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The physical state of a system is effected by the activities and processes in which it is

tasked with carrying out. In the past there have been many instances where such physical

changes have been exploited by bad actors in order to gain insight into the operational state

and even the data being held on a system. This method of side channel exploitation is

very often effective due to the relative difficulty of obfuscating activity on a physical level.

However, in order to take advantage of side channel data streams one must have a detailed

working knowledge of how a target behavior, activity, or process effects the system on a

physical level which may not always be available to a would be attacker. However, the

owner of a system has unfettered access to their own system and is able to introduce a

target, measure the effect it has on the physical state of the system through system side

channels, and use that information to identify future instances of that same target on their

system. System owners using the physical state of their own system in order to identify

targeted behaviors, activities, and processes will have the benefit of faster detection with

only a small amount of computational resources needed. In this research effort we show

the viability of using physical sensor side channel data in order to enhance existing security

methods by way of the rapid detection inherent in this technique.
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Chapter 1

Introduction

Computer systems have become extremely complex in order to keep up with the demands

of modern businesses and consumers. This complexity can be seen in the amount of func-

tions and operations a system must perform at a given time while also having to account

for such things as timing and concurrent data usage. Given some amount of knowledge of

how one of these complex systems works it has been shown that it is possible to determine

the actions being performed by a system as well as sensitive information being used by the

system. Often this type of information is overlooked as innocuous because it is a product of

the regular operation of the system rather than a specific flaw that exists in the algorithms

being performed by the system. However, as systems become more complex and data be-

comes transmitted at higher rates a very specific fingerprint begins to form in the physical

system which is even easier to detect when the processes being performed are operating in

a predictable and repeating manner.

This data that is able to be collected as a product of the regular physical operation of

a system is known as side channel data. While side channel data is most widely known

in the cybersecurity community as a method of attack and exploitation there is also the

opportunity to use side channel data for enhanced system security.

1.1. Side Channel Data

Side channel data is any information that is gained from the regular operation of a system

which allows for additional insight that is able to be exploited. Potential examples of side

channel data include timing information, power consumption, monitoring cache accesses, and
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even system acoustics. In an early example of side channel exploitation carefully measuring

the time that was required to perform private key operations allowed the attackers to find

fixed Diffie-Hellman exponents, factor RSA keys, and compromise various cryptosystems

(Kocher, 1996). This exploit required designers to implement countermeasures in order for

timing to no longer be used against the system during private key operations. However,

the countermeasures require the system to physically perform a task based on some set of

instructions and given enough time such side channels may again be able to be exploited. It

is recommended that any channel carrying information from a secure area to the outside, no

matter how innocuous the data appears, should be viewed as a potential risk and studied.

The power of side channel exploitation often comes from combining multiple different

data channels that offer very little insight on their own but can be very insightful when

viewed collectively. This concept is why the ever increasing complexity of computational

systems has the potential to increase the ability of side channel exploitation.

1.2. Machine Learning

Many of the most effective side channel attacks have implemented complex statistical

analysis in order to determine additional information about the state of a system. The in-

crease in the complexity of computational systems offers many more channels to draw data

from than were previously available. Machine learning algorithms utilize data analytical

techniques in an attempt to create a predictive model from multi-dimensional data sets (Ca-

macho et al., 2018). When considering the highly complex and interdependent nature of

modern computational systems there is great potential in being able to create side channel

models for an entire system rather than just specific subsystems or components. Experi-

ments have shown that attackers are able to create highly complex machine learning models

which leverage side channels in order to unveil secret AES encryption keys in systems which

implement countermeasures (Kubota et al., 2019).
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1.3. Thesis Statement

While more complex computational systems are able to be exploited in more advanced

ways by attackers there is also the possibility of using the same approach for system secu-

rity. Attackers use side channel data to determine information about a system which they

otherwise would not have access to directly. While the owner of a system has direct access

to their own system there may be times where the system is under attack but traditional

methods of detection are either slow or altogether unable to detect the attack due to evasive

action. The attack would likely be causing the physical state of the system to vary on even

the smallest level from the expected state seen during normal operation. Given that a sys-

tem was recorded during normal operation for a sufficient amount of time and in a sufficient

amount of states it may be possible to train machine learning algorithms to detect anoma-

lous system states which are due to malicious activity or faulty operation. Additionally, due

to the machine learning models being trained based on physical side channel data there is a

possibility for very rapid detection of malicious activity.

3



Chapter 2

Background

This research effort has focused on incorporating side channel data streams from physical

sensors into machine learning prediction models for enhanced security of single physical

systems. Experiments have been carried out in one instance using only the existing sensors

in a physical system and in a second instance additional sensors and monitoring devices are

introduced into the physical system solely for security. It is our hypothesis that the same

basic side channel analysis principles implemented in a physical system can be adjusted and

applied to remote and virtual environments for enhanced security.

2.1. Ransomware

Malware is a term that is used to refer to malicious software and is used to refer to all

forms of software that can be used to compromise computer functions. This compromise

causes harm to the victim computer and ultimately to the user or owner of the host com-

puter. There are a large variety of types of malware including, viruses, worms, adware,

bots, rootkits, spyware, Trojans, and the primary subject of this investigation, ransomware.

Ransomware is a form of malware that holds a victim’s computer system files hostage while

demanding a ransom to release access to those files back to their legitimate owner.

A typical ransomware attack scenario involves infection of victim computer through pene-

tration of an attack vector whereby the malware resulting from the attack contains a payload

that, unbeknownst to the victim, engages in rendering important files as unusable, through

their encryption with a key that is unknown to the victim. Upon completion of the initial

silent encryption phase, the original unencrypted files are deleted and the victim is alerted
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that their files are now inaccessible and will remain so until a ransom is paid. It is also often

the case, that the attacker will demand ransom within some time period or otherwise the

encryption key will be destroyed resulting in permanent loss of the victim’s data. Figure

2.1 contains a high-level diagram of the chain of events characterizing a typical ransomware

attack from the point of view of the adversary.

Figure 2.1. Typical Ransomware Attack

The largest ransomware attack in history, WannaCry, occurred in May 2017 with 230,000

computers in over 150 countries being infected within a few days. The spread of WannaCry

was only halted by a web researcher in England who found a ”kill-switch” which was engaged

by registering a domain name found in the code (BBCNews, 2017). Just one month later, in

June 2017, a ransomware attack known as Petya infected around 16,500 computers globally.

One reported instance of the Petya attack requested 100 bitcoins, or about $250,000 dollars,

in order to provide the key for decryption (Brandon R, 2017). The increase in ransomware

attacks has also come with decreased infection times as attackers create new and better

methods of file encryption. Testing performed by the cybersecurity company Barkley shows

that many ransomware variants complete their encryption phase in under one minute. For

instance, Petya finished encryption in 27 seconds and was still slower than Chimera which

finished in only 18 seconds. Barkley found that 54% of attacks notified the victim of the

ransom within one hour of infection (Correa R, 2016). More detailed information about

well-known versions of ransomware, including how they infect computers can be found in

(Abrams L, 2013), (O’Gorman G, McDonald G, 2012) and (Wyke J, Aijan A, December

2015).
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Ransomware attacks on businesses, in 2016, were estimated to have occurred every two

minutes. In 2017, the time between attacks fell to every 40 seconds—a tripling in the

number of attacks. The variety and complexity of the attacks is also growing. For example,

from 2016 to 2017, sixty-two new families of ransomware were documented with the number

of new variants increasing eleven-fold (Kaspersky Labs, 2016). The following year several

attacks occurred on an international scale by leveraging known NSA exploits and shared

network resources of victims to propagate across entire networks rapidly. The largest of

these attacks, WannaCry, infected more than 700,000 victims with 250,000 occuring in only

four days (Kaspersky Labs, 2016). The spread of WannaCry was only stopped because a

web researcher in England who found a ”kill-switch” which was engaged by registering a

domain name found in the code (BBCNews, 2017).

In 2019 a ransomware attack was estimated to occur once every 14 seconds in large part

due to their success and the relative ease of launching an attack (Dobran, 2019). It is often

pointed out that if you maintain rigorous backups of all critical data ransomware becomes

more of an inconvenience than a true threat (Cybersecurity and Infrastructure Security

Agency, 2020). The thought is that if your system is infiltrated and encrypted you can simply

restore from a well maintained backup and continue working with the knowledge that none of

your data actually left your system. However, in one instance of a ransomware attack it took

just 45 minutes for consumer goods company Reckitt Benckiser to lose access to 17,500 assets

in their network. The single company estimated their losses from the attack to be over $130

million dollars—not from data loss, but from the downtime of system restoration. During

the time the company was under attack each second represented $48,000 worth of losses. It

is estimated that the total ransom revenue collected by the attackers behind WannaCry was

only $55,000 while the total economic loss is estimated to be as high as $4 billion (Monoghan,

2017).

Recently ransomware has been used to attack local and state governments by holding their

critical systems hostage. Baltimore was attacked in May of 2019 with attackers demanding
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a ransom of $76,000. The city government refused to pay resulting in millions of dollars

being lost during their restoration efforts (Broadwater, 2019). The proximate threat posed

by ransomware, then, comes from downtime rather than data loss or data security. Even if

the systems can be restored from backups the downtime for restoration can be economically

disastrous or even life threatening when critical services are unavailable (Ng, 2019). It has

been suggested that ransomware may not always be about collecting money but instead

a deliberate attack on a target’s infrastructure and capabilities that can spread quickly.

Ransomware attacks launched purely for destruction are effective due to how quickly they

can take down entire networks of assets without the need to worry about being evasive

(Fuller, 2017).

Combating attackers who weaponize ransomware requires detecting potential attacks

quickly without resource intensive and time consuming analysis. In support of this, we

use the physical state of a system, as it is measured through existing physical sensors,

to generate prediction models that quickly flag physical system states consistent with a

ransomware attack. Ideally this method would be effective alongside conventional methods

of ransomware detection which are highly accurate but slower to complete analysis.

2.2. Physical Sensors

Most modern computer systems are comprised of sensors and associated processes that

monitor the state of internal hardware components. These sensors continuously supply in-

formation that is communicated with other devices and subsystems for the intended purpose

of ensuring that the system stays within specific operating specifications. If sensor data

reveals that a system component is approaching a boundary of an operational specification,

safety mechanisms are typically engaged to correct the internal environment so that system

malfunctions can be prevented. For example, when the data from a temperature sensor that

is monitoring a computer’s central processing unit begins to increase in value, a signal is sent

to the CPU cooling fan. This signal causes the fan to either become active or to increase the
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fan speed to cool the CPU. Additionally, there are sensors that provide input to other subsys-

tems such as internal power management units (PMU) to conserve power usage. Typically,

computer system components are designed to be compact in size through the use of transis-

tors with feature sizing in the nanometer scale. As a direct result, whenever computations

become more complex, more stress is placed on a computer’s hardware components. This

increased stress occurs because a larger number of transistors are simultaneously switching in

a circuit that correspondingly causes an increase in dynamic power consumption and results

in more heat dissipation during heavy computational activity. Thus, monitoring the side

channels of a system with embedded sensors that measure parameters such as temperature,

power consumption, and battery voltage levels can give insight into the type of process-

ing that is underway on a computer at a given time. Therefore, sensor data streams serve

as side channels through which periodic observations can indicate when resource-intensive

tasks, such as extensive file system I/O and encryption, are occurring. Because the silent

phase of ransomware utilizes significant amounts of file system activity in combination with

encryption, characteristic patterns present within a computer’s sensor data may result in

trends that are indicative of a ransomware attack.

A significant advantage of this approach, as compared to other side channel methods, is

that the sensors and a means for querying them are natively provided. Thus there are fewer

concerns in deploying and accessing sensors for the purpose of side channel exploitation.

Furthermore, the trend has been that an increasingly diverse number of sensors are provided

as integral components in modern computing devices. For example, a typical smart phone

has many embedded sensors that could be used to support security applications including

power monitors, accelerometers, ambient light sensors, antennas (including GPS receivers),

fingerprint scanners, barometers, cameras, touchpad pressure sensors, and others. Even rack-

mounted industrial servers contain a significant number of sensors that measure subsystem

power consumption, temperature, and other environmental factors. All of these deployed

sensors in modern computing devices provide a rich set of data sources that may be used to
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provide internal side-channel information for the environment in which a computing device

is operating. Sensors have been used in other security-related applications in the past. As

an example, in (Alharbi A, Thornton M, Dec 2015), sensors present in mobile computing

devices have been used to provide a user demographic classification capability for mobile

devices with embedded touchscreens (Taylor et al., 2017).

2.3. Industrial Control Systems

Industrial control systems are used to control and carry out the the unique operations

and automated processes of industrial environments. Industrial applications often have strict

requirements for operation with little room for error. Critical infrastructure is almost always

controlled by an industrial control systems which makes it a highly appealing target to

attackers. Industrial control systems until fairly recently have been isolated systems with no

need to be connected to any networks outside of the immediate area they are designed to

operate in. The isolated nature of industrial control systems meant there was an inherent

security to them which allowed for the use of very simple protocols. The Modbus RTU

protocol has been used in industrial control systems since 1979 due to the relative easy of

deployment and maintenance that is required. With Modbus RTU a programmable logic

controller is connected to multiple devices using asynchronous serial data lines with simple

unencrypted packets used for communication. In this type of system there is no means for

identifying unanticipated devices, discovering new devices, or verifying the authenticity of a

device on the bus (Gosine, 2020). Attackers could successfully monitor, disrupt, and modify

communication on the bus if they were able to place an agent between two of the nodes

in the system. With the reliance on the internet and the necessity for operators to access

devices from a network, industrial control systems are having to be connected to networks.

The reliance on the inherent security of isolation is no longer sufficient to keep these vital

networks secure and operational (Jakaboczki and Adamko, 2015).
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Figure 2.2. ICS Model
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2.4. Industrial Network Protocols

Industrial network protocols have emerged that are able to connected industrial control

systems together and communicate using concepts of computer networking. Modbus TCP

is an industrial network protocol that is able to leverage the TCP/IP protocol stack by

encapsulating Modbus RTU packets as the data in network packets. Using the Modbus

TCP protocol, existing industrial control systems which have been operating using Modbus

RTU protocol are able to be connected to more modern computer networks quickly and easily.

However, the more advanced networking protocol allows for the underlying control system to

be accessed much more easily and covertly. The same strict operational requirements must

be maintained despite the more easily accessible and complex network. (Colbert and Kott,

2016)
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Chapter 3

Industrial Control System Anomaly Detection

Manufacturing and industrial settings have become extremely complex. To address this

increase in complexity, frameworks for automatic electronic control have been developed

to keep large-scale processes running safely and without interruption. This collection of

protocols that is essential for managing automation in manufacturing facilities, public in-

frastructure, and large-scale transportation networks is referred to as Industrial Control

Systems.

An ICS is responsible for coordinating industrial operations so that they execute properly

and on schedule. The protocols, connections, and devices that enable the communication

between the active components in a factory setting are often collectively referred to as in-

dustrial ethernet. As these systems demonstrate state-like behavior to control industrial

activity, monitoring this network is an effective way to perform reliability analysis to detect

faulty equipment or processing errors. In this work, ICS network communication packets are

analyzed by a long short-term memory (LSTM) based neural network (NN) in order to deter-

mine the overall health of the devices and components in an industrial environment. Machine

learning techniques have been applied to industrial reliability analysis in the past (Alsina

et al., 2018), but our technique differs in the sense that it is meant to require no additional

overhead to initialize, just a connection to the industrial ethernet links that form the ICS

network.

In this work, ICS network communication packets are analyzed by two convolutional neu-

ral networks (CNNs) in order to determine the overall health of the devices and components

in an industrial environment. Machine learning techniques have been applied to industrial
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reliability analysis in the past (Alsina et al., 2018), but our technique differs in that it is

meant to require no additional overhead to initialize, just a connection to the industrial

ethernet links that form the ICS network. The networks separately analyze the state of

the systems using two different input streams: (1) the packet data sent along the network

and (2) time series signals from an accelerometer and gyroscope. Each input corresponds

to a different “view” of the system state. When the system is functioning properly, the

state classified by each model should match or be reasonably similar. However, when faulty

equipment or processing errors cause unexpected behavior in the system, the classification

will diverge. Becasue the system diverges from normal behavior, this classification can also

be described as anomaly detection. For example, [give example to be more clear].

Our goal is to use two streams of data to determine system anomalies. The command

payloads must match with a specific sensor behavior. In the case of an ICS, there are different

states the system can be in. Thus, by having two different models predict the state from

either the payload or the sensor data, we can identify miscommunication errors between the

network commands sent and the sensor behaviors. As a result, our model falls under the

category of semi-supervised learning. This is due to the fact that, while the models use

supervised training to identify state, the error between their detections is used to detect

anomalies rather than the classifications themselves.

In this case, an error is defined as a difference between the predicted value of the two

models. This technique contrasts with previous methods that would accumulate errors as

standard deviations from the mean rather than model prediction errors. As a consequence,

previous methods would require a normal distribution for both sensor and payload data,

which is not always possible.

et =

 0 y = ŷ

1 y 6= ŷ
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Over time random errors can accumulate. However, over specific windows of time such

as an attack, the percentage of errors per prediction should be high. Windows with high

error rate will surpass a threshold and thus get labeled as an anomaly.

W is the window size and T being the number of times an error can occur over a window

before the window is considered anomalous.

Ai =
i∑

t=i−W

ei > T

3.1. Anomaly Detection Methodology

Our goal is to use two streams of data to determine system anomalies. The command

payloads must match with a specific sensor behavior. In the case of an ICS, there are different

states the system can be in. Thus, by having two different models predict the state from

either the payload or the sensor data, we can identify miscommunication errors between the

network commands sent and the sensor behaviors. As a result, our model falls under the

category of semi-supervised learning. This is due to the fact that, while the models use

supervised training to identify state, the error between their detections is used to detect

anomalies rather than the classifications themselves.

