

CROSSTALK DELAY ANALYSIS IN VERY DEEP SUB

MICRON VLSI CIRCUITS

Approved by:

Dr. Mitch Thornton, Thesis Advisor, Assoc. Prof. CSE Dept

Dr. John Provence, Adjunct Faculty., EE Dept.

Dr. Sukumaran Nair, Assoc. Prof. CSE Dept.

CROSSTALK DELAY ANALYSIS IN VERY DEEP SUB MICRON VLSI CIRCUITS

A Thesis Presented to the Graduate Faculty of

School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Master of Science

With a

Major in Computer Engineering

by

Satyendra Ravi Prasad Raju Datla

(Bachelor of Engineering, I.E.T.E, New Delhi)

May 15th 2004

 iii

ACKNOWLEDGEMENTS

The author wants to take the opportunity to thank all the people that supported this

project. In particular, I owe a great deal of gratitude to my advisor Professor Mitch

Thornton, who encouraged me all throughout this project and also helped me organize the

work. My special thanks to Professor Sukumaran Nair and Professor John Provence for

readily agreeing to be on the thesis committee and providing useful suggestions during

the project work. I here by thank all the friends and staff at CSE Dept for helping me

during the project and providing help during the thesis writing.

I also thank my mother for her unwavering support during the many long days, which

went into this endeavor. I am also grateful to all my family members and well-wishers

whose love and caring for me always inspired me.

 iv

Datla, Satyendra Bachelor of Engineering,

I.E.T.E., New Delhi, 1999

CROSSTALK DELAY ANALYSIS IN VERY DEEP SUB MICRON VLSI CIRCUITS

 Advisor: Professor Mitch Thornton

Master of Science conferred May 15th, 2004

Thesis completed <month>, <date>, 2004

Abstract

Integrated Circuit design has seen revolutionary progress in the past quarter century.

Explosive growth of semiconductor applications has happened as a result of several

technological breakthroughs. IC design community today embracing sub-100nm wafer

design technologies, known as very deep sub-micron (VDSM) technologies, to take

advantage of the superior integration possibilities. At these technologies, many

phenomena affect gate and wire delays. Capacitive coupling between neighboring wires

is one such phenomena that is having significant effect on design’s timing and

functionality goals. The accurate estimation of these effects is a ‘must have’ requirement

for any design that gets manufactured using the VDSM technologies.

 v

 This thesis summarizes the study conducted to identify the root causes of the

crosstalk due to capacitive coupling. A case study is conducted on a complex VLSI

design to check on the possible effects of the crosstalk on its timing and functionality

goals. An efficient analysis and fixing flow is developed and its effectiveness is

compared with other available approaches. Some methods are proposed to address the

crosstalk problem ahead in the design flow.

 vi

TABLE OF CONTENTS

LIST OF FIGURES…………………………………..…………………………………...x

LIST OF TABLES..…………………………………..………………………………….xii

CHAPTERS

1 THESIS OVERVIEW ... 1

2 INTRODUCTION... 5

2.1 What is signal integrity ... 7

2.2 Signal Integrity issues ... 7

2.3 Aggressor versus Victim:.. 8

2.4 Inductive crosstalk vs. Electro-static crosstalk ... 8

3 CROSSTALK EFFECTS IN VDSM DESIGNS .. 13

3.1 Timing effect of Crosstalk Delay Violations .. 15

3.1.1 Hold violations.. 15

 vii

3.1.2 Setup violations... 17

3.1.3 Bus violations ... 18

4 DESIGN DETAILS... 20

5 CROSSTALK ANALYSIS METHODOLOGY... 22

5.1 Coupled RC parasitics extraction ... 25

5.2 Generation of Crosstalk aware parasitics.. 25

5.3 Generation of Crosstalk SDF.. 27

5.4 Static Timing Analysis using the crosstalk delay SDFs 27

5.5 Filtering of violations.. 30

6 CHALLENGES FACED DURING THE ANALYSIS....................................... 32

6.1 Hierarchical design challenges ... 32

6.2 Clock Reconvergence Pessimism (CRP) Issues ... 35

6.3 Pessimistic Vs. Optimistic analysis ... 37

6.4 Collapsed and expanded clock trees ... 38

6.5 Number of Active Aggressors .. 39

6.6 Logically Impossible Timing Windows ... 41

 viii

7 STRATEGY FOR FIXING VIOLATIONS.. 43

7.1 Identification of Aggressors and Victims: .. 45

7.2 Filtering of static nets ... 45

7.3 Clock network isolation .. 46

7.4 Re-routing the Aggressors and Victims.. 47

7.5 Up-sizing/down-sizing.. 48

7.6 Splitting the Aggressors and Victims ... 48

7.7 Bus shielding... 49

8 RESULTS OF THE EXPERIMENTS .. 50

9 LESSONS LEARNED AND PROPOSED GUIDELINES 56

9.1 Attack the issue from the beginning ... 56

9.2 Specifications phase.. 57

9.3 Micro-architecture phase .. 57

9.4 Logic Synthesis phase... 59

9.5 Floor-planning phase .. 60

9.6 Placement phase.. 62

 ix

9.7 Clock distribution phase ... 63

9.8 Routing phase ... 64

9.9 Static Timing Analysis phase ... 65

10 CONCLUSION ... 66

11 REFERENCES .. 68

 x

LIST OF FIGURES

Figure 1. Signal Integrity failures .. 6

Figure 2. Inductive Coupling ... 9

Figure 3. Electro-static crosstalk ... 10

Figure 4. Crosstalk effect vs. technology ... 11

Figure 5. Coupling Capacitance vs. Substrate Capacitance.. 13

Figure 6. Noise and Delay effects of Crosstalk ... 14

Figure 7. Hold Violations due to Crosstalk Effect... 16

Figure 8. Setup Violations due to Crosstalk Effect ... 17

Figure 9. Setup Violation due to Crosstalk Delay ... 18

Figure 10. Crosstalk Effect on an On-chip bus.. 19

Figure 11. Design Block Diagram ... 21

Figure 12. Design flow of VLSI circuits ... 22

Figure 13. Crosstalk Delay Analysis Flow .. 24

Figure 14. Crosstalk Delay Compensation Approach ... 26

 xi

Figure 15. Crosstalk Delay with min and max switching.. 28

Figure 16. Crosstalk at Block Boundaries ... 33

Figure 17. Clock Tree Structure .. 35

Figure 18. Clock Reconvergence Pessimism... 36

Figure 19. Multiple Aggressors -- Layout Example .. 40

Figure 20. Logically Impossible Timing Windows ... 42

Figure 21. Flow Used for Fixing Violations.. 44

Figure 22. Crosstalk Delay Analysis Fix – Iterations ..51

Figure 23. Traditional Flow results.. 54

Figure 24. Efficient Fix methodology.. 55

Figure 25. Binary Vs. Gray... 58

Figure 26. Slew constraining ... 60

Figure 27. Bus interleaving.. 61

 xii

LIST OF TABLES

Table 1. Cell Vs. Interconnect delays ... 12

Table 2. Crosstalk violation ... 53

 i

Dedicated to my grand mother Mrs. Subbayamma,

Who’s continued love, care and support,

I could not be without

 1

1 THESIS OVERVIEW

 This report presents the work carried out as part of my master’s thesis. The topic

chosen for this thesis is one of the current issues the VLSI (very large scale integration)

design community is facing today: Signal Integrity. This thesis reports the details of the

Signal Integrity problem, the existing solutions, and proposes new solutions to effectively

tackle the problem. The thesis has the following sections:

Introduction

 The introduction of the thesis problem is given in this section. The background of the

issue is elaborated on. Current methods and flow issues are briefly addressed here to

prepare audience about the work being carried out.

Crosstalk effects in Very Deep Sub-Micron (VDSM) designs

 The crosstalk problem is defined here with more details. The effects of crosstalk are

explained with suitable examples and relevant statistical data. The objective of this

section is to emphasize the importance of crosstalk analysis in the Very Deep Sub-

Micron (VDSM) technologies.

 2

Design details

 Details about the design chosen for analyzing the crosstalk are provided briefly here.

The architecture and the applications of the design are explained here. This design is

proprietary of Texas Instruments Inc. Data is provided to the extent it does not violate

any Trademark or Intellectual Property issues. The objective of this section is to provide

necessary information about possible issues that might arise due to the nature of the

design and its features.

