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    A method for minimizing Exclusive-OR Sum of Product (ESOP) forms of

Boolean  functions based on function on-set information is described. ESOP forms have

been proven to require fewer products than the more common Sum of Products (SOP)

forms based on the inclusive-OR operator for many classes of functions. Since finding

the optimal ESOP form requires the solution of the well-known set-covering problem,

heuristic methods are used. This technique is implemented and the results are given and

analyzed.
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CHAPTER I

INTRODUCTION

A method for minimizing Exclusive-OR Sum of Product (ESOP) forms of Boolean

functions based on function on-set information is described. ESOP forms have been

proven to require fewer products than the more common Sum of product (SOP) forms

based on the inclusive-OR operator for many classes of functions. Since finding the

optimal ESOP form requires the solution of the well-known set-covering problem,

heuristic methods are used. This technique is implemented and the results are given and

analyzed.

Introduction

Since the emergence of VLSI, logic design using computer-based tools has

become indispensable. VLSI designs contain too many transistors for manual

implementation. Thus, the importance of logic synthesis has increased greatly [1]. In

logic synthesis, minimization methods that were developed many years earlier have

recently become practical.

  The minimization of Sum of Product (SOP) forms always plays an important role

in logic synthesis. This problem is well understood and there are many good

minimization algorithms [2,3,4,5] in existence. It is well known that minimizing
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Exclusive-OR Sum of Product (ESOP) forms is a more difficult problem than minimizing

SOP forms. However, ESOP forms are of interest because they can often represent

functions with fewer product terms than the corresponding SOP form [6,7]. Also, many

multilevel circuits based on EXOR elements are more advantageous in terms of area,

speed and testability. Error detection circuitry is a typical example where EXOR’s are

heavily used [8].

Two-level logic network minimization techniques are used to find a representation

for a Boolean function that is optimum according to a given cost function. Typical cost

functions are the number of product terms in a two-level realization, the total number of

literals, or, a combination of both.

With any of these cost functions, the problem of two-level Boolean minimization

contains the sub-problem of finding the solution of the minimum set covering problem,

which has been shown to be nondeterministic polynomial-time NP-complete [9].

Nevertheless, sophisticated exact minimizers have been developed whose average-case

behavior for most commonly encountered functions is acceptable [10,11]. Furthermore,

heuristic minimization methods exist which have been shown to produce results that are

close to the minimum within reasonable amounts of CPU time, even for large Boolean

functions [12,13]. The existence of these techniques has enabled the development and

widespread use of logic synthesis tools that are prevalent in a modern design environment

[1,14,15].

The minimization of a SOP form is equivalent to the problem of covering all the 1-

cells in the Karnaugh map at least once by using a minimum number of loops. On the
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other hand, the minimization of an ESOP is equivalent to the problem of covering all the

1-cells an odd number of times and all the 0-cells either in an even number of times or

not at all, by using a minimum number of loops. For example, consider the function

f(w,x,y,z) = ∑ (5,7,13,14) shown in Fig. 1.1. The map on the left contains circles that

result in the minimized SOP form, f = x y z + w xz + w x yz. The map on the right contains

circles that result in the minimized ESOP form, f = xz ⊕  wyz.

Fig. 1.1.    Representation using SOP form versus ESOP form.

SOP versus ESOP

The two-level SOP form corresponds to two level logic networks using only AND

and OR operations with the presence of complemented literals assumed. ESOP forms

correspond to two-level logic networks where an EXOR is used instead of an OR. Logic

networks  are  often  designed  by  using  programmable  logic arrays (PLAs) that have an

AND-OR structure, as shown in Fig. 1.2a. Because this regular structure of the PLAs can

be easily designed, modified and laid out, it is used extensively in modern VLSI design.

By replacing the OR gate with the EXOR gate in the PLA, we have an AND-EXOR PLA

0 0 0 0

0 1 1 0

0 1 0 1

0 0 0 0

0    0   0 0

0    1   1 0

0    1   0 1

0    0   0 0
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as shown in Fig. 1.2b. AND-EXOR PLA’s have several advantages over AND-OR

PLA’s [16]. Firstly, AND-EXOR PLA’s often require fewer products than AND-OR

PLA’s. Table 1 compares the number of products of various classes of functions [16] of n

variables. Secondly, AND-EXOR PLA’s are usually easier to test than AND-OR PLA’s.

Similar to AND-OR PLA’s, AND-EXOR PLA’s can be made to have universal test sets

[17], and since AND-EXOR PLAs generally require a smaller amount of hardware, they

can also have a shorter test sequence [18].

       .  .

       .                                                                    .

                       (a)                                                                 (b)

Fig. 1.2.    AND-OR PLA versus AND-EXOR PLA.

Although AND-EXOR PLA’s have such merits, several problems must be solved

before they can be used in practical designs. The first problem is that EXOR’s are

generally more expensive and slower than OR’s. The second problem is that the

minimization of AND-EXOR PLA’s is more difficult than that of AND-OR PLA’s. This

work focuses on the latter problem.

o

o
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TABLE 1 [16]

Number of Products to Realize Various Functions

                                                                       AND-OR PLA (SOP)                                                    AND-EXOR PLA (ESOP)

                                                          1-bit decoders                     2-bit decoders                      1-bit decoders                     2-bit decoders

Arbitrary functions                           2
1−n

                                  2
1 . 2

1−n
                             2

1 . 2
1−n

                           2
1 . 2

1−n

Symmetric functions                         2
1−n

                                 3
1 . 3

2/n
                             3

2 . 3
2/n

                           3
1 . 3

2/n

Parity functions                                2
1−n

                                 2
1 . 2

2/n
                               n                                        2

n

n-bit adders                                      6 . 2
n

- 4n-5                     n
2

+ 1                                     2
1+n

- 1                       2
1 . (n

2
+ 3n –2)

Methods of Minimization

The minimization of SOP’s has been studied for more than 30 years. Many well

known methods have been developed. However, the minimization of ESOP’s has not

been solved to the same degree.