In this case, an error is defined as a difference between the predicted value of the two

models. This technique contrasts with previous methods that would accumulate errors as

standard deviations from the mean rather than model prediction errors. As a consequence,

previous methods would require a normal distribution for both sensor and payload data,

which is not always possible.

et =

 0 y = ŷ

1 y 6= ŷ

Over time random errors can accumulate. However, over specific windows of time such

as an attack, the percentage of errors per prediction should be high. Windows with high

error rate will surpass a threshold and thus get labeled as an anomaly.
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W is the window size and T being the number of times an error can occur over a window

before the window is considered anomalous.

Ai =
i∑

t=i−W

ei > T

3.2. ICS Architecture

Our model architecture is described in the diagram. It uses a combination of convolu-

tional, max pooling and dense layers. All activation functions are rectified linear units(ReLU)

except for the final softmax activation for classification. The loss function used is categorical

cross entropy for the 6 ICS states. An ADAM optimizer is at a learning rate of 1e-5 and is

used to iteratively update the weights. The model is trained for 100 epochs. Proper training,

validation, and testing splits are performed at the ratio of 70:20:10 to ensure the model can

accurately detect ICS states from payloads and sensors. Data preprocessing, training results,

and details on how models are used together are mentioned in the next sections.

3.3. Dataset Description

The dataset includes three axis gyrometer and three axis accelerometer input, as well as

sensor data at a fixed sample rate of XXX. Network Data was preprocessed from PCAP files.

There were 50 bytes between 0 to 255. These were converted to binary for machine learning

input changing the input width from 50 to 424. Raw data is shown below for a single trial.

Though time deltas can be useful for anomaly detection, they do not supply enough

information to help classify ICS states. However, since they can signify whether a state

change is occurring, the data may become useful in the future applications.

3.3.1. Time Alignment

A key preprocessing step is aligning sensor data with corresponding packet payload time

stamps and using them as input samples for machine learning. Though it takes some time for
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Figure 3.1. Diagram of Convolutional Architecture

the payload data to impact the ICS actuators, we can make this negligible by using multiple

samples for machine learning input. While the various sensor inputs can be maintained at

the same sample rate, the packet payload arrival time varies greatly depending on whether

an ICS state transition is occurring and has a much lower sample rate. As a result, choosing

a ratio of payload data to sensor data may need to be calculated. For our demonstration

purposes, we used 100 samples of either payload and sensor information as input for one

prediction.

3.3.2. Data Sampling and Preprocessing Steps

Our learning algorithm trains on chunks of data size 100 for both payload and sensor

data streams. This setting lines up both data streams evenly across time and is also an
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Figure 3.2. Visualizations of Dataset

important parameter for detection. A large chunk size may increase accuracy but may also

make it slower to identify anomalies over small periods.

Accelerometer and gyrometer have 3 axis values. Raw sensor values are scaled by their

minimum and maximum values to be between 0 and 1, due to their varying offsets.

Payload data widths were very large with 424 total bitstreams (converted from the origi-

nal 50 bytes). For this reason, sample averaging was done to reduce 100 samples to 1 input.

As shown in the training results next, averaging the packet bitstreams was able to improve

classification by accounting for a constant amount of noise on the network.

3.3.3. Combining Models to Perform a Semi-Supervised Anomaly Detection

For the second part of our algorithm, the actual anomaly detection, we used the two

previous models and analyzed when errors between the models would occur; as mentioned

previously an error is defined as a disagreement between the two predictions. A sliding

window of size 20 is used to calculate error percentage over time. In other words, every 20

predictions, produces an error rate. Plots are shown below.

This window size is another possible parameter for tuning. By using a smaller average

window size, we can control false positive to false negative ratio, which can be optimized

based on the costs of a misclassification.
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By setting the error rate allowed to be around 18% per 20 predictions we could classify

anomalies at a rate of 80% with a sample size of 25. There are 3 false negatives(undetected)

and 2 false positives (detected too early). Results may be improved by better window sizes

and other hyperparameters.

3.4. Experimental Results

Our results involve a combination of the accuracy of our supervised classifiers and their

combine ability to distinguish anomalies. Alongside statistics such as accuracy, F1 score,

AUC, and MCC are used to understand the skill of the classifier, its ability to classify better

than random chance.

Another important statistic, is to look at latency of prediction. In fact, our method will

have a sizeable latency due to determining anomalies only after the error rate of a window

of time surpasses a certain point. For every prediction there are a 100 data points for sensor

and packets, and for 20 predictions there is an anomaly flagged.

Table 3.1. Confusion Matrix for Anomaly Detection

True Class

Anomaly Baseline Total

R
es

u
lt Anomaly 19 7 26

Baseline 4 10 14

Total 23 17 40

3.4.1. Confusion Matrices

Here are the final statistics of the combined, unsupervised classifier: F1 score: 0.76 MCC:

0.42 ACC: 0.73 AUC:0.71

3.4.2. Latency of Classifier
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Figure 3.3. Receiver Operating Characteristics for Anomaly Detection

Figure 3.4. Distribution of Total Prediction Errors Before Anomaly Detection

The histogram above reveals latency in detection times(for true positive detections),

before the anomaly is flagged. The median predictions before anomaly detection is 39.5.

This means that about 3950 sensor and payload data were used in total to before the error

was confirmed. This distribution has an outlier that took almost double the time to confirm

the anomaly.

3.5. Summary and Contributions
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Figure 3.5. Results of Classification for Individual Datastreams

The new classification technique reliably finds anomalies based upon the difference in

prediction between two parallel neural networks, using two different, but complementary,

views of the network to measure consensus: command packets and actuator sensors. This

model can eventually be expanded to work with more complex and multistage ICS systems

such as that of the SWaT dataset discussed in previous works. In the future, the area

of multimodal machine learning may allow more complex interaction between payload and

sensor data streams. This type of model would make it easier to incorporate data that does

not directly identify ICS states such as interarrival times.
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Figure 3.6. Anomaly Detection Results
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Chapter 4

Rapid Ransomware Detection

Ransomware is launched in many different ways and with many different goals. Early

ransomware simply encrypted the personal user files of the system under attack and would

not provide the key for decryption until a ransom was paid to the attacker. In a later

evolution the ransomware targeted and encrypted key system files and in most cases was

able to lock a system from being used in only seconds. The attacker would place a message

on the locked system which often claimed to be a legitimate entity and rather than a ransom

the user was required to pay a ”fine” in order to have their system unlocked. Eventually

ransomware evolved into a variant which would quickly encrypt as much of a system’s files

as possible with little regard for evasive action. Additionally, this new ransomware would

attempt to spread out to as many systems as possible across the networks connected to the

system under attack. This was the point at which hundreds of thousands of systems were

being compromised in a matter of only days. Eventually attackers found the most profitable

way to use ransomware was against businesses and critical infrastructure. In the case of

businesses the lost revenue from down time waiting for their systems to be restored was

far greater than the ransom which was requested by the attackers. Critical infrastructure,

especially hospitals, could not be unable to perform their functions for the time it would

take for their systems to be restored and were often forced to pay the attackers ransom.

The many variations of ransomware are very different in their method of infiltration

and replication. However, once ransomware infiltrates a system, regardless of the method

used, files will be targeted, accessed, and encrypted in a relatively similar manner. Due to

the core behavior of ransomware We use the physical state of a system, as it is measured
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through existing physical sensors, to generate prediction models that quickly flag physical

system states consistent with a ransomware attack. Ideally this method would be effective

alongside conventional methods of ransomware detection which are highly accurate but slower

to complete analysis.

Most modern computer systems are comprised of sensors and associated processes that

monitor the state of internal hardware components. These sensors continuously supply in-

formation that is communicated with other devices and subsystems for the intended purpose

of ensuring that the system stays within specific operating specifications. If sensor data

reveals that a system component is approaching a boundary of an operational specification,

safety mechanisms are typically engaged to correct the internal environment so that system

malfunctions can be prevented. For example, when the data from a temperature sensor that

is monitoring a computer’s central processing unit begins to increase in value, a signal is sent

to the CPU cooling fan. This signal causes the fan to either become active or to increase the

fan speed to cool the CPU. Additionally, there are sensors that provide input to other subsys-

tems such as internal power management units (PMU) to conserve power usage. Typically,

computer system components are designed to be compact in size through the use of transis-

tors with feature sizing in the nanometer scale. As a direct result, whenever computations

become more complex, more stress is placed on a computer’s hardware components. This

increased stress occurs because a larger number of transistors are simultaneously switching in

a circuit that correspondingly causes an increase in dynamic power consumption and results

in more heat dissipation during heavy computational activity. Thus, monitoring the side

channels of a system with embedded sensors that measure parameters such as temperature,

power consumption, and battery voltage levels can give insight into the type of process-

ing that is underway on a computer at a given time. Therefore, sensor data streams serve

as side channels through which periodic observations can indicate when resource-intensive

tasks, such as extensive file system I/O and encryption, are occurring. Because the silent

phase of ransomware utilizes significant amounts of file system activity in combination with
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encryption, characteristic patterns present within a computer’s sensor data may result in

trends that are indicative of a ransomware attack.

A significant advantage of this approach, as compared to other side channel methods, is

that the sensors and a means for querying them are natively provided. Thus there are fewer

concerns in deploying and accessing sensors for the purpose of side channel exploitation.

Furthermore, the trend has been that an increasingly diverse number of sensors are provided

as integral components in modern computing devices. For example, a typical smart phone

has many embedded sensors that could be used to support security applications including

power monitors, accelerometers, ambient light sensors, antennas (including GPS receivers),

fingerprint scanners, barometers, cameras, touchpad pressure sensors, and others. Even rack-

mounted industrial servers contain a significant number of sensors that measure subsystem

power consumption, temperature, and other environmental factors. All of these deployed

sensors in modern computing devices provide a rich set of data sources that may be used to

provide internal side-channel information for the environment in which a computing device

is operating. Sensors have been used in other security-related applications in the past. As

an example, in (Alharbi A, Thornton M, Dec 2015), sensors present in mobile computing

devices have been used to provide a user demographic classification capability for mobile

devices with embedded touchscreens (Taylor et al., 2017).

Instead of monitoring file system attributes, the victim host system behavior is mon-

itored by taking advantage of the increasingly large number of onboard sensors. In this

sense, this new method uses a physical side channel approach where the victim’s files are

not directly monitored, rather the behavior of the victim machine is monitored and onboard

sensor provided data is used as side channel information that can indicate when an encryp-

tion operation is occurring. This monitoring can be accomplished through a background

process that is loaded at boot time and thus continuously monitors the system for suspicious

behavior. Once this suspicious behavior is detected, the user can be alerted and the suspi-

cious processes can be suspended. The central difference between this approach and other
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previous approaches is that this approach uses secondary effects to detect the presence of

malware rather than a direct effect, such as measuring increases in file entropy (Scaife N,

Carter H, Traynor P, Butler K, June 2016).

Another recent approach for malware detection involves using embedded hardware per-

formance counters that are present in most modern CPU architectures (Demme J, Maycock

M, Schmitz J, Tang A, Waksman A, Sethumadhavan S, Stolfo S, June 2013) (Tang A, Sethu-

madhavan S, Stolfo S, Sept 2014). This approach uses machine learning to create detection

models that monitor minor variations in malware execution characteristics. This new ap-

proach differs from the use of hardware performance counters in that it uses data being

supplied from the suite of embedded sensors that are also present in modern computing

platforms rather than performance counter data. Furthermore, this approach is designed to

specifically detect ransomware since ransomware uses encryption to enable the victim’s data

files to be held hostage, and hence, allows them to be recoverable when a ransom is supplied

in exchange for the decryption key. This approach uses data sources that are secondary to

malware execution patterns and it does not rely upon the presence of performance coun-

ters. By targeting a specific class of malware, namely ransomware using encryption in the

payload, it is possible to achieve high detection accuracy rates—and more importantly, the

ransomware can be detected quickly to mitigate damage to data.

It is proposed that this new sensor-based detection methodology be used to complement

more traditional signature-based approaches that are intended to prevent attack vector pen-

etration. In contrast to prevention of attack vector penetration, the technique described here

is designed to detect the presence of ransomware when penetration has been achieved. The

side channel-based or sensor-based approach has an advantage in comparison to antivirus

or IDS systems in that zero-day versions of ransomware can be detected since previously

captured malware signatures are not required. Furthermore, it is not necessary to monitor

individual files and calculate entropy or other metrics that must be continually re-computed

and compared with one another as is the case in the solution provided in (Scaife N, Carter
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H, Traynor P, Butler K, June 2016).

4.1. Training Prediction Models

4.1.1. Test Systems

To train and evaluate the methodology, two computer systems were chosen: (1) an older

laptop (Hewlett Packard ENVY m4-1015dx) with fewer onboard sensors as compared to

the size of a sensor suite found in more modern systems, and (2) a more modern system

(MacBook Air 13-Inch Mid 2013) that had nearly three times the amount of sensors as

compared to the older system. Access to the sensor output data was achieved through

queries via the native operating systems and did not require the development of lower-level

software. Because many third-party applications are developed that depend upon access

to onboard sensor data, the means to access the sensors are generally available in most

operating systems.

The Hewlett Packard m4-1015dx is the first system used in this experiment. When using

Open Hardware Monitor the HP ENVY laptop returns 22 sensor values. The types of sensor

values which are returned include clock, data, load, power, and temperature. While clock,

data, and load are reported with the physical sensors they are considered ”probes” which

are relaying performance metrics provided by the CPU (Bresink M, 2017). This type of

data was still used in the implementation of the new detection method but only as an aid

in determining how best to apply the prediction models generated from the data obtained

through physical measurements of the system. Thus the HP ENVY laptop only contains nine

sensor values which are of direct use in creating the prediction models in this experiment.

It is important to note that of the nine sensors that are used in the evaluation of this

system, eight of them directly measure aspects of the CPU thereby causing the predictive

model to nearly entirely depend on CPU behavior. Therefore, the HP ENVY laptop can be

seen as having a relatively “sensor-poor” environment for the evaluation of the sensor-based
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ransomware detection method.

Table 4.1. HP ENVY m4-1015dx Reported Sensors

Type Count

Clock 4

Data 3

Load 6

Power 3

Temp 6

22

The MacBook Air 13-inch mid-2013 model is the second system used in this experiment.

When using Hardware Monitor for Mac the MacBook Air laptop returns 70 sensor values.

Two of the sensor values returned by the program measure battery capacity, but the values

stop being reported when the system is connected to power and the battery is fully charged.

Another sensor measures ambient light levels for adjusting the brightness of the screen.

When the screen is turned off from a lack of user interaction this sensor also stops being

reported. Although the sensors themselves are viable for use in the new prediction model

they are unable to be utilized as the models require input vectors of a consistent size. Thus,

the MacBook Air contains 67 sensor values which are of use in this experiment. Unlike the

Hewlett Packard ENVY m4-1015dx, only 17 of the available 67 MacBook sensors directly

measure CPU activity. Therefore, the availability of sensors that measure other system

components and parameters allow for the development of predictive models that are more

holistic to the system. The MacBook Air laptop thus provides a more inclusive sensor-suite

with regard to monitoring the entire system and thus enables our methodology to have access

to a richer set of side channel data.
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Table 4.2. MacBook Air 13-Inch Mid 2013 Reported Sensors

Type Count

Capacity 2

Current 16

Light 1

Power 18

RPMs 1

Temp 23

Voltage 9

70

4.1.2. Simulating Ransomware Attacks

Physical sensor-based attack detection attempts to find a pattern in the physical state of

a system that can identify the presence of an attack (many times referred to as a fingerprint).

There are numerous variations of ransomware. Thus, training on the unique operation of

a single variant would likely not be effective for detecting this general class of malware

attacks. Ideally, the training data should be collected using a process that implements

the most common and basic elements that are present in a variety of different ransomware

attacks. The variation in ransomware attacks are usually due to the methods of infiltration,

encryption, file system searching, file targeting, and the infiltration of additional attached

systems.

It is assumed that any variation in the infiltration method does not affect the detection

process. Thus, the proposed method is designed to detect ransomware that has recently

infiltrated a system.

Additionally, the method an attacker uses for further propagating their attack to ad-

ditional systems attached to the host is not a part of the attack that is considered in the

28



detection method. For these reasons, the focus of the proposed method is on the use of

sensor data that shows characteristic patterns with respect to the type of encryption used,

the process of iterating through the directories in a host’s file system, and the targeting of

files for encryption.

In this experiment a script was written that simulates the active encryption portion of a

ransomware attack. The attack can be performed using many different choices of parameters

based on criteria from all three of the previously noted areas of potential attack variation.

The type of encryption is chosen from four different variations of AES encryption or a

simple XOR encryption. The XOR encryption was included to simulate the behavior of

more lightweight methods of encryption. The script accesses a host’s file system based on

the particular directories that it finds and searches through. To help avoid detection, the

script uses intentional, random delays while file searching is occurring. The simulation script

selects one or more starting points in the file system that are most likely to contain a host’s

personal and sensitive data. The script recursively traverses the directory and sub-directories

of a starting point checking for files with the targeted file extensions. Targeted victim files

are identified via the use of a list of file extensions that were historically targeted by multiple

high-profile ransomware attacks. The script creates an encrypted version of the victim file,

deletes the unencrypted version, and renames the encrypted file with the original unencrypted

target file’s name. Prior to operation the script is either set to run continuously or to wait

a different random amount of time between 1 and 60 seconds each time after encrypting a

target file

Randomly selecting parameters in the script creates a simulation of the active encryption

phase of a ransomware attack variant. Although the methods used to infiltrate and propagate

a ransomware attack vary widely, the methods of actually finding and encrypting as many of

the host’s personal files as possible is more constricted. Repeated testing with the script was

accomplished and intended to offer attack simulations that differ enough in their approach

such that the collective training data is a generalization of the active encryption phase of a
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variety of different ransomware attacks.

