition[n][order]->mappingCount; k++) { /*Print out the array of

mappings*/

printf("%d ", c->partition[n][order]->mapping[k]);

permut[rootIndex + c->partition[n][order]->mapping[k]] = index; //

//permut[index] = rootIndex + c->partition[n][order]->mapping[k]; // Normal operation

from cudd documentation

index++;

}

order++;

}

/*

printf("\n Number of variables in the manager = %d\n", managerVars);

for(k=0; k < managerVars; k++) // Initialization: there should be an entry in array permut for

each variable in the manager

printf("permut[%d] = %d\n", k, permut[k]);

*/

DdNode *reordered_dd = Cudd_addPermute(gbm, node, permut);

free(permut);

107

return reordered_dd;

}

/**Function**

Synopsis [Build cascades of a circuit using the Kronecker product of all parallel elements]

Description []

@param the circuit c, and the current cascade n

**/

DdNode * cascade_kronecker (circuit c, int n)

{

int i=0, j=0;

char filename[40]; /*Name of the files that hold the cascades*/

struct timeval startTime;

double diffTime=0;

DdNode *tmp; /*Initialize temporary dd*/

DdNode *cascade_dd = Cudd_ReadZero(gbm); /*Initialize the cascade holding the Kronecker

product*/

Cudd_Ref(cascade_dd);

printf ("\n******** CASCADE DD KRONECKER PRODUCT STAGE %d *********\n", n);

gettimeofday(&startTime, NULL); // Start timer

while (i<c->wirecount && c->wires[i] != NULL) { /*Iterate through all wires*/

if (c->wires[i]->partition == n || pass_through (c,c->wires[i], n))

{

if (gate (c->wires[i]->type) || pass_through (c,c->wires[i], n) ||

c->wires[i]->primary) /*Only gates and pass-throughs are allowed in a cascade*/

{

printf("\nOuter product by: WIRE %s, number of inputs:%d ...\n", c->wires[i]->name,

c->wires[i]->inputcount);

c->wires[i]->dd = get_add(c->wires[i], c); /*Build the BDD for the wire*/

gbm->fanout_coef = pow(2, c->wires[i]->outputcount); /*Hack to pass eventual fanout

coefficients to the kronecker function*/

108

tmp = Cudd_addApply(gbm, Cudd_addKronecker, c->wires[i]->dd, cascade_dd);

/*Kronecker Product of 2 ADDs*/

//sprintf(filename, "./cascades/add_%d_%d_%s.dot", n, j, c->wires[i]->name);

//print_all (c->wires[i]->dd, filename, 4, "");

Cudd_Ref(tmp);

Cudd_RecursiveDeref(gbm, c->wires[i]->dd);

Cudd_RecursiveDeref(gbm, cascade_dd);

cascade_dd = tmp;

j++;

}

}

i++;

}

stopTimer(&diffTime, startTime); // Stop timer

kroneckerTime += diffTime; // Accumulate DD kronecker building time

sprintf(filename, "./cascades/cascade_%d.dot", n);

//print_all (cascade_dd, filename, verbosity, "");

printf ("\n******** END CASCADE BDD KRONECKER PRODUCT STAGE %d | Number of nodes with non-zero

reference counts: %d ********\n\n", n, Cudd_CheckZeroRef(gbm));

return cascade_dd; /*Return the built dd for the cascade*/

}

/**Function**

Synopsis [Build cascades of a circuit using the Kronecker product of all parallel elements]

Description [Inject eventual crossover matrices in between]

@param the circuit c, the mode

**/

void

transferFunction (

circuit c, /*The circuit to test*/

109

int mode, /*The simulation type: 0:Monolithic, 1:Array*/

int row, /*If array method, the input vector to test for*/

int crossover_mode)

{

int n=0;

char filename[40]; /*Name of the file that holds the result*/

struct timeval startTime;

double diffTime=0;

DdNode *cascade_dd = Cudd_ReadZero(gbm); /*Initialize the individual cascade dd*/

Cudd_Ref(cascade_dd);

DdNode *crossover_dd=NULL; /*Intermediate DD*/

DdNode *tmp=NULL;