Crosstalk analysis methodology

 The crosstalk analysis methodology built using the industry standard EDA tools is

explained here. Shortcomings that are possible when using these tools are elaborated.

Tradeoffs with different possible methods are also mentioned.

Challenges faced during the analysis

 There are many issues that pop-up during the crosstalk analysis phase. Many of these

challenges are elaborated with details about their origin and their effect on the crosstalk

analysis flow.

Strategies for fixing the violations

 Once the crosstalk violations are accurately estimated, there shall be a fix

methodology to address these violations. The fix methodology followed to efficiently fix

 3

the crosstalk violations is the main focus of this section. Also, there are some issues that

arise due to a particular fix methodology followed. These after-effects are also discussed.

Experimental results

 The results of the experiments conducted on the sample design are described in this

section. The comparison of regular approach with the proposed approach is addressed.

Lessons learned and few proposals

 The focus of this section is to examine the various lessons learned during this research

work. Also, some suggestions are made to effectively deal with crosstalk problem at

various stages of the design flow. These shall prepare audience with some idea about the

challenges one will have to face while performing crosstalk analysis.

Conclusion

 Finally, the efficient methodology evolved as a result of the work done is summarized

in this section. Future work that can be carried out on this interesting problem is

suggested here.

 4

 5

2 INTRODUCTION

 Ever since the integrated circuit was invented by Jack Kilby (a Texas Instruments

engineer) in 1951, there have been several advances in the technology that led the way

the integrated circuits are fabricated. More and more applications have seen silicon

taking the advantage of modern integrated circuit manufacturing techniques. The pace at

which this integration had been happening is well illustrated by the famous “Moore’s

law”. Per Moore’s law, the total number of transistors on a single integrated circuit

doubles every 18 months. This law had been very practical from the time the first 4-bit

microprocessor was introduced to the current days of Pentium processors. The migration

was from few hundreds of transistors on a single chip then to the few millions of

transistors on a single chip now. This significant migration was possible only by

reducing the feature sizes of the CMOS (Complimentary Metal Oxide Semiconductor)

integrated circuit. The feature sizes have moved from few micro-meters to few nano-

meters.

 These rapid inventions in process technologies allowed integration of very complex

electronic circuits into small and tiny chips. As a result of that, very complex features

have come to handheld devices. The benefits of integration are only possible after the

challenges at each node of integration were overcome. Each of those new nodes certainly

brought new challenges, which had to be effectively addressed by the engineering

community.

 6

 Designing of VLSI integrated circuits have entered new phase namely “Very Deep

Sub-Micron” (VDSM) design phase. The designs that are below the feature sizes 0.25µm

(micro-meter) fall into this category. As mentioned above, each new design phase has

few challenges that need to be addressed in order to effectively utilize its benefits. One

of the major challenges that the VDSM technologies face is the signal integrity of the

signals on chip. Other possible challenges are well documented in [12]. Signal integrity

is the ability of a signal to generate the correct response in a circuit. A signal with good

signal integrity has its digital levels at required voltage levels at required times. Because

of reduced feature sizes in VDSM technologies, signals in the wires on the integrated

circuit suffer with signal integrity issues due to the signal transitions in their neighboring

wires. These signal integrity issues have to be kept in control in order for the circuit to

function properly.

 According to the research conducted by Collett International Research Inc., in the year

2000, one in five chips fail because of the signal integrity issue as illustrated in Figure 1.

This is really a significant effect on the yield of the chip production.

Figure 1. Signal Integrity failures

 7

2.1 What is signal integrity?

 Signal integrity describes the environment in which the signals must exist. It covers

different design techniques that ensure signals to be undistorted and do not cause

problems to themselves or to other components in the system. Signal Integrity did not

always matter. In the golden years of digital computing (1970-1990), gates switched so

slowly that, on the whole, digital signals actually looked like ones and zeros. Analog

modeling of signal propagation was not necessary.

 At today’s speeds even the simple, passive elements of a high-speed design—the

wires, PC boards, connectors, and chip packages— can make up a significant part of the

overall signal delay. Even worse, these elements can cause glitches, resets, logic errors,

and other problems. So, the signal integrity has been increasingly significant problem in

modern VLSI chip designs.

2.2 Signal Integrity issues

 Here are the major issues concerning signal integrity:

 Crosstalk Delay

 Crosstalk Noise

 Ringing & Ground bounce

 IR (voltage) drop in power lines

 Electro-migration

 Manufacturing-related issues that if not addressed can lead to chip failure

 8

 Crosstalk delay and crosstalk noise are the primary effects of the increased coupling

capacitance. The coupling capacitance tends to be more significant in modern process

technologies due to small and narrow feature sizes.

 All of the above effects are part of the signal integrity. While some of these issues can

make designs to fail altogether, some issues force the designs to work at reduced

operating frequencies. Obviously, both these effects are unacceptable for system

designers who use the chips.

 Need for sign-off quality crosstalk analysis and the relevant glossary terms are

discussed in more detail [16]. Some of the terms related to crosstalk definition are

mentioned here.

2.3 Aggressor versus Victim

 Crosstalk is the interaction between signals on two different electrical wires. The one

creating crosstalk is called an “aggressor”, and the one receiving the effect is called a

“victim”. Often, a wire can be an aggressor as well as a victim.

2.4 Inductive crosstalk vs. Electro-static crosstalk

 The problem of crosstalk can be categorized into two main categories: inductive

crosstalk and electro-static crosstalk.

 Inductive crosstalk: An electrical current in a loop generates a magnetic field. If this

magnetic field is changing, it can either radiate energy by launching radio frequency

 9

waves, or it can couple to adjacent loops ("Inductive cross-talk"). Figure 2. below shows

the effect of inductive crosstalk:

Figure 2. Inductive Coupling

 Electro-static crosstalk: The electrical voltage on a line creates an electric field. If

this electric field is changing, it radiates radio waves, or it can couple capacitively to

adjacent lines ("Electrostatic cross-talk"). Figure 3. depicts the effect of electro-static

crosstalk:

 10

Figure 3. Electro-static crosstalk

 As can be seen from the above two explanations, electrostatic crosstalk is significant.

 As stated before, the crosstalk problem is a severe one as the geometries shrink

beyond 0.25 µm. The following graph effectively illustrates this fact:

 11

Figure 4. Crosstalk effect vs. technology

 As shown in the above Figure 4. at smaller geometries, the gate capacitance is

insignificant when compared with wire capacitance. So, the over-all timing path delays

are dominated by interconnect delays but not cell delays. The second important point to

note from the above figure is that the delay due to coupling capacitance increased almost

ten-fold from 0.7 µm technology to 0.09 µm technology. The materials used for

interconnect wires were changed from Aluminium to Copper. This brought some

positive effect in terms of bringing down the interconnect delay cost. But, at newer

 12

technologies with the reduced geometries, the interconnect delay significantly dominates

when compared to the gate delays.

 The following Table 1 offers some numbers that support the above concern. Clearly,

the interconnect delays did not scale the way the intrinsic delays scaled. More

information can be found on this in refs. [20], [23] and [24].

Table 1. Cell Vs. Interconnect delays

Technology (nano meters) 250 180 150 130 100 70

Device intrinsic delay (ps) 70.5 51.1 48.7 45.8 39.2 21.9

1mm wire (ns) 0.059 0.049 0.051 0.044 0.052 0.042

 Also, at technologies below 0.09 µm, the standard timing relations become more

complex with additional variations and hence bring new issues on to the table.

 13

3 CROSSTALK EFFECTS IN VDSM DESIGNS

 As it was shown in the previous section, crosstalk due to coupling capacitance is

becoming extremely important in technologies at and below 0.18 micron (Technologies

beyond 0.25 micron are usually referred as VDSM technologies). To effectively address

the problem of the crosstalk, one must understand the root cause of the issue. In this

section, the fundamental causes of the problem are elaborated.

 The question that shall be addressed is: “why the coupling capacitance is becoming an

issue suddenly?”. In modern process technologies, the feature sizes of transistors

manufactured are shrinking. The spacing between interconnects is reduced, and hence

the coupling capacitance (Cc) is increased proportionally when compared with Substrate

capacitance (Cs). Figure 5. below depicts the scenario by comparing the feature sizes at

two different technologies.

Figure 5. Coupling Capacitance vs. Substrate Capacitance

 14

 As shown in the above figure, when the process technologies migrated from 0.18

microns to the smaller technologies, the coupling capacitance values have increased in

several orders when compared to the substrate capacitance.