4.1.3. Collecting Sensor Data

Physical sensors are present in systems in order to monitor and ensure operations within

the safety specifications. For example, sensors measure the temperature of a CPU during

operation in order to ensure it does not overheat and cause damage. The sensors are present

for a very specific reason and generally offer little insight into the system beyond their

intended use. The sensor readings in a system are usually readily available as they are

implemented for safety. In implementation of our prototype detection system, sensor data

is the input required to make predictions about the binary state of a system using machine

learning algorithms. It is important that the methodology utilized in procuring sensor data

is both quick and reliable. Many tools exist which allow users to simply monitor sensor data

in a graphical user interface; however our prototype required the automated retrieval and

parsing of sensor data at specific intervals in time. Both tools utilized in this experiment can

be used to either write data to a file for future analysis or provide a feature vector of real-time

sensor data to a prediction model. Writing data to a file allows for the direct comparison

of machine learning algorithms in as far as how they would have predicted the state of the

system given the same input data. Sensor data is collected for the test machine with a

Microsoft Windows operating system using an open source program called Open Hardware

Monitor (OHM). OHM is an especially powerful tool in the context of this experiment since it

publishes all sensor data to Windows Management Instrumentation (WMI) for accessibility

from the command line. Initially, OHM is capable of providing a comma separated list of the

nomenclature for each sensor and the corresponding sensor category. OHM is continuously

given a second command after a set time interval which returns a comma separated list of

only sensor values that are in the same order as the initial list of sensor nomenclatures.

Sensor data is collected for the test machine that has an Apple OSX operating system using

a program called Hardware Monitor. Hardware Monitor allows sensor data to be accessed
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from the command line that in turn allows automated scripts to work with real time sensor

data (Bresink M, 2017). Prior to reading any sensor values, a command can be issued

that returns a comma separated list of sensor names and categories that can then act as a

header for future sensor data. In order to access the sensor data a command is issued to the

command line that returns a string of comma separated sensor values in the same order as

the header string.

4.1.4. Building Training Data Sets

The training data needs to represent periods of operation in a system both while under

attack from ransomware and while not under attack. The ransomware was implemented

as a daemon that ran in two hour blocks with each block having a predefined encryption

method for all attacks. During the two-hour collection period, the system is either in a

state of “normal operation” or “under attack”. Normal operation is any time the system is

not being attacked with the simulated ransomware script while “under attack” is any time

that the simulated ransomware script is active. For each simulated ransomware attack, the

method of attack is different by randomly selecting one or more starting positions in the

file system for recursive searches. Additionally, the script randomly determines if the attack

will use detection avoidance through randomizing the timing of directory access and file

encryption. Before the two hour training block initiates, the time required to encrypt all

target directories with the selected encryption method is measured. The script then begins

in a state of “normal operation” for the amount of time that was previously measured before

launching the encryption attack. During the time that the script is logging the sensor data, it

is also adding system state labels so that a supervised machine learning model can be utilized.

After the simulated attack is completed the logging stops and system is decrypted. There is

a waiting period of two minutes for the system to return to a state of normal operation before

logging continues and a new cycle is begun. Each of the five encryption methods is run in

12 different two-hour test blocks. Each encryption method is then repeated after additional
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CPU load activity is initiated so that the training data can contain examples of sensor data

with various amounts of background activity present in the runtime profiles. Test loads of

0%, 25%, 50%, 75%, and close to 100% system activity are each applied to the system in

three separate two hour testing blocks for each encryption method. The complete training

data set consists of 24 hours of regular training and 30 hours of simulated load training for

each of the five encryption methods. The sensor readings and the CPU load of the system

are polled every second during the training periods and labeled with a timestamp and either

“normal operation” or “under attack.” Data from each two-hour training block is collected

in separate CSV files.

4.1.5. Training Prediction Models

The collected training data was used to to create several different prediction models

available in the Python Scikit-learn library (Pedregosa F, Varoquaux G, Gramfort A, Michel

V, 2010). In total, models were generated using 12 different machine learning algorithms

that comprised 280 different combinations of parameter settings. Numerous combinations

of methods were investigated including: data scaling method, feature selection method,

prediction method, and moving average method (i.e., smoothing of the output predictions).

The process of chaining methods together is often referred to as classification “pipelining”

(Chang et al., 2007; Finkel et al., 2006). For test deployment, each model was stored in its

own Python pickle file for use in various online tests.

The prediction method includes two options, binary classification and ordinal regression.

During training each time interval is labeled with a binary state of ”under attack” or ”normal

operation”. Additionally, each time interval is labeled with a value between zero and seven

which is determined based on both the presence and progression of attacks. When the

system is in a binary state of ”normal operation” and has been for at least 40 seconds the

time interval is labeled with a zero. Once an attack does occur the binary label becomes

”under attack” and the ordinal label becomes four which is near to the middle of the scale
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but slightly favoring an attack state. Every ten seconds the system remains in a binary state

of ”under attack” the ordinal label is incremented until it is seven. The time interval label of

seven indicates a system state in which an attack has been underway for a significant amount

of time. Once the attack finishes and the binary system state become ”normal operation”

the ordinal label is changed to three which is near to the middle of the scale but slightly

favoring a state of ”normal operation”. Every ten seconds the system remains in a binary

state of ”normal operation” the ordinal label is decremented until it is zero indicating the

system state has had a significant amount of time to return to normal operation. The ordinal

regression labels were used to train learning models which provided predictions about the

attack state of the system and potential insight into the damage caused based on the time

it has been active.

Binary classification models are trained with a dependent vector of binary values indi-

cating true for “under attack” and false for “normal operation.” Ordinal regression models

are trained with a dependent vector consisting of values with seven being the highest and

representing the highest likelihood of being “under attack” and zero being the lowest and

representing the highest likelihood of being in “normal operation.” Whenever the predicted

value is greater than three, a prediction of “under attack” is made. Conversely, whenever the

predicted value is less than or equal to three a prediction of “normal operation” is declared.

The data scaling methods investigated include four options: feature standardization,

data normalization, feature min-max scaling, and no scaling. Feature standardization is the

process of setting each feature of the data to have zero-mean and unit-variance.

X ′ =
X −

∑
X

N√∑
(X−X̄ )2

N

=
X −Mean(X )

Standard Deviation(X )

Data normalization is accomplished such that every sample of a feature has the mean

value of the feature subtracted from it after which it is divided by the standard deviation

of the feature. This causes the mean of each feature to be zero with a standard deviation
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of one. It is important to distinguish that feature standardization operates on individual

feature columns of a data set (Pedregosa F, Varoquaux G, Gramfort A, Michel V, 2010).

Data normalization is the process of rescaling each data instance independently such that

the L1 or L2 norm is equal to one.

L1 =
n∑

i=1

|yi − f (xi)| L2 =
n∑

i=1

(yi − f (xi))
2

Scaling the inputs to one, or unit norms, is a common operation when using classification

and clustering machine learning algorithms.

Feature min-max scaling is a method used to standardize the range of the independent

variables or features.

X ′ =
X −Min(X )

Max (X )−Min(X )

Min-max scaling places all data on the same scale, usually zero to one, which in turn

allows machine learning algorithms to weigh each feature equally. The standard deviations

of the features tend to be smaller with min-max scaling which can suppress the effect of

outliers. Scikit-learn includes data structures which fit and transform the training data and

are also capable of transforming future test data as needed.

The dimensionality reduction method includes seven variations including the use of PCA,

feature selection, and no dimensionality reduction. Several principal component analysis

data reductions are performed, using the cumulative explained variance to guide the number

of components chosen. Three variations of PCA dimensionality reduction are investigated

based upon if the components maintain at least 70%, 80%, or 90% of the total variance.

Feature selection is performed such that only the top 50%, 70%, or 90% of features are

selected using F-tests from the Scikit-learn library to analyze variance in the training data

(Pedregosa F, Varoquaux G, Gramfort A, Michel V, 2010).
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Once the features are scaled and selected, they are used to train one of twelve different

classification or clustering techniques. For clustering techniques, the methods are used as un-

supervised classification methods where each cluster is assigned as a particular class and the

total number of clusters equals the total number of classes. Parametric and non-parametric

classification methods are employed, as well as supervised and unsupervised methods. The

following algorithms are investigated:

• Parametric Trees Methods: Decision Tree (Breiman, 2017), Random Forest (Breiman,

2001), Extremely Randomized Trees (Geurts et al., 2006), One-versus-one Tree Ensem-

ble, One-versus-rest Tree Ensemble

• Parametric Methods: Linear Regression, Logistic Regression, Support Vector Ma-

chine (Drucker et al., 1997), Naive Bayes, Two Layer Neural Network

• Non-parametric Method: K-Nearest Neighbors

• Unsupervised Method: K-Means

Each classifier is trained to classify every second of data from the sensors streams, result-

ing in a binary stream of predictions. This output stream is smoothed using various moving

average methods. The moving average method consists of five options including simple mov-

ing average with window sizes of two and four, weighted moving average with window sizes of

two and four, and no moving average. Moving average is a calculation to analyze data points

by creating a series of averages of different subsets of the full data. One of the most common

uses of moving averages is to smooth out short-term changes and emphasize long-term trends

in time series data. The Simple Moving Average (SMA) is the simplest implementation of

moving average that utilizes the unweighted mean of the previous n data points.

SMAM =
pM + pM−1 + ... + pM−(n−1 )

n
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Weighted moving average (WMA) gives different weights to data at different positions

in the sample window. WMA allows more recent data to have more impact than previously

seen data (Devcic J).

WMAM =
npM + (n − 1 )p(M−1 ) + ... + p(M−n+1 )

n + (n − 1 ) + ... + 2 + 1

Moving averages are useful when dealing with real-time prediction models such as those

used here that are based upon sensor data. If a prediction model has been making false

predictions for an extended period of time it will require multiple true predictions to occur

before the moving average becomes true. Utilizing a moving average may slow the response

in reporting real attacks, or true positive predictions. However, the reduction in incorrect

attack reports, or false positive predictions, is likely to have more of a positive impact on

the prediction accuracy. Moving averages allow the tradeoff between responsiveness and

accuracy to be easily adjusted by a user through increasing or decreasing the window size.

4.2. Testing Prediction Models

4.2.1. Building Test Data Sets

Test data was collected in one-hour test blocks in which a single ransomware attack would

occur at a random time. The ransomware attack parameters were selected randomly for each

attack. During training, the amount of time the system was recorded to be in the state of

“normal operation” was similar to the amount of time the system was recorded in the state

of “under attack” in order to create a balanced training set. However, during testing the

use of a balanced set is not appropriate because most of the time a system would be in the

“normal operation” state. Therefore, the testing was conducted in a manner such that there

was a disproportionate amount of time the system was in the “normal operation” state. The

purpose of this approach was to determine how many times the attacks would be correctly

detected, the frequency of false positive predictions, and most importantly; how fast attacks
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were predicted. Each of the five encryption methods underwent 24 of the one-hour test

blocks. Afterward, each of the five encryption methods was tested with additional CPU

loads of 0%, 25%. and 50%. Each of the encryption methods was tested in six different one-

hour time blocks with each of the three additional CPU load levels. During each one-hour

test block of the additional CPU load testing, there was a single ransomware attack that

occurred at a random time. During the collection of data for testing the method, the total

system CPU load is recorded each time the sensor data is polled. This CPU load data is not

recorded during training and not used as a feature in the prediction models.

The initial phase of test data collection represents a system which is sitting unused and

only running regular background processes. This phase of testing was designed to determine

the performance of the proposed method in favorable conditions for detection. Ideally the

models should have a low number of false positive attack predictions while being able to

quickly determine when the system is under attack. The second phase of test data collection

represents a system which has different levels of user activity in addition to the regular

background processes from the initial phase of testing. This phase of testing was designed to

determine if the prediction models are able to perform in a more realistic scenario in which

the physical state of the machine is more dynamic.

4.2.2. Predicting System States

This experiment tests twelve different machine learning algorithms. The test data is

collected and stored in CSV files with labels that indicate what the actual state of the

system was each time the sensor data was probed. The models for each of the different

algorithms are all used to make predictions with the same data set. Any of the models

which use sliding windows for their final prediction (such as when a moving average is used)

have the initial prediction vector iterated through in order to generate a final prediction

vector. The predictions are generated using the Python Scikit-learn library by loading the

previously constructed model from it’s saved file. Models which use data preprocessing
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(such as scaling or feature selection) also have the appropriate data structures loaded. The

performance prediction is determined by comparing the actual system state vector from the

test data to the final prediction vector generated from the prediction model.

4.2.3. Binary Classification Evaluation

In this experiment machine learning algorithms are each used to make a prediction about

the binary ransomware attack status of a system. True positive predictions equate to periods

of attack which are correctly identified as being under attack. False negative predictions

equate to periods of attack which are incorrectly identified as not being under attack. True

negative predictions equate to periods of no attack which are correctly identified as not being

under attack. False positive predictions equate to periods of no attack which are incorrectly

identified as being under attack. The final prediction vector of a model and the actual system

state vector are compared to obtain the distribution of the four types of binary classification.

The distribution of the four classifications was used to compute six metrics which offer more

insight into prediction performance: sensitivity, precision, specificity, fallout, and accuracy.

While each criterion is useful when viewed and evaluated together, none of them is a sufficient

metric for performance when taken alone. In this experiment the test data contains a very

disproportionate amount of one state to the other. As such, training a model which always

predicted the high frequency state would result in a high accuracy score while actually being

a poor predictor.

4.2.4. Matthews Correlation Coefficient (MCC)

The Matthews correlation coefficient (MCC) takes into account true and false positives

and negatives and is generally regarded as a balanced measure which can be used even if the

classes are of considerably different sizes such as the data in this experiment.

(TP ∗ TN )− (FP ∗ FN )√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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Figure 4.1. Binary Classification Evaluation

The MCC is a correlation coefficient between the observed and predicted binary classifi-

cations. Values range between -1 and +1. A coefficient of +1 represents a perfect predictor,

0 represents the same as random prediction, and -1 indicates total disagreement. The MCC

is regarded as being one of the best measures for describing the relationship between the

four possible binary classification outcomes in a single value. Thus, the MCC will be the

most heavily weighed metric in determining the optimal machine learning algorithm for the

problem presented in this experiment.

4.2.5. Rate of Attack Recognition (RAR)

When testing, an actual attack time series exists which defines the time periods during

which there is an attack. Figure 4.2 displays an example time series plot with the actual

attack time series located on the far left. For each time interval occurring during an attack

in the actual attack time series, or every time interval after the rising edge and before the

falling edge, is checked in the corresponding prediction time series for positive predictions.

If a positive prediction exists then the attack instance is considered detected. Ideally there

should exist at least one positive prediction during each attack instance which would result

in a 1.0 or perfect rate of attack recognition. In the worst case scenario there would exist

no positive predictions during any attack instance which would result in a zero. Unlike
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traditional binary classification metrics, such as sensitivity, rate of detection is not concerned

with the volume of correct positive predictions during an attack instance. Instead it considers

the application of the binary classifier in which one positive prediction would perform the

same as a high volume of positive predictions as the attack only has to be flagged once. It

should be noted that the rate of attack recognition will always be one if all predictions are

positive. Therefore, rate of attack recognition must be weighed in conjunction with a binary

classifiers ability to make correct positive predictions such as precision.

Figure 4.2. Example Time Series Plots

4.2.6. Mean Time to Attack Recognition (MTAR)

The rising edge of each attack instance in the actual attack time series represents the

time interval at which the attack began. The first instance of a positive prediction at

or after the rising edge and before the falling edge in the corresponding prediction time

series represents the initial attack recognition. Ideally the rising edge itself would be a

positive prediction, but in practice it is more likely that the sensors would need a small

amount of time to reach the values at which positive prediction occurs. The number of

time intervals until the first positive prediction is recorded for every attack instance which

was successfully recognized. Afterwards all values are averaged to determine the mean time

to attack recognition. It should be noted that attack instances that were not successfully

recognized do not weigh negatively in this metric. Therefore, mean time to attack recognition
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should be considered in conjunction with the rate of attack recognition to describe the

effectiveness of detecting attack instances both quickly and consistently. Furthermore, the

mean time to attack recognition will always be zero if all predictions are positive. Thus, mean

time to attack recognition must also be weighed in conjunction with a binary classifiers ability

to make correct positive predictions such as precision.

4.3. Experimental Results

4.3.1. Optimal Parameters for Algorithms

Stratified ten-fold cross validation is performed for each algorithm using the balanced

training dataset in order to determine how well various test configurations are likely to

perform. There exist a total of 280 different combinations of the test parameters that are all

tested individually for each algorithm. The test parameters include the prediction method,

data scaling method, dimensionality reduction method, and moving average method. For

each combination the training data is separated into ten equal-sized subsets. The MCC is

used rather than simple accuracy as it provides a more descriptive measure of the overall

model performance where there is a class imbalance. Ten different MCC values are found

by ten different tests in which each subset acts as the sole training data once and is part

of the test data nine times. The ten MCC values are averaged to obtain the average MCC

of the algorithm for a specific test parameter combination. The 280 average MCC values

are ordered from greatest to least with the highest value belonging to the test parameter

combination which is most likely to result in the highest performance during testing. The

highest performing test parameter combination is used for the appropriate algorithm for the

duration of testing instance.

The results shown in Table 4.3 rank the highest configuration MCC scores for each

algorithm from top to bottom. The first test system, the HP ENVY m4-1015 dx, has its

ranking displayed on the left and the second test system, the MacBook Air Mid 2013, has its
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Table 4.3. Cross Validation Algorithm Rankings

HP ENVY m4-1015dx MacBook Air Mid 2013

Algorithm Max MCC Algorithm Max MCC

Log Reg 0.9610 Rand Forest 0.9987

MLP 0.9600 Extra Tree 0.9985

One-V-One 0.9591 MLP 0.9984

One-V-Rest 0.9591 One-V-One 0.9983

SVC 0.9591 Log Reg 0.9979

Rand Forest 0.9570 One-V-Rest 0.9979

Extra Tree 0.9549 SVC 0.9979

Decision Tree 0.9528 KNN 0.9975

KNN 0.9311 Decision Tree 0.9970

Lin Reg 0.9285 Lin Reg 0.9965

N Bayes 0.9069 N Bayes 0.9917

K-Means 0.7074 K-Means 0.8327

ranking displayed on the right. In general, the first test system’s optimal algorithm model

configurations implemented data scaling with most using min-max, no feature selection, and

a weighted moving average with a window size of four. All of the configurations implemented

a moving average with 9 out of 12 being the largest window size tested. This is likely due to

the relatively small number of sensors that are available for polling on the first test system.

