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Abstract—Discrete finite-valued functions are increasingly important in applications involving
automation and control. In particular, it is evident that industry is focusing on “Systems-on-a-
Chip” (SoC) where the integration of analog (infinite-valued) and digital (binary-valued) circuits
must co-exist. As designers struggle with these interfacing issues, it is natural to consider
the intermediate circuits that can be modeled as multi-valued, discrete logic-level circuits.
This viewpoint is not unprecedented as such principles have been used for at least the past
twenty years in telecommunications protocols. If an analogous approach is considered in control
systems implemented in “Integrated Circuit” (IC) designs, it is proposed that spectral analysis
may provide an important role and efficient methods for computing such mixed-radix function
spectra are described here. These methods are formulated as transformations of word-level
decision diagrams representing the underlying arithmetic expressions and can be implemented
as graph traversal algorithms. The theoretical foundation of the spectral transform of a mixed-
radix function is presented and the equivalence of the resulting spectrum and the spectrum of
a Cayley graph is shown.

1. INTRODUCTION

It is shown that the analysis and synthesis of functions with discrete domain and range spaces
may be considered using algebraic group theory and spectral analysis. It is proposed that such
theory provides a natural framework for the use of arithmetic expressions that represent multi-
valued (i.e., greater than binary-valued) functions. In particular it is conjectured that this evolution
of modern circuitry will first be composed of infinite-valued (analog) circuitry that is interfaced
with digital (binary-valued) circuits and later be generalized to consist of circuitry that can be
modeled as a discrete mixed-radix arithmetic expression. It is argued that the wealth of knowledge
obtained using discrete transforms for sampled analog signals may be well suited for the synthesis
and analysis of these conjectured new systems.
It has been shown that the Walsh spectrum of a binary-valued function f(x1, x2, . . . , xn) may

be computed as the spectrum of a Cayley graph over the elementary additive Abelian group Z2n

using a generator based on f [1]. These results were also generalized to a technique to compute the
Chrestenson spectrum [3,4] of finite discrete-valued functions in [2]. In general, these techniques can
be proven to yield these spectra through the use of group character theory as described in [5] where
the resulting spectral values are shown to be equivalent to inner products of the Cayley graph color
vectors and the rows of the group character tables. If a proper generator is used in the formation
of the Cayley graph, the corresponding color graph vector can be defined such that it is equivalent
to a discrete function truth vector. Because the rows of the Walsh and Chrestenson transformation
matrices are defined as the rows of the group character tables describing the elementary additive
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Abelian group [8], the spectrum of the Cayley color graph is equivalent to the spectrum of the
discrete function.
Mixed-radix “Multiple Valued Logic” (MVL) functions are assumed to be finite and discrete-

valued and depend on a finite-valued variable support set {xi, . . . , xj} such that xi is qi-valued
and xj is qj-valued with qi �= qj. The spectra of such MVL functions is of interest to circuit
designers and automated design tool researchers and developers. Spectral transforms are described
that are applicable to such functions over the elementary additive (mod(p)) Abelian groups. Three
formulations of such transforms are described here; a linear transformation matrix derived from a
group character table, a Kronecker-based expansion allowing for a “fast” transform algorithm, and
a Cayley graph spectrum computation. It is shown that a particular spectral transformation of
a discrete mixed-radix function over Z6 is equivalent to that over Z2 × Z3 within a permutation.
Also, it is shown that a Cayley graph may be formed over Z6 with a generator corresponding to
the discrete function of interest.
The results in [1, 2] considered the spectra of p-valued functions with variable support sets

consisting of q-valued variables. Here the subject of computing the spectra of p-valued functions
with support sets of variables {x1, x2, . . . , xn} are considered such that each variable xi is qi-valued
and qi �= qj for various pairs of (i, j). Here, such functions are referred to as mixed-radix since the
support variables are xi ∈ Zi for different values of i. It is noted that the case of the function f
being p-valued is not as of much interest as the case of different-valued variables in the support set
since for p = 2 a Cayley graph results and for p > 2 a Cayley color graph results which can simply
be considered as a disjoint set of Cayley graphs.
The techniques described here allow for input-output signals of discrete control systems repre-