 As mentioned in the previous chapter, introduction of copper interconnects helped

reduce coupling capacitance (Cc), which still dominates ground capacitance. Reduced

transistor switching thresholds have also reduced the noise threshold of logic gates. On

the other hand, higher drive strengths are used in latest technologies (helps ease timing

closure), which make current designs more noise sensitive.

Figure 6. Noise and Delay effects of Crosstalk

 Capacitive crosstalk can induce noise (glitches) on a silent (non-switching)

interconnect line, and can potentially cause functionality failures (Figure 6(a)). Similarly,

crosstalk can cause increased delays when an aggressor switches in the opposite direction

of the victim, as shown in Figure 6(b). Conversely, an aggressor can cause decreased

delays when switching in the same direction as the victim. This increase or decrease in

 15

delays can cause setup or hold time violations respectively, and may lead to functional

failures or reduced operating frequency of the chip. The delay impact due to crosstalk is

extremely important, since regular static timing analysis considers all coupled

interconnect lines to be quiet, which is seldom the case.

 There have been different attempts to accurately estimate the effect of crosstalk on

signal delay as explained in [18] and [22]. Since impact of coupling capacitance is very

dependent on its magnitude and the drive strength of the adjacent coupled nets, accurate

crosstalk analysis can be performed only after detailed routing is completed. Hence, the

crosstalk violations show up very late in the design cycle and can cause schedule slips.

The current layout tools are not dependably crosstalk aware, making crosstalk prevention

and timing closure a challenge.

3.1 Timing effect of Crosstalk Delay Violations

 This section deals with various timing issues that are caused by crosstalk. Each issue

is described in detail with its cause and effect. The ramifications of crosstalk violations

have been well documented in refs. [1], [10], [12] and [13].

3.1.1 Hold violations

 Hold violations are possible at sequential elements in the design when the data input

does not respect the minimum required hold timing margin. Usually, clock networks are

highly susceptible to the crosstalk issue. This is because; they are widely spread across

the chip to reach all sequential elements of the design.

 16

 In the case of the sample design experiments conducted, the largest effect of crosstalk

was the hold timing violations. This primarily happened because one of the clock

networks in the design became the victim of a fast switching aggressor. This is depicted

in the Figure 7. The clock network has large coupling with another wire that is driven by

a large drive strength buffer. The clock network hence becomes the victim of this

aggressor as shown.

Figure 7. Hold Violations due to Crosstalk Effect

 When the aggressor switches in the opposite direction of the clock, clock transitions

become little slower. So, the clock transitions reach at the flip-flops little later than they

should. Because of this, during hold time analysis some of the timing paths, which use

this clock as a capture clock might start failing due to the later arrival of the clock. (Not

all paths would show violations, because the same clock might also be used as launch

clock.)

 17

3.1.2 Setup violations

 Similarly, setup violations are possible at sequential elements when the data inputs do

not honor the setup time requirement of the sequential element. Though less number,

there are setup violations observed during the crosstalk delay analysis for the

experimental design taken. The root cause of these setup violations is explained in the

following figure.

Figure 8. Setup Violations due to Crosstalk Effect

 As shown in the Figure 8, a timing path exists between FF1 and FF2. There is a

neighboring aggressor path, as shown between A and B. When the aggressor wire is

switching in the opposite direction of the signal in the data path (victim), the data input of

FF2 could be delayed. Because of this, a timing path that was meeting timing without

crosstalk analysis would now show a violation. This is shown in the Figure 9.

 18

Figure 9. Setup Violation due to Crosstalk Delay

 As shown in the figure, originally, the actual arrival time of the signal at the input of

FF2 is well ahead of setup requirement of the flip-flop. If the aggressor switches in the

opposite direction, the signal is delayed. The flip-flop FF2 now has a setup violation

after considering the effect of crosstalk

3.1.3 Bus violations

 Bus signals are the other possible victims of crosstalk delay. For example, there are

long routed bus signals that connect two far placed blocks. The performance

requirements of these bus signals could be very high and hence need frequent repeaters in

their path. To reduce the skew among the bits of the bus at the destination, the detailed

router tool routes the bus signals together with minimum spacing between them. This is

shown in the Figure 10 below:

 19

Figure 10. Crosstalk Effect on an On-chip bus

 But, usually the bus signals switch together. Due to the simultaneous switching of all

the individual bits of the bus, there will be considerable amount of crosstalk that will

occur. Hence, the whole bus would behave like noisy transmission line affecting any

neighboring wires.

 As seen from all the previous issues, crosstalk delay could significantly affect the

design. As the problem and its effects are identified, it is now a challenge to address the

problem effectively.

 20

4 DESIGN DETAILS

 Possible crosstalk violations and their effects on a typical design were elaborated in

previous chapter. So, any methodology that is developed shall be verified and proven

using a complex VLSI design. The design chosen must be complex in nature and shall

represent some of the latest design techniques adopted in the industry. Design chosen

therefore can be the best test case for crosstalk analysis and fix methodology.

 The design considered for this exercise is a reusable, hardened System on a chip

(SoC) core. The design is an ultra-low power, high performance, and open multimedia

application platform for 3G wireless applications.

 The block diagram, shown in Figure 11, depicts the system architecture of the design.

The design is a proprietary and belongs to Texas Instruments Inc.

 21

Figure 11. Design Block Diagram

 The design integrates a high performance DSP core, based on low power TI C55x™

DSP, and an MPU core based on ARM9™ microprocessor, for the optimal combination

of high performance with low power consumption. This architecture offers an attractive

solution to both DSP and ARM™ developers. This provides the low power, real-time

signal processing capabilities of a DSP, coupled with the command and control

functionality of a microprocessor. This platform allows both cores to operate at a speed

independent of the system interface, in order to maximize system speed, while at the

same time maintain low power consumption. The design is of size approximately 2.5

million gates, including memory blocks. The design is taken as a reference for analyzing

the effects of crosstalk delay and the necessary fix identification.

 22

5 CROSSTALK ANALYSIS METHODOLOGY

 The main challenge in evaluating the effect of crosstalk on a design is to derive

analysis methodology. Such methodology shall be reliable, flexible and yet accurate.

More importantly the methodology evolved shall be easily integrated with normal design

flow as explained in [13].

 So, first it is worth taking a look at the normal design flow. The traditional design

flow for a VLSI design is shown in the figure below.

Figure 12. Design flow of VLSI circuits

 23

 As shown in the Figure 12, the timing closure loops are performed till the design’s

predefined PPA (Performance, Power and Area) goals are achieved. As shown in the

figure above, the flow can be divided into two main categories. The front-end and the

back-end are those two categories. The front-end part of the design flow mainly consists

of logic implementation of the given design specification. The design represented in

Register Transfer Level (RTL) is synthesized to the target library. The back-end flow

starts from the synthesized representation of the design and translates into the physical

representation that can then be delivered for chip fabrication. Backend flow involves

floor-planning, placement of the standard cells, clock network synthesis, clock routing,

signal routing and other reliability check steps. Once the clock and signal routings are

completed, the delays can be extracted during the extraction phase.

 Crosstalk analysis has to be performed after the detailed routing step in the above-

mentioned flow. The detailed routing here means both signal and clock routing. As

shown in the flow diagram (Figure 12), the next step is the circuit parasitics extraction.

These parasitics are the source for delay calculation.

 The circuit parasitics form the basis for any crosstalk estimation as explained in the

previous chapters. The following four-step procedure describes the flow developed to

perform crosstalk delay analysis:

• Step1: Coupled RC parasitics extraction using EDA tool called STAR-RCXT

• Step2: Generation of the SDFs that include the impact of crosstalk delay

incorporated using combination of the delay calculating tool and standard EDA

 24

tool called Primetime. Primetime is an industry standard sign-off tool for static

timing analysis.

• Step3: Static Timing Analysis with Primetime, using the crosstalk delay SDFs

generated from the above step.

• Step4: Filtering of the crosstalk delay violations based on switching timing

windows to identify the violations to fix

Figure 13 describes the flow used for crosstalk delay analysis. The subsequent sections

talk about these steps in more detail.