DdNode *reordered_cascade = NULL;

printf("\n\n\n**************** DIRECT PRODUCTS (.) *****************\n");

for(n=0; n<c->cascades ; n++) {

printf("\n\n******** IN CASCADE: %d ********\n", n);

if (NULL != cascade_dd)

Cudd_RecursiveDeref(gbm, cascade_dd);

cascade_dd = cascade_kronecker (c, n); /*Operation to compute the cascade dd using

Kronecker product*/

if (mode==DD_MONOLITHIC && crossover_mode==CROSSOVER_REORDERING) { /*Monolithic new

crossover method*/

if (n == 0) { //First cascade is untouched, no node multiplication needed

c->transfer_dd = cascade_dd;

Cudd_Ref(c->transfer_dd);

}

else {

if (isCrossover(c, n-1)) { //Check for crossover in the previous cascade (We check

the previous casacades to reorder input variables (Not possible on the output

variables))

printf("\n\n << Crossover detected in cascade %d: start reordering cascade

%d\n", n-1, n);

reordered_cascade = crossover_reordering (c, n-1, cascade_dd); // Reorder the

cascade DD

110

Cudd_Ref(reordered_cascade);

Cudd_RecursiveDeref(gbm, cascade_dd);

cascade_dd = reordered_cascade;

}

tmp = Cudd_addMultiply(gbm, c->transfer_dd, cascade_dd);

Cudd_RecursiveDeref(gbm, c->transfer_dd);

c->transfer_dd = tmp;

}

}// End monolithic function with crossover_reordering method

else if (mode==DD_ARRAY1 && crossover_mode==CROSSOVER_REORDERING) { /*Arrray method 1*/

if (n == 0) { /*Multiply the row vector by the first cascade*/

c->transfer_dd = Cudd_addMultiply(gbm, Cudd_addConst (gbm, (CUDD_VALUE_TYPE)row),

cascade_dd);

Cudd_Ref(c->transfer_dd);

}

else {

if (isCrossover(c, n-1)) { //Check for the eventual crossover injection. If a

crossover is detected in the current cascade, then we multiply the current

vector by the crossover DD

printf("\n\n << CROSSOVER INJECTION\n");

gettimeofday(&startTime, NULL); // Start timer

reordered_cascade = crossover_reordering(c, n-1, cascade_dd); // Reorder the

cascade DD

Cudd_Ref(reordered_cascade); // Reference the reordered cascade

stopTimer(&diffTime, startTime); // Stop timer

reorderingTime_arr += diffTime; // Accumulate DD reordering time

Cudd_RecursiveDeref(gbm, cascade_dd);

cascade_dd = reordered_cascade; // Point the casade DD to the reordered DD

}

else {

gettimeofday(&startTime, NULL); // Start timer

tmp = Cudd_addMultiply(gbm, c->transfer_dd, cascade_dd);

stopTimer(&diffTime, startTime); // Stop timer

simulationTime_arr += diffTime; // Accumulate DD simulation time

111

Cudd_Ref(tmp);

Cudd_RecursiveDeref(gbm, c->transfer_dd);

c->transfer_dd = tmp;

}

}

} // End array 1 with crossover_reordering method

else { /*Defaut case: testing*/

printf("\n\nCascade debugging %d\n", n);

print_dd(cascade_dd, 2, 4, "new cascade_dd built from cascade_kronecker"); // Print

cascade dd to standard out

}

printf("\n******** END CASCADE %d | Number of nodes with non-zero reference counts: %d

********\n\n", n, Cudd_CheckZeroRef(gbm));

}

sprintf(filename, "./add/transfer_dd_%d.dot", n);

print_all (c->transfer_dd, filename, 4,"\n\n++++++ TRANSFER ADD ++++++ \n");

if (NULL != cascade_dd)

Cudd_RecursiveDeref(gbm, cascade_dd);

printf("\n******** END DIRECT PRODUCTS *********\n\n");

}

/**Function**

Synopsis [Inputs crawl through all the cascades until reaching the final output]

Description [Starting from the primary inputs the algorithm evaluates the resulting BDD constant

in every cascade.