sented as word-level decision diagrams to be directly transformed into graphs representing corre-
sponding spectral arithmetic expressions. Furthermore, efficient algorithms exist for the transfor-
mation of functions represented as word-level decision diagrams into their spectral counterparts.
One application for these arithmetic expressions is use in system identification computations. Non-
parametric estimation can be achieved through the use of spectral and correlation analysis methods
for estimation of frequency functions. As a practical example, spectral estimates are used in the
formulation of control system models for biological processes as described in [6]. Another example
of the use of spectral techniques is in the analysis of time-varying linear systems as described in [7].
In the remainder of this paper, mixed-radix transformations are considered and reviewed using

transformation matrices formed as Kronecker products of elementary Walsh and Chrestenson ma-
trices. It is also demonstrated that such transforms may be specified as a group character table
over an appropriately ordered group and that the Cayley graph technique as described in [1,2] may
be generalized for the mixed-radix case.

2. TRANSFORMATIONS OF MVL FUNCTIONS OVER AN ADDITIVE ABELIAN GROUP

The simplest case of a mixed-radix function where qi ≥ 2 is the binary-valued function f(x1, x2)
where q1 = 2 and q2 = 3. A straight forward extension of the techniques described in [1, 2] is
to encode each minterm describing f as a unique element in Z6 and then to formulate the group
character table for the additive Abelian group mod(6) and utilize this table as a transformation
matrix. This involves mapping each minterm to one of six roots of unity in the set

{
ej2π× 0

6 , ej2π× 1
6 , ej2π× 2

6 , ej2π× 3
6 , ej2π× 4

6 , ej2π× 5
6

}
.

A graphical depiction of these points is shown in Fig. 1. Past work involving the definition of
discrete transforms using finite groups is available in [9–11]. Such transforms have been considered
in the past [8, 12] and referred to as the generalized transform or generalized Fourier transform;
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Fig. 1. Diagram of six roots of unity.

however, the formulation and relationship of these discrete function spectra to graph spectra offers
a new viewpoint. It is noted that the formulation of the generalized Fourier transform typically
includes the use of scaling constants referred to as “twiddling” factors. These are not included in
the following without loss of generality.
A group character table is written with rows corresponding to irreducible representations and

columns corresponding to conjugacy classes [9,13]. Traditionally the rows are labeled with χi which
represent the irreducible representations as is done here. Each column (i.e., the conjugacy classes)
is labeled with the notation as shown in Table 1. The purpose for this notation should become
apparent later in this section of the paper.

Table 1. Group character table over Z6

x0 x1 x2 x3 x4 x5

χ0 a0 a0 a0 a0 a0 a0

χ1 a0 −a2 a1 −a0 a2 −a1

χ2 a0 a1 a2 a0 a1 a2

χ3 a0 −a0 a0 −a0 a0 −a0

χ4 a0 a2 a1 a0 a2 a1

χ5 a0 −a1 a2 −a0 a1 −a2

Using the results of [5], a transformation matrix may be formulated using the rows of the group
character table as shown in Table 1 as rows in a transformation matrix. This can be accomplished
using the so-called “R-encoding” where the transformation matrix contains complex-valued ele-
ments or with “S-encoding” where both the transformation matrix and the function truth vector
are encoded into complex values [2]. In both cases, a linear transformation, vector-matrix prod-
uct may be formulated and computed. The resulting transformed function is then an arithmetic
expression that represents the original function.