SOP Minimization Methods

The minimization of a two level logic network is one of the key technologies in

logic synthesis. Many well known methods have been developed such as MINI, and

ESPRESSO [12,13]. The Karnaugh map method is an n-dimensional cube written in a

plane and is convenient for the representation of logic functions and can be used to
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minimize functions with 3-5 variables. The tabulation method (Quine-McCluskey

method) [3] can be extended for multi-valued input two-valued output functions. In

practical applications, the problems are multi-output in most cases, thus the number of

prime implicants is very large. Therefore, the tabulation method can require an excessive

amount of memory. Even for cases where all the prime implicants can be generated, if the

number of input variables is large, then the number of minterms is also very large causing

the cover table to require too much memory for storage. For these reasons, the tabulation

method can be unsuitable for large problems.

Several heuristic methods have been developed for minimizing SOPs with many

inputs [12,19]. These heuristic methods do not necessarily produce optimal solutions, but

they can achieve fairly good solutions in a short time. In practical applications, it is not

necessary to obtain an exact minimum solution since a near minimum solution may be

sufficient. Thus, these heuristic methods are extensively used for SOPs in modern

technologies. Among these heuristic methods, MINI developed at IBM, and ESPRESSO

developed at IBM and UC Berkeley are well known.

 However, if the number of input variables is small, the tabulation method is faster

than other heuristic methods such as MINI and ESPRESSO. Also, the tabulation method

always obtains the exact minimum solutions. Therefore, tabulation method is useful for

theoretical research. Recently, the tabulation method was implemented utilizing the

Binary Decision Diagram (BDD) [20] data structure and can obtain exact minimum

solutions with many inputs [10].
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ESOP Minimization Methods

Several heuristic methods have been developed such as EXORCISM, MINT and

EXMIN2 [16,18,21]. These methods use simplification rules and there continues to be

much room for improvement. Before using the simplification rules, the initial expression

must be transformed into an ESOP expression. Commonly, a disjoint sum-of-products

expression (DSOP) is used which can become very large. A DSOP is a SOP where no

product has a common minterm.

Helliwell and Perkowski developed EXORCISM at Portland State University. In

EXORCISM, two operations are used to link the cubes, the primary xlink and the

secondary xlink [18], that generalizes the known operations of merger, exclusion and

other logic operations. Both operations can be applied under certain conditions. If two

cubes are of the same dimension, then the primary xlink operation can be applied. If the

distance of two cubes is 1, the secondary xlink can be applied.

EXMIN2 and MINT are rule based ESOP minimizers. A large set of rules was

proposed by Sasao in EXMIN2, and extended by Kozlowski, Dagless and Saul in MINT.

In EXMIN2 and MINT, a set of rules are used to link two cubes. Each rule can be applied

under certain conditions. For instance, the rule RESHAPE can be applied on two terms

X A Y B  and X C Y D  if A ∩  C = ∅ and B ⊃  D as X A Y )( DB∩ and X )( CA∪ Y D  [16]. The

number of operations in EXMIN2 and MINT is larger than that in EXORCISM-this is

one of the reasons why EXMIN2 and MINT generate better results than EXORCISM.

EXMIN2 sometimes produces good solutions although it can be very time-consuming
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[16]. Furthermore, exact ESOP minimization can only be accomplished for functions of

up to 6 variables [16].

Most ESOP minimizers [16,18,21] use rules that take two or more product terms

and transform them to other terms. Minimimizers based on this concept can be slow since

applying a single transformation rule to all pairs in a list of product terms is quadratic in

the number of product terms.

An alternative heuristic ESOP minimization technique, TABESOP is described in

this thesis. The method is derived by modifying the tabulation technique that is used for

SOP minimization. There are two advantages of this technique. First, the initial

expression does not have to be DSOP. Second, the minimization algorithm is not rule

based, so it forms a good basis for experimentation with exact and heuristic methods for

solving the ESOP cover problem.

Fig. 1.3 shows the relations among ESOP, TABESOP and DSOP. Functions in

SOP form only include minterms from the on-set. Functions in ESOP form also include

minterms from the off-set since even numbers of these minterms can be cancelled out. If

the initial function is in SOP form, it must be transformed into ESOP form before input to

the ESOP minimizer. Usually, the disjoint sharp operation is used to transform the SOP

into the DSOP forms. Functions in DSOP form only include minterms from the on-set.

TABESOP can transform SOP forms into ESOP forms that only include minterms from

the on-set. This ESOP form is generally smaller than a DSOP since the technique is based

on the tabulation method.
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Fig. 1.3.    Relations among ESOP, TABESOP and DSOP.

Motivation and Background

EXMIN2 and MINT are currently the most powerful ESOP minimization tools.

However, the current state of the art is still immature compared with techniques for SOP

minimization. Many researchers are currently investigating techniques for minimizing

ESOPs since the discovery of such a method would have important consequences with

regard to the practical problems of logic synthesis, logic verification and error detection.

The motivation of this research is not only to implement a good minimization

algorithm for ESOPs, but also to evaluate some theoretical considerations since no exact

minimization algorithm for ESOP exists.

Contribution of This Work

In this work, an experimental computer program that operates over a structure

similar to the cover table used in the tabular approach for SOP minimization was

developed. The technique is implemented using two approaches to solve the set-covering

problem. In the first approach, the product term that covers the minimum minterms is

ESOP
TABESOP

DSOP



-20-

-20-

chosen first. In the second approach, the product term that covers the maximum minterms

is chosen first.

Also, the cover table storage requirements are reduced by using the BDD structure

for representation.

Outline

In chapter 2, the heuristic ESOP minimization technique is described. First, the

basic concept of this technique is presented. Second, a quick review of the SOP

tabulation method is provided. Next, the ESOP-based tabulation method is described in

full detail.

In chapter 3, two approaches to solve the cover table are provided. The first

approach used is based on minimum minterm counts. The second approach used is based

on maximum minterm counts. Examples are given to illustrate these approaches. Also,

extensions of the minimization method for handling multi-output functions is described.

In chapter 4, the implementation of this technique is introduced and experimental

results are presented that compare this approach with two well-known popular

approaches for minimizing ESOP forms.

Chapter 5 presents conclusions and discusses possible further extensions to this

approach.                                 
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CHAPTER II

EXTENSIONS TO TABULATION METHOD

In this chapter, the heuristic ESOP minimization technique is described. First, the

basic concept of this technique is presented. Second, a brief review of the tabulation

method is provided. Finally, the actual technique is introduced in full detail.

Basic Concept

An ESOP minimization technique based on odd/even cube covering is described

here. This technique is based on two fundamental relations as given in Equations 1 and 2.