Figure 13. Crosstalk Delay Analysis Flow

 25

5.1 Coupled RC parasitics extraction

 LEF/DEF dumped from the layout tool was used as the input to STAR-RCXT for

coupled RC parasitics extraction in SPEF format. Main problem with SPEF file is its

huge size. STAR-RCXT supports various reduction options to control the size of the

coupled SPEF generated without losing on the accuracy.

 The following options are used in STAR-RCXT to control the size of SPEF files.

 REDUCTION_MAX_DELAY_ERROR, COUPLING_ABS_THRESHOLD and COUPLING_REL_THRESHOLD

5.2 Generation of Crosstalk aware parasitics

 After generating the net parasitics using STAR-RCXT, a PERL script was used to

modify the net parasitics for crosstalk. There are different ways the coupling capacitance

impact on delay can be estimated. Three of the approaches are explained in detail in [11].

The methodology used for crosstalk delay computation is an advanced version of

coupling compensation method [7]. In coupling compensation, the distributed RC

network with coupling capacitances are first converted into an equivalent lumped RC

network. Multiplying the coupling capacitance with a dynamic scale factor performs the

conversion. The value of the scale factor depends on variables like victim/aggressor

drive strengths, victim/aggressor loads and coupling capacitance.

 26

 The direction of switching determines whether the delay of the net increases or

decreases due to crosstalk (Figure 14). Scale factor (m1, m2) less than 1.0 is used to

model same direction switching effect (Figure 14b), and scale factor (n1, n2) greater than

1.0 is used to model opposite direction switching effect (Figure 14c). Since crosstalk

causes both speedup and slowdown of paths, it can cause both setup and hold timing

problems.

Figure 14. Crosstalk Delay Compensation Approach

 All aggressors coupled to a victim are considered when performing coupling

compensation. At this point in the flow, all nets coupled to a victim are considered as

aggressors. Narrowing the list of aggressors will be performed later (in step 4). This

approach makes the crosstalk delay SDF generation step independent of operating modes

of the design.

 27

5.3 Generation of Crosstalk SDF

 After modifying the parasitics to take crosstalk into account, two-crosstalk delay SDFs

are generated for each analysis corner. The following command in Primetime can be

used to write SDF:

 write_sdf –input_port_nets –output_port_nets –version 3.0 –include {SETUPHOLD

RECREM} <SDFfile>

 The first SDF file generated is used to model “same” direction switching delays

(speedup effect/min switching). The second one is used to model the opposite direction

switching delays (slow down effect/max switching).

5.4 Static Timing Analysis using the crosstalk delay SDFs

 Once the timing SDFs are generated with PrimeTime as explained in the previous

section, static timing analysis (STA) can be performed using PrimeTime. The same

timing constraints as the normal timing signoff can be used.

 Static timing analysis done with only max or min SDFs cannot reflect a worst-case

analysis, as shown in Figure 15.

 28

Figure 15. Crosstalk Delay with min and max switching

 Annotating the same type of delays (mins or maxs) to both clock and data paths makes

the clock and data edges shift in the same direction. This can potentially miss real

violations.

 Because of this, setup timing analysis should be performed by annotating max delays

to data path and min delays to the clock path. Conversely, to perform hold time analysis,

max delays need to be annotated to clock path, and min delays to the data path. This can

be achieved in PrimeTime by using the on_chip_variation mode of analysis. The

following read_sdf command is used in PrimeTime to enable the on_chip_variation

mode:

 read_sdf -analysis_type on_chip_variation \

-min_type <min or max triplet entry> \

 29

-max_type <min or max triplet entry> \

-min_file <min crosstalk SDF> \

-max_file <max crosstalk SDF>

 When performing on_chip_variation analysis in PrimeTime, it is advisable that clock

reconvergence pessimism be removed. Clock reconvergence pessimism refers to the

pessimism introduced in static timing analysis that is caused by using two different

delays for the common elements in the clock and data path. By default, Primetime uses

different delays for the common elements during on chip variation analysis. The clock

reconvergence issue is elaborated with more details in a later section.

 With the setup described and the on_chip_variation mode enabled, all the timing

violations are reported. The timing violations may not be accurate at this stage. The

reason for the inaccuracy is the fact that the coupling delay is applied on the nets with the

assumption that all aggressors can switch at the same time. In reality, not all aggressors

may switch at the same time. To filter out the incorrect violations, switching timing

windows of all the nets in the design are used in the flow.

 The switching timing windows for every net in the design are also dumped from

PrimeTime after annotating the coupling parasitics. This was accomplished by setting

the PrimeTime variable “timing_save_pin_arrival_and_slack” to true, in

order to enable PrimeTime to store the minimum and maximum arrival timing windows

for all nets in the design. (By default, PrimeTime stores arrival windows only for the

endpoints.)

 30

 A TCL script is written to query the pin attribute “arrival_window”, in order to

obtain the arrival windows for all the instance pins in the design. The relationship

(synchronous or asynchronous) shall be clearly defined for all the clocks in the design.

5.5 Filtering of violations

 The timing path violations obtained in the previous step are then reanalyzed by using

the switching timing windows and the clock relationships to identify the violations that

really needed to be fixed. Some more discussion on prioritizing the noise violations

based on their likelihood of occurrence can be found in [21].

 One of the biggest challenges in crosstalk delay analysis is the pessimism in the

analysis. Due to the non-availability of dynamic switching activity from simulation,

arrival windows from PrimeTime were used to remove pessimism. Here in this flow,

many pessimism reduction techniques are used that allowed to narrow down the crosstalk

delay violations. Some of the pessimism reduction techniques used are:

• Grouping of synchronous aggressors to a victim, based on aggressor and victim

switching windows. This makes it possible to identify the worst-case aggressor set that

can cause the maximum crosstalk delay impact.

• Filtering of violations that are caused by inactive clocks when a design is multi-

mode constrained. For instance, ignoring violations caused by test mode clocks when in

functional mode and vice versa.

• Filtering of violations caused by static nets in the design for the mode of analysis.

For instance, signals like scan enable and BIST enable do not switch during functional

 31

mode of operation. So, the violations caused because of these signals can be filtered out

from list of functional mode violations.

• Comprehending 1-stage logical correlation between victims and aggressors. For

example, if a buffer (or inverter) input and output nets are aggressors to the same victim,

it is likely that the timing windows of both aggressors overlap with the victim. But, both

the aggressors are logically related (and separated by a buffer delay) and this relation

needs to be considered while calculating the cumulative impact of the two aggressors on

the victim. A similar explanation is applicable when the same aggressor couples to two

victims that are input and output of a buffer (or inverter). Since identifying logical

correlation between any two nets in the design is difficult, the restriction applied to the

flow is to comprehend logical correlation between two victims/aggressors separated by

one stage of logic.

 32

6 CHALLENGES FACED DURING THE ANALYSIS

 The flow described in the previous sections is successfully used to conduct crosstalk-

aware static timing analysis on the design chosen. While performing the analysis,

various issues came up that required special attention. The next sections describe these

issues in detail.

6.1 Hierarchical design challenges

 In the case of big designs like the one chosen, separate teams usually develop

individual blocks. These individual sub-blocks are then integrated. This design

methodology can then be called as hierarchical in nature. There are definitely some

limitations to perform top-level crosstalk analysis on a hierarchical design. The primary

limitation was the lack of data necessary to perform accurate crosstalk analysis on the

inter module communication signals. The following Figure 16 depicts this issue.

 33

Figure 16. Crosstalk at Block Boundaries

 In the figure, blocks A, B, C, and D represent the physical implementation of four

hierarchical blocks in a design. There is a bus running from block A to block B, and

internal data and clock nets running at the boundaries in blocks C and D.

 These internal nets are common at the block level, and hence might not be trouble-

makers when performing block level static timing analysis. At the lower level, the blocks

may be meeting the timing budgets without any problems. But, things start breaking

when each of these blocks are stitched together and tested with crosstalk-induced delays.

 One scenario is when the bus between the A and B blocks switch from its “all 1s”

state to “all 0s” state or vice versa. It is interesting to see what can happen. As a result of

the excessive crosstalk by this bus, the clock tree in block D might have a longer or

shorter insertion delay that usual when there is switching on the bus. This would force

many violating timing paths to start popping up inside block D. Similarly, the timing

path highlighted inside the block C shall also get affected. Paths that otherwise meet

 34

timing at block level would now start violating at the top level because of crosstalk

induced by other signals at the boundary.