This method ends up providing constant vectors for each output]

@param the circuit c, and the current cascade n

112

**/

void distributed_dd (circuit c)

{

int i=0, n=0;

for(n=0; n<=c->cascades ; n++) { /*For all the cascades in the circuit*/

printf("\n\n******** IN CASCADE: %d ********\n", n);

while (i<c->wirecount && c->wires[i] != NULL) { /*Iterate through all wires*/

if (c->wires[i]->partition == n || pass_through (c,c->wires[i], n))

{

if (gate (c->wires[i]->type) || pass_through (c,c->wires[i], n) ||

c->wires[i]->primary) /*Only gates and pass-throughs are allowed in a cascade*/

{

printf("\nSimulating %s, Type:%s ...\n", c->wires[i]->name, c->wires[i]->type);

get_bdd(c->wires[i], c); /*Simulate a single gate at a time*/

}

}

i++;

}

i=0;

printf("\n******** END CASCADE %d | Number of nodes with non-zero reference counts: %d

********\n\n", n, Cudd_CheckZeroRef(gbm));

}

}

/**Function**

Synopsis [Build corresponding ADD for a wire]

Description []

@param the wire object, the circuit c

**/

DdNode * get_add (wire w, circuit c)

{

int i;

DdNode *dd, *tmp1, *tmp2, *tmp3, *var;

dd = Cudd_ReadOne(gbm); /*Initialize dd*/

113

Cudd_Ref(dd);

int type_num = convert (w->type); /*Convert type to number*/

switch (type_num) {

case INPUT:

fprintf(stderr,"Error: Uninitialized primary input.\n");

break;

case AND:

printf("Building AND %s ADD, id: %d\n", w->name, w->id);

tmp1 = Cudd_ReadOne(gbm);

Cudd_Ref(tmp1);

for (i=0; i < w->inputcount; i++) {

var = Cudd_bddNewVar(gbm);

Cudd_Ref(var);

tmp2 = Cudd_bddAnd(gbm, tmp1, var);

Cudd_Ref(tmp2);

Cudd_RecursiveDeref(gbm,var);

Cudd_RecursiveDeref(gbm,tmp1);

tmp1 = tmp2;

}

Cudd_RecursiveDeref(gbm,dd);

dd=tmp1;

break;

case NAND:

printf("Building NAND %s ADD, id: %d\n", w->name, w->id);

tmp1 = Cudd_ReadOne(gbm);

Cudd_Ref(tmp1);

for (i=0; i < w->inputcount; i++) {

var = Cudd_bddNewVar(gbm);

Cudd_Ref(var);

tmp2 = Cudd_bddAnd(gbm, tmp1, var);

Cudd_Ref(tmp2);

Cudd_RecursiveDeref(gbm,var);

Cudd_RecursiveDeref(gbm,tmp1);

114

tmp1 = tmp2;

}

Cudd_RecursiveDeref(gbm,dd);

dd = Cudd_Not(tmp1);

break;

case OR:

printf("Building OR %s ADD, id: %d\n", w->name, w->id);

tmp1 = Cudd_ReadLogicZero(gbm);

Cudd_Ref(tmp1);

for (i=0; i < w->inputcount; i++) {

var = Cudd_bddNewVar(gbm);

Cudd_Ref(var);

tmp2 = Cudd_bddOr(gbm,tmp1, var);

Cudd_Ref(tmp2);

Cudd_RecursiveDeref(gbm,var);

Cudd_RecursiveDeref(gbm,tmp1);

tmp1 = tmp2;

}

Cudd_RecursiveDeref(gbm,dd);

dd = tmp1;

break;

case NOR:

printf("Building NOR %s ADD, id: %d\n", w->name, w->id);

tmp1 = Cudd_ReadLogicZero(gbm);

Cudd_Ref(tmp1);

for (i=0; i < w->inputcount; i++) {

var = Cudd_bddNewVar(gbm);

Cudd_Ref(var);

tmp2 = Cudd_bddOr(gbm,tmp1,var);

Cudd_Ref(tmp2);