There are only 15 usable sensor readings for the first test system that most likely result

in momentarily incorrect predictions with significant changes in the physical state of the

system. However, once the system’s physical state begins to level off the predictions become

more accurate. The best performing models for the first system tended to be simpler or linear
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models like logistic regression. These simple models tend to have less ability to formulate

more complex patterns. Thus, this may indicate that it is advantageous to use simple

relationships between the sensor streams for attack detection when the number of sensor

streams is relatively few. The second test system, with 67 usable sensors, only has three

algorithms in which the optimal configuration uses a moving average. The three algorithms

that do use moving average use the smallest window size tested. With the much larger group

of sensors to poll from the prediction models are likely relying on complex patterns rather

than basic changes in the physical system state. These complex patterns are believed to

represent the unique physical impact to the system that is a result of the combined actions

of the ransomware process. This is also supported by the selection of more complex ensemble

classifiers as the best performing models, such as Random Forests and Extremely Random

Trees. These ensembles have the ability to detect more complex interactions among the

input feature streams.

Comparing the scores seen in Figure 4.3 it can easily be determined that the second

test system with the larger number of sensors scored higher for every algorithm. The one

algorithm that scores significantly lower for both test systems is K-Means clustering which

is the only unsupervised algorithm implemented in this experiment.

4.3.2. Prediction Evaluation on Test Data

The test data analysis is performed for each of the twelve machine learning algorithms.

There exists five different encryption modes with each having separate training and testing

data. Every combination of encryption modes of every size from one to five has a prediction

model trained, and the same combination of testing data is used to assess how well the model

performs when making predictions for data it has been trained with.

The analysis is split into five parts with different combination selection sizes for the

models. The test procedure can be outlined as follows:

1. Select combinations of one encryption mode from five total encryption modes,
(
5
1

)
,

43



Figure 4.3. Stratified 10-Fold Cross Validation Results

resulting in five models. Test each model with the corresponding encryption mode test

data.

2. Select combinations of two encryption modes from five total encryption modes,
(
5
2

)
,

resulting in ten models. Test each model with the corresponding encryption mode test

data.

3. Select combinations of three encryption modes from five total encryption modes,
(
5
3

)
,

resulting in ten models. Test each model with corresponding encryption mode test

data.

4. Select combinations of four encryption modes from five total encryption modes,
(
5
4

)
,

resulting in five models. Test each model with corresponding encryption mode test
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Table 4.4. Accuracy Analysis MCC Results

HP ENVY m4-1015dx MacBook Air Mid 2013

Algorithm Avg MCC Algorithm Avg MCC

Log Reg 0.4928 Extra Tree 0.9981

Extra Tree 0.4882 KNN 0.9980

One-V-One 0.4882 Log Reg 0.9980

One-V-Rest 0.4882 Rand Forest 0.9980

SVC 0.4882 MLP 0.9970

MLP 0.4717 Lin Reg 0.9964

Rand Forest 0.4707 One-V-Rest 0.9916

Lin Reg 0.4414 SVC 0.9914

KNN 0.4267 N Bayes 0.9790

N Bayes 0.4137 Decision Tree 0.9687

Decision Tree 0.3922 One-V-One 0.9528

K-Means 0.1355 K-Means 0.7743

data.

5. Select combinations of five encryption modes from five total encryption modes,
(
5
5

)
,

resulting in one model. Test the model with all encryption mode test data.

There are 31 total models and tests for each algorithm during the evaluation analysis. For

each algorithm, the scores are computed from the averages of the 31 different tests carried

out on the 31 different models.

Table 4.4 shows the prediction models from the first test system all scoring below 0.5

while all of the prediction models from the second test system, except K-means clustering,

score above 0.95. The prediction models used on the first test system, with the exception
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Figure 4.4. Accuracy Analysis MCC Results

of K-means clustering, were all able to detect every ransomware attack while maintaining

low false positive rates. The accuracy scores for these prediction models, which measures

the rate of correct predictions, were all above 0.9. The sensitivity scores, which measure the

rate of correctly predicted polling times which occurred during attacks, was never above 0.3

for any of the prediction models.

Table 4.5 is a ranking of the mean time for attack recognition, or MTAR, for the prediction

models. The majority of the prediction models for the first test system took over one minute

to make a prediction of “under attack.” The second test system, which has a large collection

of sensors, is able use its prediction models to make the first “under attack” prediction in less

than one second for all algorithms except two. The ten prediction models that had a mean

time for attack recognition of less than one second were able to detect all of the ransomware
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Table 4.5. Accuracy Analysis MTAR Results

HP ENVY m4-1015dx MacBook Air Mid 2013

Algorithm Avg MTAR Algorithm Avg MTAR

Decision Tree 48.10 MLP 0.3891

K-Means 52.01 One-V-Rest 0.4044

Extra Tree 53.03 SVC 0.4050

Rand Forest 59.60 Decision Tree 0.4113

Log Reg 61.99 Rand Forest 0.4539

N Bayes 65.08 Extra Tree 0.4794

KNN 66.41 Log Reg 0.4924

MLP 69.47 Lin Reg 0.5600

One-V-One 69.81 One-V-One 0.5700

One-V-Rest 69.81 KNN 0.5812

SVC 69.81 N Bayes 1.511

Lin Reg 70.97 K-Means 54.31

attacks during the accuracy testing with an average MCC score of 0.989.

The results of this portion of the testing are not necessarily meant to reflect the actual

performance this method would achieve when deployed on a live system. The test systems

are running regular background processes and the ransomware attacks are performed using

the encryption modes that the current prediction model was directly trained to detect. The

extremely high performance of the second test system’s prediction models along with the

inconsistent performance of the first test systems prediction models suggests the prediction

models using many sensor values are exploiting physical interactions in known attacks which

are complex and unique enough that they are almost instantly recognized and nearly always
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Figure 4.5. Accuracy Analysis MTAR Results

classified correctly on an idle system.

4.3.3. Robustness of Prediction Ability

The robustness analysis is performed for each of the twelve machine learning algorithms.

The same 31 models generated during the previous analysis are all tested with attacks using

each of the five encryption modes. Robustness, in the context of this analysis, is used to

refer to the ability of an algorithm to perform well given encryption mode it has been trained

to predict as well as encryption modes it has not been directly trained to predict. This

analysis will convey whether models that have not been explicitly trained to detect certain

encryption modes can still detect them with relative success. There are 31 total models with

each model requiring five tests for each encryption mode. Therefore, 155 tests are required
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Table 4.6. Robustness Analysis MCC Results

HP ENVY m4-1015dx MacBook Air Mid 2013

Algorithm Avg MCC Algorithm Avg MCC

Log Reg 0.4952 Extra Tree 0.9980

One-V-One 0.4885 Log Reg 0.9980

One-V-Rest 0.4885 Rand Forest 0.9979

SVC 0.4885 KNN 0.9978

Extra Tree 0.4864 Lin Reg 0.9960

MLP 0.4747 One-V-Rest 0.9958

Rand Forest 0.4707 SVC 0.9958

KNN 0.4526 N Bayes 0.9839

Lin Reg 0.4433 Decision Tree 0.9559

N Bayes 0.4125 MLP 0.9378

Decision Tree 0.4013 One-V-One 0.9040

K-Means 0.1363 K-Means 0.7681

for each algorithm during the robustness analysis. The scores for each algorithm are found

based on the averages of the 155 tests carried out on the 31 models. The algorithm with the

highest MCC average in both the previous analysis and robustness analysis is selected and

used in the remainder of the tests.

4.3.4. Effect of Training Time on Performance

The effect of training time on the prediction performance of the model was tested with

the highest performing algorithm for each test system. Based on the outcome of the accuracy

and robustness testing Logistic Regression was selected for further evaluation with the HP
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Figure 4.6. Robustness Analysis MCC Results

ENVY m4-1015dx as it had the highest average MCC score during both tests. Likewise, the

Extra Tree model was selected for further evaluation with the MacBook Air Mid 2013 as it

also had the highest average MCC score during both tests. Twelve prediction models where

created for each system from training data collected over 24 hours. The first model was

trained with only the first two hours of the data and subsequent models were trained with

an additional two hours of data until all 24 hours worth of training data were utilized. It can

be seen in table 4.8 that the performance of the HP ENVY m4-1015dx system was highest

after 4 hours of training with additional training causing the performance to decrease until

leveling off around 18 hours. The MacBook Air Mid 2013 system showed very little change in

performance after 4 hours with the MCC score only increasing to a maximum of 99.85% and

the mean time to attack recognition only dropping by 0.1166 seconds at its peak performance
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Figure 4.7. Robustness Analysis MTAR Results
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Table 4.7. Robustness Analysis MTAR Results

HP ENVY m4-1015dx MacBook Air Mid 2013

Algorithm Avg MTAR Algorithm Avg MTAR

Extra Tree 47.51 Decision Tree 0.4010

Decision Tree 52.63 SVC 0.4078

K-Means 53.57 One-V-Rest 0.4070

Log Reg 63.76 MLP 0.4207

Rand Forest 63.97 Rand Forest 0.4530

KNN 67.29 Extra Tree 0.4667

N Bayes 68.17 Log Reg 0.4733

One-V-One 70.3618 Lin Reg 0.5613

One-V-Rest 70.3618 KNN 0.5739

SVC 70.3618 One-V-One 0.6223

MLP 70.83 N Bayes 1.520

Lin Reg 70.98 K-Means 55.73

after 20 hours of training. While the results of this experiment do indicate that there is small

increases in performance with additional training time the models with the least amount of

training time are still able to perform at a comparable level. This conclusion seems especially

true in the MacBook Air test system which seems to indicate that systems with a large array

of sensors are able to be effectively trained quickly. Considering the dynamic and modular

nature of modern computing devices this property of the new prediction technique is very

useful as hardware modification would likely decrease the performance of a previously trained

model and greatly benefit from a newly trained model.
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Table 4.8. Training Time Analysis Results (Hours)

HP ENVY m4-1015dx MacBook Air Mid 2013

Avg MCC Avg MTAR Avg MCC Avg MTAR

2 0.5364 39.44 0.9972 0.6667

4 0.5785 14.23 0.9982 0.5083

6 0.5398 35.48 0.9984 0.4833

8 0.4911 69.52 0.9984 0.4583

10 0.5247 45.67 0.9984 0.5083

12 0.5122 57.73 0.9984 0.4500

14 0.4906 69.65 0.9985 0.4083

16 0.4993 66.75 0.9984 0.4833

18 0.4851 70.28 0.9983 0.4333

20 0.4854 70.35 0.9985 0.3917

22 0.4849 70.34 0.9984 0.4417

24 0.4898 70.07 0.9984 0.4833
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Figure 4.8. Training Time Analysis MCC Results
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Figure 4.9. Training Time Analysis MTAR Results
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4.3.5. Effect of User System Load on Performance

The previous testing demonstrated the viability and potential of the new ransomware

detection method under favorable system conditions. Testing with additional system loads

represent a more complex and realistic situation which in turn requires a more complex

prediction model. Figure 4.10 shows the more complex model used for detecting ransomware

when unknown additional system loads are present. This method uses a collection of five

prediction models which implement the the same machine learning algorithms selected for

each of the two systems during the training time testing which are trained with 0%, 25%,

50%, 75%, and 100% additional system loads present. Each of the five models provides a

confidence score for a state of ”normal operation” and a state of ”under attack” from the

same input vector of sensor data. In order to determine which of the five models to utilize

the ransomware attack process is run with only regular background processes and monitored

to determine a value to use as the additional CPU load the processes is likely to introduce

on the system. During testing the current system CPU load is used to determine which of

the models to use for a ”normal operation” confidence score and which of the five models

to use for an ”under attack” confidence score. Given that no ransomware is attacking the

system the behavior of the system would be best represented by the model trained with an

additional CPU load closest to the current CPU load resulting in a higher ”normal operation”

confidence score. However, given that there is currently ransomware attacking the system

the current system CPU load minus the CPU load which the ransomware process is likely

to place on the system would be used to select the prediction model to supply an ”under

attack” prediction. The two confidence scores are compared and the higher score is used as

the final system state prediction for the ensemble model. The ensemble model is first tested

with no additional CPU load present on the system, similar to the previously conducted

tests. However, unlike the previous tests which always used the prediction model generated

with no additional system load this more complex model has to select a model which may

not always be the right one. In table 4.9 it can be seen that the performance of the model
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has decreased due to the requirement of determining which models to use, but in the case

of the MacBook Air test system there was still MCC score above 90%. When comparing

table 4.9 to tables 4.10 and 4.11 it can be seen that the ensemble prediction model was more

effective with rising additional unknown CPU loads. All MCC scores for the MacBook Air

test system were all above 90% with additional CPU loads of 25% and 50%. Even with the

additional requirement of detecting ransomware attacks with unknown additional system

loads the new ransomware detection method was able to detect all attack instances with

most mean time to attack recognition results just over 7 seconds on the system with a large

array of sensors.

Figure 4.10. Simulated Load Analysis Ensemble Predictive Model

4.4. Summary and Contributions

In this experiment we show that ransomware attacks can be effectively detected in a

rapid manner before significant amounts of data are encrypted during an attack. Once the

machine learning algorithms have been trained and a predictive model has been generated,

predictions about the state of a system are calculated quickly and with a low computational

overhead.

Perhaps the most important aspect of this experiment is the speed in which an attack
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Table 4.9. Effect of User System Load on Performance (0%)

HP ENVY m4-1015dx MacBook Air Mid 2013

Avg MCC Avg MTAR Avg MCC Avg MTAR

ECB 0.4724 31.334 0.9410 8.6667

CBC 0.3057 53.334 0.9561 3.1667

CFB 0.3313 120.84 0.7238 6.6667

OFB 0.3921 50.167 0.8430 1.3334

XOR 0.5695 52.0 0.6985 5.8334

ALL 0.5076 57.467 0.6098 9.0

Table 4.10. Effect of User System Load on Performance (25%)

HP ENVY m4-1015dx MacBook Air Mid 2013

Avg MCC Avg MTAR Avg MCC Avg MTAR

ECB 0.2449 92.0 0.9368 13.0

CBC 0.3168 111.5 0.9267 6.0

CFB 0.4219 142.83 0.9134 10.834

OFB 0.3707 91.0 0.9303 8.0

XOR 0.2344 36.334 0.9237 10.167

ALL 0.4755 55.167 0.9132 11.867
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Table 4.11. Effect of User System Load on Performance (50%)

HP ENVY m4-1015dx MacBook Air Mid 2013

Avg MCC Avg MTAR Avg MCC Avg MTAR

ECB 0.3293 58.834 0.9693 8.8334

CBC 0.4789 63.667 0.9590 7.0

CFB 0.5928 123.0 0.9164 7.75

OFB 0.3576 77.334 0.9408 7.1667

XOR 0.3619 67.834 0.9745 7.5

ALL 0.5148 78.667 0.9518 7.5

may be detected. Detection speed is a very important security concern in attacks on critical

infrastructure as the paramount concern is reducing any downtime. Rapid detection could

mean a significant reduction in downtime from an attack as less of the system would be

corrupted. In experimental testing, the highest performing system had an average time to

attack recognition which was as little as 1.3 seconds and never exceeded 13 seconds in even the

lowest performing models. However, it has been found that even the best predictive models

generate some false positive predictions. For this reason it is believed that the most effective

method for implementing this technique would occur when more detailed analysis follows

the indication of a positive prediction. When the quick acting predictive model indicates

a positive prediction some degree of preventative measures would be taken to slow or stop

the ransomware process from inflicting further damage. These preventative measure could

include stopping the system for more in depth analysis in the most sensitive environments,

briefly enforcing stricter firewall rules to defend against further attacks on network entities,

or even simply notifying the user to potential risk.
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Chapter 5

Rapid General Process Detection

The ability to detect and characterize processes running within the working set of a

computer system via side channels enables a variety of applications including such as malware

detection and white- and black-list validation. The use of side channels for general process

detection likewise allows for such processes to be identified and characterized in a manner

that is difficult to spoof since the physical characteristics of the process are used rather than

signatures or other means.

Previous work in this area targeted the detection of a specific process such as ransomware

(Taylor et al., 2021). In this past work certain physical sensors present in modern System-on-

Chips (SoC) that comprise CPU cores were used to gather real-time data that was provided

as input to a machine learning classifier to determine if an instance of ransomware was

present. This past approach involved training the classifier with instances of processes that

exhibited ransomware behavior. Specifically, many ransomware processes can be generally

characterized as first identifying victim files for encryption followed by a phase where the

identified files underwent encryption. From a general process point of view, one can view

these activities as first comprising a phase of file I/O activity followed by a phase of CPU-

intensive operations when the encryption algorithms are run.

The objective of this work is to perform general process detection at a finer-grained

level such that sensor data can indicate and discriminate between processes that are heavily

biased toward file I/O activity or CPU/ALU-intensive activity. If a suitable set of general

processes could be detected, then the sequence described by the ransomware process would

involve first detecting file I/O intensive activity followed by the detection of CPU/ALU-

intensive activity. Thus, given the sequence behavior of any type of application, whether it
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was an instance of malware or not, the ability to detect the sequence and type of processes

running on a CPU-based system could represent a set of basic building blocks that allow for

arbitrary types of applications to be detected via physical side channels by characterizing

an application of interest as a sequence of activities that are dominated by a particular

type of process. For example, when a process is identified as first consisting of file I/O

activity followed by bursts of heavy CPU/ALU activity then a process is detected that is

searching for target files followed by processing them through heavy computation such as

is the case for many instances of ransomware. Such a capability greatly generalizes the

approach taken for ransomware detection in (Taylor et al., 2021) and furthermore does not

require customized training of process classifiers for each different instance of applications to

be detected. Rather, the system administrator can specify a particular sequence of processes

to characterize a process of interest, and when such a sequence is detected, an alert can be

issued indicating a high probabllity that a particular process sequence has been detected.

