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Abstract 

Integrated Circuit design has seen revolutionary progress in the past quarter century. 

Explosive growth of semiconductor applications has happened as a result of several 

technological breakthroughs. IC design community today embracing sub-100nm wafer 

design technologies, known as very deep sub-micron (VDSM) technologies, to take 

advantage of the superior integration possibilities. At these technologies, many 

phenomena affect gate and wire delays. Capacitive coupling between neighboring wires 

is one such phenomena that is having significant effect on design’s timing and 

functionality goals. The accurate estimation of these effects is a ‘must have’ requirement 

for any design that gets manufactured using the VDSM technologies.  
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      This thesis summarizes the study conducted to identify the root causes of the 

crosstalk due to capacitive coupling. A case study is conducted on a complex VLSI 

design to check on the possible effects of the crosstalk on its timing and functionality 

goals. An efficient analysis and fixing flow is developed and its effectiveness is 

compared with other available approaches. Some methods are proposed to address the 

crosstalk problem ahead in the design flow. 



 vi      

 

TABLE OF CONTENTS 

 

LIST OF FIGURES…………………………………..…………………………………...x 

LIST OF TABLES..…………………………………..………………………………….xii 

CHAPTERS 

1 THESIS OVERVIEW ........................................................................................... 1 

2 INTRODUCTION................................................................................................. 5 

2.1 What is signal integrity ....................................................................................... 7 

2.2 Signal Integrity issues ......................................................................................... 7 

2.3 Aggressor versus Victim:.................................................................................... 8 

2.4 Inductive crosstalk vs. Electro-static crosstalk ................................................... 8 

3 CROSSTALK EFFECTS IN VDSM DESIGNS ................................................ 13 

3.1 Timing effect of Crosstalk Delay Violations .................................................... 15 

3.1.1 Hold violations.............................................................................................. 15 



 vii      

3.1.2 Setup violations............................................................................................. 17 

3.1.3 Bus violations ............................................................................................... 18 

4 DESIGN DETAILS............................................................................................. 20 

5 CROSSTALK ANALYSIS METHODOLOGY................................................. 22 

5.1 Coupled RC parasitics extraction ..................................................................... 25 

5.2 Generation of Crosstalk aware parasitics.......................................................... 25 

5.3 Generation of Crosstalk SDF............................................................................ 27 

5.4 Static Timing Analysis using the crosstalk delay SDFs ................................... 27 

5.5 Filtering of violations........................................................................................ 30 

6 CHALLENGES FACED DURING THE ANALYSIS....................................... 32 

6.1 Hierarchical design challenges ......................................................................... 32 

6.2 Clock Reconvergence Pessimism (CRP) Issues ............................................... 35 

6.3 Pessimistic Vs.  Optimistic analysis ................................................................. 37 

6.4 Collapsed and expanded clock trees ................................................................. 38 

6.5 Number of Active Aggressors .......................................................................... 39 

6.6 Logically Impossible Timing Windows ........................................................... 41 



 viii      

7 STRATEGY FOR FIXING VIOLATIONS........................................................ 43 

7.1 Identification of Aggressors and Victims: ........................................................ 45 

7.2 Filtering of static nets ....................................................................................... 45 

7.3 Clock network isolation .................................................................................... 46 

7.4 Re-routing the Aggressors and Victims............................................................ 47 

7.5 Up-sizing/down-sizing...................................................................................... 48 

7.6 Splitting the Aggressors and Victims ............................................................... 48 

7.7 Bus shielding..................................................................................................... 49 

8 RESULTS OF THE EXPERIMENTS ................................................................ 50 

9 LESSONS LEARNED AND PROPOSED GUIDELINES ................................ 56 

9.1 Attack the issue from the beginning ................................................................. 56 

9.2 Specifications phase.......................................................................................... 57 

9.3 Micro-architecture phase .................................................................................. 57 

9.4 Logic Synthesis phase....................................................................................... 59 

9.5 Floor-planning phase ........................................................................................ 60 

9.6 Placement phase................................................................................................ 62 



 ix      

9.7 Clock distribution phase ................................................................................... 63 

9.8 Routing phase ................................................................................................... 64 

9.9 Static Timing Analysis phase ........................................................................... 65 

10 CONCLUSION ................................................................................................... 66 

11 REFERENCES .................................................................................................... 68 

 

 

 

 

 

 

 

 

 

 

 



 x      

 

LIST OF FIGURES 

Figure 1.  Signal Integrity failures ...................................................................................... 6 

Figure 2.  Inductive Coupling ............................................................................................. 9 

Figure 3.  Electro-static crosstalk ..................................................................................... 10 

Figure 4.  Crosstalk effect vs.  technology ....................................................................... 11 

Figure 5.  Coupling Capacitance vs.  Substrate Capacitance............................................ 13 

Figure 6.  Noise and Delay effects of Crosstalk ............................................................... 14 

Figure 7.  Hold Violations due to Crosstalk Effect........................................................... 16 

Figure 8.  Setup Violations due to Crosstalk Effect ......................................................... 17 

Figure 9.  Setup Violation due to Crosstalk Delay ........................................................... 18 

Figure 10.  Crosstalk Effect on an On-chip bus................................................................ 19 

Figure 11.  Design Block Diagram ................................................................................... 21 

Figure 12.  Design flow of VLSI circuits ......................................................................... 22 

Figure 13.  Crosstalk Delay Analysis Flow ...................................................................... 24 

Figure 14.  Crosstalk Delay Compensation Approach ..................................................... 26 



 xi      

Figure 15.  Crosstalk Delay with min and max switching................................................ 28 

Figure 16.  Crosstalk at Block Boundaries ....................................................................... 33 

Figure 17.  Clock Tree Structure ...................................................................................... 35 

Figure 18.  Clock Reconvergence Pessimism................................................................... 36 

Figure 19.  Multiple Aggressors -- Layout Example ........................................................ 40 

Figure 20.  Logically Impossible Timing Windows ......................................................... 42 

Figure 21.  Flow Used for Fixing Violations.................................................................... 44 

Figure 22.  Crosstalk Delay Analysis Fix – Iterations ......................................................51 

Figure 23.  Traditional Flow results.................................................................................. 54 

Figure 24.  Efficient Fix methodology.............................................................................. 55 

Figure 25.  Binary Vs.  Gray............................................................................................. 58 

Figure 26.  Slew constraining ........................................................................................... 60 

Figure 27.  Bus interleaving.............................................................................................. 61 

 



 xii      

 

LIST OF TABLES 

Table 1.  Cell Vs.  Interconnect delays ............................................................................. 12 

Table 2.  Crosstalk violation ............................................................................................. 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 i      

 

 

 

 

 

 

 

Dedicated to my grand mother Mrs. Subbayamma, 

Who’s continued love, care and support, 

I could not be without 

 

 

 

 

 

 

 



 1   

1   THESIS OVERVIEW 

 

     This report presents the work carried out as part of my master’s thesis.   The topic 

chosen for this thesis is one of the current issues the VLSI (very large scale integration) 

design community is facing today: Signal Integrity.   This thesis reports the details of the 

Signal Integrity problem, the existing solutions, and proposes new solutions to effectively 

tackle the problem.   The thesis has the following sections: 

Introduction 

     The introduction of the thesis problem is given in this section.   The background of the 

issue is elaborated on.   Current methods and flow issues are briefly addressed here to 

prepare audience about the work being carried out. 

Crosstalk effects in Very Deep Sub-Micron (VDSM) designs 

     The crosstalk problem is defined here with more details.  The effects of crosstalk are 

explained with suitable examples and relevant statistical data.  The objective of this 

section is to emphasize the importance of crosstalk analysis in the Very Deep Sub-

Micron (VDSM) technologies. 
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Design details 

   Details about the design chosen for analyzing the crosstalk are provided briefly here.  

The architecture and the applications of the design are explained here.  This design is 

proprietary of Texas Instruments Inc.  Data is provided to the extent it does not violate 

any Trademark or Intellectual Property issues.  The objective of this section is to provide 

necessary information about possible issues that might arise due to the nature of the 

design and its features.   

Crosstalk analysis methodology 

     The crosstalk analysis methodology built using the industry standard EDA tools is 

explained here.  Shortcomings that are possible when using these tools are elaborated.  