                                  ⊕
=

m

i

2

1

c = 0                                 (1)

                                  ⊕
+

=

12

1

m

i

c = c                                (2)

Where c represents an instance of a specific product term (cube or logic AND) of a

set of literals, ⊕  represents the exclusive-OR operation and m is some non-negative

integer. Equation 1 essentially states that including a cube in a cover set an even number

of times is equivalent to not including it at all. Likewise, including a cube in a cover set

an odd number of times is equivalent to including it with an instance of one. This gives a

degree of freedom in finding a minimal ESOP cover set that does not necessarily mean it

is in the overall on-set of the function being minimized.
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As an example, consider the function, f(w,x,y,z) = ∑ ).14,13,11,10,7,4,1,0( Fig. 2.1

shows two Karnaugh maps. Fig. 2.2 shows two corresponding networks that realize the

function. The map on the left contains circles that result in the minimized SOP form,

f = w x y  + w y z  + w xyz + wx y z + wy z  +  wx y. The realization of SOP form

requires 6 AND gates and the overall expression is comprised of 20 literals. The

Karnaugh map on the right contains circles that obey Equations 1 and 2 since all 0 values

are circled an even number of times and all 1 values are circled an odd number of times.

Thus, the 0 values cancel out due to the XOR relation in Equation 1 and the 1 values

remain. This results in the expression, f = w y  ⊕  xz ⊕  wy which only requires 3 AND

gates and is comprised of 6 literals.

Fig. 2.1.    Karnaugh map illustrating SOP form versus ESOP form.

1   1  0 0

1   0  1 0

0   1  0 1

0   0  1 1

1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1
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Fig. 2.2.    AND-OR realization versus AND-EXOR realization.

Tabulation Method

The tabulation method is the first algorithmic method proposed for two-level

minimization that includes prime implicant generation, implicant table generation and a

cover table solving technique. It can be summarized as the following two steps:

1. Generation of the set of prime implicants for a given function.

2. Selection of a minimum set of prime implicants to implement the function.
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Prime Implicants

The tabulation method is best explained here with an example. A Boolean function

is represented as a minterm list and a Karnaugh map is shown in Fig. 2.3a. Each pair of

minterms is compared to see if they differ by only one literal and can be merged into a

single cube. The cubes generated in this example by pairing common minterms are

shown in Fig. 2.3b. These cubes are called 1-cubes because they contain exactly one

“don’t care”. A minterm is thus a 0-cube. In the next step, the 1-cubes are checked to see

if they can be merged into 2-cubes. The 2-cubes generated from 1-cubes are shown in

Fig. 2.3c. If a k-cube is generated by pairing two (k-1)-cubes, then the two (k-1)-cubes are

not prime implicants and can be discarded. The process is continued until no pairing is

possible in the final cube list.

Prime Implicant Table

The prime implicants of the function in Fig. 2.3c have been marked as A, B, C, D,

E, F and G . We now build a prime implicant table as shown in Fig. 2.4. The rows of the

prime implicant table are the minterms, and the columns are the prime implicants. An “X”

in the prime implicant table in row i and column j means that the minterm corresponding

to row i is contained by the prime implicant corresponding to column j. For example, the

minterm 0001 is contained by prime implicant A, 0-01.

In the prime implicant table, we have to choose a minimum set of prime implicants

(columns) such  that  there  is  at  least  one  X in every row. This is an instance of the set-



-25-

-25-

                                                               (a)

       
       

(b)

(c)

Fig. 2.3.    Prime implicant generation.
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covering problem. This problem has been shown to be NP-complete [9].

                              A       B       C       D       G       F       E

                   0000                                           x       x
                   0001    x                                     x
                   0010                                           x       x        x
                   0011                                           x                 x
                   0101    x        x
                   1000                                                    x
                   1010                                                    x        x
                   1011                                 x                           x
                   1101              x       x
                   1111                       x        x

Fig. 2.4.    Prime implicant table.

Essential Prime Implicants

A row with a single X means that the corresponding prime implicant is an essential

prime implicant. Any prime cover for the function will have to contain the prime

implicant that contains the minterm corresponding to this row, because this minterm is

not contained by any other prime implicant (column). In the prime implicant table of Fig.

2.4, F is the essential prime implicant.

Dominated Columns

We obtain the reduced table of Fig. 2.5a after deleting column F and four rows

contained by F. In the table of Fig. 2.5a, there is no row with a single X and no column

covers more minterms than another. It is necessary to use some type of rule for choosing

the next prime implicant. Assume that prime implicant A is selected. We obtain the

reduced table of Fig. 2.5b after deleting column A and two rows contained by A. A row
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i of a prime implicant table is said to dominate another row j if I has an X in every

column in which j has an X. In the reduced table of Fig. 2.5b column B is dominated by

column C, and column G is dominated by column E. We can delete the dominated

columns, since selecting the dominating column will result in covering more uncontained

minterms than dominated column. Reducing the table of Fig. 2.5b results in the table of

Fig. 2.5c. In this table C and E are relatively essential prime implicants. Choosing C and

E results in f = {A, C, E, F}. The final result compares with the initial minterm list as

shown in Fig. 2.6.

                                  A      B       C      D      G       E

                   0001       x                                    x
                   0011                                             x       x
                   0101       x       x
                   1011                                   x                 x
                   1101                x        x
                   1111                          x       x

                                                                 (a)

                        B      C       D      G       E                                C      D       E

           0011                                 x       x                    0011                       x
           1011                       x                 x                    1011              x       x
           1101     x       x                                                1101    x
           1111              x       x                                       1111    x        x

                                         (b)                                                           (c)

Fig. 2.5.    Cyclic prime implicant table.
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Fig. 2.6.    Initial minterm list versus final result.

ESOP Minimization Based on Tabulation Method

The ESOP minimization technique is very similar to the tabulation method where a

set of minterms describing the function to be minimized is used as the initial input. It is

summarized in the following three steps:

1. Pairs of (k-1)-cubes are examined to determine if they differ by only a single

literal. If they do, these two (k-1)-cubes can be merged into one k-cube and

new k-cube is added to the list. This process is then applied to the new set of

cubes and is continued until no new product terms may be added.

2. The list of cubes resulting from step1 is reduced in size by eliminating

      redundant product terms. This is the step where the cover problem is solved

      through the use of heuristics.
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3. The reduced cube list is further optimized by searching for pairs that satisfy

      particular algebraic properties. When such a pair is found, they may be

      replaced by another pair containing more “don’t care” values.