Another benefit of this research is the evaluation of the effectiveness of using physical sensor

side channels (PSSC) or different types of general processes.

The efficacy of the use of PSSC-based detection and characterization is largely dependent

upon the presence, or lack of presence, of appropriate sensors in the host architecture. For

example, if a particular host architecture does not have sensors present inside or near the

network interface circuitry (NIC), then the detection of a process that contains a lot of

communication with the network is more difficult to achieve with PSSC.

Another contribution of this work is the incorporation of models to account for sensor

output due to other processes concurrently running on a system. From a signal processing

point of view, a particular sensor can be viewed as a data collector whose output is due to

the composite set of processes that are instantiated at any instance. While it is the case

that operating systems generally use temporal sequencing of multiple processes to provide

the illusion of concurrent execution, the time slices are very small and modern architectures

have significant levels of concurrency due to clever architectural features. For example, a file
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I/O intensive process may be accessing memory through a DMA while the CPU/ALU is con-

currently engaged in heavy number-crunching activities. Furthermore, these two activities

may have originated from different processes altogether. For this reason, the sensor, when

viewed as a data collector, is providing composite information regarding the environment

within the system. We have devised our classifier models to account for the presence of such

background loads and we have found that such background load models should necessarily

vary depending upon the type of process being detected.

We identified four classes of general processes and report on the ability of a PSSC de-

tection and characterization approach for each process category. These are: i) file I/O, ii)

CPU/ALU intensive, iii) network I/O, and iv) virtualization instantiation. Our results in-

dicate varying levels of detection ability for these classes of processes. Classes i) and ii)

are shown to have high accuracy over all background load conditions whereas class iii) can

be reasonably detected under low load conditions and class iv) has very good detection ca-

pabilities for low load conditions but accuracy drops off as load conditions increase. The

worst performing process detection case was that for network I/O. We attribute this poorest

performing network I/O class to the fact that our NIC did not comprise a suitable set of

physical sensors. NIC’s that contain more sensors or for cases where the NIC is physically

located adjacent to other sensor-rich subsystems would perform better. This indicates that

alternative side channels for detecting network I/O may be desirable in our target architec-

ture such as the use of network traffic patterns (Kadloor et al., 2010; X.H. Wu, 2015) or the

use of programmed event monitors (Li and Gaudiot, 2021; Oshana et al., 2021).

This experiment demonstrates the viability of detecting arbitrary target processes by

measuring the physical state of a system through existing system sensors. Previous work

has shown that process detection often requires complex behavioral analysis which has shown

to be very accurate, but often at the cost of speed (Rhode et al., 2018). The new detection

model presented in the experiment is meant to act as an initial rapid indication of a target

process which would allow for safety measures to be taken until such time as more tradi-

62



tional behavior analysis can be performed as verification. In this way the detection method

presented in this paper is meant to act in tandem with existing methods of process detection

in an effort to augment their performance.

5.1. Detection Models

Detection Models utilize machine learning (ML) algorithms in order to generate a binary

prediction as to whether a target process is or is not currently running on a system. In the

context of this study a Detection Model is an obfuscation of either a single machine learning

model or a collection of machine learning models which when provided a vector of a system’s

current physical sensor readings provides a binary output representing whether the target

process is currently running on a system. Once a Detection Model has been trained and

implemented the resources required to perform the underlying machine learning predictions

is minimal as there is no complex behavioral analysis necessary. Additionally, as all of the

data that is used for process detection is considered side-channel data there is minimal risk

to privacy and user data leakage.

5.2. Training and Building Detection Models

5.2.1. Experimental Environment and Setup

This experiment utilized an Apple Mac Mini MGEM2LL/A with a 1.4 Ghz Intel Core

i5 processor, 4 GB of LPDDR3 RAM, and a 500 GB HDD. Using a software application

name Hardware Monitor we were able to access the current sensor readings for 50 different

system sensors through the command line (Bresink M, 2017). The systems sensors were

comprised of 16 temperature sensors, 6 voltage sensors, 12 current sensors, 15 power sensors,

and 1 sensor for the exhaust fan RPMs. The testing scripts and automated data collection

was performed using the Continuum Anaconda Python 3 package and associated libraries

(ana). This includes the Scikit-learn library which is utilized in transforming data, creating
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prediction models, and performing target process predictions (Pedregosa et al., 2011). In

order to create additional CPU loads for training the GO programming language was installed

in order to run the Go script ”go-cpu-load” (Vikyd). This script maintains a desired CPU

load by creating a continuous loop and adjusting a delay period after each loop in order to

adjust CPU usage. In order to create additional CPU loads for testing we used the Stress-ng

project package which is capable of creating a number of different system stressors with a

high level of control (ColinIanKing). We were able to create the CPU load using over 70

different methods included in Stress-ng. All of which were different than the method used

during training with ”go-cpu-load”.

This experiment was carried out with three different target processes which represent

different types of processes likely to be run by users. The first target process involves heavy

file I/O and utilizes the Iozone filesystem benchmarking tool (ioz). The second target process

involves heavy CPU resource usage and utilizes the FFmpeg multimedia framework (ffm).

The third target process involves heavy network I/O and utilizes the Nmap network discovery

and security auditing tool (nma).

5.2.2. Experimental Process

In order to perform this experiment a python script is executed which performs a series

of training data collection followed by a series of test data collection for each test processes.

Prior to beginning the data collection for a new process the system is cycled in order to free

all resources. After every individual training and test cycle a comma separated data file is

stored on the test system until all testing ends and the data can be collected. Once the

training and test data are collected the training data is used to create all of the necessary

detector models for the various combinations of machine learning algorithms, test processes,

and detection model type. Once all of the models are created the test data collected for each

test processes is used to generate the detection predictions for each time interval. The same

test data is used for all models created for each test process in order to directly compare their
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performance with a controlled data set. Once all of the detection prediction vectors have

been generated performance metrics are computed in order to analyze and draw conclusions

about the new detection method.

5.2.3. Collecting Training Data

In the previous ransomware detection experiment it was shown that training a model for

24 hours resulted in an almost identical result to a model that had been trained for only 2

hours (Taylor et al., 2021). Due to this knowledge training data for each model was collected

for two hours. Ensemble detector models are comprised of up to 11 ML models for each test

process. The ML models required training with additional system loads from 0% to 100%

with one model being trained at each interval of 10%. The additional load is achieved by

creating a process on all Hyper-threads which run an empty loop at a dynamic rate that

maintains the desired overall CPU load. Maintaining the desired additional load level relative

to each Hyper-thread ensures the additional load is balanced over the system’s total CPU

resources. 22 hours of training is required for each test process in order to accommodate

ensemble detector models which utilize the maximum number of ML models.

During each two hour training cycle three threads are created. The first thread controls

the operation of the process being tested, the second thread adds a desired additional CPU

load onto the system, and the third thread runs a data logger. The test process control

thread starts by running the test process for an entire cycle and recording the amount of

time that it requires to complete. Afterwards, the test process control thread waits 2 minutes

for the system sensors to re-stabilize and then it sets a Boolean variable that indicates that

the data logging thread should begin recording data. The test process control thread then

begins a loop which first waits for the amount of time previously recorded for the test process

to complete, then the test process is run, and finally the test process control thread waits

again for the amount of time previously recorded for the test process to complete. The test

process control thread then waits 2 minutes for the system sensors to re-stabilize and if the
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total time has met or exceeded the desired total training time the loop stops. This data

collection routine results in two hours of data which has a 2 to 1 ratio of the test process

not running to the test process running. This ratio is not a realistic representation of what

is likely to be experience in a real world environment. However, for the purposes of training

the detection models this ratio is more beneficial.

5.2.4. Training Machine Learning Models

Machine Learning models are trained with a known additional system CPU load level

present while the test process is both running and not running. This allows for the selection

of a ML model in a detection model which is more likely to have been trained only under

conditions similar to the system’s current physical state based on the total CPU utilization at

each point in time a determination is being made as to whether the target process is currently

running. Ensemble detectors are comprised of these more targeted individual ML models.

Additionally, a ML model is trained for each test process which includes all of the training

data collected at various additional CPU load levels. This single model is implemented alone

rather than as part of an ensemble detector.

5.2.5. Building Ensemble Detectors

Ensemble detectors are built by including a collection of ML models which have each

been trained with a single known additional system CPU load present. The maximum

size of the detection models collection is 11 as ML models have been trained at known

additional CPU load level intervals of 10% from 0% to 100%. The ensemble detector utilizes

a ML model selection function which receives the current total system CPU utilization at

each instance a target process is determined to be either running or not running. The ML

model selection function can be implemented to select two ML models or a single ML model

for each detection decision. When two ML models are selected one ML model provides a

probability value representing whether the target process is not currently running and the
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second ML model provides a probability value representing whether the target process is

currently running. The ML models are selected by assuming the load created by the target

process is or is not included in the current total system CPU utilization respectively. In the

event that the target process is not currently running then the total system CPU utilization

would be considered the additional load level present during training conditions most similar

to the current state. Conversely, in the event that the target process is currently running

then the total system CPU utilization must be reduced by the load created by the target

process in order to be considered the additional load level present during training conditions

most similar to the current state. When the ML model selection function is implemented to

select only a single ML model the added load of the target process is not considered for the

condition where the target process is currently running and instead the probability of both

conditions is determined by the ML model trained with the closest additional system CPU

load as the current total system CPU utilization.

5.3. Testing Process Detectors

5.3.1. Collecting Test Data

Test data is collected using the same method as training data. However, the test process

is not initially timed and there is no loop for running the test process until the desired

time has elapsed. Instead, the test process control thread waits a random amount of time

between 10 and 40 minutes, runs a single instance of the test process, and then waits for the

remainder of the desired test time. This process results in data that has a very short amount

of time where the test process is actively running and it is occuring at a random time.

5.3.1.1. Zero Additional Load

Test data is collected while no additional CPU load preset on the system beyond what is

present due to regular background processes. Each test process is run a single time over the
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course of one hour at a randomly determined time. This is repeated 24 times to complete

the data set for each test process.

5.3.1.2. Simple Random Additional Load

Test data is collected with a randomly selected additional CPU load preset on the system

beyond what is present due to regular background processes. Each test process is run a single

time over the course of one hour at a randomly determined time. Prior to performing each

test run an additional CPU load level is randomly selected from a specific range of values and

is applied to the system using the same method implemented in training. Four values are

selected from a range of 10 values before moving to the next range of 10 values starting with

1 through 10 and ending with 91 through 100. This results in a data set of 40 tests with

equal representation of random additional load levels at intervals between where training

data was collected with known additional CPU loads. This data set allows for the possibility

of randomly selected additional load levels to be the same as the known load levels used

during training.

5.3.1.3. Advanced Random Additional Load

Test data is collected with a randomly selected additional CPU load preset on the system

beyond what is present due to regular background processes. Each test process is run a single

time over the course of one hour at a randomly determined time. Prior to performing each

test run an additional CPU load level is randomly selected from a specific range of values

and is applied to the system using a different method from what was implemented during

training. The randomly selected load level is further randomly divided into unbalanced

load levels to maintain on each Hyper-Thread that cumulatively apply the overall desired

additional system CPU load level. The method of maintaining the load level on each Hyper-

Thread is randomly selected from 70 different CPU stress methods which does not include

the empty loop method utilized in training. Four values are selected from a range of 9 values

68



before moving to the next range of 9 values, skipping those used during training, starting

with 1 through 9 and ending with 91 through 99. This results in a data set of 40 tests with

equal representation of random additional load levels at intervals between where training

data was collected with known additional CPU loads. This data set does not allow for the

possibility of randomly selected additional load levels that are the same as the known load

levels used during training.

5.3.2. Target Process Detection Methodology

5.3.2.1. Process Detection With Unknown Additional Loads

Section 5.3.1 details test data collection with three different types of loads present on

the system which are all unknown to the detector. The data set collected from each type

of unknown additional load implementation is used for a separate test of process detector’s

performance ability.

Zero additional load test data is designed to serve as an ideal environment for process

detection as relatively simplistic physical sensor activity is likely to be sufficient for accurate

target process detection. The test on this data set is used for showing the viability of the

process detectors as a simple proof of concept. Analysis of detection ability with this data set

allows for easily identifying process detectors which are unsuitable for more rigorous testing.

The results of this testing is unlikely to be highlighted.

Simple random additional load test data is much more realistic and rigorous for testing the

process detectors than the zero additional load data set test. However, the implementation

of the same method of applying the additional balanced CPU load as well as allowing for the

possibility of selecting random load levels which are the same as those used during training

incorporate some favorable aspects for process detection. The test on this data set is used for

showing the ability of the process detectors when the system is likely in an unseen state from

what was used for training, but the system exhibits similar patterns of behavior. Analysis of
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detection ability with this data set allows for identifying process detectors which are capable

of performing in the most basic realistic scenarios.

Advanced random additional load test data is much more realistic and rigorous for testing

the process detectors than the zero additional load and simple random additional load data

sets. The implementation of multiple unseen methods of applying the additional unbalanced

CPU load as well as not allowing for the possibility of selecting random load levels which are

the same as those used during training truly tests the detection predictors in a scenario where

obvious behavioral similarities are not present. The test on this data set is used for showing

the ability of the process detectors when the system is in an unseen state from what was used

for training with comparable system states achieved through completely different methods.

Analysis of detection ability with this data set allows for identifying process detectors which

are capable of performing in unfavorable and unseen realistic scenarios.

5.3.2.2. Detection Model Type Comparison

Section 5.2 details how ML models are trained and section 5.2.5 details how a collection

of ML models can be used to build an ensemble detector which attempts to select ML models

which are optimal for the system’s current physical state. Five different methods of process

detection utilizing the trained ML models were evaluated in this experiment. Each of the

five methods was tested on all 3 unknown additional load for each test processes.

The most simple detection method is utilizing a single ML model which has been trained

with all of the training data collected at the various different known additional load levels.

The simplicity of this method is illustrated in figure 5.1. This detection method is labeled

as ”Single” in the experimental results.

Ensemble detection methods are more advanced and select from a collection of up to 11

different ML models based on the current system state. Single selection ensemble detectors

select the ML model which was trained with an additional CPU load that is closest to

the current overall CPU load of the system. In this experiment, single selection ensemble
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Figure 5.1. Single Detection Model (Single)

detectors with 6 ML models and 11 ML models are evaluated. These detectors are shown

in figure 5.2 and figure 5.3 and will be labeled as ”Ens 6 S” and ”Ens 11 S” respectively in

the experimental results.

Figure 5.2. Ensemble Detector - Single Model Selection - 6 Models (Ens 6 S)

Dual selection ensemble detectors select the ML model which was trained with an ad-

ditional CPU load that is closest to the current overall CPU load of the system. However,

this model is used only to provide the probability that the target process is not currently

running. A second ML model is selected for providing the probability that the target process

is currently running which was trained with an additional CPU load that is closest to the

current overall CPU load of the system after the average load created by the target process

is subtracted. This is because the ML model load level is only the additional load added not

including the load added by the target process. Therefore, the ML model which most likely

was trained under similar conditions when the target process is running is actually a lower
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Figure 5.3. Ensemble Detector - Single Model Selection - 11 Models (Ens 11 S)

load level. In this experiment, dual selection ensemble detectors with 6 ML models and 11

ML models are evaluated. These detectors are shown in figure 5.4 and figure 5.5 and will be

labeled as ”Ens 6 D” and ”Ens 11 D” respectively in the experimental results.

Figure 5.4. Ensemble Detector - Dual Model Selection - 6 Models (Ens 6 D)

The detection performance results of the five different process detection methods can be

directly compared to draw conclusions about the effectiveness of more advanced techniques

and whether the additional complexity introduced justifies any potential performance in-

crease as was seen in (Taylor et al., 2021).

5.3.3. Performance Evaluation Methodology
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Figure 5.5. Ensemble Detector - Dual Model Selection - 11 Models (Ens 11 D)

5.3.3.1. Binary Classification Evaluation

In this experiment machine learning algorithms are each used to make a prediction about

the binary status of a process on a system. The final prediction vector of a model and

the actual system state vector are compared to obtain the distribution of the four types

of binary classification. The distribution of the four classifications was used to compute

five metrics which offer more insight into prediction performance: sensitivity, precision,

specificity, fallout, and accuracy (Tharwat, 2020).

5.3.3.2. Matthews Correlation Coefficient (MCC)

The Matthews correlation coefficient (MCC) takes into account true and false positives

and negatives and is generally regarded as a balanced measure which can be used even if the

classes are of considerably different sizes such as the data in this experiment (Chicco and

Jurman, 2020).

The MCC is a correlation coefficient between the observed and predicted binary classifi-

cations. Values range between -1 and +1. A coefficient of +1 represents a perfect predictor,
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0 represents the same as random prediction, and -1 indicates total disagreement.

5.3.3.3. Rate of Process Detection (RPD)

When testing, an actual process presence time series exists which defines the time periods

during which the target process is actually running on the system. Target process runs start

when a labeled system state of ”normal operation” transitions to a labeled state of ”process

running”. Conversely, a target process run ends when a labeled system state of ”process

running” transitions to a labeled state of ”normal operation”. If a positive prediction exists

during the period of time representing a target process run then the target process is consid-

ered detected. Ideally there should exist at least one positive prediction during each target

process run which would result in a 1.0 or perfect rate of process detection.

5.3.3.4. Time to Process Detection (TPD)

The initial labeled system state of ”process running” for each target process run in the

actual process presence time series represents the time interval at which the target process run

began. The first instance of a positive prediction in the corresponding prediction time series

at or after this initial ”process running” state and before the next ”normal operation” system

state represents the initial target process detection. Ideally the initial ”process running” state

itself would be a positive prediction, but in practice it is more likely that the sensors would

need a small amount of time to reach the values at which positive prediction occurs. This

metric counts the number of time intervals until the first positive prediction is recorded

for every target process run which was successfully recognized. Afterwards all values are

averaged to determine the time to process detection.