Tradeoffs with different possible methods are also mentioned.   

Challenges faced during the analysis 

     There are many issues that pop-up during the crosstalk analysis phase.  Many of these 

challenges are elaborated with details about their origin and their effect on the crosstalk 

analysis flow. 

Strategies for fixing the violations 

     Once the crosstalk violations are accurately estimated, there shall be a fix 

methodology to address these violations.  The fix methodology followed to efficiently fix 
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the crosstalk violations is the main focus of this section.  Also, there are some issues that 

arise due to a particular fix methodology followed.  These after-effects are also discussed. 

 

 

Experimental results 

     The results of the experiments conducted on the sample design are described in this 

section.  The comparison of regular approach with the proposed approach is addressed. 

 

Lessons learned and few proposals 

     The focus of this section is to examine the various lessons learned during this research 

work.  Also, some suggestions are made to effectively deal with crosstalk problem at 

various stages of the design flow.  These shall prepare audience with some idea about the 

challenges one will have to face while performing crosstalk analysis. 

 

Conclusion 

     Finally, the efficient methodology evolved as a result of the work done is summarized 

in this section.  Future work that can be carried out on this interesting problem is 

suggested here.   
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2   INTRODUCTION 

 

     Ever since the integrated circuit was invented by Jack Kilby (a Texas Instruments 

engineer) in 1951, there have been several advances in the technology that led the way 

the integrated circuits are fabricated.  More and more applications have seen silicon 

taking the advantage of modern integrated circuit manufacturing techniques.  The pace at 

which this integration had been happening is well illustrated by the famous “Moore’s 

law”.  Per Moore’s law, the total number of transistors on a single integrated circuit 

doubles every 18 months.  This law had been very practical from the time the first 4-bit 

microprocessor was introduced to the current days of Pentium processors.  The migration 

was from few hundreds of transistors on a single chip then to the few millions of 

transistors on a single chip now.  This significant migration was possible only by 

reducing the feature sizes of the CMOS (Complimentary Metal Oxide Semiconductor) 

integrated circuit.  The feature sizes have moved from few micro-meters to few nano-

meters.   

     These rapid inventions in process technologies allowed integration of very complex 

electronic circuits into small and tiny chips.  As a result of that, very complex features 

have come to handheld devices.  The benefits of integration are only possible after the 

challenges at each node of integration were overcome.  Each of those new nodes certainly 

brought new challenges, which had to be effectively addressed by the engineering 

community. 
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     Designing of VLSI integrated circuits have entered new phase namely “Very Deep 

Sub-Micron” (VDSM) design phase.  The designs that are below the feature sizes 0.25µm 

(micro-meter) fall into this category.  As mentioned above, each new design phase has 

few challenges that need to be addressed in order to effectively utilize its benefits.  One 

of the major challenges that the VDSM technologies face is the signal integrity of the 

signals on chip.  Other possible challenges are well documented in [12].  Signal integrity 

is the ability of a signal to generate the correct response in a circuit.  A signal with good 

signal integrity has its digital levels at required voltage levels at required times. Because 

of reduced feature sizes in VDSM technologies, signals in the wires on the integrated 

circuit suffer with signal integrity issues due to the signal transitions in their neighboring 

wires.  These signal integrity issues have to be kept in control in order for the circuit to 

function properly. 

     According to the research conducted by Collett International Research Inc., in the year 

2000, one in five chips fail because of the signal integrity issue as illustrated in Figure 1.  

This is really a significant effect on the yield of the chip production. 

 

Figure 1.  Signal Integrity failures 
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2.1 What is signal integrity? 

     Signal integrity describes the environment in which the signals must exist.  It covers 

different design techniques that ensure signals to be undistorted and do not cause 

problems to themselves or to other components in the system.  Signal Integrity did not 

always matter.  In the golden years of digital computing (1970-1990), gates switched so 

slowly that, on the whole, digital signals actually looked like ones and zeros.  Analog 

modeling of signal propagation was not necessary.   

     At today’s speeds even the simple, passive elements of a high-speed design—the 

wires, PC boards, connectors, and chip packages— can make up a significant part of the 

overall signal delay.  Even worse, these elements can cause glitches, resets, logic errors, 

and other problems.  So, the signal integrity has been increasingly significant problem in 

modern VLSI chip designs. 

2.2 Signal Integrity issues 

     Here are the major issues concerning signal integrity: 

 Crosstalk Delay 

 Crosstalk Noise 

 Ringing & Ground bounce 

 IR (voltage) drop in power lines 

 Electro-migration 

 Manufacturing-related issues that if not addressed can lead to chip failure  
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     Crosstalk delay and crosstalk noise are the primary effects of the increased coupling 

capacitance.  The coupling capacitance tends to be more significant in modern process 

technologies due to small and narrow feature sizes.   

     All of the above effects are part of the signal integrity.  While some of these issues can 

make designs to fail altogether, some issues force the designs to work at reduced 

operating frequencies.  Obviously, both these effects are unacceptable for system 

designers who use the chips. 

       Need for sign-off quality crosstalk analysis and the relevant glossary terms are 

discussed in more detail [16]. Some of the terms related to crosstalk definition are 

mentioned here.  

2.3 Aggressor versus Victim 

     Crosstalk is the interaction between signals on two different electrical wires.  The one 

creating crosstalk is called an “aggressor”, and the one receiving the effect is called a 

“victim”.  Often, a wire can be an aggressor as well as a victim. 

2.4 Inductive crosstalk vs. Electro-static crosstalk 

     The problem of crosstalk can be categorized into two main categories: inductive 

crosstalk and electro-static crosstalk.   

     Inductive crosstalk: An electrical current in a loop generates a magnetic field.  If this 

magnetic field is changing, it can either radiate energy by launching radio frequency 
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waves, or it can couple to adjacent loops ("Inductive cross-talk").  Figure 2. below shows 

the effect of inductive crosstalk: 

 

Figure 2.  Inductive Coupling 

     Electro-static crosstalk: The electrical voltage on a line creates an electric field.  If 

this electric field is changing, it radiates radio waves, or it can couple capacitively to 

adjacent lines ("Electrostatic cross-talk").  Figure 3. depicts the effect of electro-static 

crosstalk: 
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Figure 3.  Electro-static crosstalk 

     As can be seen from the above two explanations, electrostatic crosstalk is significant. 

     As stated before, the crosstalk problem is a severe one as the geometries shrink 

beyond 0.25 µm.  The following graph effectively illustrates this fact: 
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Figure 4.  Crosstalk effect vs. technology 

     As shown in the above Figure 4. at smaller geometries, the gate capacitance is 

insignificant when compared with wire capacitance.  So, the over-all timing path delays 

are dominated by interconnect delays but not cell delays.  The second important point to 

note from the above figure is that the delay due to coupling capacitance increased almost 

ten-fold from 0.7 µm technology to 0.09 µm technology.  The materials used for 

interconnect wires were changed from Aluminium to Copper.  This brought some 

positive effect in terms of bringing down the interconnect delay cost.  But, at newer 
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technologies with the reduced geometries, the interconnect delay significantly dominates 

when compared to the gate delays.   

     The following Table 1 offers some numbers that support the above concern.  Clearly, 

the interconnect delays did not scale the way the intrinsic delays scaled.  More 

information can be found on this in refs. [20], [23] and [24]. 

Table 1.  Cell Vs.  Interconnect delays 

Technology (nano meters) 250 180 150 130 100 70 

Device intrinsic delay (ps) 70.5 51.1 48.7 45.8 39.2 21.9 

1mm wire (ns) 0.059 0.049 0.051 0.044 0.052 0.042 

 

     Also, at technologies below 0.09 µm, the standard timing relations become more 

complex with additional variations and hence bring new issues on to the table. 
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3   CROSSTALK EFFECTS IN VDSM DESIGNS 

 

     As it was shown in the previous section, crosstalk due to coupling capacitance is 

becoming extremely important in technologies at and below 0.18 micron (Technologies 

beyond 0.25 micron are usually referred as VDSM technologies).  To effectively address 

the problem of the crosstalk, one must understand the root cause of the issue.   In this 

section, the fundamental causes of the problem are elaborated. 