 So, careful and accurate top-level crosstalk induced timing analysis has to be carried

out to determine the root cause of the violations. This is often difficult on multi-million

gate designs. While performing top-level timing analysis, for variety of reasons, the team

may be using abstract models of the lower level blocks. Extracted timing models like

STAMP may represent the module level timing.

 Unfortunately, many of these timing models lack the necessary information to perform

the accurate top-level crosstalk delay analysis. As indicated above, the essential

information needed for top-level analysis is the expanded clock tree of all modules and

the timing paths whose nets run at the block boundary. Only then, it is possible to

perform accurate crosstalk timing analysis at the top level.

 A partial solution to this problem is to use interface logic models (called ILMs). The

beauty of ILM timing models is that besides the extracted timing information, all the

interface logic associated with the ports can be stored. So, the clock network for all the

interface signals can be extracted and available for top-level analysis. This nails down

the problem to a manageable size.

 The problem is not completely addressed with ILMs either, because ILMs may not

contain the timing and physical information of all the paths that run at the boundary of

the block. Another disadvantage of ILMs is that some teams may prefer not to have the

boundary logic visible for confidential/proprietary reasons. Of course, the most accurate

 35

methodology is to do timing analysis with the entire netlist. But, the analysis with full

netlist requires lot of memory and CPU resources.

6.2 Clock Reconvergence Pessimism (CRP) Issues

 The design chosen has a fairly complex clock structure in order to achieve ultra-low

power goals. The sample clock tree structure is shown in the Figure 17 below:

Figure 17. Clock Tree Structure

 36

 As shown in the diagram (Figure 17), the clock is gated at several levels to allow for

ultra low-power operation by switching off the unused logic/transaction/domain/block.

The clock path also has multiplexing, to allow for different operating modes with

different clock configurations. Because of this, many of the sub-blocks in the design

share derivatives of the common clock from a DPLL (Digital Phase Lock Loop). Even

though much of the logic operates on the local clock, there exist some timing paths

between the clocks of different branches of the same clock tree.

 When performing on-chip variation analysis with PrimeTime, there is some pessimism

that needs to be accounted for in order to have accurate analysis. For example, the

following diagram (Figure 18) shows a simple two flip flop circuit. The flops share a

common clock, but are placed physically at different places on the same die.

Figure 18. Clock Reconvergence Pessimism

 While performing setup timing analysis using on-chip variation mode, PrimeTime

uses the annotated max delay for each clock path element of the launching flop, and it

uses the min delay for each clock path element of the capture clock. This results in

pessimistic analysis, because it is impossible to have two different delays for the same

 37

cell in the clock path for which two delays are used. To remove this pessimism, a

variable that needs to be set as shown below:

set timing_remove_clock_reconvergence_pessimism true

 Once this variable is set, PrimeTime removes this pessimism by calculating the

amount of pessimism that is induced and adjusts the arrival time by this amount.

 With PrimeTime versions prior to 2002.09, there were issues with clock gating macros

and other custom clock tree logic. Basically, PrimeTime was not calculating the accurate

clock reconvergence pessimism value for paths that contained this logic. Because of this

inconsistent behavior by PrimeTime, there are additional violations that are not real.

 To address this issue, a PERL script is developed. The script calculates the correct

clock reconvergence pessimism value to be removed for the each timing path.

 More details on clock reconvergence pessimism and related information can be found

in [5].

6.3 Pessimistic Vs. Optimistic analysis

 When there exists many number of timing violations, and each one of these violations

takes long time to identify and fix. This delays the project execution. The delays are

even worse when the fixes require touching some of the paths that already met timing.

The primary question becomes: are they true violations? What amount of pessimism is

involved?

 38

 Crosstalk analysis on a large design is an involved process, and the results vary based

on various factors: collapsed and expanded clock trees, aggressor-victim relationships

and switching timing windows. Due to lack of firm data, assumptions have to be made

for each of these factors. Careful analysis considering these factors can result in reduced

violations. The following sections expand on these factors to see the pessimism they

cause.

6.4 Collapsed and expanded clock trees

 While performing timing analysis, the delay information is annotated by the

information extracted from physical design tools. While performing extraction, clock

tree information can be extracted by two ways: collapsed or expanded. A collapsed clock

tree means that whole clock tree is represented as a single cell. So, the extracted

SDF(standard delay format) file contains delay arcs representing maximum and minimum

delay possibilities. Collapsed clock trees are usually chosen for reduced run times. Run

time becomes an issue when working with larger designs that integrate several sub-

blocks.

 But, when working with collapsed clock trees, it is observed that the results are more

pessimistic. The induced delays due to crosstalk seem to be unfair.

 Results are better with less number of violations when the expanded clock tree

extraction is used for netlist and delay annotation. This is because of the fact that

localized coupling capacitance effects are not seen on a global scale, which is the case

with collapsed clock trees.

 39

 For example, the expanded clock tree network contains the details of the entire clock

tree. As a result, it is possible to see the effect of each sub-net of the clock tree. If a

small portion of clock tree were affected by its close proximity with another signal, the

delay on clock tree would be reduced or increased. The effect of the additional delay on

whole clock tree would vary based on the position of this crosstalk affected partial clock

tree.

 When using the expanded clock tree, these effects are fairly localized and the accuracy

of analysis increases.

6.5 Number of Active Aggressors

 It is possible to have multiple aggressors on a single crosstalk victim. The total

crosstalk effect on victim is the sum of all the individual crosstalk effects caused by each

of the aggressors. But, not all aggressors can be active at the same time and if all the

aggressors are considered, then there exists pessimism in the results. Number of

violations depends on the number of aggressors chosen to consider at a time on a victim

signal. As shown in the Figure 19. below, there is a victim net surrounded by more than

one aggressor. When conducting crosstalk delay analysis, there might be a timing

violation on the victim, with the assumption that all of the aggressor nets switch at the

same time. But in reality, this is not necessarily true. At one time, only few of these

aggressors are active, making the initial results pessimistic.

 40

Figure 19. Multiple Aggressors -- Layout Example

 The number of aggressors that can be considered to be switching together is a variable

that can be changed. For the experimental initial iterations, this number can be chosen as

three. The diagram (Figure 19) above shows the case where the victim is routed along

with more than two aggressors. The effect on the victim is calculated considering all the

aggressors surrounding the victim. This could be pessimistic if the aggressor’s timing

windows do not match that of victim. So, each violation should be carefully reviewed for

the aggressor/victim timing window relations before deciding if it is a violation to be

fixed.

multiple aggressors

effecting a victim net

 41

6.6 Logically Impossible Timing Windows

 The excessive coupling capacitance causes the victim wires to have crosstalk problem.

But, coupling capacitance alone is not sufficient for the crosstalk delay effect on a victim.

The signal arrival times of both aggressor and victim also need to match in order to have

any effect on the timing of the victim. Even if the switching windows of the aggressors

and victims match, regular crosstalk delay analysis may still be pessimistic because the

current tools do not understand the logic function of the aggressor/victim paths when

calculating the timing windows. Two examples are given here to elaborate more on this

issue.

 In the first case, the Figure 20(a) shows that a1, a2 and a3 aggressors have coupling

capacitance on the victim net. Although this coupling capacitance physically exists, it is

not possible for all of these aggressors to have an effect on the victim. This is because

there is an inverter between a1 and a2.

 So, any delay due to same direction switching of a1 would be cancelled by the

opposite direction switching of the inverted aggressor a2 assuming both coupling

capacitances are identical. Without considering the logical relation information during

crosstalk analysis, aggressors a1 and a2 are treated as two different aggressor nets

coupling with the victim. That introduces pessimism into the results.

 42

Figure 20. Logically Impossible Timing Windows

 The second example is shown in Figure 20(b). Here there is an output of a

multiplexer that runs very near to another signal. Physically, the output of this

multiplexer may become as an aggressor/victim for/of another net. In this case, output of

the mux and both its input nets are aggressors to the victim net. When calculating timing

windows of the nets, the tools assume that output of the mux will change whenever one

of the inputs changes. This is not necessarily a true situation. If one of the inputs of the

mux is selected and the select input is static, then the output of the mux does not have the

effect of the timing window on the unselected input.

 43

7 STRATEGY FOR FIXING VIOLATIONS

 For the designs of large size and complexity, it is fairly common to see thousands of

violations the first time a crosstalk analysis flow is run because of the reasons it was

described previously. The challenge is to quickly parse the timing reports generated by

the crosstalk delay static timing runs, in order to isolate the real violations for fixing.