With the exception of step 3, the method outlined above could be interpreted as a

high-level description of the tabulation method for SOP circuits. However, due to the

different properties of the inclusive-OR versus the exclusive-OR operation, each step

must implemented in a slightly different manner.

In step 1, after new cubes are added to the list, the pair of minterms that produced

each new cube cannot automatically be deleted as is the case with the SOP tabulation

method. Rather, a count of the total number of cubes in the new list must be made that

cover the original set. Only if the count is an odd number, {1,3,5,…}, may the original

cube be deleted. This is due to the relationships in Equations 1 and 2. Furthermore, when

a new cube is created, it is added to the list only if it does not exist there already. This is

important since the occurrence of two identical cubes would cause a cancellation since

x .0=⊕ x  For the SOP formulation, this is not a problem since x + x = x.

The second phase of the process involves the creation of a cover table followed by

solving the cover problem. This is also done in a similar manner to the SOP tabulation

method where “essential products” are chosen for the final list. However, as was the case

in step 1, care must be taken to ensure that all minterms are covered an odd number of

times, thus the odd/even counting process is also integrated into this procedure.

In the event that the essential cubes do not cover all minterms, a situation occurs

that is referred to as a “cyclic cover”. This is a case where there is no clear choice in
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which product term to add to the final list because none of the candidates are essential

and it is an instance of the cover problem. In this work, two ways are used to solve the

cover table. The first heuristic method employed is to choose the product term that covers

the fewest minterms. The second heuristic method employed is to choose the product

term that covers the most minterms. The minimum minterm count method results in

potentially adding fewer minterms to cover table during odd/even counting. The

maximum minterm count method can cause more minterms to be added to cover table,

but allows more rows to be deleted.

After step 2, an ESOP is represented by the resulting cube list that is guaranteed to

cover each minterm of f an odd number of times and each minterm of f  exactly zero

times. However, as was shown in the Karnaugh map example, it is permissible to cover

minterms of f  an even number of times, since these function zeros will cancel due to

XOR operation. Furthermore, it is often desirable to include these zeros in the resultant

ESOP since it can help to result in a smaller list of larger cubes.

Step 3 makes use of three algebraic properties, 1⊕  x = x ,  1 ⊕  x  = x,  and

x ⊕  x  = 1. Each pair of cubes in the list produced in step 2 is checked to determine if

they satisfy the algebraic properties. The first two properties cause three cubes to be

reduced into two cubes. The last property allows the two cubes to be merged into a single

cube.
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Example of Generation of the Cover Table

This technique is illustrated with an example. A single-output Boolean function

represented  as  a  cube  list and Karnaugh map is shown in Fig. 2.7a. The first step of the

example is illustrated in the following section. And the second step of the example is

illustrated in chapter 3.

Pairing Generation and Odd/Even Cover Checking

The first step of the technique includes two parts. The first part involves pairing

generation. And the second part involves odd/even cover checking. The first part of step

1 is the same as the tabulation method, cube merging. Each pair of (k-1)-cubes is checked

to see if they differ by only one literal. If they do, these two (k-1)-cubes can be merged

into one k-cube and new k-cube is added to the list. This process is then applied to the

new set of cubes and is continued until no new cubes may be added. In this example, the

1-cubes generated from the 0-cubes and the 2-cubes generated from the 1-cubes are

shown in Fig. 2.7 b and 2.7c, respectively.

The second part of step 1 involves odd/even cover checking, which differs from the

SOP tabulation method. Each minterm is checked to see whether or not they are covered

an odd number of times by the product terms in the list. In this example, minterms

“0111”, “1000”, “1011” and “1111” are covered twice. Thus, these minterms can not

automatically be deleted as would be the case with the SOP tabulation method. We have

to add them into the new list to ensure that all minterms are covered an odd number of

times as shown in Fig. 2.8.
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                  0000
                           0101
                                 0111
                           1000
                           1001
                           1010
                           1011

                  1111

                                                             (a)

                  -000
                           01-1
                                 -111
                           1-11
                           100-
                           10-0
                           10-1

                  101-

                                                             (b)

                  -000      A
                           01-1      B
                                 -111      C
                           1-11      D
                           10--       E

                                                               (c)

Fig. 2.7.    Step1- pairing generation for single-output function.
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                  -000               1011    I
                           01-1
                                 -111
                           1-11
                           10--
                           0111
                           1000

1111

Fig. 2.8.    Step1- odd/even cover checking for single-output function.
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CHAPTER III

FINDING THE MINIMUM ESOP COVER

In this chapter, Two approaches to solve the cover table are provided. The first

approach used is based on minimum minterm counts. The second approach used is based

on maximum minterm counts. Examples are given to illustrate these approaches. Also,

this chapter presents a minimization method for multi-output functions.

Single-output Functions

A single-output Boolean function represented as a cube list and Karnaugh map is

shown in Fig. 2.7a. The new cube list generated after first step is shown in Fig. 2.8.

Cover Table Solving – Cube List Approach

The second step of the technique also includes two parts. The first part involves

solving the cover table problem. And the second part is odd/even cover checking. The

cube list of the function in Fig. 2.8 is marked as A, B, C, D, E, F, G, H and I. Next, a

cover table is built as shown in Fig. 3.1. The rows of the cover table correspond to the

minterms of the original cube list, and the columns are the cubes generated from step 1.

The number of “X”s in each row must be an odd number since each minterm must be

covered odd number of times after first step.
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                                 A       B       C      D       E       F       G       H       I

                   0000       x

                   0101                x

                            0111                x        x                          x

                            1000       x                                    x                x

                            1001                                             x

                            1010                                             x

                            1011                                   x        x                                    x

1111                         x        x                                    x

Fig. 3.1.    Step 2 - cover table for single-output function.

Solving the cover table is also done in a similar manner to the SOP tabulation

method where “essential products” are chosen for the final list. A row with a single X

means that this cube is an essential cube. In the cover table of Fig. 3.3, A, B and E are the

essential cubes. The reduced cover table shown in Fig. 3.2 is obtained after deleting

columns A , B, E and the seven rows covered by A, B and E.