     The question that shall be addressed is: “why the coupling capacitance is becoming an 

issue suddenly?”.  In modern process technologies, the feature sizes of transistors 

manufactured are shrinking.  The spacing between interconnects is reduced, and hence 

the coupling capacitance (Cc) is increased proportionally when compared with Substrate 

capacitance (Cs).  Figure 5. below depicts the scenario by comparing the feature sizes at 

two different technologies. 

  

Figure 5.  Coupling Capacitance vs. Substrate Capacitance 
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     As shown in the above figure, when the process technologies migrated from 0.18 

microns to the smaller technologies, the coupling capacitance values have increased in 

several orders when compared to the substrate capacitance. 

     As mentioned in the previous chapter, introduction of copper interconnects helped 

reduce coupling capacitance (Cc), which still dominates ground capacitance.  Reduced 

transistor switching thresholds have also reduced the noise threshold of logic gates.  On 

the other hand, higher drive strengths are used in latest technologies (helps ease timing 

closure), which make current designs more noise sensitive. 

  

Figure 6.  Noise and Delay effects of Crosstalk 

     Capacitive crosstalk can induce noise (glitches) on a silent (non-switching) 

interconnect line, and can potentially cause functionality failures (Figure 6(a)).  Similarly, 

crosstalk can cause increased delays when an aggressor switches in the opposite direction 

of the victim, as shown in Figure 6(b).   Conversely, an aggressor can cause decreased 

delays when switching in the same direction as the victim.  This increase or decrease in 
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delays can cause setup or hold time violations respectively, and may lead to functional 

failures or reduced operating frequency of the chip.  The delay impact due to crosstalk is 

extremely important, since regular static timing analysis considers all coupled 

interconnect lines to be quiet, which is seldom the case. 

     There have been different attempts to accurately estimate the effect of crosstalk on 

signal delay as explained in [18] and [22].  Since impact of coupling capacitance is very 

dependent on its magnitude and the drive strength of the adjacent coupled nets, accurate 

crosstalk analysis can be performed only after detailed routing is completed.  Hence, the 

crosstalk violations show up very late in the design cycle and can cause schedule slips.  

The current layout tools are not dependably crosstalk aware, making crosstalk prevention 

and timing closure a challenge. 

 

3.1 Timing effect of Crosstalk Delay Violations   

     This section deals with various timing issues that are caused by crosstalk.  Each issue 

is described in detail with its cause and effect.  The ramifications of crosstalk violations 

have been well documented in refs. [1], [10], [12] and [13].   

3.1.1 Hold violations 

     Hold violations are possible at sequential elements in the design when the data input 

does not respect the minimum required hold timing margin.  Usually, clock networks are 

highly susceptible to the crosstalk issue.  This is because; they are widely spread across 

the chip to reach all sequential elements of the design. 
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     In the case of the sample design experiments conducted, the largest effect of crosstalk 

was the hold timing violations.  This primarily happened because one of the clock 

networks in the design became the victim of a fast switching aggressor.  This is depicted 

in the Figure 7.  The clock network has large coupling with another wire that is driven by 

a large drive strength buffer.  The clock network hence becomes the victim of this 

aggressor as shown. 

  

Figure 7.  Hold Violations due to Crosstalk Effect  

 

     When the aggressor switches in the opposite direction of the clock, clock transitions 

become little slower.  So, the clock transitions reach at the flip-flops little later than they 

should.  Because of this, during hold time analysis some of the timing paths, which use 

this clock as a capture clock might start failing due to the later arrival of the clock.  (Not 

all paths would show violations, because the same clock might also be used as launch 

clock.) 
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3.1.2 Setup violations 

     Similarly, setup violations are possible at sequential elements when the data inputs do 

not honor the setup time requirement of the sequential element.  Though less number, 

there are setup violations observed during the crosstalk delay analysis for the 

experimental design taken.  The root cause of these setup violations is explained in the 

following figure.   

  

Figure 8.  Setup Violations due to Crosstalk Effect  

     As shown in the Figure 8, a timing path exists between FF1 and FF2.  There is a 

neighboring aggressor path, as shown between A and B.  When the aggressor wire is 

switching in the opposite direction of the signal in the data path (victim), the data input of 

FF2 could be delayed.  Because of this, a timing path that was meeting timing without 

crosstalk analysis would now show a violation.   This is shown in the Figure 9. 
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Figure 9.  Setup Violation due to Crosstalk Delay  

 

     As shown in the figure, originally, the actual arrival time of the signal at the input of 

FF2 is well ahead of setup requirement of the flip-flop.  If the aggressor switches in the 

opposite direction, the signal is delayed.  The flip-flop FF2 now has a setup violation 

after considering the effect of crosstalk 

 

3.1.3 Bus violations 

     Bus signals are the other possible victims of crosstalk delay.  For example, there are 

long routed bus signals that connect two far placed blocks.  The performance 

requirements of these bus signals could be very high and hence need frequent repeaters in 

their path.  To reduce the skew among the bits of the bus at the destination, the detailed 

router tool routes the bus signals together with minimum spacing between them.  This is 

shown in the Figure 10 below:  
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Figure 10.  Crosstalk Effect on an On-chip bus  

     But, usually the bus signals switch together.  Due to the simultaneous switching of all 

the individual bits of the bus, there will be considerable amount of crosstalk that will 

occur.  Hence, the whole bus would behave like noisy transmission line affecting any 

neighboring wires.   

     As seen from all the previous issues, crosstalk delay could significantly affect the 

design.  As the problem and its effects are identified, it is now a challenge to address the 

problem effectively. 
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4   DESIGN DETAILS 

 

     Possible crosstalk violations and their effects on a typical design were elaborated in 

previous chapter.  So, any methodology that is developed shall be verified and proven 

using a complex VLSI design.  The design chosen must be complex in nature and shall 

represent some of the latest design techniques adopted in the industry.  Design chosen 

therefore can be the best test case for crosstalk analysis and fix methodology. 

      The design considered for this exercise is a reusable, hardened System on a chip 

(SoC) core.  The design is an ultra-low power, high performance, and open multimedia 

application platform for 3G wireless applications. 

     The block diagram, shown in Figure 11, depicts the system architecture of the design.  

The design is a proprietary and belongs to Texas Instruments Inc. 
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Figure 11.  Design Block Diagram 

     The design integrates a high performance DSP core, based on low power TI C55x™ 

DSP, and an MPU core based on ARM9™ microprocessor, for the optimal combination 

of high performance with low power consumption.  This architecture offers an attractive 

solution to both DSP and ARM™ developers.  This provides the low power, real-time 

signal processing capabilities of a DSP, coupled with the command and control 

functionality of a microprocessor.  This platform allows both cores to operate at a speed 

independent of the system interface, in order to maximize system speed, while at the 

same time maintain low power consumption.  The design is of size approximately 2.5 

million gates, including memory blocks.  The design is taken as a reference for analyzing 

the effects of crosstalk delay and the necessary fix identification. 
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5   CROSSTALK ANALYSIS METHODOLOGY 

 

     The main challenge in evaluating the effect of crosstalk on a design is to derive 

analysis methodology.  Such methodology shall be reliable, flexible and yet accurate.   

More importantly the methodology evolved shall be easily integrated with normal design 

flow as explained in [13].   

     So, first it is worth taking a look at the normal design flow.  The traditional design 

flow for a VLSI design is shown in the figure below.   

  

Figure 12.  Design flow of VLSI circuits 
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     As shown in the Figure 12, the timing closure loops are performed till the design’s 

predefined PPA (Performance, Power and Area) goals are achieved. As shown in the 

figure above, the flow can be divided into two main categories.  The front-end and the 

back-end are those two categories.  The front-end part of the design flow mainly consists 

of logic implementation of the given design specification.  The design represented in 

Register Transfer Level (RTL) is synthesized to the target library.  The back-end flow 

starts from the synthesized representation of the design and translates into the physical 

representation that can then be delivered for chip fabrication.  Backend flow involves 

floor-planning, placement of the standard cells, clock network synthesis, clock routing, 

signal routing and other reliability check steps.  Once the clock and signal routings are 

completed, the delays can be extracted during the extraction phase.   