Unlike regular timing reports, crosstalk-induced timing violations are mainly due to

physical routing of the involved nets or paths. So, having access to the physical routing

information of the paths is critical in deciding the validity of the violations.

 The primary constraint on the methodology for fixing violations is to untouch those

paths that have already met timing. There is considerable risk involved when there are

any changes to already frozen clock tree structure. So, it is wise to untouch the clock

trees unless it was impossible to fix violations without doing so. Therefore, if the

violation was because of a clock net becoming the victim/aggressor, then the other net

can be re-routed with increased spacing, or repeaters can be inserted to reduce the

coupling capacitance effect. This approach paid off well in the experiments conducted

where all the violations could be fixed without touching the clock trees. So, no new

timing violations are introduced because of crosstalk delay fixing.

 Another challenge, of course, is to reduce the number of iterations it might take to fix

the violations. Hold fixes especially could require several iterations if not carefully

 44

analyzed and fixed. Methodology followed is to fix all the setup violations that are less

in number and then concentrate on fixing the hold. Because hold fixing can be done

easily by introducing some buffers.

 The following flow diagram (Figure 21) shows the steps followed to fix the crosstalk

violations:

Figure 21. Flow Used for Fixing Violations

 As shown in the Figure 21, crosstalk violations fixing is a highly iterative process.

There are several iterations for identifying and fixing the violations. Each of these

 45

iterations includes one or more steps as shown in the Figure 21. Each of the steps in the

flow is detailed in the subsequent sections.

7.1 Identification of Aggressors and Victims

 It is impossible to manually check the thousands of violations reported due to initial

crosstalk delay analysis. A PERL script is used to parse the PrimeTime generated timing

reports that contain all the crosstalk delay information. The script parses all the timing

reports to identify aggressor and victim information for each violating timing path. The

other inputs for the script are the coupling capacitance information of all the nets in the

design. The script then identifies various aggressors and victims based on the amount of

delay effect caused by net coupling.

 Aggressors and victims are then sorted based on the clock domain they belong to.

Usually, each path group contains a few aggressors and victims that are responsible for

many of the violations. So, the result of the PERL script was parsed again to get a list of

unique aggressors and their victim nets. This brings down the number of nets to be

analyzed to a reasonable number.

7.2 Filtering of static nets

 Once the actual aggressors and victims are identified using the above step, the next

step is to filter the static nets out of this list. Static nets are the nets whose value does not

change in the current operating mode. For example, the “test mode” signal value never

 46

changes during the functional mode of operation. List of all the static nets is prepared for

each operation or timing mode. Other static net examples include reset signals and boot-

up configuration registers.

 The idea is that these static nets could safely be removed from the list of aggressors,

since they do not really switch during normal operation, so there is no question of

crosstalk with other nets. As a result, the false crosstalk violations are filtered in the

process by declaring the static nets.

7.3 Clock network isolation

 As mentioned earlier, the primary concern is to minimize, if not avoid, changes to the

existing clock tree while fixing the crosstalk violations. This is because, the design’s

timing is sensitive for any minor changes in the clock trees and may have to go through

multiple iterations to close timing. So, the clock networks are not touched during the

crosstalk delay fixing.

 Therefore, clock network nets are isolated from the list of aggressors and victims by

carefully reviewing the timing reports. A full clock timing report from PrimeTime is

generated using the following TCL command within pt_shell :

 “report_timing –from <launch> -to <capture> -path_type full_clock_expanded”

 This feature helps to get the fully expanded clock network path for the violating paths.

These reports help to identify the clock networks easily.

 47

 Basic rule of thumb to be followed: if aggressor is a clock net, then victim is marked

for fixing. On the other hand, if victim is a clock, then the aggressor shall be marked for

fixing. If the clock network is both an aggressor and victim, still the clock networks shall

not be touched. Then, the total crosstalk on the victim can still be addressed by fixing the

next level of aggressor/victims.

7.4 Re-routing the Aggressors and Victims

 Once the list of actual aggressors and victims are identified with the help of the above

steps, the appropriate ones shall be fixed in order to resolve the crosstalk violations. The

primary fixing approach shall be to attack the problem with minimal impact on the

design. So, it is nice to see if the routing tool could re-route some of the aggressor nets

incrementally using increased spacing rules. The other constraint is not to touch the other

nets while doing this incremental routing. The routers usually do a better job of handling

only a small number of nets incrementally.

 The re-routing is done using the Apollo place-and-route tool on the experimental

design. The actual procedure followed along with an example script can be found in [1].

 This step usually reduces the number of violations from several hundreds to few tens.

After performing various other scenarios on the experimental design, it is identified that

fixing the violations by additional routing space is the best step to try first in order to

make life easier for sub-sequent iterations.

 48

7.5 Up-sizing/down-sizing

 Another approach that can be followed is to up-size the cells (ex: buffers, inverters)

that drive the victim nets in order to allow victim nets to have enough drive strength to

reduce the effect of coupling from aggressor nets. A similar approach is to downsize

cells that drive the aggressor paths in order to reduce their effect on the victim nets.

 This method helps as a secondary alternative. But, there are situations where this

approach may not be usable. For example, there is a scenario in which the aggressor and

the victim are mutually coupled and each of them is aggressor/victim to each other. So,

any up-sizing/down-sizing might solve the issue in one direction but would worsen the

issue in other direction. The approach that can be followed to fix such violation is a

combination of spacing and breaking the nets with repeater insertion.

7.6 Splitting the Aggressors and Victims

 The coupling capacitance caused by the aggressor is proportional to the length of the

net. The longer the net, the more the coupling capacitance it contributes.

 The long interconnect nets causing crosstalk violations can be identified and can be

carefully broken into multiple nets by inserting repeaters. Only constraint that shall be

considered is the physical location of the new repeater being inserted. The criteria that

can be used in choosing a particular place to insert repeater is to make sure that the new

repeater does not create any new aggressors/victims on other neighboring paths.

 49

7.7 Bus shielding

 The long interconnect bus signals between blocks can be shielded by Ground (VSS)

wires on both sides of the bus. This shielding avoids the potential excessive crosstalk

otherwise possible. The shielding hence reduces the bus violations.

 This approach was proved as very effective fix in the tests run on the experimental

design.

 50

8 RESULTS OF THE EXPERIMENTS

 Once the flow is established, it is required to measure the quality of results (QoR) the

flow is yielding when compared to other available methods or flows. The number of

iterations taken for timing closure and fixing the crosstalk violations could be the gauging

factor when comparing the different flows.

 This section summarizes the results of the fixing methodology developed during the

period of this research work. The steps mentioned in the previous chapters were

followed during each and every iteration of the crosstalk analysis and fixing flow. This

methodology yielded pretty good results in terms of successfully closing the timing with

a fewer number of iterations. The following graph (Figure 22) gives the iterations and

the respective approximate violation numbers.

 51

Figure 22. Crosstalk Delay Analysis Fix – Iterations

 As seen in the figure, the hold violations are the dominant violations in the design.

The initial violations seen before any post-processing are in thousands. These are caused

mainly due to too much pessimism in terms of multiple aggressors and asynchronous

clock group assumptions as explained in previous sections. The timing for crosstalk

delay is closed after 4-5 iterations. Each iteration mentioned here means from the step

the crosstalk delay STA is done to the step of fixing the violations and handing-off back-

annotation to STA.

 The Quality of Results of the developed flow/procedure is compared with traditional

flow/procedure to measure the competence of the flow being proposed. For a complex

design, two flows are compared with each other in terms of number of timing closure

 52

iterations each flow taken for closing the design for all crosstalk violations. The

comparison results are shown in the following Table 2.

 53

Table 2. Crosstalk violations comparison

Flow Violations Iter

1

Iter

2

Iter

3

Iter

4

Iter

5

Iter

6

Iter

7

Iter

8

Iter

9

Iter

10

Iter

11

Iter

12

Traditional

Flow

Setup 150 120 100 130 150 60 75 40 12 20 3 0

 Hold 400 500 520 380 220 300 50 80 20 35 8 0

Proposed

Flow

Setup 150 80 30 5 15 1 0 0 0 0 0 0

 Hold 400 300 45 70 20 5 0 0 0 0 0 0

 The pictorial representation of these results is given below. The main comparison is

between the traditional flow and the flow that is developed during the period of research

work.