Cudd_RecursiveDeref(gbm,var);

Cudd_RecursiveDeref(gbm,tmp1);

tmp1 = tmp2;

}

Cudd_RecursiveDeref(gbm,dd);

115

dd = Cudd_Not(tmp1);

break;

case XOR:

printf("Building XOR %s ADD, id: %d\n", w->name, w->id);

tmp1 = Cudd_ReadLogicZero(gbm);

Cudd_Ref(tmp1);

for (i=0; i < w->inputcount; i++) {

var = Cudd_bddNewVar(gbm);

Cudd_Ref(var);

tmp2 = Cudd_bddXor(gbm,tmp1,var);

Cudd_Ref(tmp2);

Cudd_RecursiveDeref(gbm,var);

Cudd_RecursiveDeref(gbm,tmp1);

tmp1 = tmp2;

}

Cudd_RecursiveDeref(gbm,dd);

dd = tmp1;

break;

case XNOR:

printf("Building XNOR %s ADD, id: %d\n", w->name, w->id);

tmp1 = Cudd_ReadOne(gbm);

Cudd_Ref(tmp1);

for (i=0; i < w->inputcount; i++) {

var = Cudd_bddNewVar(gbm);

Cudd_Ref(var);

tmp2 = Cudd_bddXor(gbm,tmp1,var);

Cudd_Ref(tmp2);

Cudd_RecursiveDeref(gbm,var);

Cudd_RecursiveDeref(gbm,tmp1);

tmp1 = tmp2;

}

Cudd_RecursiveDeref(gbm,dd);

dd = tmp1;

break;

116

case NOT:

printf("Building NOT %s ADD, id: %d\n", w->name, w->id);

tmp1 = Cudd_bddNewVar(gbm);

Cudd_Ref(tmp1);

Cudd_RecursiveDeref(gbm,dd);

dd = Cudd_Not(tmp1);

break;

case BUF:

printf("Building BUF %s ADD, id: %d\n", w->name, w->id);

Cudd_RecursiveDeref(gbm,dd);

dd = Cudd_bddNewVar(gbm);

Cudd_Ref(dd);

break;

case I:

printf("Building I %s ADD, id: %d\n", w->name, w->id);

Cudd_RecursiveDeref(gbm,dd);

dd = Cudd_bddNewVar(gbm);

Cudd_Ref(dd);

break;

case FO:

printf("Building FO %s ADD, id: %d\n", w->name, w->id);

Cudd_RecursiveDeref(gbm,dd);

dd = Cudd_fanout (w->outputcount);

Cudd_Ref(dd);

return dd;

break;

case FI:

printf("Building FI %s ADD, id: %d\n", w->name, w->id);

Cudd_RecursiveDeref(gbm,dd);

dd = Cudd_bddNewVar(gbm);

Cudd_Ref(dd);

break;

117

default:

fprintf(stderr,"Error: Illegal wire type (DD)\n");

exit(1);

}

tmp3 = Cudd_BddToAdd(gbm, dd);

Cudd_Ref(tmp3);

Cudd_RecursiveDeref (gbm, dd);

return tmp3;

}

#endif // _BDD_H_

118

BIBLIOGRAPHY

[1] Agrawal, D., Baktir, S., Karakoyunlu, D., and Pankaj Rohatgi, B. S.
Trojan detection using ic fingerprinting. Security and Privacy, 2007. SP ’07. IEEE
Symposium on (2007), 296 – 310.

[2] Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E.,
Pardo, A., and Somenzi, F. Algebric decision diagrams and their applications.
Formal methods in system design 10, 2-3 (1997), 171–206.

[3] Bollig, B., and Wegener, I. Improving the variable ordering of obdds is
np-complete. Computers, IEEE Transactions on 45, 9 (Sep 1996), 993–1002.

[4] Bryant, R. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on C-35, 8 (Aug 1986), 677–691.

[5] Clarke, E. M., Fujita, M., and Zhao, X. Multi-terminal binary decision
diagrams and hybrid decision diagrams. In Representations of discrete functions.
Springer, 1996, pp. 93–108.