     Crosstalk analysis has to be performed after the detailed routing step in the above-

mentioned flow.  The detailed routing here means both signal and clock routing.  As 

shown in the flow diagram (Figure 12), the next step is the circuit parasitics extraction.  

These parasitics are the source for delay calculation.   

     The circuit parasitics form the basis for any crosstalk estimation as explained in the 

previous chapters.  The following four-step procedure describes the flow developed to 

perform crosstalk delay analysis: 

• Step1: Coupled RC parasitics extraction using EDA tool called STAR-RCXT 

• Step2: Generation of the SDFs that include the impact of crosstalk delay 

incorporated using combination of the delay calculating tool and standard EDA 
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tool called Primetime.  Primetime is an industry standard sign-off tool for static 

timing analysis. 

• Step3: Static Timing Analysis with Primetime, using the crosstalk delay SDFs 

generated from the above step. 

• Step4: Filtering of the crosstalk delay violations based on switching timing 

windows to identify the violations to fix 

Figure 13 describes the flow used for crosstalk delay analysis.  The subsequent sections 

talk about these steps in more detail. 

 

 

Figure 13.  Crosstalk Delay Analysis Flow  
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5.1 Coupled RC parasitics extraction 

     LEF/DEF dumped from the layout tool was used as the input to STAR-RCXT for 

coupled RC parasitics extraction in SPEF format.  Main problem with SPEF file is its 

huge size.  STAR-RCXT supports various reduction options to control the size of the 

coupled SPEF generated without losing on the accuracy.   

     The following options are used in STAR-RCXT to control the size of SPEF files. 

  REDUCTION_MAX_DELAY_ERROR, COUPLING_ABS_THRESHOLD and COUPLING_REL_THRESHOLD 

     

5.2 Generation of Crosstalk aware parasitics  

     After generating the net parasitics using STAR-RCXT, a PERL script was used to 

modify the net parasitics for crosstalk.  There are different ways the coupling capacitance 

impact on delay can be estimated.  Three of the approaches are explained in detail in [11].  

The methodology used for crosstalk delay computation is an advanced version of 

coupling compensation method [7].   In coupling compensation, the distributed RC 

network with coupling capacitances are first converted into an equivalent lumped RC 

network.  Multiplying the coupling capacitance with a dynamic scale factor performs the 

conversion.  The value of the scale factor depends on variables like victim/aggressor 

drive strengths, victim/aggressor loads and coupling capacitance.   
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     The direction of switching determines whether the delay of the net increases or 

decreases due to crosstalk (Figure 14).   Scale factor (m1, m2) less than 1.0 is used to 

model same direction switching effect (Figure 14b), and scale factor (n1, n2) greater than 

1.0 is used to model opposite direction switching effect (Figure 14c).  Since crosstalk 

causes both speedup and slowdown of paths, it can cause both setup and hold timing 

problems.   

 

Figure 14.  Crosstalk Delay Compensation Approach 

     All aggressors coupled to a victim are considered when performing coupling 

compensation.  At this point in the flow, all nets coupled to a victim are considered as 

aggressors.  Narrowing the list of aggressors will be performed later (in step 4).  This 

approach makes the crosstalk delay SDF generation step independent of operating modes 

of the design. 
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5.3 Generation of Crosstalk SDF 

     After modifying the parasitics to take crosstalk into account, two-crosstalk delay SDFs 

are generated for each analysis corner.  The following command in Primetime can be 

used to write SDF: 

    write_sdf –input_port_nets –output_port_nets –version 3.0 –include {SETUPHOLD 

RECREM} <SDFfile> 

     The first SDF file generated is used to model “same” direction switching delays 

(speedup effect/min switching).  The second one is used to model the opposite direction 

switching delays (slow down effect/max switching). 

 

5.4 Static Timing Analysis using the crosstalk delay SDFs 

     Once the timing SDFs are generated with PrimeTime as explained in the previous 

section, static timing analysis (STA) can be performed using PrimeTime.  The same 

timing constraints as the normal timing signoff can be used.   

     Static timing analysis done with only max or min SDFs cannot reflect a worst-case 

analysis, as shown in Figure 15.   
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Figure 15.  Crosstalk Delay with min and max switching 

     Annotating the same type of delays (mins or maxs) to both clock and data paths makes 

the clock and data edges shift in the same direction.  This can potentially miss real 

violations.   

     Because of this, setup timing analysis should be performed by annotating max delays 

to data path and min delays to the clock path.  Conversely, to perform hold time analysis, 

max delays need to be annotated to clock path, and min delays to the data path.  This can 

be achieved in PrimeTime by using the on_chip_variation mode of analysis.  The 

following read_sdf command is used in PrimeTime to enable the on_chip_variation 

mode: 

     read_sdf -analysis_type on_chip_variation \ 

-min_type <min or max triplet entry> \ 
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-max_type <min or max triplet entry> \ 

-min_file <min crosstalk SDF> \ 

-max_file <max crosstalk SDF> 

     When performing on_chip_variation analysis in PrimeTime, it is advisable that clock 

reconvergence pessimism be removed.  Clock reconvergence pessimism refers to the 

pessimism introduced in static timing analysis that is caused by using two different 

delays for the common elements in the clock and data path.  By default, Primetime uses 

different delays for the common elements during on chip variation analysis.  The clock 

reconvergence issue is elaborated with more details in a later section. 

     With the setup described and the on_chip_variation mode enabled, all the timing 

violations are reported.  The timing violations may not be accurate at this stage.  The 

reason for the inaccuracy is the fact that the coupling delay is applied on the nets with the 

assumption that all aggressors can switch at the same time.  In reality, not all aggressors 

may switch at the same time.  To filter out the incorrect violations, switching timing 

windows of all the nets in the design are used in the flow. 

     The switching timing windows for every net in the design are also dumped from 

PrimeTime after annotating the coupling parasitics.  This was accomplished by setting 

the PrimeTime variable “timing_save_pin_arrival_and_slack” to true, in 

order to enable PrimeTime to store the minimum and maximum arrival timing windows 

for all nets in the design.  (By default, PrimeTime stores arrival windows only for the 

endpoints.) 
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     A TCL script is written to query the pin attribute “arrival_window”, in order to 

obtain the arrival windows for all the instance pins in the design.  The relationship 

(synchronous or asynchronous) shall be clearly defined for all the clocks in the design.    

5.5 Filtering of violations 

     The timing path violations obtained in the previous step are then reanalyzed by using 

the switching timing windows and the clock relationships to identify the violations that 

really needed to be fixed.  Some more discussion on prioritizing the noise violations 

based on their likelihood of occurrence can be found in [21]. 

     One of the biggest challenges in crosstalk delay analysis is the pessimism in the 

analysis.  Due to the non-availability of dynamic switching activity from simulation, 

arrival windows from PrimeTime were used to remove pessimism.  Here in this flow, 

many pessimism reduction techniques are used that allowed to narrow down the crosstalk 

delay violations.  Some of the pessimism reduction techniques used are: 

• Grouping of synchronous aggressors to a victim, based on aggressor and victim 

switching windows.  This makes it possible to identify the worst-case aggressor set that 

can cause the maximum crosstalk delay impact. 

• Filtering of violations that are caused by inactive clocks when a design is multi-

mode constrained.  For instance, ignoring violations caused by test mode clocks when in 

functional mode and vice versa. 

• Filtering of violations caused by static nets in the design for the mode of analysis.  

For instance, signals like scan enable and BIST enable do not switch during functional 
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mode of operation.  So, the violations caused because of these signals can be filtered out 

from list of functional mode violations. 

• Comprehending 1-stage logical correlation between victims and aggressors.  For 

example, if a buffer (or inverter) input and output nets are aggressors to the same victim, 

it is likely that the timing windows of both aggressors overlap with the victim.  But, both 

the aggressors are logically related (and separated by a buffer delay) and this relation 

needs to be considered while calculating the cumulative impact of the two aggressors on 

the victim.  A similar explanation is applicable when the same aggressor couples to two 

victims that are input and output of a buffer (or inverter).  Since identifying logical 

correlation between any two nets in the design is difficult, the restriction applied to the 

flow is to comprehend logical correlation between two victims/aggressors separated by 

one stage of logic. 
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6   CHALLENGES FACED DURING THE ANALYSIS 

 

     The flow described in the previous sections is successfully used to conduct crosstalk-

aware static timing analysis on the design chosen.  While performing the analysis, 

various issues came up that required special attention.  The next sections describe these 

issues in detail. 