Figure 23. below shows the results of traditional timing closure flow for crosstalk as

explained in [19]. The setup and hold violations are sensitive to each other. Most of the

times, fixing setup violations would make the number of hold violations increase and vice

versa.

 54

Figure 23. Traditional Flow results

 The results are plotted as shown in the Figure 23 above. Clearly, this traditional flow

requires 12 timing closure iterations. The reason for these long iterations is also apparent

from the above picture. When we try fixing the setup violations, the number of hold

violations increases and vice versa. The problem is complicated because of the fact that

the effect of any fix being done is not noticed until after parasitic extraction. New fix

might bring totally different scenario in terms of coupling capacitance. So, this

complicates the fixing methodology and design teams tend to spend more time than

afforded in fixing the crosstalk issues. The result is that the total timing closure cycle

increases and hence the development cost of the chips.

 55

 As discussed in the previous section, this problem can be solved by systematically

addressing the root causes of the problem. This fact is proven by conducting experiments

through derived methodologies for comparison. The Figure 24 depicts the timing closure

results of these trials.

Figure 24. Efficient Fix methodology

 The design is taken to go through the timing closure loops with emphasized focus on

crosstalk aware methods at each of the design flow steps.

 The obvious result is the reduction in number of iterations taken for timing closure.

The reduction of number of iterations is definitely a phenomenal advantage to have in

this highly competitive VLSI design arena. The time-to-market is the key for majority, if

not all, of the modern applications.

 56

9 LESSONS LEARNED AND PROPOSED GUIDELINES

 During the course of this research work, the root causes for the crosstalk problem are

studied. Also, the possible solutions to efficiently fix the problem are studied and

verified the concepts on experimental design. As shown in the previous section, the

proposed methodology is very efficient and results oriented.

 At the same time, there are still some places where things would have been much

better placed if some of the precautionary actions were taken ahead in the flow. As a

result of that, several lessons are learned during the course of this work. These lessons

learnt may be useful to the VLSI design community to address the crosstalk issue well

ahead in their design flow to avoid some last-minute surprises.

 Also, there are few novel approaches that can be used to address the crosstalk issue

from the beginning of the flow. These new ideas and guidelines along with the lessons

learnt are detailed in this section. Each of these lessons and proposals are grouped

together into relevant part of the whole design flow.

9.1 Attack the issue from the beginning

 Address the issue from the beginning of the design flow. The best way to address a

problem is try to avoid it! The design and timing closure flow shall be built with crosstalk

aware methodology in view from the beginning.

 57

9.2 Specifications phase

 The specification phase of the design is the earliest stage where the initial planning for

the design is done. The logic partitioning usually happens depending on the features that

need to be supported by the design. One of the after effects of improper logic sharing is

the excessive crosstalk due to long wires running between the different parts of the

design. So, the logic distribution across various hierarchies shall be crosstalk aware.

 The long running bus wires can be avoided by carefully distributing the logic where it

is mostly used. If necessary, logic shall be duplicated at the places where it is mostly

needed instead of running the long interconnects to long distances across the chip.

9.3 Micro-architecture phase

 Some of the crosstalk issues faced late in the design cycle can well be avoided with

better implementation of the design during the micro-architecture phase. In order to

implement the required functionality, there are many choices during the micro-

architecture design phase. But the selection of improper implementation could make

things worse for crosstalk. At the same time, there are few implementations that are

preferable compared to other from crosstalk perspective. The following examples

provide an insight into how this is possible.

 Example #1: A large counter is the requirement in a design. If it is implemented as a

regular binary counter, then there will be lot of crosstalk that can result when the counter

 58

values change. Also along with the size of the counter, the risk of crosstalk increases.

This can be avoided by choosing the counter implementation as Gray counter instead of a

binary counter. Because in Gray counter, only one of the bits changes at a time, it

reduces lot of crosstalk.

Figure 25. Binary Vs. Gray

 As shown in the Figure 25 above, the binary counter has many places of multiple bits

switching together. Whereas in gray counter only one bit switches at a time.

 So, the selection criteria for counter implementation shall be crosstalk aware.

 Example #2:

 Large state machines can be avoided. Finite State machines (called as FSMs) have

become very popular among the design community as they offer solutions to several

implementation challenges. There are different flavors of these FSMs depending on the

way outputs are generated and states are incremented. Along with the advantages, FSMs

 59

come with few additional drawbacks. One of the most important drawbacks is that the

complexity of the FSMs increases with their size and number of inputs they have to keep

track with. Larger state machines make it compulsory to have large counters and the

related combinational circuits. This drawback can be avoided by breaking long state

machines into smaller and more modular state machines. The recommendation here is to

limit the size of the state machine to 20 states maximum.

9.4 Logic Synthesis phase

 Logic synthesis is the phase in which the micro-architecture implementation is

mapped onto target technology library. The technology library contains the variety of

standard cells with basic functionalities like AND, OR, NAND, NOR, INV and DFF etc.

These standard cells are pre-designed for the given technology. Logic synthesis tools

would translate the implementation from Hardware Description Languages (HDLs) into

netlist of those standard cells from the library.

 The proposal here is to control the slew rate through constraining the design during

the synthesis. Proper slew rate control from the beginning would avoid bigger aggressors

later in the design cycle.

 The following Figure 26 depicts the constraint for the typical 90nm technology:

 60

Figure 26. Slew constraining

9.5 Floor-planning phase

 Floor planning is the first crucial phase in the physical design portion of the design.

The Floor-planning phase consists of tasks like die size estimation, port placement, macro

placement and power routing etc. There are several opportunities at this phase to try and

avoid as much crosstalk as possible. These following examples would be detailing on

things we can do:

 Example #1: Proper port placement

 Placement of the ports is very critical with respect to the issue of crosstalk.

Especially, the ports that have more probability of switching at the same time shall not be

placed next to each other. This worst possible switching can be avoided by choosing

proper port placement.

 For example, in a typical microprocessor based system, large address and data bus

signals are the part of the ports. It is customary to group all the address ports together

during the port placement. This will have significant effect of crosstalk both inside and

outside the chip for these ports. Possibility of all the address and data bits switching

 61

together is large and can cause potential timing issues due to heavy crosstalk. The effect

could also be extended on all the neighboring wires if their switching windows overlap

with switching windows of address and or data bus.

 Proposed solution to this problem is to interleave the address and data bus signals.

The reason for that is, the possibility of simultaneous switching of address and data bus

bits is less. This will reduce the potential crosstalk problem otherwise possible. The

Figure 27 below depicts the scenario:

Figure 27. Bus interleaving

 Example #2: Macro placement

 Placement of the macros inside the chip is critical from the crosstalk perspective. The

macros like DPLL and memories need to be placed at the places where they are mostly

connected. The signals from these macros may need to be traveling to long distances

from different places of the chip. Especially if the design has special high frequency

 62

macros whose signals need to be routed to long distances, they may create possible

crosstalk with neighboring wires.

 Example #3: Shielding for bus signals

 Even with special care taken, there will be cases where bus signals may have to run

long distances. So, this issue can be avoided by shielding the bus signals with Ground

wires. The shielding will be helpful in reducing the effect of crosstalk by grounding the

excessive coupling from the bus lines.

 The effects of number of ports and the packaging on crosstalk are explained in more

detail in [17].

9.6 Placement phase

 Placement is the phase in which the standard cells are placed within the cell area that

is prepared during the floor-planning phase. Currently, the EDA tools available are

mature enough for better placement results. With the advances in computing resources,

the placement tools are doing considerably good job in achieving better timing closure.

Lately, many of these Placement tools also implement the crosstalk avoidance

algorithms.

 However, the case is different from design to design. Additionally, due to new

physical effects in each new technology node, placement tools may need to be properly

used to get optimum results. From crosstalk point of interest, placement tools shall be

properly constrained in order to achieve less crosstalk delay problems.

 63

 For example, placement blockages can be created at the areas where there is high

switching activity possible. This way some of the possibilities of crosstalk can be

avoided.

9.7 Clock distribution phase

 Clock distribution and synthesis are the phases in which the clock networks of the

design are constructed for the clock signals in the design. Increasing complexity of clock

networks comes from the fact that more and more power saving features are implemented

in the design.

 As the performance requirements of the designs keep increasing, clock frequencies are

growing up and up. Due to reduced spacing between the wires in the latest technological

nodes, clock networks with heavy switching are highly susceptible to crosstalk. Special

care taken during the clock distribution phase can be helpful in avoiding the possibility of

harmful crosstalk later in the design cycle.