                                 C       D       F      G       H       I

 1111      x       x                          x

Fig. 3.2.    Reduced cover table for single-output function.
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In the cover table shown in Fig. 3.2, there is no row with a single X, and the

essential cubes do not cover all minterms. In this technique, Two approaches are used to

solve the cover table problem. The first method is to choose the product term that covers

the fewest minterms. In this example H covers the fewest minterms. Choosing H results

in  f  =  {A, B, E, H}. And the second method is to choose the product term that covers the

maximum minterms. In this example C covers the maximum minterms.  Choosing C

results in f = {A, B, E, C}. The final results by using minimum minterm counts and

maximum minterm counts methods are shown in Fig. 3.3.

(a) (b)

Fig. 3.3.    Minimum minterm counts versus maximum minterm counts.

The two heuristic methods to solve the cover table problem are based on the fact

that each time an implicant is added to the final list, the odd/even counting process must

be invoked. The minimum minterm count method results in potentially adding fewer

minterms to cover table during odd/even counting. The maximum minterm count method

can cause more minterms to be added to cover table, but allows more rows to be deleted.
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As was the case in step 1, the second part of step 2 must be taken to ensure that all

minterms are covered an odd number of times. Thus, the odd/even counting process is

also integrated into this procedure. In Fig. 3.3a, minterm “1000” is covered twice. So,

minterm “1000” cannot be deleted, and is added into the new list. The final result by

using minimum minterm count method is shown in Fig. 3.4. In Fig. 3.3b, minterm “0111”

and “1000” are covered twice. Thus, they cannot be deleted and are added into the new

list. The final result by using maximum minterm count method is shown in Fig. 3.5.

                  -000      A
                           01-1      B
                                 10--      E
                           1111     H
                           1000

Fig. 3.4.    Final result – minimum minterm counts for single-output function.

From this example we can see that five product terms result from using the

minimum minterm count method and six product terms by using the maximum minterm

count method. The minimum minterm count method produces a better result in this

example. However, the maximum minterm count method sometimes produces better

results for other circuits. This case is shown in Fig. 3.6. In this example, the minimum
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minterm count method produces four product terms, and the maximum minterm count

method produces three product terms.

                  -000                                               
                           01-1
                                 -111
                           10--
                           1000
                           0111

Fig. 3.5.    Final result – maximum minterm counts for single-output function.

Cover Table Solving – BDD Approach

The cover table can be solved by using Petrick’s method [22]. In the cover table of

Fig. 3.1, minterm “0000” is covered when A = 1. Similarly, for “0101”, …, “1111”, we

have the following condition:

                 0101 : B = 1,

                 0111 : B + C + F = 1,

                 1000 : A + E + G =1,

                 1001 : E = 1,

                 1010 : E = 1,

                 1011 : D + E + I = 1,

                 1111 : C + D + H = 1.
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                  0000       1111
                           0001
                                 0101
                           0111
                           1010
                           1011
                           1110

(a)  Initial cube list.

                  000-
                           0101
                                 0111
                           1-1-

(b)  Final result by using minimum minterm count method.

                  000-
                           01-1
                                 1-1-

(c) Final result by using maximum minterm count method.

Fig. 3.6.    Maximum minterm count method produces better result.
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These conditions are satisfied simultaneously if and only if:

                          AB(B+C+F)(A+E+G)E(D+E+I)(C+D+H) = 1.

Due to each minterm needing to be covered an odd number of times, the inclusive-OR is

replaced with the exclusive-OR operator:

                          AB(B ⊕ C⊕ F)(A ⊕ E⊕ G)E(D ⊕ E ⊕ I)(C ⊕ D ⊕ H) = 1

Unfortunately the solution to this equation is very difficult since it is binate whereas for

the SOP cover, it is unate. This is an area for further research.

A binary decision diagram (BDD) is a graphical representation of a logic function,

and often has a more compact representation than other methods. Thus, we can utilize

BDD data structure to represent the cover table.

  For example, consider the logic function f = A+BC. Let A = 1, then we have f = 1.

Let A = 0, if B = 0, then f = 0. Let A = 0 and B = 1. In this case, if C =1 then f = 1, and if

C = 0, then f = 0. Fig. 3.7 shows this relation as a decision graph, where  A ,   B  , and

 C   denote non-terminal nodes, and correspond to the input variables. Also,    0   and   1

                                                        A

                                               B                 1

                                      0                C

0 1

Fig. 3.7.    BDD for f = A + BC.

0 1

0

0 1

1
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are terminal nodes, and correspond to the values of the logic function. Such a decision

diagram is a BDD.

To transform the logic expression into BDD, we apply the following Shannon

expansion repeatedly:

                      f(A,B,C,…) = A f (0, B, C, …) + Af (1, B, C, …).

Fig. 3.8 shows the BDD of the example function

                                 f = AB(B+C+F)(A+E+G)E(D+E+I)(C+D+H)

by applying the Shanon expansion. First, in f, set A = 0 to obtain f 0 . And write f 1  as the

right child of the node A, and obtain Fig. 3.8a. Do the similar operations to variable B, to

obtain the two sub-functions f 10 , f 11  in Fig. 3.8b. Next, similar operations are performed

for the rest of the variables. In this case, if the same sub-functions appear, then the nodes

are shared. Fig. 3.8c shows the complete BDD.

Multi-output functions

For multiple-output problems that are too large or complicated to be solved by

using Karnaugh map, it is necessary to turn to a tabulation method. The most obvious

way to extend the single-output technique would be to form each of the product functions

- f 1  , f 2 , …- and then to determine the prime implicants for all the original functions and

all  the  product  functions. This is accomplished by forming a single cube for each

common cube that appears in any of the output functions. This single cube is made up of

two parts:  the input portion, which is the  same as the cube in the single-output functions,
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                                  f = AB(B+C+F)(A+E+G)E(D+E+I)(C+D+H)

                                                                A

                                         f 0 = 0                      f 1= B(B+C+F)E(D+E+I)(C+D+H)

                                                                (a)

                                                                  A

                                          0                                                     B

                                                                           f 10 = 0                f11 = E(D+E+I)(C+D+H)            

                                                                  (b)

                                                                  A

                                                                                     B

                                                                                                        C

                                                                                     D

                                                                  E                                    E

                                                                                     H

0  1

Fig. 3.8.    Example BDD for cover table.