6.1 Hierarchical design challenges 

     In the case of big designs like the one chosen, separate teams usually develop 

individual blocks.   These individual sub-blocks are then integrated.  This design 

methodology can then be called as hierarchical in nature.  There are definitely some 

limitations to perform top-level crosstalk analysis on a hierarchical design.  The primary 

limitation was the lack of data necessary to perform accurate crosstalk analysis on the 

inter module communication signals.  The following Figure 16 depicts this issue. 
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Figure 16.  Crosstalk at Block Boundaries 

     In the figure, blocks A, B, C, and D represent the physical implementation of four 

hierarchical blocks in a design.  There is a bus running from block A to block B, and 

internal data and clock nets running at the boundaries in blocks C and D.   

     These internal nets are common at the block level, and hence might not be trouble-

makers when performing block level static timing analysis.  At the lower level, the blocks 

may be meeting the timing budgets without any problems.  But, things start breaking 

when each of these blocks are stitched together and tested with crosstalk-induced delays. 

     One scenario is when the bus between the A and B blocks switch from its “all 1s” 

state to “all 0s” state or vice versa.  It is interesting to see what can happen.  As a result of 

the excessive crosstalk by this bus, the clock tree in block D might have a longer or 

shorter insertion delay that usual when there is switching on the bus.  This would force 

many violating timing paths to start popping up inside block D.  Similarly, the timing 

path highlighted inside the block C shall also get affected.  Paths that otherwise meet 
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timing at block level would now start violating at the top level because of crosstalk 

induced by other signals at the boundary. 

     So, careful and accurate top-level crosstalk induced timing analysis has to be carried 

out to determine the root cause of the violations.  This is often difficult on multi-million 

gate designs.  While performing top-level timing analysis, for variety of reasons, the team 

may be using abstract models of the lower level blocks.  Extracted timing models like 

STAMP may represent the module level timing. 

     Unfortunately, many of these timing models lack the necessary information to perform 

the accurate top-level crosstalk delay analysis.  As indicated above, the essential 

information needed for top-level analysis is the expanded clock tree of all modules and 

the timing paths whose nets run at the block boundary.  Only then, it is possible to 

perform accurate crosstalk timing analysis at the top level. 

     A partial solution to this problem is to use interface logic models (called ILMs).  The 

beauty of ILM timing models is that besides the extracted timing information, all the 

interface logic associated with the ports can be stored.  So, the clock network for all the 

interface signals can be extracted and available for top-level analysis.  This nails down 

the problem to a manageable size. 

     The problem is not completely addressed with ILMs either, because ILMs may not 

contain the timing and physical information of all the paths that run at the boundary of 

the block.  Another disadvantage of ILMs is that some teams may prefer not to have the 

boundary logic visible for confidential/proprietary reasons.  Of course, the most accurate 
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methodology is to do timing analysis with the entire netlist.  But, the analysis with full 

netlist requires lot of memory and CPU resources. 

6.2 Clock Reconvergence Pessimism (CRP) Issues 

     The design chosen has a fairly complex clock structure in order to achieve ultra-low 

power goals.  The sample clock tree structure is shown in the Figure 17 below: 

 

 

Figure 17.  Clock Tree Structure 
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     As shown in the diagram (Figure 17), the clock is gated at several levels to allow for 

ultra low-power operation by switching off the unused logic/transaction/domain/block.  

The clock path also has multiplexing, to allow for different operating modes with 

different clock configurations.  Because of this, many of the sub-blocks in the design 

share derivatives of the common clock from a DPLL (Digital Phase Lock Loop).  Even 

though much of the logic operates on the local clock, there exist some timing paths 

between the clocks of different branches of the same clock tree. 

     When performing on-chip variation analysis with PrimeTime, there is some pessimism 

that needs to be accounted for in order to have accurate analysis.  For example, the 

following diagram (Figure 18) shows a simple two flip flop circuit.  The flops share a 

common clock, but are placed physically at different places on the same die.   

  

Figure 18.  Clock Reconvergence Pessimism 

 

     While performing setup timing analysis using on-chip variation mode, PrimeTime 

uses the annotated max delay for each clock path element of the launching flop, and it 

uses the min delay for each clock path element of the capture clock.  This results in 

pessimistic analysis, because it is impossible to have two different delays for the same 
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cell in the clock path for which two delays are used.  To remove this pessimism, a 

variable that needs to be set as shown below: 

set timing_remove_clock_reconvergence_pessimism true 

     Once this variable is set, PrimeTime removes this pessimism by calculating the 

amount of pessimism that is induced and adjusts the arrival time by this amount.   

     With PrimeTime versions prior to 2002.09, there were issues with clock gating macros 

and other custom clock tree logic.  Basically, PrimeTime was not calculating the accurate 

clock reconvergence pessimism value for paths that contained this logic.  Because of this 

inconsistent behavior by PrimeTime, there are additional violations that are not real. 

     To address this issue, a PERL script is developed.  The script calculates the correct 

clock reconvergence pessimism value to be removed for the each timing path. 

     More details on clock reconvergence pessimism and related information can be found 

in [5].     

 

6.3 Pessimistic Vs.  Optimistic analysis 

     When there exists many number of timing violations, and each one of these violations 

takes long time to identify and fix.  This delays the project execution.  The delays are 

even worse when the fixes require touching some of the paths that already met timing.  

The primary question becomes: are they true violations? What amount of pessimism is 

involved? 
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     Crosstalk analysis on a large design is an involved process, and the results vary based 

on various factors: collapsed and expanded clock trees, aggressor-victim relationships 

and switching timing windows.  Due to lack of firm data, assumptions have to be made 

for each of these factors.  Careful analysis considering these factors can result in reduced 

violations.  The following sections expand on these factors to see the pessimism they 

cause. 

6.4 Collapsed and expanded clock trees 

     While performing timing analysis, the delay information is annotated by the 

information extracted from physical design tools.  While performing extraction, clock 

tree information can be extracted by two ways: collapsed or expanded.  A collapsed clock 

tree means that whole clock tree is represented as a single cell.  So, the extracted 

SDF(standard delay format) file contains delay arcs representing maximum and minimum 

delay possibilities.  Collapsed clock trees are usually chosen for reduced run times.  Run 

time becomes an issue when working with larger designs that integrate several sub-

blocks.   

     But, when working with collapsed clock trees, it is observed that the results are more 

pessimistic.  The induced delays due to crosstalk seem to be unfair.   

     Results are better with less number of violations when the expanded clock tree 

extraction is used for netlist and delay annotation.  This is because of the fact that 

localized coupling capacitance effects are not seen on a global scale, which is the case 

with collapsed clock trees. 
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     For example, the expanded clock tree network contains the details of the entire clock 

tree.  As a result, it is possible to see the effect of each sub-net of the clock tree.  If a 

small portion of clock tree were affected by its close proximity with another signal, the 

delay on clock tree would be reduced or increased.  The effect of the additional delay on 

whole clock tree would vary based on the position of this crosstalk affected partial clock 

tree.   

     When using the expanded clock tree, these effects are fairly localized and the accuracy 

of analysis increases. 

6.5 Number of Active Aggressors 

     It is possible to have multiple aggressors on a single crosstalk victim.  The total 

crosstalk effect on victim is the sum of all the individual crosstalk effects caused by each 

of the aggressors.  But, not all aggressors can be active at the same time and if all the 

aggressors are considered, then there exists pessimism in the results.  Number of 

violations depends on the number of aggressors chosen to consider at a time on a victim 

signal.  As shown in the Figure 19. below, there is a victim net surrounded by more than 

one aggressor.  When conducting crosstalk delay analysis, there might be a timing 

violation on the victim, with the assumption that all of the aggressor nets switch at the 

same time.  But in reality, this is not necessarily true.  At one time, only few of these 

aggressors are active, making the initial results pessimistic.   
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Figure 19.  Multiple Aggressors -- Layout Example 

     The number of aggressors that can be considered to be switching together is a variable 

that can be changed.  For the experimental initial iterations, this number can be chosen as 

three.  The diagram (Figure 19) above shows the case where the victim is routed along 

with more than two aggressors.  The effect on the victim is calculated considering all the 

aggressors surrounding the victim.  This could be pessimistic if the aggressor’s timing 

windows do not match that of victim.  So, each violation should be carefully reviewed for 

the aggressor/victim timing window relations before deciding if it is a violation to be 

fixed. 