 For example, the transition time of the clock network shall be kept well under control

during the clock synthesis phase. Higher the transition times on the clock, more the

probability of having crosstalk with its neighbors.

 Secondly, the types of the clock buffers chosen during the clock synthesis also would

be critical for the smooth timing closure during the Engineering Change Order (known as

ECO) phase where the minimum changes are essential. Usually, it is preferable not to

use the set of highest and lowest drive strength buffers during the initial clock synthesis.

Later on during the final timing closure iterations, these higher/lower driver strength

 64

buffers can be used by upsizing/downsizing the existing buffers. If the higher drive clock

buffers are chosen in the beginning of the synthesis phase, there will be little choice

towards later stages of timing closure.

 Another thing that can help to reduce the crosstalk is to have special routing rules for

all the high frequency clock networks. For example, the clock networks could be routed

with constraints like double spacing (2 times the technology allowed spacing between the

metal wires) and double VIA (Whenever clock signal switches from metal to metal, there

will be double VIA placed instead of single VIA). At sub-100nm technology nodes this

constraint is becoming a requirement.

9.8 Routing phase

 During the routing phase, connections to all the placed instances (as explained in the

Placement section) are established and routed with available metal resources. Routing

tools shall achieve the basic job of establishing wire routing while honoring the spacing

and geometry rules defined by the technology node. The increased need for routing tools

to avoid crosstalk problems is well addressed in [15].

 The important thing to take care in avoiding the crosstalk during the routing phase is

to guide the routing tools with the design information in hand. Following are examples,

which are on this track :

 Creation of special routing guides for the high frequency switching nets.

 65

 Special routing constraints across the narrow channels, if any.

 Conservative spacing rule constraints for high frequency switching nets. For

example, double spacing constraint for clock nets etc.

 The necessity of minimum channel routing is explained in [4].

9.9 Static Timing Analysis phase

 The Static timing analysis(referred as STA) forms a very important timing closure

step during which the design’s timing is verified with predefined timing goals. The STA

is usually performed at various stages of the design flow: after initial synthesis, pre-route

phase and post-route phase etc. Where as the Crosstalk STA can only be performed after

the routing is completed.

 The recommendation here is to have additional margins in closing the regular timing.

These additional margins would help in accounting for the possible delay degradation

because of crosstalk.

 66

10 CONCLUSION

 This section concludes the work presented so far in previous chapters.

 Signal integrity is one of the critical problems the VLSI design community is facing

today. Crosstalk delay is the major contributor for signal integrity issues at latest process

technology nodes. The actual basics of the problem are explained in the beginning of this

report. The effects of these crosstalk violations with the deep sub-micron design phase

are explained in detail with examples.

 Once the basic understanding of the issue is established, the details about a complex

design that is taken for conducting the experiments are explained. Potential areas where

the crosstalk would affect this sort of design are discussed.

 The most important focus of this research work is to come up with methodology and

procedures to address the problem. The flow developed during the course of this

research work is elaborated in the subsequent sections.

The two basic ways of addressing the crosstalk issue are proposed:

• Avoiding the possibilities of the crosstalk

• Fixing the existing crosstalk issues.

 67

 Both these methods are discussed in detail in this report. Evaluation of proposed

methods is conducted and the results are presented. Lessons learned during the course of

this project are summarized in this report.

All the objectives aimed for are achieved at the end of the project. However, there is

future work to be continued more on this direction. Following are the potential areas

where future work is needed:

• Design tool methodologies to measure the effect of signal integrity ahead in the

design flow to help system and chip level designers.

• Improving accuracy in the results obtained from the flow.

• Potential reduction of run times for several of the crosstalk timing closure flow

• Automation: Complete automation of analysis and fix methodology flow

proposed in this thesis

 68

11 REFERENCES

1. Satyendra R. P. Raju Datla, “Crosstalk Delay Threat: Are you ready?”, SNUG, Boston

2003. (This presentation received 4th place among the conference papers)

2. James Song, Stewart Shankel, Satyendra R. Datla, Kaijian Shi and Yuanqiao Zheng,

“Challenges in the Hierarchical STA of a Low-Power 3G Wireless Application

Platform”, SNUG, San Jose, 2003

3. Satyendra R. Datla, James Song, Stewart Shankel, Kaijian Shi and Yuanqiao zheng,

“Overcoming challenges in STA for 3G wireless application”, Comms Design Journal,

May 2003, EE Times Journal, June 2003.

4. T. Gao and C.L.Liu, “Minimum crosstalk channel routing”, in Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, 1993.

5. Ken Wong and Elisabeth Moseley, “Static timing analysis with crosstalk delay with

Primetime SI”, SNUG 2002.

6. Sonke Grimpen, “Delay calculation with detailed parasitics in Primetime”, SNUG

2001.

7. A. B. Kahng, S. Muddu and E. Sarto, “On Switch Factor Based Analysis of Coupled

RC Interconnects”, DAC 2000

8. Kei Hirose and Hiroto Yasuura, “A bus delay reduction technique considering

crosstalk”, DATE (Europe) 2000.

 69

9. Synopsys Solv-Net CRPR_AppNote_v1.0.pdf

(http://solvnet.synopsys.com/retrieve/customer/application_notes/attached_files/005511/

CRPR_AppNote_v1.0.pdf?1049952177065)

10. Bret Victor and Kurt Keutzer, “Bus Encoding to prevent crosstalk delay”, ICCAD

2001.

11. Ravishankar Arunachalam, Karthik Rajagopal and Lawrence T. Pileggi, “TACO:

Timing Analysis with Coupling”, DAC 2000.

12. Dennis Sylvester and Kurt Keutzer, “Getting to the Bottom of Deep Submicron II : A

Global Wiring Paradigm”, SNUG Europe 2001.

13. Bijan Kiani and Anthony Hill, “Static crosstalk analysis assures silicon success”,

EETimes Journal, June 2002.

14. Franzini, B., Forzan, C., Pandini, D., Scandolara, .P and Dal Fabbro, A. “Crosstalk

Aware Static Timing Analysis Environment”, ISQED 2000.

15. Tak Young, “IC Layout must avoid crosstalk problems”, EEdesign Journal, June

2002.

16. George Mekhtarian, “How to Achieve Sign-off Quality Signal Integrity Analysis

with Prime Time SI”, Synopsys Compiler magazine, May 2003.

17. Francesc Moll and Miquel Roca, “Effect of package parasitics and crosstalk on

signal delay” (www.spi.uni-hannover.de/2001/presentations/moll.pdf)

 70

18. Sachin S. Sapatnekar, “Capturing the Effect of Crosstalk on Delay”, VLSI design

conference, 2000.

19. Dennis Sylvester, Chenming Hu, O. Sam Nakagawa and Soo-Young Oh,

“Interconnect Scaling : Signal Integrity and Performance in Future High-Speed CMOS

Designs”, Proc. Of I, ZSI Symposium on Technology, pp 42-3, 1998.

20. Sarma B. K. Vrudhula, David Blaauw and Supamas Sirichotiyakul, “Estimation of

the Likelihood of Capacitive Coupling Noise”, DAC 2002.

21. Martin Kuhlmann, Sachin S. Sapatnekar and Keshab K. Parthi, “Efficient Crosstalk

Estimation”, IEEE ICCAD Conf., 1999.

22. Jason Cong, “An Interconnect-Centric Design Flow for Nanometer Technologies”,

Proceedings of the IEEE, 89(4):505-528, April 2001.

23. Jason Cong, “Challenges and Opportunities for Design Innovations in Nanometer

Technologies”, SRC Design Sciences Concept Paper, NC, 1997.

24. P.D. Gross, R. Arunachalam, K. Rajagopal, and L.T.Pileggi, “Determination of

worst-case aggressor alignment for delay calculation”, in Proceedings of the IEEE/ACM

International Coference on Computer-Aided Design, November 1998.

25. O. S. Nakagawa, et al, “Closed form modeling of on-chip crosstalk noise for deep

submicron ULSI interconnect”, Hewlett Packard Journal, August 1998.

 71

26. D. A. Kirkpatrick and A.L. Sangiovanni-Vincentelli, “Techniques for crosstalk

avoidance in the physical design of high-performance digital systems”, in Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design, 1994.

 72