0 1

0

0

1

1

0

1

0

1

1

0

0 1

10
0

1

1

0



-43-

-43-

and, the output  portion,  which  specifies  which  of the output functions include the

input portion cube. Each symbol of the input portion corresponds to one of  the variables

and is 0, 1, or -. Each symbol of the output portion corresponds to one of the output

functions and either 0 or 1 depending on whether the corresponding input portion cube is

not included in the output function or is included in the output function. A multi-output

function represented in this way is shown in Fig. 3.9.

          w      x      y      z      f1       f 2

          0      0      0      0       1      0
                   0      1      0      1       1      1
                   0      1      1      1       1      1
                   1      1      1      1       1      1
                   1      1      1      0       1      1
                   1      0      0      0       1      0
                   1      0      0      1       0      1

Fig. 3.9.    Multi-output function table and symbol.

Pairing Generation and Odd/Even Covering Checking

The first step in pairing the multi-output function cubes is to compare each pair of

cubes to determine whether or not the input portions differ by only one literal. If two

cubes that satisfy this condition are found, a new cube is formed. The input portion of the

new cube is formed in the same way as in the single-output technique. The output portion

of the new cube will have 1’s in all positions in which both of the original cubes have 1’s

in the same position, and 0’s in the remaining positions. The reason behind this pairing

rule is that the new cube corresponds to a product term that is included in those functions

w

x
y
z

f 1

f 2
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that include both the original products used in forming the product term. This is why

there are 1’s in the output portion of new cube only where there are 1’s in both the output

portion of the original cubes.

Just as in the single-output technique, it is necessary to check off some of the cubes,

since they do not all correspond to prime implicants. The rule for multi-output function is

that if a new cube is formed, the 1’s in all positions in which both of the original cubes

have 1’s in the same position will change to don’t cares. The don’t care in the output

portion does not have the same meaning as in the input portion. It means that the product

term which is included in this output function is not a prime implicant and can be

discarded after completion of the process. If the original cube in output portion is a don’t

care, it can still be used to form a new cube with the other original cube. The cubes

whose output portions still have 1’s will be added to the new list after completion of the

process. Of course, a new cube with an all-0 output portion need not be written down,

since it corresponds to a product term which is not included in any of the output

functions. In the example as shown in Fig. 3.9, the original cube “0000|10” and

“1000|10” can merged into the new cube “-000|10”.  Then both of the original cubes will

change to “0000|-0” and “1000|-0” after completion of the pairing process. As an

example, the original cube list is shown in Fig. 3.10a, and the generated cubes are shown

in Fig. 3.10b. In Fig. 3.10a, the original cube “1001|01” in output portion still has a 1 left.

Thus, it will be added into the new list as shown in Fig. 3.10c.
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          w      x      y      z      f1       f 2                         w      x      y      z      f1       f 2

          0      0      0      0       -      0                             -      0      0      0     1        0
                   0      1      0      1       -      -                             0      1      -       1     1       1
                   0      1      1      1       -      -                             -       1      1      1     1       1
                   1      1      1      1       -      -                             1      1      1      -      1       1
                   1      1      1      0       -      -
                   1      0      0      0       -      0
                   1      0      0      1       0      1

                                        (a)                                                                   (b)

                   w      x      y      z      f1       f 2

                    -      0      0      0      1       0
                    0      1      -      1      1       1
                    -      1      1      1      1       1
                    1      1      1      -      1       1
                    1      0      0      1      0      1

                                        (c)

Fig. 3.10.    Pairing generation for multi-output function.

The second part of first step for multi-output functions involves the odd/even cover

checking. The original minterm cannot be automatically deleted unless it is covered an

even number of times for all the output functions. Otherwise, a new cube needs to be

added into the list. The input portion of this new cube is the same as the original minterm

and the output portion of the new cube is differs slightly from the original minterm. If the
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minterm is covered an even number of times in an output function, the output portion of

this new cube will have 1 in the position corresponding to this output function. This

technique is explained with an example. The original cube “0000|10” is only covered by

cube “-000|10”. Thus, we do not have to put a new cube in the list. The original cube

“0111|11” is covered by both cube “01-1|11” and “-111|11”. So, we have to put a new

cube “0111|11” into the list. The output portion of this new cube has 1’s in all the

positions because the minterm is covered twice by all the output function. In our

example, after completion of this process the cubes generated are shown in Fig. 3.11.

                   w      x      y      z      f1       f 2

                  -      0      0      0      1       0
                  0      1      -      1      1       1
                  -       1     1      1      1       1
                  1      1     1       -      1       1
                  1      0     0       1      0       1
                  0      1     1       1      1       1
                  1      1     1       1      1       1

Fig. 3.11.    Odd/Even cover checking for multi-output function.

Cover Table Solving

The cubes in Fig. 3.11 have been marked as A, B, C, D, E, F, and G. A cover table

can be built as shown in Fig. 3.12. There must be a column of this table for each minterm

of each of the output functions. The table is partitioned into sets of columns so that all the

minterms corresponding to one of the output functions are represented by a set of

adjacent columns. For example, In Fig. 3.12 there are two columns labeled m5, one for f 1

A
B
C
D
E
F
G



-47-

-47-

and one for f 2 . Each row of the table corresponds to one of the multiple-output prime

implicants. These are also partitioned into sets of rows by listing first the rows that

correspond to prime implicants of f 1 , then those for f 2 , …, those for f 1*f 2 ,  etc. The

cover table is solved in the same way as in the single-output technique. By solving the

cover table, we get f = {A, B, D, E}. The results of this multiple output circuit are shown

in Fig. 3.13.

                                      f 1                                                  f 2

                          m0     m5     m7     m8    m14  m15   m5     m7     m9    m14  m15

         f 1        A      x                           x

         f 2       E                                                                                   x

                   B               x        x                                     x       x

                   C                         x                           x                 x                           x

       f 1* f 2   D                                            x        x                                    x        x

                   F                          x                                             x

                   G                                                      x                                             x

Fig. 3.12.    Cover table for multi-output function.
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Fig. 3.13.    ESOP circuit resulting from cover solution.
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CHAPTER IV

IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this chapter, the implementation of this technique is described and experimental

results are presented.

Implementation

As we introduced in chapter 4, the tabulation method requires an excessive amount

of memory and computation time if the input cube list is large. Thus, care must be taken

in order to reduce the memory and computation time when this technique is implemented.