2.1. Kronecker Product Formulation

An alternative way of computing the transformation matrix for a function f(x1, x2) where
x1 ∈ Z2 and x2 ∈ Z3 is to utilize the Kronecker (or tensor) product [14] to combine the transfor-
mation matrices for the elementary additive Abelian group mod(2) and the elementary additive
Abelian group mod(3) (e.g., note that these are also known as the Walsh and Chrestenson trans-
formation matrices of functions of one variable). Equation (1) illustrates the computation of the

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004



1010 THORNTON

transformation matrix T where a0 = ej2π× 0
6 , a1 = ej2π× 2

6 and a2 = ej2π× 4
6

T =

[
1 1
1 −1

] ⊗ 
 a0 a0 a0

a0 a1 a2

a0 a2 a1


 . (1)

Carrying out the calculation in Eq. (1), the transformation matrix T becomes that as shown
in Eq. (2)

T =




a0 a0 a0 a0 a0 a0

a0 a1 a2 a0 a1 a2

a0 a2 a1 a0 a2 a1

a0 a0 a0 −a0 −a0 −a0

a0 a1 a2 −a0 −a1 −a2

a0 a2 a1 −a0 −a2 −a1




. (2)

It is easily shown that the transformation matrix T is unique as follows.

Lemma 1. The inverse of matrix T exists and it is orthogonal (with a scale factor of 1
2n×3n ).

Proof. In Eq. (1), T is formed as the Kronecker product of the 2 × 2 Walsh transformation
matrix W and the 3× 3 Chrestenson transformation matrix C. Therefore the inverse of T is given
as shown

T−1 = (W ⊗ C)−1 = W−1 ⊗ C−1. (3)

It is known that the inverses of W and C are given as follows

W−1 =
1
2n

W, (4)

C−1 =
1
3n

C∗. (5)

Therefore T−1 is given as shown in Eq. (6)

T−1 =
1

2n × 3n
(W ⊗ C∗). (6)

�

Several other properties are noted with respect to the matrix T and are given in the following
lemmas.

Lemma 2. A linear transformation matrix formed using the rows and columns of the group
character table given in Table 1 is identical to matrix T under a set of row and column permutations.

Proof. Let G represent the matrix formed using the rows and columns of the group character
table given in Table 1. Equation (7) holds where U1 and U2 are elementary permutation matrices

G = U1TU2. (7)
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The matrices U1 and U2 are given in Eqs. (8) and (9)

U1 =




1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1




, (8)

U2 =




1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0




. (9)

�

This technique is computationally advantageous to the other methods presented here since the
decomposition of the transformation matrix into a Kronecker product of smaller dimension matrices
allows for “fast-transform” techniques to be applied [15, 16]. As has been done traditionally, a
butterfly diagram may be used to characterize the “fast-transform.” Such diagrams are described
in detail in [17] where the notion of “signal flow graphs” is introduced. Butterfly diagrams are
a signal flow graph where vertices represent summation operations and edges carry multiplicative
weights. The butterfly diagram corresponding to Eq. (1) is shown in Fig. 2.
Alternatively, Eq. (1) may be rearranged using the permutation operations described in Lemma 2.

When the permutation matrices are not included, the same spectral vector components result but
in a different order. Equation (10) contains the relationship describing the Kronecker expansion of
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Fig. 2. Butterfly diagram of fast transform.
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Fig. 3. Alternative butterfly diagram of fast transform.

the transformation matrix in this form and Fig. 3 is a an illustration of the corresponding butterfly
diagram

T =


 a0 a0 a0

a0 a1 a2

a0 a2 a1


 ⊗ [

1 1
1 −1

]
. (10)

2.2. Cayley Graph Spectrum Formulation

To generalize the methods described in [1] for the binary-valued case and [2] for the discrete
p-valued case where p > 2, a Cayley graph must be specified with an appropriate generator over
the group Zq0×q1×...×qn−1 where each variable xi is qi-valued.
The following definitions are used:

Definition 1. A Cayley graph represents an algebraic group G = {gi, ∗} and is denoted as
Cay(V,E) where V is the vertex set and E is the edge set. Each vi ∈ V uniquely corresponds
to the group element gi. Each ei ∈ E corresponds to a colored edge with some associated color gi.
The set of edges E is a subset of ordered pairs of elements in V that are generated by some binary
operation(s) over elements in G. This binary operator need not be the same as the group product
operator ∗.