 

multiple aggressors 

effecting a victim net 
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6.6 Logically Impossible Timing Windows 

     The excessive coupling capacitance causes the victim wires to have crosstalk problem.  

But, coupling capacitance alone is not sufficient for the crosstalk delay effect on a victim.  

The signal arrival times of both aggressor and victim also need to match in order to have 

any effect on the timing of the victim.  Even if the switching windows of the aggressors 

and victims match, regular crosstalk delay analysis may still be pessimistic because the 

current tools do not understand the logic function of the aggressor/victim paths when 

calculating the timing windows.  Two examples are given here to elaborate more on this 

issue. 

      In the first case, the Figure 20(a) shows that a1, a2 and a3 aggressors have coupling 

capacitance on the victim net.  Although this coupling capacitance physically exists, it is 

not possible for all of these aggressors to have an effect on the victim.  This is because 

there is an inverter between a1 and a2.   

     So, any delay due to same direction switching of a1 would be cancelled by the 

opposite direction switching of the inverted aggressor a2 assuming both coupling 

capacitances are identical.  Without considering the logical relation information during 

crosstalk analysis, aggressors a1 and a2 are treated as two different aggressor nets 

coupling with the victim.  That introduces pessimism into the results. 
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Figure 20.  Logically Impossible Timing Windows 

     The second example is shown in Figure 20(b).  Here there is an output of a 

multiplexer that runs very near to another signal.  Physically, the output of this 

multiplexer may become as an aggressor/victim for/of another net.  In this case, output of 

the mux and both its input nets are aggressors to the victim net.  When calculating timing 

windows of the nets, the tools assume that output of the mux will change whenever one 

of the inputs changes.  This is not necessarily a true situation.  If one of the inputs of the 

mux is selected and the select input is static, then the output of the mux does not have the 

effect of the timing window on the unselected input. 
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7   STRATEGY FOR FIXING VIOLATIONS 

 

     For the designs of large size and complexity, it is fairly common to see thousands of 

violations the first time a crosstalk analysis flow is run because of the reasons it was 

described previously.  The challenge is to quickly parse the timing reports generated by 

the crosstalk delay static timing runs, in order to isolate the real violations for fixing.  

Unlike regular timing reports, crosstalk-induced timing violations are mainly due to 

physical routing of the involved nets or paths.  So, having access to the physical routing 

information of the paths is critical in deciding the validity of the violations. 

     The primary constraint on the methodology for fixing violations is to untouch those 

paths that have already met timing.  There is considerable risk involved when there are 

any changes to already frozen clock tree structure.  So, it is wise to untouch the clock 

trees unless it was impossible to fix violations without doing so.  Therefore, if the 

violation was because of a clock net becoming the victim/aggressor, then the other net 

can be re-routed with increased spacing, or repeaters can be inserted to reduce the 

coupling capacitance effect.  This approach paid off well in the experiments conducted 

where all the violations could be fixed without touching the clock trees.  So, no new 

timing violations are introduced because of crosstalk delay fixing. 

     Another challenge, of course, is to reduce the number of iterations it might take to fix 

the violations.  Hold fixes especially could require several iterations if not carefully 
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analyzed and fixed.  Methodology followed is to fix all the setup violations that are less 

in number and then concentrate on fixing the hold.  Because hold fixing can be done 

easily by introducing some buffers. 

 

     The following flow diagram (Figure 21) shows the steps followed to fix the crosstalk 

violations: 

  

Figure 21.  Flow Used for Fixing Violations  

     As shown in the Figure 21, crosstalk violations fixing is a highly iterative process.  

There are several iterations for identifying and fixing the violations.  Each of these 
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iterations includes one or more steps as shown in the Figure 21.  Each of the steps in the 

flow is detailed in the subsequent sections.   

 

7.1 Identification of Aggressors and Victims 

     It is impossible to manually check the thousands of violations reported due to initial 

crosstalk delay analysis.  A PERL script is used to parse the PrimeTime generated timing 

reports that contain all the crosstalk delay information.  The script parses all the timing 

reports to identify aggressor and victim information for each violating timing path.  The 

other inputs for the script are the coupling capacitance information of all the nets in the 

design.  The script then identifies various aggressors and victims based on the amount of 

delay effect caused by net coupling.   

     Aggressors and victims are then sorted based on the clock domain they belong to.  

Usually, each path group contains a few aggressors and victims that are responsible for 

many of the violations.  So, the result of the PERL script was parsed again to get a list of 

unique aggressors and their victim nets.  This brings down the number of nets to be 

analyzed to a reasonable number.   

7.2 Filtering of static nets 

     Once the actual aggressors and victims are identified using the above step, the next 

step is to filter the static nets out of this list.  Static nets are the nets whose value does not 

change in the current operating mode.  For example, the “test mode” signal value never 
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changes during the functional mode of operation.  List of all the static nets is prepared for 

each operation or timing mode.  Other static net examples include reset signals and boot-

up configuration registers.   

 

     The idea is that these static nets could safely be removed from the list of aggressors, 

since they do not really switch during normal operation, so there is no question of 

crosstalk with other nets.  As a result, the false crosstalk violations are filtered in the 

process by declaring the static nets. 

7.3 Clock network isolation 

     As mentioned earlier, the primary concern is to minimize, if not avoid, changes to the 

existing clock tree while fixing the crosstalk violations.  This is because, the design’s 

timing is sensitive for any minor changes in the clock trees and may have to go through 

multiple iterations to close timing.  So, the clock networks are not touched during the 

crosstalk delay fixing. 

     Therefore, clock network nets are isolated from the list of aggressors and victims by 

carefully reviewing the timing reports.  A full clock timing report from PrimeTime is 

generated using the following TCL command within pt_shell : 

    “report_timing –from <launch> -to <capture> -path_type full_clock_expanded” 

     This feature helps to get the fully expanded clock network path for the violating paths.  

These reports help to identify the clock networks easily. 
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     Basic rule of thumb to be followed: if aggressor is a clock net, then victim is marked 

for fixing.  On the other hand, if victim is a clock, then the aggressor shall be marked for 

fixing.  If the clock network is both an aggressor and victim, still the clock networks shall 

not be touched.  Then, the total crosstalk on the victim can still be addressed by fixing the 

next level of aggressor/victims. 

7.4 Re-routing the Aggressors and Victims  

      Once the list of actual aggressors and victims are identified with the help of the above 

steps, the appropriate ones shall be fixed in order to resolve the crosstalk violations.  The 

primary fixing approach shall be to attack the problem with minimal impact on the 

design.  So, it is nice to see if the routing tool could re-route some of the aggressor nets 

incrementally using increased spacing rules.  The other constraint is not to touch the other 

nets while doing this incremental routing.  The routers usually do a better job of handling 

only a small number of nets incrementally. 

     The re-routing is done using the Apollo place-and-route tool on the experimental 

design.  The actual procedure followed along with an example script can be found in [1]. 

     This step usually reduces the number of violations from several hundreds to few tens.  

After performing various other scenarios on the experimental design, it is identified that 

fixing the violations by additional routing space is the best step to try first in order to 

make life easier for sub-sequent iterations. 
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7.5 Up-sizing/down-sizing  

     Another approach that can be followed is to up-size the cells (ex: buffers, inverters) 

that drive the victim nets in order to allow victim nets to have enough drive strength to 

reduce the effect of coupling from aggressor nets.  A similar approach is to downsize 

cells that drive the aggressor paths in order to reduce their effect on the victim nets.   