Cube List Sorting

The first part of step 1 in the technique is pairing generation. Each pair of (k-1)-

cubes is checked to see if they differ by only one literal. For each cube, consider the

straightforward implementation algorithm that simply starts searching at the beginning of

a cube list and searches until either the cube is found or the end of the list is reached. In

the worse case, this implementation requires O(N 2 ) cube comparisons. In terms of

function inputs, this bound is exponential, O(2 n ). If cube list is large, the program will

spend a lot of  CPU time searching for pairs to merge.

When the values of a list are in a sorted order, there are better searching methods

than the straightforward algorithm just described. For example, when a name is looked up



-50-

-50-

in a phone book, it is common not to start in the beginning and scan through until the

name is found. Instead, the fact that the names are listed in sorted order is used to jump

quickly to the right page before scanning. Thus, the ordering of the list can be taken

advantage of and a binary search may be used. Until the list being considered is empty or

the cube is found, the technique considers the cube at the midpoint in the list.

1) If this is the cube that is being sought, the task is finished.

2) If the cube being looking for is less than the middle cube, eliminate the

middle cube and all cubes greater.

3) If the cube being sought is greater than the middle cube, eliminate the middle

cube and all cubes smaller.

Therefore, if the cube list is in sorted order instead of unsorted order, a binary

search method can be used. Consider a pair of cubes that can be merged to generate a

new cube, the pair should have following two properties:

1) The pair of cubes must have the same cube number. For example, 1-cube is

generated from pair of 0-cubes, and 2-cube is generated from pair of 1-cubes.

2) The number of 1’s is differed by one. If two cubes can be paired, one cube

must have 1, and the other cube must have 0 in the corresponding position,

then the rest of the literals in the corresponding position must be the same.

For example, cube “1000” and “1001” can be paired, the number of 1’s in

cube “1000” is one, and two in cube “1001”.

Thus, the cube list can be sorted that is based on the two pairing properties discussed

above before searching for pairs. In the cube list, the number of cubes are sorted in
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sequential order, and the number of 1’s are sorted in sequential order for those cubes have

the same number of cubes. Consider the unsorted cube list shown in Fig. 4.1a, and the

sorted cube list shown in Fig. 4.1b. There are a total of ten cubes in the lists. In Fig. 4.1a,

pairs for the cube “0000” are being sought. It is necessary to compare cube “0000” with

all nine of the other cubes in the list. However, in Fig. 4.1b, it is only necessary to

compare cube “0000” with the cubes in the 0 and 1 subset of cubes. There are two cubes

in this section. Thus, we only have to compare cube “0000” with two cubes instead of

nine cubes after cube list is sorted.

                                                            # of cubes                      # of 1’s

                   0000                                                      0000
                   1100                                                      0001
                   10-1                                          0           0100
                   0001                                                      1001
                   -001                                                       1100
                   11-0                                                       -000
                   0100                                                       -001
                   01-0                                           1          01-0
                   1001                                                      10-1
                   -000                                                       11-0

(a) (b)

Fig. 4.1.    Unsorted cube list versus sorted cube list.

The program is implemented using this method. The experimental results show that

the program runs much faster than before by using this technique.

1

0

2

0

1

2
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Odd/Even Cover Checking

The second part of step1 and step2 involves the odd/even cover checking. Each

minterm is checked to see whether they are covered an odd number of times or even

number of times. When this step is implemented in a straightforward manner, it is

necessary to check each minterm covered by the cubes in the cube list one by one. If the

cubes in the cube list cover too many minterms, a huge computation time will result.

The basic idea for speeding up this process is to check if a cube does not have

intersection with any other cube in the cube list. In this case, the minterms covered by

this cube are covered an odd number of times. If a cube has intersection with another

cube in the list, the minterms covered by the both of these two cubes are covered an even

number of times. Thus, when the odd/even cover process is implemented, it is not

necessary to check each minterm one by one. Instead, it is only required to check whether

the cube has intersection with another cube. As an example, consider the function as

shown in Fig. 4.2. Cube C is the intersection of cube A and B. Cube A and B cover ten

minterms in total. If each minterm is checked one by one, it is necessary to check ten

times and put two minterms “0101”, “0111” in the list. However, if only the intersection

of two cubes is checked, the technique simply checks once and puts cube C in the final

list.

Thus, if the program is implemented using this method, it has two advantages. First,

it saves computation time by avoiding a check over each minterm. Second, it saves

memory by avoiding storage of  the minterms.
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                  0---        A                                    
                           -1-1       B

       

Fig.4.2.    Odd/Even cover checking.

Positional Cube Notation (PCN)

This technique has been implemented based on the use of cube lists. The initial

input is a list of covering cubes in PLA (ESPRESSO) format. Each input cube consists of

symbols. Each symbol of the cube corresponds to one of the variables and is 0, 1, -, ∅. ∅

means is a null-literal and indicates a cube is void and should be deleted from the set. The

symbol, “–“ indicates a “Don’t Care”. 1 indicates that the literal is an uncomplemented

variable and 0 indicates that the literal is a complemented variable.

Positional Cube Notation (PCN) is used to represent each symbol. PCN encodes

each symbol as a 2-bit field:

                          ∅      :        00

                           1      :        01

                           0      :        10

                           -       :        11

1 1 1 1

1 1 1 1

0 1 1 0

0 0 0 0

00 01 11 10

00

01

11

10

yz
wx

A

B

C
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As an example, consider the function, f = a d  + a b + a b  + a c d. The implicant table in

PCN is shown as follows:

                                    10    11    11    10                   a d   (0--0)

                                    10    01    11    11                   a b   (01--)

                                    01    10    11    11                   ab    (10--)

                                    01    11    10    01                   ac d (1-01)

PCN representation enhances the efficiency of manipulation although it needs more

memory to store the cubes. For example, cube intersection is very easy since it is simply

the bit-wise product. Consider the intersection of a d  and a b shown as the following

PCN operation:

                                    10    11    11    10

                                    10    01    11    11

                                    10    01    11    10                    a b d  (01-0)

Experimental Results

This program was implemented and run using standard benchmark circuits and the

results were compared to the ESOP minimizers EXMIN2 and MINT. In TABLEs 2, 3,

and 4, products means the number of products in the AND-EXOR realization. min means

the implemented program, TABESOP, uses the minimum minterm count approach. max

means TABESOP uses maximum minterm count approach.