[6] Cook, S. A. The complexity of theorem-proving procedures. In In STOC (1971),
ACM, pp. 151–158.

[7] Davis, M., Logemann, G., and Loveland, D. A machine program for
theorem-proving. Commun. ACM 5, 7 (July 1962), 394–397.

[8] De Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., and Segala,
R. Symbolic model checking of probabilistic processes using MTBDDs and the
Kronecker representation. Springer, 2000.

[9] Dirac, P. A. M. A new notation for quantum mechanics. Mathematical Proceedings
of the Cambridge Philosophical Society 35, 3 (1939), 416–418.

[10] Fujii, H., Ootomo, G., and Hori, C. Interleaving based variable ordering
methods for ordered binary decision diagrams. In Computer-Aided Design, 1993.
ICCAD-93. Digest of Technical Papers., 1993 IEEE/ACM International Conference
on (Nov 1993), pp. 38–41.

[11] Fujita, M., Fujisawa, H., and Matsunaga, Y. Variable ordering algorithms for
ordered binary decision diagrams and their evaluation. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on 12, 1 (Jan 1993), 6–12.

119

[12] Fujita, M., McGeer, P. C., and Yang, J.-Y. Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation. Formal methods in
system design 10, 2-3 (1997), 149–169.

[13] Gu, J., Purdom, P. W., Franco, J., and Wah, B. W. Algorithms for the
satisfiability (sat) problem: A survey. In DIMACS Series in Discrete Mathematics and
Theoretical Computer Science (1996), American Mathematical Society, pp. 19–152.

[14] Houngninou, D. K., and Thornton, M. A. Implementation of switching circuit
models as transfer functions. In 2016 IEEE International Symposium on Circuits and
Systems (ISCAS) (May 2016), pp. 2162–2165.

[15] Houngninou, D. K., and Thornton, M. A. Simulation of switching circuits
using transfer functions. In 2017 IEEE 60th International Midwest Symposium on
Circuits and Systems (MWSCAS) (Aug 2017), pp. 511–514.

[16] Houngninou, D. K., and Thornton, M. A. (under review) efficient computation
of switching function degree and algebraic normal form. IEEE Transactions on
Computers (2017).

[17] Jin, Y., Kupp, N., and Makris, Y. Experiences in hardware trojan design and
implementation. In Proceedings of the 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust (Washington, DC, USA, 2009), HST ’09, IEEE
Computer Society, pp. 50–57.

[18] Lu, F., c. Wang, L., ting (tim Cheng, K., Moondanos, J., and Hanna, Z.
A signal correlation guided circuit-sat solver. J. UCS 10 (2004), 1629–1654.

[19] Malik, S., Wang, A., Brayton, R., and Sangiovanni-Vincentelli, A. Logic
verification using binary decision diagrams in a logic synthesis environment. In
Computer-Aided Design, 1988. ICCAD-88. Digest of Technical Papers., IEEE
International Conference on (Nov 1988), pp. 6–9.

[20] Matsunaga, Y., McGeer, P. C., and Brayton, R. K. On computing the
transitive closure of a state transition relation. In Proceedings of the 30th
International Design Automation Conference (New York, NY, USA, 1993), DAC ’93,
ACM, pp. 260–265.

[21] Ossowski, J. Symbolic Representation and Manipulation of Discrete Functions. PhD
thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2004.

[22] Reda, S. Combinational equivalence checking using boolean satisfiability and binary
decision diagrams. Design, Automation and Test in Europe, 2001. Conference and
Exhibition 2001. Proceedings (2001), 122 – 126.

[23] Rudell, R. Dynamic variable ordering for ordered binary decision diagrams. In
Computer-Aided Design, 1993. ICCAD-93. Digest of Technical Papers., 1993
IEEE/ACM International Conference on (Nov 1993), pp. 42–47.

120

[24] Sensarma, D., Banerjee, S., Basuli, K., Naskar, S., and Sen-Sarma, S. On
an optimization technique using binary decision diagram. CoRR abs/1203.2505
(2012).