In [1, 2] Cayley graphs were formed representing the elementary additive Abelian groups with
generators that were the evaluation of some discrete function of the same group. The function
argument was formulated as the digit-by-digit modulo-p difference of all possible minterms. For
the binary case, the generator function yielding the adjacency matrix edge colors is aij = f(mi⊕mj)
for all possible pairs of function domain values (mi,mj). Likewise for the non-binary p-valued case,
adjacency matrix edge colors are generated as aij = f(mi �p mj). �p denotes the digit-by-digit
difference of two minterms modulo-p.
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The generalization to the mixed-radix case is quite natural. If each minterm is composed of
various polarities of n different q-valued variables, then argument of the generator function f is
formed as a concatenation of (xi1 �q1 xj1), (xi2 �q2 xj2), . . . , (xin �qn xjn). This operation will
be denoted by the symbol � with no subscript, but with the understanding that it is applied
digit-by-digit and modulo-qi. In this case the generator is given in Eq. (11)

aij = f(mi � mj). (11)

2.3. Example Spectrum Computation

Using Eq. (11), the adjacency matrix for the Cayley graph over Z6 is given in Eq. (12)

A =




f(0) f(2) f(1) f(3) f(5) f(4)
f(1) f(0) f(2) f(4) f(3) f(5)
f(2) f(1) f(0) f(5) f(4) f(3)
f(3) f(5) f(4) f(0) f(2) f(1)
f(4) f(3) f(5) f(1) f(0) f(2)
f(5) f(4) f(3) f(2) f(1) f(0)




. (12)

As an example consider the mixed-radix function described in Table 2.

Table 2. Example function truth-table
x1 x2 X f
0 0 0 0
0 1 1 1
0 2 2 1
1 0 3 0
1 1 4 1
1 2 5 0

The corresponding adjacency matrix is given as shown by Eq. (13) and an illustration of the
Cayley graph is shown in Fig. 4,

A =




0 1 1 0 0 1
1 0 1 1 0 0
1 1 0 0 1 0
0 0 1 0 1 1
1 0 0 1 0 1
0 1 0 1 1 0




. (13)

The characteristic equation of A is C(λ) = λ6 − 6λ4 − 10λ3 + 6λ + 9. Solving for the roots
of C(λ), the spectrum of f is found to be λi = {a0, 3a0, a1, a2, 2a1 + a2, a1 + 2a2}. It is easily
verified that the same set of spectral coefficients result when the truth vector of f is multiplied
with the transformation matrix given in Eq. (2) or the one formed from Table 1.
2.3.1. Decision diagram method. The “ast-transform” methods described previously may also

be implemented in a graphical manner using decision diagram data structures resulting in further
savings [18, 19]. This formulation leads to a word-level graphical representation of the arithmetic
expressions (i.e., the spectral function) of the transformed discrete mixed-radix function. Although
the minimum number of required operations for obtaining the spectral representation of a dis-
crete function is documented and has been studied in detail [20,21], decision diagrams can offer an
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Fig. 4. Cayley graph of example function.
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Fig. 5. Decision tree representation of example
function.
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Fig. 6. Decision tree with one transformed ver-
tex.
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Fig. 7. Decision tree with ternary variables
transformed.

advantage by avoiding the cases of addition with a
constant-0 and multiplication by a constant-1 since
these operations are implicit due to the reduction rules
of the data structure. This technique can be viewed
as an extension of that applied to the constant radix
discrete functions as described in [22–24] resulting in
a word-level decision diagram.
To illustrate the technique, we will first describe the

computation methodology using a word-level decision
tree which can be thought of as a non-reduced deci-
sion diagram. Note the tree will have internal vertices
with different numbers of exiting edges. This is due
to the mixed-radix function. Each internal vertex will
have p edges where p corresponds to the total number
of logic levels represented by each variable. Figure 5
contains a diagram of a decision tree representation of
an example function.
The decision tree structure representing function f

may be transformed into another decision tree repre-
senting the spectrum of f . This can be implemented
as a depth-first traversal where the bottom-most ver-
tices are transformed to the spectral domain first. As
an example, the bottom vertices in Fig. 5 represent
ternary-valued variables; hence, they must be trans-
formed using the group table for the elementary addi-
tive Abelian group mod(3) (or, the ternary Chresten-
son transformation matrix for a function of one vari-
able). The Chrestenson transformation matrix for a
function of one ternary variable is given in Eq. (14)