     This method helps as a secondary alternative.  But, there are situations where this 

approach may not be usable.  For example, there is a scenario in which the aggressor and 

the victim are mutually coupled and each of them is aggressor/victim to each other.  So, 

any up-sizing/down-sizing might solve the issue in one direction but would worsen the 

issue in other direction.  The approach that can be followed to fix such violation is a 

combination of spacing and breaking the nets with repeater insertion. 

7.6 Splitting the Aggressors and Victims 

     The coupling capacitance caused by the aggressor is proportional to the length of the 

net.  The longer the net, the more the coupling capacitance it contributes. 

     The long interconnect nets causing crosstalk violations can be identified and can be 

carefully broken into multiple nets by inserting repeaters.  Only constraint that shall be 

considered is the physical location of the new repeater being inserted.  The criteria that 

can be used in choosing a particular place to insert repeater is to make sure that the new 

repeater does not create any new aggressors/victims on other neighboring paths.   
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7.7 Bus shielding 

     The long interconnect bus signals between blocks can be shielded by Ground (VSS) 

wires on both sides of the bus.  This shielding avoids the potential excessive crosstalk 

otherwise possible.  The shielding hence reduces the bus violations. 

     This approach was proved as very effective fix in the tests run on the experimental 

design. 

 



 50      

8   RESULTS OF THE EXPERIMENTS 

 

     Once the flow is established, it is required to measure the quality of results (QoR) the 

flow is yielding when compared to other available methods or flows.  The number of 

iterations taken for timing closure and fixing the crosstalk violations could be the gauging 

factor when comparing the different flows. 

      This section summarizes the results of the fixing methodology developed during the 

period of this research work.  The steps mentioned in the previous chapters were 

followed during each and every iteration of the crosstalk analysis and fixing flow.  This 

methodology yielded pretty good results in terms of successfully closing the timing with 

a fewer number of iterations.  The following graph (Figure 22) gives the iterations and 

the respective approximate violation numbers. 
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Figure 22.  Crosstalk Delay Analysis Fix – Iterations  

     As seen in the figure, the hold violations are the dominant violations in the design.  

The initial violations seen before any post-processing are in thousands.  These are caused 

mainly due to too much pessimism in terms of multiple aggressors and asynchronous 

clock group assumptions as explained in previous sections.  The timing for crosstalk 

delay is closed after 4-5 iterations.  Each iteration mentioned here means from the step 

the crosstalk delay STA is done to the step of fixing the violations and handing-off back-

annotation to STA. 

     The Quality of Results of the developed flow/procedure is compared with traditional 

flow/procedure to measure the competence of the flow being proposed.  For a complex 

design, two flows are compared with each other in terms of number of timing closure 
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iterations each flow taken for closing the design for all crosstalk violations.  The 

comparison results are shown in the following Table 2. 



 53      

Table 2.  Crosstalk violations comparison 

Flow Violations Iter 

1 

Iter 

2 

Iter 

3 

Iter 

4 

Iter 

5 

Iter 

6 

Iter

7 

Iter

8 

Iter

9 

Iter

10 

Iter 

11 

Iter 

12 

Traditional 

Flow 

Setup 150 120 100 130 150 60 75 40 12 20 3 0 

 Hold 400 500 520 380 220 300 50 80 20 35 8 0 

Proposed 

Flow 

Setup 150 80 30 5 15 1 0 0 0 0 0 0 

 Hold 400 300 45 70 20 5 0 0 0 0 0 0 

     The pictorial representation of these results is given below.  The main comparison is 

between the traditional flow and the flow that is developed during the period of research 

work.   

Figure 23.  below shows the results of traditional timing closure flow for crosstalk as 

explained in [19].  The setup and hold violations are sensitive to each other.  Most of the 

times, fixing setup violations would make the number of hold violations increase and vice 

versa. 



 54      

 

Figure 23.  Traditional Flow results 

     The results are plotted as shown in the Figure 23 above.  Clearly, this traditional flow 

requires 12 timing closure iterations.  The reason for these long iterations is also apparent 

from the above picture.  When we try fixing the setup violations, the number of hold 

violations increases and vice versa.  The problem is complicated because of the fact that 

the effect of any fix being done is not noticed until after parasitic extraction.  New fix 

might bring totally different scenario in terms of coupling capacitance.  So, this 

complicates the fixing methodology and design teams tend to spend more time than 

afforded in fixing the crosstalk issues.  The result is that the total timing closure cycle 

increases and hence the development cost of the chips.   
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     As discussed in the previous section, this problem can be solved by systematically 

addressing the root causes of the problem.  This fact is proven by conducting experiments 

through derived methodologies for comparison.  The Figure 24 depicts the timing closure 

results of these trials. 

 

Figure 24.  Efficient Fix methodology 

     The design is taken to go through the timing closure loops with emphasized focus on 

crosstalk aware methods at each of the design flow steps. 

     The obvious result is the reduction in number of iterations taken for timing closure.  

The reduction of number of iterations is definitely a phenomenal advantage to have in 

this highly competitive VLSI design arena.  The time-to-market is the key for majority, if 

not all, of the modern applications. 
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9   LESSONS LEARNED AND PROPOSED GUIDELINES 

 

     During the course of this research work, the root causes for the crosstalk problem are 

studied.  Also, the possible solutions to efficiently fix the problem are studied and 

verified the concepts on experimental design.  As shown in the previous section, the 

proposed methodology is very efficient and results oriented.   

     At the same time, there are still some places where things would have been much 

better placed if some of the precautionary actions were taken ahead in the flow.  As a 

result of that, several lessons are learned during the course of this work.  These lessons 

learnt may be useful to the VLSI design community to address the crosstalk issue well 

ahead in their design flow to avoid some last-minute surprises. 

     Also, there are few novel approaches that can be used to address the crosstalk issue 

from the beginning of the flow.  These new ideas and guidelines along with the lessons 

learnt are detailed in this section.  Each of these lessons and proposals are grouped 

together into relevant part of the whole design flow. 

9.1 Attack the issue from the beginning 

     Address the issue from the beginning of the design flow.  The best way to address a 

problem is try to avoid it! The design and timing closure flow shall be built with crosstalk 

aware methodology in view from the beginning.   
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9.2 Specifications phase 

     The specification phase of the design is the earliest stage where the initial planning for 

the design is done.  The logic partitioning usually happens depending on the features that 

need to be supported by the design.  One of the after effects of improper logic sharing is 

the excessive crosstalk due to long wires running between the different parts of the 

design.  So, the logic distribution across various hierarchies shall be crosstalk aware. 

     The long running bus wires can be avoided by carefully distributing the logic where it 

is mostly used.  If necessary, logic shall be duplicated at the places where it is mostly 

needed instead of running the long interconnects to long distances across the chip. 

 

9.3 Micro-architecture phase 

     Some of the crosstalk issues faced late in the design cycle can well be avoided with 

better implementation of the design during the micro-architecture phase.  In order to 

implement the required functionality, there are many choices during the micro-

architecture design phase.  But the selection of improper implementation could make 

things worse for crosstalk.  At the same time, there are few implementations that are 

preferable compared to other from crosstalk perspective.  The following examples 

provide an insight into how this is possible. 

      Example #1: A large counter is the requirement in a design.  If it is implemented as a 

regular binary counter, then there will be lot of crosstalk that can result when the counter 
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values change.  Also along with the size of the counter, the risk of crosstalk increases.  

This can be avoided by choosing the counter implementation as Gray counter instead of a 

binary counter.  Because in Gray counter, only one of the bits changes at a time, it 

reduces lot of crosstalk. 

  

Figure 25.  Binary Vs.  Gray 

     As shown in the Figure 25 above, the binary counter has many places of multiple bits 

switching together.  Whereas in gray counter only one bit switches at a time. 

     So, the selection criteria for counter implementation shall be crosstalk aware. 

     Example #2:  

     Large state machines can be avoided.  Finite State machines (called as FSMs) have 

become very popular among the design community as they offer solutions to several 

implementation challenges.  There are different flavors of these FSMs depending on the 

way outputs are generated and states are incremented.  Along with the advantages, FSMs 
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come with few additional drawbacks.  One of the most important drawbacks is that the 

complexity of the FSMs increases with their size and number of inputs they have to keep 

track with.  Larger state machines make it compulsory to have large counters and the 

related combinational circuits.  This drawback can be avoided by breaking long state 

machines into smaller and more modular state machines.  The recommendation here is to 

limit the size of the state machine to 20 states maximum. 