[25] Somenzi, F. Binary decision diagrams. In Calculational System Design, volume 173
of NATO Science Series F: Computer and Systems Sciences (1999), IOS Press,
pp. 303–366.

[26] Somenzi, F. CUDD: CU Decision Diagram Package, release 3.0.0 ed. University of
Colorado at Boulder, December 2015.

[27] Thornton, M. Simulation and implication using a transfer function model for
switching logic. IEEE Transactions on Computers PP (February 2015).

[28] Thornton, M. A. Modeling Digital Switching Circuits with Linear Algebra. Morgan
& Claypool Publishers, 2014.

[29] Wolff, F., Papachristou, C., Bhunia, S., and Chakraborty, R. S. Towards
trojan-free trusted ics: Problem analysis and detection scheme. In Proceedings of the
Conference on Design, Automation and Test in Europe (New York, NY, USA, 2008),
DATE ’08, ACM, pp. 1362–1365.

121

	 LIST OF FIGURES
	 LIST OF TABLES
	 1. INTRODUCTION
	1.1. The Study Contributions

	 2. BACKGROUND
	2.1. Matrices, BDDs, and Related Operators
	2.2. Variable Reordering Methods
	2.3. Definitions and Mathematical Notations
	2.3.1. The Vector Space
	2.3.2. The Hilbert Space
	2.3.3. The Dirac Notation
	2.3.4. The Inner Product
	2.3.5. The Outer Product

	 3. BUILDING THE TRANSFER FUNCTION MODEL
	3.1. Parsing the Netlist
	3.2. Fanout Detection
	3.3. Netlist Levelization
	3.4. Netlist Serial Partitioning
	3.5. Crossover Detection and Rows Permutations
	3.5.1. Crossover Detection using Linear Equations
	3.5.2. Computation of the Permutation Matrices

	3.6. Combining the Intermediate Partitions
	3.7. Building the Transfer Function using Sparse Matrices
	3.7.1. Conversion of Matrices to Algebraic Decision Diagrams

	3.8. Building the Transfer Function using Algebraic Decision Diagrams: the Radix Polynomial Method
	3.8.1. Building a Library of BDDs using the CUDD Package
	3.8.2. Building the Partitions BDDs
	3.8.3. Crossovers and Variable Reordering
	3.8.4. Algebraic Decision Diagrams Kronecker Product using a Radix Polynomial
	3.8.5. Algebraic Decision Diagrams Direct Product
	3.8.6. Additional Structures Added to the CUDD Package

	 4. FUNCTIONAL SIMULATION USING THE TRANSFER FUNCTION MODEL
	4.1. Functional Simulation using the Transfer Function Model
	4.1.1. Simulation using a Monolithic Transfer Function
	4.1.2. Simulation using an Array of Transfer Functions
	4.1.3. Simulation using the Distributed Factored Form

	4.2. Experimental Results
	4.3. Application of the Transfer Function Model to Sequential Circuits

	 5. JUSTIFICATION USING THE TRANSFER FUNCTION MODEL
	5.1. Justification using the Transfer Matrices
	5.1.1. Justification using Column Vectors

	5.2. Justification using Algebraic Decision Diagrams
	5.2.1. Background
	5.2.2. The Vector Space

	5.3. Justification using the Distributed Factored Form
	5.4. Representation of the Justified Inputs as an ADD

	 6. ALGEBRAIC NORMAL FORM DEGREES COMPUTATION
	6.1. Background on the Algebraic Normal Form
	6.1.1. The Algebraic Normal Form

	6.2. Method for Extracting the ANF from a Netlist
	6.2.1. Constants Modeled in the Switching Domain and the ANF Domain
	6.2.2. Graph Traversal

	6.3. Computation of the Maximum Algebraic Degree
	6.3.1. Binomial Distribution of ANF Coefficients
	6.3.2. Experimental Results

	 7. CONCLUSION
	 A. Transfer function: xor5.v
	 B. Transfer function: majority.v
	 C. Transfer function: c17.v
	 D. Transfer function: rd53.v
	 E. Transfer function: radd.v
	 F. Transfer function: i3.v
	 G. Code listing
	BIBLIOGRAPHY