5.3.3.5. Detector Performance Score (DPS)

The new detection model is designed to rapidly detect a target process while maintaining

a low fallout. In other words we are most concerned with three aspects of the detector’s
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performance. The first aspect is to maintain a low TPD which would mean the detector

is able to quickly identify when the target process begins running on a system. Based on

previous work we determined that in order for our model to be effective it must have a

TPD of no more than 60 seconds (Rhode et al., 2018). The second aspect of performance

most important for our new detection model is detection models maintaining a low fallout

during operation. This would mean that the detection model is not creating so many false

positive detection alerts that it becomes a detriment to operation. In a 2020 report by

Neustar Security Solutions it was found that on average 26% of security alerts experienced

by organizations were deemed false positives (24 et al., 2020). Therefore, we determined

that in order for our model to be effective it must have a fallout of no more than 0.26.

The final aspect of performance most important for our new detection model is that it

should miss minimal test instances of a target process. We determined that if the detection

model misses an instance of the target process during testing it should be heavily penalized

during assessment of performance. Taking into account the three most important aspects of

performance we used a metric called Detection Performance Score (DPS) in order to help

in our assessment of performance alongside the other more traditional binary classification

metrics.

DPS = 1−
TPD
60

+ fallout
0.26

2

5.4. Experimental Results

The results for each of the four test processes were compared using the four different

tests outlined in 5.3.2. The results for the simple random additional load test, and the ad-

vanced random additional load test are shown for each algorithm. However, only the single

model detector results are included. This provides detailed insight into the performance of

the process detectors in their simplest form of implementation. The results for the detec-

tion model comparison, performed for each process, shows the highest performing machine
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learning algorithm for each detection method. The results for the zero additional load are

not shown in the data as they were only used to determine if additional testing should be

performed with a specific target process.

5.4.1. File I/O Process

With this process we were aiming to create a significant amount of file I/O on the system

in order to determine if the new method is capable of detecting a specific pattern of file

I/O with a random amount of CPU usage occurring at the same time. We implemented the

filesystem benchmarking tool IOzone to act as our file I/O process. IOzone generates and

measures a variety of file operations in order to measure a system’s file I/O performance.

There are a total of 13 test types which includes 6 write tests and 7 read tests. The write

tests are defined as Write, Re-write, Random Write, Record Re-Write, Fwrite, and Frewrite.

The read tests are defined as Read, Re-read, Random Read, Backward Read, Stride Read,

Fread, and Freread. The actual process we ran was as follows

$ iozone -a

The option “-a” means that iozone should run all 13 tests back-to-back. This command

required roughly 8 minutes to complete on the Mac Mini systems.

5.4.1.1. Test Results

The results of the unknown additional load tests can be seen in table 5.1. During the

advanced random load test the detector which was trained using the logistic regression ma-

chine learning model had the best performance. The detector correctly caught all instances

of the target process during testing in an average of 0.275 seconds.

Examining the series of plots in figure 5.6 it can be seen that the logistic regression model

maintains almost perfect DPS and MCC scores throughout all test instances with varying

additional random loads. The plot on the right also shows that the logistic regression model
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maintains a fallout rate very close to zero throughout all of the test instances as well.

Figure 5.6. File I/O Process Binary Classification Metrics - Single Detector Trained With

Logistic Regression

Figure 5.6 shows three time series plots which are all aligned on the same x-axis which

represent prediction time intervals. The top timeseries plot shows the total random addi-

tional load present on the system at a given time. The middle timeseries plot shows the

actual state of the system during testing with a rising edge representing the start of the

target process and the falling edge representing the end of the target process. The bottom

timeseries plot shows the prediction made by the detector for each time interval. Ideally the

middle and the bottom plots would be identical and the more similar the two plots are the

better the detector performed. In figure 5.7 the two plots are very similar with the exception

of a limited number of false positives which occurred over the entire 40 hour testing block.

These results show that the new method of process detection was highly successful when the

process was mostly performing file I/O tasks.

Table 5.2 shows the features with the highest feature importance scores based on the

built in Scikit-Learn ”feature importance ” attribute for random forest models. The feature

importance scores are determined using gini importance or mean decrease in impurity (MDI).
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Figure 5.7. File I/O Process Prediction Time Series - Single Detector Trained With Logistic

Regression

MDI calculates each feature importance as the sum over the number of splits across all tress

that include the feature proportionally to the number of samples it splits (Pedregosa et al.,

2011) (per, 2015). We can see that most of the top scoring features are sensors that measure

the CPU and the hard drive.

Figure 5.8 shows the percentage of the total feature importance values based on the sys-

tem components they measure. The CPU accounts for almost half of all feature importance

with the remainder being nearly evenly distributed between the power supply, the hard drive,

the memory, and the platform controller hub (PCH). It is interesting to note that despite

there being unknown and randomized loads placed on the CPU during testing the file I/O

process is still mostly able to be detected by monitoring the physical state of the CPU.

Figure 5.9 shows the percentage of the total feature importance values based on the type

measurements the features perform. Current and power sensors account for just under 90%

of the total feature importance values. This likely means that the detection of the file I/O

process is achieved through complex patterns of rapid changes in the operational needs of the

CPU, hard drive, memory, and PCH. When considering that file I/O generally requires the

CPU to read and write from the hard drive using the motherboard and PCH to move and

store the intermediate working data in memory the feature importance scores are right in
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Figure 5.8. File I/O Process Feature Importance by System Component
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line with what we should expect to see. While this is a more simplistic process to understand

and make sense of in terms of feature importance it is important to note that we trained and

implemented the detector successfully without ever having to rely on our understanding of

how the process works.

Figure 5.9. File I/O Process Feature Importance by Sensor Type

When comparing the highest performing machine learning algorithm from all of the

detector models in table 5.3 it can be seen that the all of the detection model types displayed

very high performance. All instances of the target process were caught by all detection model

types in an average of less than half a second.
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This test process demonstrates a situation where the target process utilizes many different

types of system resources during operation, including the system component with random

loads introduced during operation. This test demonstrated the viability of utilizing the new

detection models for target processes which fit this category.

5.4.2. CPU Intensive Process

With this process we were aiming to create a significant amount of CPU usage on the

system to determine if the new method can detect a CPU intensive process with an additional

random amount of CPU usage occurring at the same time. The actual process we ran utilized

the multimedia tool ffmpeg to convert a video in mov format to a video in mp4 format. This

requires ffmpeg to reencode the entire video which requires a large amount of computational

resources to perform. The video being converted is exactly 100 MB, 3 minutes in length,

and high definition resolution. The actual process we ran was as follows

$ ffmpeg -i video.mov -c:v libx264 -crf 10 video.mp4

The “-i” option means that the next argument is the path to the input video file. The

option “-c:v” mean that the next argument should be used as the encoder. The “-crf” option

means the next argument is the constant rate factor that should be used by the encoder.

The range of the CRF scale is 0-51, where 0 is lossless, 23 is the default, and 51 is the worst

quality possible. Low CRF values result in higher quality output videos, but also increase

the total size of the video file. We used a CRF of 10 which is very high quality output

and thus a higher amount of computation. This command required roughly 6 minutes to

complete on the Mac Mini systems.

5.4.2.1. Test Results

The results for the CPU intensive unknown additional load testing can be seen in table

5.4. When looking at the results of the random additional load test it can be seen that the

81



detector which was trained using the random forest machine learning algorithm performed

the best with all target process instances being detected in an average of 1.275 seconds.

Table 5.10 shows that the fallout rate remains almost at zero through all 40 hours of

testing. However, there is a noticeable decline in DPS and MCC as the random additional

CPU load increases. The DPS begins to drop slightly once the additional CPU load level

reaches 75%, but at no time does DPS ever go below 0.8. However, the MCC score drops

dramatically starting at around an additional CPU load level of 50%. Once the additional

load level reaches around 90% the MCC score drops to almost 0.5.

Figure 5.10. CPU Intensive Process Binary Classification Metrics - Single Detector Trained

With Random Forest

The MCC scores of the detectors dropped to levels which, on their own, appeared to

suggest poor performance. However, the DPS of the same models remained very high. This

can be explained by examining the timeseries plots in figure 5.11. The prediction timeseries

appears to be almost identical to the actual system state timeseries with the exception of the

target process run instances appearing to be filled solid at high additional CPU load levels.

Figure 5.17 shows a much smaller section of the same time series plot as figure 5.11 and

shows that during the time the target process is running the detector demonstrates poor
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Figure 5.11. CPU Intensive Process Prediction Time Series - Single Detector Trained With

Random Forest

performance at sustaining the positive prediction and instead rapidly alternates between

positive and negative predictions. In terms of a binary classification model this is a very

undesirable performance which is reflected in the MCC scores. However, in the context

of rapid process detection we are more concerned with the initial positive prediction as

that would act as a trigger for more in depth behavioral analysis. Groupings of positive

predictions would be accounted for at this more advanced stage of analysis. This also means

that fallout must be kept to a minimum in order to avoid excessive instances of in depth

behavior analysis which are falsely triggered by the detection model. The lack of false

positives in the timeseries plots once again supports the high DPS as this detector, while

not a high performing binary classifier, is a high performing rapid process detector.

Table 5.5 shows the MDI feature importance scores from the random forest trained single

model detector. The most notable observation from the table is that features representing

senors measuring the CPU are not nearly as important as they were for the file I/O process.

Instead, most of the top feature names appear to indicate that the system memory and

the power supply are the most important system components when it comes to the CPU

intensive process.

Table 5.13 supports this observation by showing that 48.6% of feature importance is
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Figure 5.12. CPU Intensive Process Prediction Time Series Zoomed

assigned to features which represent sensors measuring the system memory and 26.6% of

feature importance is assigned to features which represent sensors measuring the power

supply. Although 24.5% of feature importance is assigned to features representing sensors

measuring the CPU it could be initially surprising as one might expect a CPU intensive

process to heavily rely on the CPU for detection. However, as we can see in the feature

importance scores the features which represent sensors measuring the CPU are likely dimin-

ished in their capacity to help in detection due to the additional random CPU load placed

on the system. This forced the detection model to identify patterns and trends in alternative

system components in combination with the measurements from the CPU in order to detect

the CPU intensive process.

Based on the feature importance assigned to the different sensor types seen in figure 5.14

it is likely that the detector is using very small and rapid fluctuations in power in multiple

system components, especially power supplied to the system memory, in order to identify the

CPU intensive process. The process is a video processor and heavily utilizes system memory

and CPU processing during operation which would also causes spikes in the power required

for operation.

When comparing the random forest single model detector to the four other detection

model types the 5 models all performed very well with the single detector model performing
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Figure 5.13. CPU Intensive Process Feature Importance by System Component
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Figure 5.14. CPU Intensive Process Feature Importance by Sensor Type
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slightly better than the other four as seen in table 5.6.

This test process demonstrated a situation where the target process heavily utilizes a

system resource which is also heavily utilized by other processes on the system. This test

demonstrated the viability of utilizing the new detection models for target processes which

fit this category.

5.4.3. Network I/O Process

With this process we were aiming to create a significant amount of network traffic on the

system to determine if the new method can detect a process which generates heavy network

traffic with an additional random amount of CPU usage occurring at the same time. The

actual process we ran utilized the network discovery and testing tool NMAP to carry out a

full port scan of every IP address in the subdomain of the test systems very quickly. The

actual process we ran four consecutive times each test cycle and is as follows

$ sudo nmap -Pn -T4 10.10.10.0/24

The “-Pn” option indicates that the desired test is a port scan which does not perform

host discovery and instead treats all hosts as if they were up. The “-T4” option indicates

a desired timing template with a value ranging from 0 to 5. Lower values represent slower

performance while higher values represent faster performance. In this instance the timing

template is only one position from being the fastest and thus will generate a large amount

of network traffic very quickly. This command required roughly 5 minutes to complete on

the Mac Mini systems.

5.4.3.1. Test Results

The results for the network I/O process unknown additional load tests can be seen in

table 5.7. The data shows that the performance is significantly lower than either of the

previously tested processes. The highest performing machine learning algorithm for the
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advanced random load test was k-nearest neighbor (KNN). Using the KNN algorithm all

instances of the target process were detected and in an average time of only 1.95 seconds.

However, the fallout for this detector was 0.472 which makes implementation unlikely as it

would result in far too many false positives for most applications. This same trend can be

seen with the other machine learning algorithms tested.

Figure 5.15 shows that the DPS for the single model detector trained with KNN does

perform well as a rapid process detector during a small number of tests. However, the

majority of test instances result in a poor DPS of 0.5 or lower. As previously noted, the

single model detector trained with KNN caught all target process instances during testing

in an average time of only 1.95 seconds, but the fallout rate throughout testing averaged

0.472 with some test instances having a fallout rate over 0.9. The erratic and high levels of

fallout during testing can be seen on the far right plot. Due to the extremely high fallout

rate the MCC scores during testing stayed around 0 which means that strictly as a binary

classification model the single model detector trained with KNN is about as effective as

random selection.

Figure 5.15. Network I/O Process Binary Classification Metrics - Single Detector Trained

With KNN
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The timeseries plots in figure 5.16 would indicate that the detector is making positive

prediction almost every time interval and despite detecting all instances of the test process

it has no real value as either a binary classification model or a rapid process detector.

Figure 5.16. Network I/O Process Prediction Time Series - Single Detector Trained With

KNN

While the main takeaway from figure 5.16 is correct is should be noted that due to the

large number of prediction time intervals in the data the plot can appear worse than it

actually is. Instances with false positives will require at least one pixel to visual represent,

but that one pixel actually appears to cover many time intervals. Figure 5.17 shows a small

section of the timeseries plot in figure 5.16. only 2.5% of the time intervals in the network I/O

process test data set are displayed in a plot with the same number of pixels for visualization

as figure 5.16. The detector is clearly not making true predictions at almost every time

interval, but it does appear to be functionally no better than random classification.

Reviewing the feature importance scores in table 5.8 show that there are no features

representing sensors which directly measure the physical state of the network interface. In-

stead, there is a fairly even mix of features which represent sensors that measure system

components which are highly unlikely to undergo a significant enough physical change to be

of any use in process detection.

The distribution of feature importance based on the system components being measured

89



Figure 5.17. Network I/O Process Prediction Time Series Zoomed- Single Detector Trained

With KNN

is shown in figure 5.18. It can be seen that the system component with the highest amount

of feature importance is system memory which is not heavily utilized in the network I/O

test process. Furthermore, the hard drive and the system air temperature also comprise a

large amount of the feature importance. Clearly there would be very little physical change

in the hard drive or the temperature of the air inside the system as a result of sending a

large number of network probes over a short amount of time.

Perhaps the most simplistic way to make the determination that the rapid detector

models are ineffective with this process on this system can be seen in figure 5.19. The

amount of feature importance assigned to features representing temperature sensors is 44.9%.

This indicates that the detection ability of the models in this system are relying heavily on

temperature changes which are far slower and far less accurate than current, power, and

voltage sensors. This is likely because there is no features which directly measure the network

interface and the model must instead use sensors which measure the entire system such as

ambient air temperature.

Table 5.9 shows the highest performing algorithms used in models for each detector type.

The DPS for all five detector types in about the same with some having a higher fallout rate

and a faster detection rate and others having a lower fallout rate and a slower detection rate.
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Figure 5.18. Network I/O Process Feature Importance by System Component
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Figure 5.19. Network I/O Process Feature Importance by Sensor Type
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In both instances the models do not perform well enough to be realistically used as a rapid

process detector.

This test process demonstrates a situation where the target process predominantly utilizes

a system resource which does not have a means of direct measurement through the system’s

physical sensors. This test demonstrated the limited viability of utilizing the new detection

models for target processes which fit this category.

5.5. Summary and Contributions

This experiment demonstrated that the new ransomware detection model presented in

the experiment in chapter 4 is a viable detector for arbitrary processes. The new detection

model exhibited a high level of performance when trained to detect processes which pre-

dominately utilized resources which were specifically monitored by a subset of the system’s

sensors. We believe that as system complexity inevitably increases we are also likely to see

an increase in physical system sensors in order to monitor and regulate operation. The need

to monitor system components with a higher level of resolution will almost certainly increase

the performance of the new detection model and allow for additional use cases.