TC1 =


 a0 a0 a0

a0 a1 a2

a0 a2 a1


 . (14)

This will result in a tree as shown in Fig. 6 and
is constructed by replacing the left-most group of ter-
minal nodes with the following values (in respective
order):

0× a0 + 1× a0 + 1× a0 = 2a0,

0× a0 + 1× a1 + 1× a2 = a1 + a2,

0× a0 + 1× a2 + 1× a1 = a1 + a2.

Note that the transformed vertex in Fig. 6 now is
denoted by a subscript of S to denote that it represents
a decomposition in terms of the matrix in Eq. (14).
Performing the same transformation on the remaining
vertex labeled x2 yields a tree as depicted in Fig. 7.
Finally, the top variable of tree must be trans-

formed yielding the decision tree representing the en-
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Fig. 8. Decision tree with ternary variables transformed.

tire spectrum. Because the top variable is binary-valued, the transformation matrix is formed
from the character group table representing the elementary additive Abelian group mod(2) (or, the
binary Hadamard-Walsh transformation matrix for a function of one variable). The Hadamard-
Walsh transformation matrix for a function of one binary variable is given in Eq. (15). This results
in replacing the leftmost tree with the sum of the left and right subtrees and the right-most subtree
with the difference of the left versus the right subtree as given by the transformation matrix THW1.
The word-level decision tree representing the transformed mixed-radix function is shown in Fig. 8,

THW1 =

[
a0 a0

a0 −a0

]
. (15)

The spectral transformation over the decision tree illustrates the basic principles used to develop
a decision diagram-based algorithm for spectral transformations. The key issue is the absence of
vertices representing subsequent variables in the ordering of the reduced decision diagram [25].
Reduced decision diagrams have paths from the root (start) vertex to the terminal (labeled with a
constant) that may “skip” variables. This feature is, in large part, responsible for their compactness.
In transforming a decision diagram representing a discrete function into a spectral transformation,
it is important to consider such “missing nodes” during the traversal.
During the postfix traversal of the decision diagram, it is important to maintain an order of

the p-value of each variable so that the appropriate transformation matrix can be employed. Not
surprisingly, the number of exiting edges from a non-terminal vertex is also the order of the square
transformation matrix for the particular transformation of that graph node. The reduced decision
diagram algorithm requires that an implicit “missing” node be inserted during the traversal, thus,
allowing for the transformation to take place and perhaps resulting in the introduction of new non-
terminal vertices in the resulting graph. Alternatively, the reduction rules allow for the elimination,
and potentially, the reduction of the spectral decision graph size.

3. CONCLUSION

Spectral transformations of mixed-radix discrete functions result in an arithmetic expression
uniquely representing the function as a weighted superposition of alternative basis functions. These
arithmetic expressions can be conveniently represented using word-level decision diagrams and often
offer compact representations in terms of required memory storage. Furthermore, the computation
of the word-level decision diagram has a temporal complexity equivalent to that of the traditional
“fast” transform methods which have been shown to utilize a minimal number of intermediate
computations.
It has been shown that a particular spectral transformation of a discrete mixed-radix function

over Z6 is equivalent to that over Z2 × Z3 within a permutation. Also, it is shown that a Cayley

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004
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graph may be formed over Z6 with a generator corresponding to the discrete function of interest.
The spectrum of the Cayley graph is equivalent to the spectrum of the discrete mixed-radix function.
The motivation of this work is to provide additional ways of evaluating discrete multi-valued

functions in the spectral domain so that practitioners in the design and analysis of automation and
remote control of devices may have a new set of techniques for use in applications such as system
identification and other tasks involving spectral and correlation analysis for system estimation.
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