 

9.4 Logic Synthesis phase 

     Logic synthesis is the phase in which the micro-architecture implementation is 

mapped onto target technology library.  The technology library contains the variety of 

standard cells with basic functionalities like AND, OR, NAND, NOR, INV and DFF etc.  

These standard cells are pre-designed for the given technology.  Logic synthesis tools 

would translate the implementation from Hardware Description Languages (HDLs) into 

netlist of those standard cells from the library. 

     The proposal here is to control the slew rate through constraining the design during 

the synthesis.  Proper slew rate control from the beginning would avoid bigger aggressors 

later in the design cycle. 

     The following Figure 26 depicts the constraint for the typical 90nm technology: 
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Figure 26.  Slew constraining 

 

9.5 Floor-planning phase 

     Floor planning is the first crucial phase in the physical design portion of the design.  

The Floor-planning phase consists of tasks like die size estimation, port placement, macro 

placement and power routing etc.  There are several opportunities at this phase to try and 

avoid as much crosstalk as possible.  These following examples would be detailing on 

things we can do: 

     Example #1: Proper port placement 

     Placement of the ports is very critical with respect to the issue of crosstalk.  

Especially, the ports that have more probability of switching at the same time shall not be 

placed next to each other.  This worst possible switching can be avoided by choosing 

proper port placement.   

     For example, in a typical microprocessor based system, large address and data bus 

signals are the part of the ports.  It is customary to group all the address ports together 

during the port placement.  This will have significant effect of crosstalk both inside and 

outside the chip for these ports.  Possibility of all the address and data bits switching 
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together is large and can cause potential timing issues due to heavy crosstalk.  The effect 

could also be extended on all the neighboring wires if their switching windows overlap 

with switching windows of address and or data bus. 

     Proposed solution to this problem is to interleave the address and data bus signals.  

The reason for that is, the possibility of simultaneous switching of address and data bus 

bits is less.  This will reduce the potential crosstalk problem otherwise possible.  The 

Figure 27 below depicts the scenario: 

  

Figure 27.  Bus interleaving 

     Example #2: Macro placement 

     Placement of the macros inside the chip is critical from the crosstalk perspective.  The 

macros like DPLL and memories need to be placed at the places where they are mostly 

connected.  The signals from these macros may need to be traveling to long distances 

from different places of the chip.  Especially if the design has special high frequency 
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macros whose signals need to be routed to long distances, they may create possible 

crosstalk with neighboring wires. 

     Example #3: Shielding for bus signals 

     Even with special care taken, there will be cases where bus signals may have to run 

long distances.  So, this issue can be avoided by shielding the bus signals with Ground 

wires.  The shielding will be helpful in reducing the effect of crosstalk by grounding the 

excessive coupling from the bus lines.   

     The effects of number of ports and the packaging on crosstalk are explained in more 

detail in [17]. 

9.6 Placement phase 

     Placement is the phase in which the standard cells are placed within the cell area that 

is prepared during the floor-planning phase.  Currently, the EDA tools available are 

mature enough for better placement results.  With the advances in computing resources, 

the placement tools are doing considerably good job in achieving better timing closure.  

Lately, many of these Placement tools also implement the crosstalk avoidance 

algorithms.   

     However, the case is different from design to design.  Additionally, due to new 

physical effects in each new technology node, placement tools may need to be properly 

used to get optimum results.  From crosstalk point of interest, placement tools shall be 

properly constrained in order to achieve less crosstalk delay problems. 



 63      

     For example, placement blockages can be created at the areas where there is high 

switching activity possible.  This way some of the possibilities of crosstalk can be 

avoided. 

9.7 Clock distribution phase 

     Clock distribution and synthesis are the phases in which the clock networks of the 

design are constructed for the clock signals in the design.  Increasing complexity of clock 

networks comes from the fact that more and more power saving features are implemented 

in the design. 

     As the performance requirements of the designs keep increasing, clock frequencies are 

growing up and up.  Due to reduced spacing between the wires in the latest technological 

nodes, clock networks with heavy switching are highly susceptible to crosstalk.  Special 

care taken during the clock distribution phase can be helpful in avoiding the possibility of 

harmful crosstalk later in the design cycle.   

     For example, the transition time of the clock network shall be kept well under control 

during the clock synthesis phase.  Higher the transition times on the clock, more the 

probability of having crosstalk with its neighbors.   

     Secondly, the types of the clock buffers chosen during the clock synthesis also would 

be critical for the smooth timing closure during the Engineering Change Order (known as 

ECO) phase where the minimum changes are essential.  Usually, it is preferable not to 

use the set of highest and lowest drive strength buffers during the initial clock synthesis.  

Later on during the final timing closure iterations, these higher/lower driver strength 
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buffers can be used by upsizing/downsizing the existing buffers.  If the higher drive clock 

buffers are chosen in the beginning of the synthesis phase, there will be little choice 

towards later stages of timing closure.   

     Another thing that can help to reduce the crosstalk is to have special routing rules for 

all the high frequency clock networks.  For example, the clock networks could be routed 

with constraints like double spacing (2 times the technology allowed spacing between the 

metal wires) and double VIA (Whenever clock signal switches from metal to metal, there 

will be double VIA placed instead of single VIA).  At sub-100nm technology nodes this 

constraint is becoming a requirement. 

 

9.8 Routing phase 

     During the routing phase, connections to all the placed instances (as explained in the 

Placement section) are established and routed with available metal resources.  Routing 

tools shall achieve the basic job of establishing wire routing while honoring the spacing 

and geometry rules defined by the technology node.  The increased need for routing tools 

to avoid crosstalk problems is well addressed in [15]. 

     The important thing to take care in avoiding the crosstalk during the routing phase is 

to guide the routing tools with the design information in hand.  Following are examples, 

which are on this track : 

 Creation of special routing guides for the high frequency switching nets. 
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 Special routing constraints across the narrow channels, if any. 

 Conservative spacing rule constraints for high frequency switching nets.  For 

example, double spacing constraint for clock nets etc. 

      The necessity of minimum channel routing is explained in [4]. 

 

 

9.9 Static Timing Analysis phase 

     The Static timing analysis(referred as STA) forms a very important timing closure 

step during which the design’s timing is verified with predefined timing goals.  The STA 

is usually performed at various stages of the design flow: after initial synthesis, pre-route 

phase and post-route phase etc.  Where as the Crosstalk STA can only be performed after 

the routing is completed. 

     The recommendation here is to have additional margins in closing the regular timing.  

These additional margins would help in accounting for the possible delay degradation 

because of crosstalk. 

 

 

 



 66      

10   CONCLUSION 

 

 This section concludes the work presented so far in previous chapters. 

     Signal integrity is one of the critical problems the VLSI design community is facing 

today.  Crosstalk delay is the major contributor for signal integrity issues at latest process 

technology nodes.  The actual basics of the problem are explained in the beginning of this 

report.  The effects of these crosstalk violations with the deep sub-micron design phase 

are explained in detail with examples. 

     Once the basic understanding of the issue is established, the details about a complex 

design that is taken for conducting the experiments are explained.  Potential areas where 

the crosstalk would affect this sort of design are discussed. 

     The most important focus of this research work is to come up with methodology and 

procedures to address the problem.  The flow developed during the course of this 

research work is elaborated in the subsequent sections. 

The two basic ways of addressing the crosstalk issue are proposed: 

• Avoiding the possibilities of the crosstalk 

• Fixing the existing crosstalk issues. 
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     Both these methods are discussed in detail in this report.  Evaluation of proposed 

methods is conducted and the results are presented.  Lessons learned during the course of 

this project are summarized in this report. 

All the objectives aimed for are achieved at the end of the project. However, there is 

future work to be continued more on this direction. Following are the potential areas 

where future work is needed: 

• Design tool methodologies to measure the effect of signal integrity ahead in the 

design flow to help system and chip level designers. 

• Improving accuracy in the results obtained from the flow. 

• Potential reduction of run times for several of the crosstalk timing closure flow 

• Automation: Complete automation of analysis and fix methodology flow 

proposed in this thesis 
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