We can also see from tables 5.3, 5.6 and 5.9 that the single prediction model detector

outperformed the ensemble detectors for all 3 target processes. Previous experiments with

the new detection model in chapter 4found the ensemble detector outperformed the single

prediction model detector when the target process was more complex and utilized a wider

variety of system resources (Taylor et al., 2021). It is reasonable to infer that there is a

tradeoff point at which the complexity of the process causes the more complex detector

models to overtake simpler detector models in performance. We plan to further experiment

with the new detection model and investigate criteria for making a determination about

which type of detection model best suits a target process.
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Table 5.1. File I/O Process Unknown Additional Load Test Results

Algorithm DPS MCC RPD Fallout TPD
Z

er
o

SVC 0.9952 0.9981 1.0 0.0003 0.5

KNN 0.9949 0.9963 1.0 0.0005 0.5

Random Forest 0.9942 0.9979 1.0 0.0003 0.625

MLP 0.9942 0.9941 1.0 0.001 0.4583

Logistic Regression 0.994 0.9952 1.0 0.0013 0.4167

Extra Tree 0.9931 0.9938 1.0 0.0011 0.5833

Naive Bayes 0.99 0.9916 1.0 0.0009 1.0

Decision Tree 0.9869 0.989 1.0 0.003 0.875

S
im

p
le

R
an

d
om

SVC 0.996 0.9955 1.0 0.0013 0.175

Random Forest 0.9951 0.9943 1.0 0.0017 0.2

Extra Tree 0.9944 0.9919 1.0 0.0019 0.25

Logistic Regression 0.9926 0.9899 1.0 0.0032 0.15

Naive Bayes 0.9897 0.9848 1.0 0.0042 0.275

KNN 0.9865 0.9809 1.0 0.0064 0.15

MLP 0.9857 0.9777 1.0 0.0069 0.125

Decision Tree 0.9001 0.8785 1.0 0.051 0.225

A
d
va

n
ce

d
R

an
d
om

Logistic Regression 0.9968 0.9982 1.0 0.0005 0.275

Random Forest 0.9964 0.9984 1.0 0.0004 0.35

KNN 0.9956 0.9972 1.0 0.0008 0.35

Extra Tree 0.9952 0.995 1.0 0.001 0.35

SVC 0.9949 0.9948 1.0 0.0014 0.275

Naive Bayes 0.9948 0.9946 1.0 0.0011 0.375

Decision Tree 0.9921 0.9963 1.0 0.0007 0.775

MLP 0.538 0.1692 1.0 0.8151 0.0667
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Table 5.2. File I/O Process Top Feature Importance Scores

Feature Importance Score

CPU SUPPLY 1 POWER 0.16692266735584263

CPU SUPPLY 1 VOLTAGE 0.15222755254576856

CPU SUPPLY 1 CURRENT 0.1403713089595106

HARD DRIVE POWER 0.1063958593775839

PCH 1.05V LINE CURRENT 0.10570759090994092

1.8V S3 LINE CURRENT 0.06837460029350595

1.8V S3 LINE POWER 0.044147384145957785

HARD DRIVE CURRENT 0.0418151518970547

5V LINE VOLTAGE 0.03387261408253847

CPU A VOLTAGE 0.02743776022050085

DIMM 1.5V S3 LINE CURRENT 0.026168232938537397

DIMM 1.5V S3 LINE POWER 0.022893870276736995

SSD 3.3V S0 LINE CURRENT 0.021663835991360663

DDR3 MEMORY 1.35V LINE POWER 0.012148017781998794

TOTAL SYSTEM SUPPLY POWER 0.00983400662100652

DDR3 MEMORY 1.35V LINE VOLTAGE 0.009308429505969626

DC INPUT CURRENT 0.0071807934059072666

DDR3 MEMORY 1.35V LINE CURRENT 0.0025460589388404233

PLATFORM CONTROLLER HUB CHIP TEMPERATU 0.0006553833125740882
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Table 5.3. File I/O Process Detector Type Comparison

Detector Top Algorithm DPS MCC RPD Fallout TPD

Single Logistic Regression 0.9968 0.9982 1.0 0.0005 0.275

Ensemble 6 Single Logistic Regression 0.9967 0.998 1.0 0.0005 0.275

Ensemble 11 Single Extra Tree 0.9944 0.9937 1.0 0.0014 0.35

Ensemble 6 Dual Logistic Regression 0.9967 0.998 1.0 0.0005 0.275

Ensemble 11 Dual Extra Tree 0.9944 0.9937 1.0 0.0014 0.35
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Table 5.4. CPU Intensive Process Unknown Additional Load Test Results

Algorithm DPS MCC RPD Fallout TPD
Z

er
o

SVC 0.9987 0.9989 1.0 0.0001 0.125

KNN 0.9987 0.9988 1.0 0.0001 0.125

Logistic Regression 0.9987 0.9987 1.0 0.0002 0.125

Decision Tree 0.9985 0.9978 1.0 0.0003 0.125

Random Forest 0.9984 0.9981 1.0 0.0003 0.125

MLP 0.9977 0.9932 1.0 0.0007 0.125

Extra Tree 0.9976 0.993 1.0 0.0007 0.125

Naive Bayes 0.9951 0.9912 1.0 0.0006 0.4583

S
im

p
le

R
an

d
om

Decision Tree 0.9988 0.9987 1.0 0.0002 0.1

KNN 0.9987 0.999 1.0 0.0001 0.125

Logistic Regression 0.9986 0.9991 1.0 0.0002 0.125

SVC 0.9983 0.9989 1.0 0.0002 0.15

Random Forest 0.9983 0.9983 1.0 0.0004 0.1

Extra Tree 0.9974 0.9951 1.0 0.0007 0.15

MLP 0.9972 0.9944 1.0 0.001 0.1

Naive Bayes 0.9267 0.8958 1.0 0.0844 0.25

A
d
va

n
ce

d
R

an
d
om

Random Forest 0.989 0.7878 1.0 0.0002 1.275

Decision Tree 0.9875 0.7613 1.0 0.0004 1.4

Extra Tree 0.9861 0.5901 1.0 0.0005 1.55

KNN 0.9776 0.6876 1.0 0.0008 2.5

Naive Bayes 0.7896 0.6577 1.0 0.3329 0.6

MLP 0.5484 0.4717 0.55 0.0003 0.2273

Logistic Regression 0.4988 0.4756 0.5 0.0001 0.25

SVC 0.4738 0.4738 0.475 0.0001 0.2632
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Table 5.5. CPU Intensive Process Top Feature Importance Scores

Feature Importance Score

DIMM 1.5V S3 LINE CURRENT 0.13084167347811235

1.8V S3 LINE CURRENT 0.12690068235864524

DDR3 MEMORY 1.35V LINE VOLTAGE 0.11755596775437337

DDR3 MEMORY 1.35V LINE POWER 0.09879153804845998

DIMM 1.5V S3 LINE POWER 0.06939175162219618

DDR3 MEMORY 1.35V LINE CURRENT 0.06919840988098663

CPU HIGH SIDE POWER 0.06389207490906618

1.8V S3 LINE POWER 0.06113221533693672

CPU A POWER 0.055223508428859154

CPU PACKAGE CORE POWER 0.04625019647991447

DC INPUT POWER 0.04304485357736412

CPU A CURRENT 0.030399367834582476

CPU PACKAGE TOTAL POWER 0.01859136828060757

TOTAL SYSTEM SUPPLY POWER 0.01768053858166743

DC INPUT CURRENT 0.01738988585543115

CPU HIGH SIDE CURRENT 0.01638827564124705

CPU A VOLTAGE 0.010221401493927125

CPU PACKAGE GPU POWER 0.0022629476485113344

CPU CORE 1 TEMPERATURE 0.0018502909317993422

PLATFORM CONTROLLER HUB CHIP TEMPERATU 0.0012879949166906335

SSD 3.3V S0 LINE CURRENT 0.0007286477722697663

MLB AMBIENT TEMPERATURE TEMPERATURE 0.0007059067646638107

WLAN CARD TEMPERATURE.1 0.000143849698768454

MAIN LOGIC BOARD TEMPERATURE 0.00011531944275823139
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Table 5.6. CPU Intensive Process Detector Type Comparison

Detector Top Algorithm DPS MCC RPD Fallout TPD

Single Random Forest 0.989 0.7878 1.0 0.0002 1.275

Ensemble 6 Single Naive Bayes 0.9781 0.7271 1.0 0.002 2.15

Ensemble 11 Single Naive Bayes 0.9836 0.7835 1.0 0.004 1.05

Ensemble 6 Dual Decision Tree 0.988 0.7524 1.0 0.0002 1.4

Ensemble 11 Dual Extra Tree 0.9854 0.5758 1.0 0.0004 1.65

99



Table 5.7. Network I/O Process Unknown Additional Load Test Results

Algorithm DPS MCC RPD Fallout TPD
Z

er
o

SVC 0.9843 0.7535 1.0 0.0057 0.5833

MLP 0.9802 0.6261 1.0 0.0069 0.7917

KNN 0.9052 0.1949 1.0 0.0413 1.8333

Logistic Regression 0.9005 0.1199 1.0 0.0059 10.5833

Decision Tree 0.8339 0.3383 1.0 0.088 0.5417

Extra Tree 0.7173 0.1485 0.8333 0.0148 12.9

Naive Bayes 0.0 -0.002 0.0 0.0009 nan

Random Forest 0.0 -0.0014 0.0 0.0006 nan

S
im

p
le

R
an

d
om

SVC 0.8363 0.3751 0.95 0.046 3.6842

MLP 0.7829 0.2976 1.0 0.1874 0.975

KNN 0.7641 0.1906 1.0 0.1234 0.875

Logistic Regression 0.7568 0.2759 0.875 0.0492 4.0571

Extra Tree 0.7296 0.1318 0.975 0.1662 3.3333

Decision Tree 0.6966 0.1754 1.0 0.1725 1.8

Naive Bayes 0.4965 0.0479 0.775 0.4243 2.8065

Random Forest 0.4318 0.1693 0.5 0.0327 2.9

A
d
va

n
ce

d
R

an
d
om

KNN 0.5484 0.017 1.0 0.472 1.95

Decision Tree 0.5114 0.0114 1.0 0.4957 3.7

Logistic Regression 0.5103 0.0094 1.0 0.8753 0.2

MLP 0.4888 -0.0636 1.0 0.8323 1.65

SVC 0.4811 0.015 0.975 0.906 1.1795

Extra Tree 0.3904 -0.0756 0.775 0.5175 5.129

Naive Bayes 0.3625 -0.0337 0.725 0.7077 0.0

Random Forest 0.3354 0.0135 0.575 0.3946 2.7826
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Table 5.8. Network I/O Process Top Feature Importance Scores

Feature Importance Score

SSD 3.3V S0 LINE CURRENT 0.1382299805992649

DIMM 1.5V S3 LINE CURRENT 0.06578903979426579

MEMORY SLOTS TEMPERATURE 0.06281660320171678

AMBIENT AIR POSITION 3 TEMPERATURE 0.05920182751612403

1.8V S3 LINE CURRENT 0.05719195405054438

THUNDERBOLT TEMPERATURE 0.05118092347087696

1.8V S3 LINE POWER 0.05068674597877819

WLAN CARD TEMPERATURE 0.04086890755016818

WLAN CARD TEMPERATURE.1 0.04062318834921384

DIMM 1.5V S3 LINE POWER 0.0381753411378859

MEMORY BANK A POS 1 TEMPERATURE 0.036491722938217785

CPU A VOLTAGE 0.03580001958339358

AMBIENT AIR TEMPERATURE 0.030837969990001813

AMBIENT AIR POSITION 2 TEMPERATURE 0.02984843808351909

CPU A PROXIMITY TEMPERATURE.1 0.027565928006298066

DDR3 MEMORY 1.35V LINE VOLTAGE 0.027442260008739096

MAIN LOGIC BOARD TEMPERATURE 0.025309164013207368

CPU A PROXIMITY TEMPERATURE 0.02514906413286043

DDR3 MEMORY 1.35V LINE CURRENT 0.021693161396651662

DDR3 MEMORY 1.35V LINE POWER 0.0211093104123621

DC INPUT POWER 0.018000880771544697

CPU A POWER 0.01223523877093388

PLATFORM CONTROLLER HUB CHIP TEMPERATU 0.01140814018034716

1.8V S3 LINE VOLTAGE 0.011208493058368352
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Table 5.9. Network I/O Process Detector Type Comparison

Detector Top Algorithm DPS MCC RPD Fallout TPD

Single KNN 0.5484 0.017 1.0 0.472 1.95

Ensemble 6 Single Random Forest 0.506 -0.0119 0.975 0.8284 0.2308

Ensemble 11 Single Logistic Regression 0.5444 0.0076 0.95 0.5489 4.9211

Ensemble 6 Dual Random Forest 0.5062 -0.0116 0.975 0.8375 0.2051

Ensemble 11 Dual Random Forest 0.5401 -0.0053 1.0 0.8598 0.3
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Chapter 6

Virtualization Detection

Virtualization allows businesses to utilize technological infrastructure without the need

to purchase, install, or maintain anything themselves. Cloud computing services such as

Amazon Web Services (AWS) and Microsoft Azure will process 94% of all enterprise work-

loads in 2021. Software as a Service (SaaS) processes are projected to account for 75% of the

total workload (Sumina and Ivey, 2021). When using cloud services, security is a concern

for many businesses as the cloud service provider must be trusted to stay up to date and

vigilant against attacks. It was found in a survey that 75% of businesses consider security a

top concern when moving to the cloud (Freeze, 2021). Virtualization obfuscates and isolates

virtual entities from each other and the host system. However, although the virtual entities

and the host are all isolated and obfuscated from each other they share the same physical

hardware.

When considering the work done in chapters 4 and 5 it has been shown that the physical

state of a system can be measured with system sensors. Despite the obfuscation and isolation

inherent in virtualization the operation of the virtual system still effects the physical system

in a way which makes detection of virtual activity possible. Hosts would then have the ability

to train detection models using the system’s physical sensors to detect specific activity of

interest being carried out on the virtual entities which it is hosting.

Recently cyber attackers have been discovered to be launching ransomware attacks through

virtual machines in order to evade existing system security methods. Perhaps the most rele-

vant aspect of such attacks is instances where an attacker on a virtual machine will create a

ransomware payload in a shared folder which effectively allows evasion of security monitors
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and easy system penetration. Accounting for bad actors in a cloud environment means host

systems need to be able to identify potentially malicious activity from its guests systems

while ensuring that the guest’s isolation and privacy are not compromised in the process.

Using physical sensor data in order to detect target activity would allow a host to accomplish

this task.

6.1. Training and Testing Detection Models

This experiment utilizes the same test environment as described in section 5.2.1. Rather

than having multiple different process data sets this experiment utilized only a single data set

with multiple binary flags indicating when virtual activity occur ed. The data was collected

in the same manner outlined in section 5.2.3. During the data collection process a virtual

machine was launched, ran a simulated user script, and then shutdown at the time instances

where target processes were run in chapter 5. Additionally, this experiment built and tested

the same machine learning algorithms and detection model types outlined in the experiment

in chapter 5.

6.2. Implementation of Target Activity for Detection

The target activity implementation aimed to launch a virtual machine using a type 2

hypervisor with a simulated user load running on the virtual machine and an additional

random amount of CPU usage occurring at the same time on the host system. We utilized

VMware Fusion 10 as the type 2 hypervisor running on the Mac Minis outlined in section

5.2.1. VMware Fusion includes a command line tool called ”vmrun” which allows a virtual

machine to be controlled and interacted with on the host system through the command line

(vmw). We implemented commands to start and display, run a Bash script, and shutdown

and close a specific virtual machine. The virtual machine used in the testing ran Xubuntu

which is an Ubuntu variant that uses the XFCE desktop environment which is lighter weight

and requires fewer resources. The virtual machine was allocated one of the Mac Mini’s
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processing cores, 2 GB of memory out of a total of 4 GB, and a pre-allocated virtual hard

drive of 100GB. The command used to launch and display the virtual machine is as follows

$ vmrun start process.vmx gui

The vmx file path is for the file that acts as the configuration for the target virtual

machine. The last command line argument “gui” means the virtual machine should be

shown on the screen once launched. The virtual machine was set to automatically log on

without a password. Fully starting up the virtual machine required roughly 2 minutes. We

then passed a command to the virtual machine which included a path to the Bash interpreter

and a path to a script that we created to add a simulated user load to the virtual machine.

The command used to run the bash script is as follows

$ vmrun -gu <USERNAME > -gp <PASSWORD > runScriptInGuest process.

vmx -interactive "" "/bin/bash usersim 5"

The “-gu” option means the username for accessing the virtual machine is the following

command line argument. Additionally, the “-gp” option means the following command line

argument is the password for logging in to the virtual machine with the username. The

vmx file path is for the file that acts the configuration for the target virtual machine. The

option “-interactive” is required to run a script on the virtual machine to avoid warnings

from the operating system. The last argument is the command to be run on the guest virtual

machine command line. The Bash script usersim utilized the stress test suite Stress-ng to

create three stressors that run for the desired amount of time on the guest virtual machine

(ColinIanKing). The script creates one CPU stressor, one mixed I/O stresser, and one hard

drive stressor. The CPU stressor performs matrix multiplication and is set to utilize 30%

of the available CPU resources. The mixed I/O stressor performers randomly selected types

of I/O operations, and the hard drive stressor continuously reads and writes from the hard

drive. The stressors were run to simulate the load of a user on the virtual machine. The

usersim script is run for 5 minutes each time after the virtual machine has fully started.
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Once the usersim script has completed the 5-minute run the virtual machine is shut down

using the following command

$ vmrun stop process.vmx soft

The vmx file path is for the file that acts as the configuration for the target virtual

machine. The last command line argument “soft” means the virtual machine should be shut

down using the system’s shutdown script. Starting the virtual machine, running the usersim

script, and shutting down the virtual machine requires roughly 7 minutes.

Once the start command is run for the virtual machine a flag is set in the data to indicate

that the virtual machine is operational. This flag stays set until the stop command is run.

During this period of time the command to run the user simulation script on the virtual

machine is executed which causes a second flag to be set indicating that the simulated user

script is operational. This flag stays set until the simulated user script completes on the

virtual machine. This creates two possible events to detect from the data. The first event

to detect is when the virtual machine is launched. Afterwards, several minutes go by until

the second event to detect, the simulated user script, is run on the virtual machine. The

detection model trained to detect the virtual machine launch and operation would ideally

make positive predictions from the time the virtual machine starts to the time it stops.

The potential complication could come from the increased usage of allocated resources to

the virtual machine once the simulated user script begins running. The detection model

trained to detect the simulated user script running on the virtual machine would ideally

make positive predictions from the time the simulated user script began running until the

time it completed. It is possible that the detection model can simply detect the instances

when the virtual machine is running which includes all instances of when the simulated

user script is running. However, if this occurs the false positive predictions prior to every

instance of the simulated user script would have a noticeable negative effect on the detector

performance metrics.
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6.3. Experimental Results

6.3.1. Virtual Machine Running on a Host

6.3.1.1. Test Results

The results for detection of a virtual machine running on a host can be seen in table 6.1.

Both the simple random load test and the advanced random load test resulted in a DPS

higher than 0.9 for all machine learning algorithms except for one. The highest performing

machine learning algorithm was KNN as it had the highest DPS for the advanced random

load test and the second highest DPS for the simple random load test. The detection model

which used KNN detected all instances of the target process during the advanced random

load test in an average time of 0.425 seconds while maintaining an average fallout of only

0.0065.