TABLE 2 compares TABESOP with EXMIN2 and MINT. TABESOP uses the two

heuristic approaches and is compared with EXMIN2 and MINT. EXMIN2 and MINT
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generate better results. TABLE 3 compares TABESOP with DJ. DJ is the program that

transforms the initial expression into a disjoint sum-of-products expression (DSOP).

Before MINT and EXMIN2 are invoked, the initial input must be transformed into an

ESOP. Usually a DSOP is used by running DJ. Comparing with DJ, TABESOP generates

better results. In TABLE 4, the initial input (SOP form) for MINT is transformed into an

ESOP form by running DJ and TABESOP. Compared with DJ, MINT generates roughly

equal results by using TABESOP. TABLE 5 compares cover table size with BDD size.

From TABLE 5, we can see that BDD approach for representing the cover table requires

less memory than cube list approach.
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                                                   TABLE 2

                            Comparison with EXMIN2 and MINT

                      EXMIN2      MINT                  TABESOP (no rules)
      Circuit      (products)     (products)       min (products)       max (products)

126

219

255

413

147

624

  34

149

414

220

816

  126

  223

  253

  403

  147

  470

    34

  149

1459

  220

  816

  32

  51

  28

  64

  31

  35

  15

  36

  55

  29

184

  34

  53

  28

  68

  32

  35

  15

  42

  59

  29

184

5xp1

9sym

b12

clip

f51m

in7

rd53

rd73

rd84

sao2

vg2
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TABLE 3

Comparison with DJ (transform SOP into DSOP)

         SOP              DJ (DSOP)                                  TABESOP
    Circuit                                                                 min                              max

        productsproducts   literals   time (s) products  literals   time (s) products  literals    times (s)

162

  58

  14

  42

114

  57

  25

  16

  82

  60

  45

  78

151

  40

158

  58

  14

  42

114

  57

  25

  16

  82

  60

  45

  78

150

  40

204

  85

  14

109

269

132

  38

  52

  91

  99

143

112

266

  45

140

  58

  47

  74

  87

  34

  32

  36

  35

  47

  74

  48

  87

  23

b10

dc2

co14

risc

bw

inc

misex1

mux

x2

log8mod

b11

cm85a

duke2

sex

5611

  548

  196

  585

1092

  711

  163

  412

  515

  562

  735

  896

2613

  184

0.06

0.03

0.02

0.02

0.03

0.10

0.02

0.04

0.03

0.03

0.02

0.02

0.03

0.01

1480

  326

  196

  175

  860

  276

  105

    96

  330

  298

  184

  588

1341

  158

0.72

0.08

0.01

0.21

0.19

0.10

0.02

0.16

0.06

0.10

0.29

0.09

0.61

0.04

1528

  326

  196

  172

  860

  276

  105

    96

  330

  298

  184

  588

1347

  158

0.70

0.10

0.01

0.19

0.20

0.09

0.03

0.09

0.08

0.08

0.27

0.10

0.70

0.04
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TABLE 4

MINT Using DJ and TABESOP

                         Mint Using DJ                         Mint Using TABESOP
    Circuit                                                                    min                              max

             products  literals    time (s)   products  literals    time (s)   products   literals    times (s)

  92

  32

  14

  27

  22

  29

  12

  16

  15

  29

  26

  48

  78

  23

  91

  32

  14

  27

  22

  29

  12

  16

  15

  27

  26

  48

  80

  22

  85

  32

  14

  27

  22

  29

  12

  16

  15

  27

  26

  48

  78

  23

b10

dc2

co14

risc

bw

inc

misex1

mux

x2

log8mod

b11

cm85a

duke2

sex

  755

  151

  182

  112

  110

  134

    47

    16

    61

  110

  117

  270

  684

   89

  20.07

    0.85

    0.02

    0.63

    0.31

    0.80

    0.15

    0.48

    0.26

    1.00

    0.59

    2.61

  32.81

    0.53

  839

  151

  182

  112

  110

  138

    47

    96

    61

  110

  110

  270

  703

    83

27.77

  0.96

  0.01

  0.56

  0.22

  0.87

  0.14

  0.46

  0.25

  0.93

  0.61

  2.51

31.42

.  054

  847

  151

  182

  112

  110

  138

    47

    96

    61

  122

  110

  270

  694

    89

21.79

  0.88

  0.01

  0.63

  0.28

  1.00

  0.15

  0.44

  0.24

  0.88

  0.56

  2.48

38.35

  0.53
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TABLE 5

 Cover Table Size Comparison with BDD Size

                            Circuit             Cover Table            BDD
                                                        (bytes)                (bytes)         % Difference

                                                                                                                                                                                                                                                           

  867%

4581%

  350%

  296%

  780%

4002%

  715%

  720%

  405%

4746

  253

  403

  494

4577

  414

  162

  130

  283

45880

11843

  1813

  1955

40296

16983

  1320

  1066

  1428

add6

b12

clip

dist

intb

rd84

cm162a

cm163a

exp



-60-

-60-

CHAPTER V

CONCLUSION

In this thesis, a heuristic ESOP minimization technique based on the primitive

operation of odd/even cube covering is described, and formulated as a minimization

problem of ESOPs for multi-output functions. A minimization algorithm called

TABESOP, which is derived by modifying the well-known tabulation method used for

SOP minimization is developed.

The program was implemented in C++, and results have been compared to other

ESOP heuristic minimizers. Methods for implementing this technique using cube lists

and BDDs are described in chapter 3. Two approaches were used to solve the cover table.

The first approach is based on minimum minterm counts, and the second approach is

based on maximum minterm counts. The reasons these two approaches are used to solve

the cover table are based on the following facts. Each time a new cube is added to the

final list, the odd/even counting process must be invoked. The minimum minterm count

method usually results in adding fewer minterms to cover table during odd/even

counting. The maximum minterm count method can cause more minterms to be added to

cover table, but allows more rows to be deleted. Our experimental results show that both

methods can get better results in different cases.
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Methods for implementing this program were also described. Performance

enhancements in terms of speed and required memory were described by using more

sophisticated searching and merging algorithms and by using BDD and PCN data

structures.

Future extensions are research into techniques for solving the binate form of

Petrick’s equation based on a BDD representation of the cover table, and the

investigation of the use of other methods for the representation of the product term list.

Also, incorporation of more rules after initial solution of the cover table will enhance the

results.
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