Figure 6.1 shows the DPS, MCC, and fallout rate for all additional random load levels

used during testing. The DPS plot on the left shows that the new detection model has a

very high level of performance with only a very minor drop at higher additional random load

levels. This can also be seen in the plot on the right which shows the fallout rate which

remains very close to zero with only a minor increase at the higher additional random load

levels. The middle graph shows that the MCC scores were only around 0.6 which indicates

that while this model performs well as a rapid detector it is only a moderately effective

binary classification model.

The reason for the lower MCC scores can easily be seen in figure 6.2 which shows that

while the virtual machine being launched was detected with success there also exists a

noticeable amount of false positives. However, as outlined in 5.4.3.1, the timeseries graphs

can appear to be worse than they actually are. This is due to there being 40 hours of data

with a prediction occuring every second. This can cause false positives to appear much worse

on the timeseries as one pixel is actually the size of many prediction instances.
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Figure 6.1. Virtual Machine Running Binary Classification Metrics - Single Detector Trained

With KNN

Figure 6.2. Virtual Machine Running Prediction Time Series - Single Detector Trained With

KNN
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Table 6.2 shows the mean decrease in impurity (MDI) feature importance scores from the

single model detector trained with the random forest algorithm. The top 3 features are all

sensors that measure the CPU. This is worth noting since the CPU is also having a random

additional load placed on it during testing but the physical changes in the CPU due to the

virtual machine being launched would seem to be distinct enough that it can be observed

despite the ”noise” of the additional load.

Figure 6.3 shows that 51.7% of feature importance is assigned to features which represent

sensors that measure the CPU. It is also interesting to note that features representing sensors

that measure the system memory were assigned 32.0% of feature importance. It would seem

from the feature importance scores that the detection model is able to identify when the

virtual machine is launched and running by the power fluctuations caused by the CPU and

memory resources allocated to the virtual machine.

Figure 6.4 shows an almost evenly balanced distribution of feature importance between

features representing sensors that measure power, current, and voltage.

Table 6.3 shows the top performing algorithm for each of the 5 detector model types.

It would seem that as the detectors become more complex their performance diminishes.

Considering what was found during the feature analysis this would seem to suggest that

when a virtual machine is launched and is running on a system there exists a relatively

simple but distinguishable pattern of physical changes to the system. Virtual machines are

allocated specific amounts of system resources which are often left unchanged by a user which

could explain the distinguishable signature on the system.

The new detection model was shown to be not only effective in detecting the launch and

operation of a virtual machine, but was also able to perform detection without the need for

the more complex ensemble detection models. This seems to suggest that virtual operations

which have a regularly allocated amount of the system resources for operation are good use

cases for physical sensor based detection.
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Figure 6.3. Virtual Machine Running Feature Importance by System Component
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Figure 6.4. Virtual Machine Running Feature Importance by Sensor Type
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6.3.2. Simulated User Script Running on Virtual Machine

6.3.2.1. Test Results

The results for detection of a simulated user script running on a virtual machine can

be seen in table 6.4. The highest performing detection model when there was an unknown

additional random CPU load present was trained with the random forest machine learning

algorithm. The detection model trained with random forest had a DPS of 0.9682 for the

advanced random load test and a DPS of 0.8054 for the simple random load test. What is

interesting to note in this experiment was that the detection models increased in performance

as the testing environment became more complex. In fact during the zero load and simple

random load tests no detection model was able to detect all of the instances where the

simulated user script was running on the virtual machine. However, during the advanced

random load test 4 detection models were able to detect all of the simulated user script runs

and of those 3 had a DPS above 0.9. Based on these results it would seem that as the system

came under increased stress and resources were being utilized in very different and random

ways the effect on the physical state of the system from the simulated user script running

on the virtual machine became more pronounced and distinguishable.

Figure 6.5 shows that during the advanced random load testing the random forest detec-

tion model maintained a high DPS and a low fallout rate without any major performance

impact as the additional random load became larger. However, around 55% additional ran-

dom load the MCC score became very erratic and appears to indicate that the prediction

model is not a very good pure binary classification model.

Examining the timeseries plot of all tests conducted with the random forest detection

model during the advanced random load test offers insight into the low MCC scores. As

was the case with previous experiments the detection model appears to have difficulty in

maintaining positive prediction during the duration of an instance in time where the simu-

lated user load is running on the virtual machine. In terms of binary classification metrics
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Figure 6.5. Simulated User Script Running on Virtual Machine Binary Classification Metrics

- Single Detector Trained With Random Forest

the detection model maintains a low fallout rate and a level of specificity which are good

indications it is a good rapid detection model. However, the detection model had an average

miss rate of 0.6805 and an average sensitivity of only 0.3195. The high miss rate and low

sensitivity is due to the detection model going back and forth between positive and negative

predictions during instances of the simulated user script running on the virtual machine. In

the context of a rapid detection model this is not a significant concern but in terms of a bi-

nary classification model this is an indication that it is not a strong predictor. Furthermore,

when considering that the MCC metric accounts for disproportionate positive and negative

system states during testing and balances the prediction ability for both evenly this causes

the MCC to be drastically lower despite the detection model performing at a high level in

the context of rapid detection.

Table 6.5 shows the top features for the random forest trained detection model as de-

termined through MDI. It is notable that the top features are a mixture of CPU sensors,

memory sensors, and hard drive sensors since the simulated user script on the virtual machine

is running one CPU stressor, one I/O stressor, and one hard drive stressor.
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Figure 6.6. Simulated User Script Running on Virtual Machine Prediction Time Series -

Single Detector Trained With Random Forest

Figure 6.7 shows the distribution of feature importance based on the system component

measured by the features. It is worth noting that despite the CPU having random unknown

loads it is still by far the most important system component for the detection model. This

appears to indicate that when the physical system is under a large amount of stress and

resources are not as readily available the virtual machine operations have a more pronounced

physical effect on the system and in turn are more easily detected. This was also seen in the

results from section 6.3.1.1.

Also similar to the results in section 6.3.1.1 is the distribution of feature importance

based on the type of measurement performed by each sensor. Figure 6.8 shows that there is

an almost evenly balanced distribution of feature importance between features representing

sensors that measure power, current, and voltage. Although, in this experiment current

measurements have a more pronounced importance at the expense of voltage measurements.

It is likely this is due to the model being trained to detect the simulated user script running

on the virtual machine which involves operations that cause changes in current that make it

further distinguishable from the virtual machine itself simply running.

Table 6.6 shows that the single model detector had the highest DPS out of the five

model type. However, it was also was the slowest where the more complex model types
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Figure 6.7. Simulated User Script Running on Virtual Machine Feature Importance by

System Component
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Figure 6.8. Simulated User Script Running on Virtual Machine Feature Importance by

Sensor Type
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were very fast with only a slightly high fallout rate. This is likely an indication that the

complexity of the behavior being targeted by the detector is reaching a point where the more

complex ensemble detection models are close to overtaking the more simplistic single model

in performance.

6.4. Summary and Contributions

Virtual entities are obfuscated and isolated from each other as well as the host system

causing traditional security methods which rely on behavioral analysis to be very ineffective

(Palmer, 2021). However, it often overlooked that the physical state of the host system will

change based on specific activity carried out by a hypervisor. In this experiment we were

able to use this idea to expand the new detection model from chapters 4 and 5 to include

activity carried out by a type two hypervisor from a host system. We were able to detect

when a virtual machine was launched and run on a host. Additionally, we were able to detect

when a specific process was run on the same virtual machine. It can be seen in figure 6.7

and 6.8 that the features used to detect these test cases were very similar as the actual test

data set is the same. However, the features used for detecting the process run on the virtual

machine, rather than simply the virtual machine running, do show importance scores which

indicate the actual process run on the virtual machine causes a slightly more specific change

to the physical system. While this same change being accounted for in the detection models

used for detecting the virtual machine simply running it seems that the feature importance

scores are altered due to the period prior to the process running when the virtual machine

is launching. This experiment served as a proof of concept for virtualization detection and

shows that further experiments and analysis in this area is warranted.

117



Table 6.1. Virtual Machine Running With Unknown Additional Load Test Results

Algorithm DPS MCC RPD Fallout TPD
Z

er
o

Decision Tree 0.9898 0.9433 1.0 0.0039 0.3333

KNN 0.9896 0.9661 1.0 0.0045 0.2083

SVC 0.9889 0.9658 1.0 0.0048 0.2083

Logistic Regression 0.9888 0.956 1.0 0.004 0.4167

Extra Tree 0.9872 0.9528 1.0 0.0057 0.2083

Random Forest 0.9856 0.8877 1.0 0.0039 0.8333

MLP 0.9853 0.9462 1.0 0.0064 0.2917

Naive Bayes 0.9829 0.5045 1.0 0.0022 1.5417

S
im

p
le

R
an

d
om

Logistic Regression 0.9896 0.9402 1.0 0.004 0.325

KNN 0.9865 0.9375 1.0 0.006 0.225

SVC 0.9863 0.9365 1.0 0.0061 0.225

Random Forest 0.9753 0.884 1.0 0.0106 0.525

Extra Tree 0.9721 0.8756 1.0 0.0136 0.2

MLP 0.9609 0.8591 1.0 0.0194 0.225

Decision Tree 0.9481 0.8228 1.0 0.0259 0.25

Naive Bayes 0.8566 0.6393 1.0 0.1339 0.8

A
d
va

n
ce

d
R

an
d
om

KNN 0.9839 0.6658 1.0 0.0065 0.425

SVC 0.9836 0.6735 1.0 0.0071 0.325

Random Forest 0.9822 0.6697 1.0 0.0081 0.275

MLP 0.9753 0.5257 1.0 0.0073 1.275

Extra Tree 0.9566 0.5926 1.0 0.021 0.375

Logistic Regression 0.9386 0.6506 1.0 0.037 0.425

Naive Bayes 0.9029 0.5785 1.0 0.0772 0.3

Decision Tree 0.7266 0.2298 1.0 0.2829 0.2
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Table 6.2. Virtual Machine Running Top Feature Importance Scores

Feature Importance Score

CPU SUPPLY 1 CURRENT 0.16209144360458197

CPU SUPPLY 1 VOLTAGE 0.13858467696758017

CPU SUPPLY 1 POWER 0.1373765892816713

1.8V S3 LINE CURRENT 0.09161934004015827

DDR3 MEMORY 1.35V LINE VOLTAGE 0.08926097645867695

CPU A VOLTAGE 0.06401910693608606

DIMM 1.5V S3 LINE POWER 0.05738645184415804

DIMM 1.5V S3 LINE CURRENT 0.05444884551848147

DDR3 MEMORY 1.35V LINE CURRENT 0.046280768340159505

DDR3 MEMORY 1.35V LINE POWER 0.042101770415796755

HARD DRIVE CURRENT 0.030777365863822632

HARD DRIVE POWER 0.02765657137570172

PCH 1.05V LINE CURRENT 0.0163088628394155

5V LINE VOLTAGE 0.015925282215279175

1.8V S3 LINE POWER 0.008401920710889925

CPU HIGH SIDE POWER 0.003642497614649063

CPU A CURRENT 0.0035535214212078785

CPU PACKAGE TOTAL POWER 0.002843679739648582

CPU A POWER 0.0023610812127552922

CPU PACKAGE GPU POWER 0.00174899038706063

TOTAL SYSTEM SUPPLY POWER 0.0012430376419228925
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Table 6.3. Virtual Machine Running Detector Type Comparison

Detector Top Algorithm DPS MCC RPD Fallout TPD

Single KNN 0.9839 0.6658 1.0 0.0065 0.425

Ensemble 6 Single Logistic Regression 0.9724 0.5553 1.0 0.0064 1.825

Ensemble 11 Single Logistic Regression 0.9766 0.6174 1.0 0.008 0.95

Ensemble 6 Dual Logistic Regression 0.9544 0.6301 1.0 0.0183 1.25

Ensemble 11 Dual Logistic Regression 0.9461 0.6743 1.0 0.0259 0.5
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Table 6.4. Simulated User Script Running on Virtual Machine Unknown Additional Load

Test Results

Algorithm DPS MCC RPD Fallout TPD
Z

er
o

KNN 0.8195 0.8035 0.8421 0.0023 2.6875

Decision Tree 0.8179 0.7612 0.8421 0.0047 2.375

Naive Bayes 0.816 0.3127 0.8421 0.0024 3.1875

MLP 0.8141 0.775 0.8421 0.003 3.25

SVC 0.812 0.7981 0.8421 0.001 4.0625

Extra Tree 0.8085 0.7804 0.8421 0.0017 4.375

Logistic Regression 0.8063 0.7387 0.8421 0.0036 4.25

Random Forest 0.7953 0.7138 0.8421 0.0012 6.375

S
im

p
le

R
an

d
om

Naive Bayes 0.9145 0.5076 0.9667 0.025 0.5517

Random Forest 0.8054 0.5422 0.8333 0.0101 1.72

KNN 0.75 0.5818 0.7667 0.0074 0.7826

Decision Tree 0.6844 0.5495 0.7 0.0072 1.0476

MLP 0.617 0.5489 0.6333 0.0056 1.7895

Extra Tree 0.5846 0.526 0.6 0.0055 1.7778

SVC 0.5825 0.5605 0.6 0.0039 2.7778

Logistic Regression 0.5759 0.5224 0.6 0.0122 1.8333

A
d
va

n
ce

d
R

an
d
om

Random Forest 0.9682 0.4535 1.0 0.0113 1.2

Logistic Regression 0.9383 0.3999 1.0 0.0089 5.35

Naive Bayes 0.9343 0.3972 1.0 0.0325 0.375

KNN 0.908 0.3017 0.95 0.006 3.8684

Extra Tree 0.8496 0.1873 0.925 0.0024 9.1892

SVC 0.8228 0.2718 0.925 0.0006 13.1081

Decision Tree 0.7711 0.1855 1.0 0.2429 1.775

MLP 0.6617 0.1056 0.8 0.0002 20.9688
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Table 6.5. Simulated User Script Running on Virtual Machine Top Feature Importance

Scores

Feature Importance Score

CPU SUPPLY 1 CURRENT 0.18598349523946825

CPU SUPPLY 1 POWER 0.16244837692082506

CPU SUPPLY 1 VOLTAGE 0.13312233269140145

DDR3 MEMORY 1.35V LINE VOLTAGE 0.07181538692907137

HARD DRIVE CURRENT 0.07160332692209632

HARD DRIVE POWER 0.06865739571118795

PCH 1.05V LINE CURRENT 0.05935060514588598

1.8V S3 LINE CURRENT 0.05004190779956479

CPU A VOLTAGE 0.04139858571755868

DIMM 1.5V S3 LINE POWER 0.04065020079118585

DDR3 MEMORY 1.35V LINE POWER 0.022345117730539682

DIMM 1.5V S3 LINE CURRENT 0.020561776426695162

DDR3 MEMORY 1.35V LINE CURRENT 0.014770014323036547

5V LINE VOLTAGE 0.014232748297133857

1.8V S3 LINE POWER 0.012745097779953602

Table 6.6. Simulated User Script Running on Virtual Machine Detector Type Comparison

Detector Top Algorithm DPS MCC RPD Fallout TPD

Single Random Forest 0.9682 0.4535 1.0 0.0113 1.2

Ensemble 6 Single Naive Bayes 0.9379 0.282 1.0 0.0289 0.775

Ensemble 11 Single Naive Bayes 0.9395 0.3037 1.0 0.0306 0.2

Ensemble 6 Dual Naive Bayes 0.9148 0.3928 1.0 0.0443 0.0

Ensemble 11 Dual Naive Bayes 0.9101 0.4004 1.0 0.0467 0.0
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Chapter 7

Conclusion

7.1. Summary

System side channel data has commonly been used to attack systems in which an attacker

has knowledge of how a target behavior or activity physically effects a system. Instead of

attacking a system with side channel data we show that it is possible to defend a system by

training machine learning algorithms to detect intricate patterns in the physical behavior of

a system which correlate to a target behavior or activity.

This research effort has investigated and carried out experiments to determine the viabil-

ity of utilizing side channel data streams from physical devices along with machine learning

models for enhancing the security of a single physical system. Our results have shown that

when sufficient side channel data is collected and meaningful labels are applied the new se-

curity approach is able to identify potential problems and irregularities very quickly. It is

our belief that incorporating our new method with existing methods could help reduce the

time it currently takes for detecting such events by acting as an early warning for more in

depth security analysis.

This new method works by collecting a large amount of readily available side channel

data and finding extremely complex relationships which can be used to draw conclusions

about the system. It is our hypothesis that by implementing the same core principles in

remote and virtual environments a user may be able to identify potential security threats

by collecting and analyzing readily available side channels data streams in order to identify

extremely complex patterns and relationships which are able to be used to draw conclusions

about the environment and potential security threats.
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7.2. Future Work

This research effort was able to show a proof of concept for physical sensor side channel

security. However, there is still a large amount of research that can be conducted in order to

refine the detection methods and identify new use cases. The addition of additional sensors

into a system, as seen in chapter 3, was limited to an ICS in the scope of this study. However,

we believe it may be possible to implement this technique in additional systems such as rack

mounted servers. This would allow for rapid monitoring and detection of anomalies at a scale

desired by an administrator. We also believe that the new detection model investigated

in chapters 4, 5, and 6 requires additional investigation into how the complexity of the

behavior being targeted effects the detection model type selection for optimal performance.

For instance, the simulated ransomware process in chapter 4 was complex enough that a

more advanced ensemble detection model was superior in performance to that of a single

detection model. However, for the simple processes in chapter 5 and even the hypervisor

activity in chapter 6 the single detection model was superior in performance to the more

complex ensemble detection models.

Due to the relatively small amount of research that has been conducted in this area many

different aspects of performance and implementation of physical sensor side channel security

warrant further investigation. This research effort’s largest contribution is that we were able

to show the viability of physical sensor side channel security for several different use cases

which are are high value to the cybersecurity community.
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