
SPECTRAL BASED NUMERICAL METHODS

FOR COMBINATIONAL LOGIC SYNTHESIS

Approved by�

Dr� V� S� S� Nair

Dr� Dan I� Moldovan

Dr� Eric C� Lin

Dr� John D� Provence

Dr� Carlos E� Davila

Dr� Mandyam D� Srinath

SPECTRAL BASED NUMERICAL METHODS

FOR COMBINATIONAL LOGIC SYNTHESIS

A Dissertation Presented to the Graduate Faculty of the

School of Engineering and Applied Science

Southern Methodist University

in

Partial Ful�llment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Computer Engineering

by

Mitchell Aaron Thornton

�B�S�� Oklahoma State University� ��	
�
�M�S�� University of Texas at Arlington� �����
�M�S�� Southern Methodist University� ����

August �� ���

COPYRIGHT ���

Mitchell Aaron Thornton

All Rights Reserved

ACKNOWLEDGMENTS

There are many people who have provided support and encouragement dur�

ing the time I pursued my graduate studies� I would like to acknowledge all of my

Professors and in particular my advisor� V� S� S� Nair� His optimism and encourage�

ment provided me with considerable motivation for the completion of this work� but

above all� I value his friendship� I would also like to thank all the other members of

my advising committee for their valuable comments and suggestions which helped to

improve this dissertation considerably�

My family provided support for this work in many ways� The sacri�ces that

my wife� Misty� and my son� Micah� endured during the time period this work was

undertaken are gratefully acknowledged and a testament to their support for me�

The instillation of the value of education and quest for knowledge in my life must be

attributed to my parents� Dennis and Mary Ann Thornton� They always encouraged

me to achieve my dreams and this work is a product of that encouragement�

Finally� I would like to acknowledge the �nancial support provided by Southern

Methodist University in the form of a teaching assistantship and that provided by a

grant from the National Science Foundation under contract MIP�����	��� Without

this support� this dissertation would not have been possible�

iv

Thornton� Mitchell Aaron B�S�� Oklahoma State University� ��	

M�S�� University of Texas at Arlington� ����
M�S�� Southern Methodist University� ���

Spectral Based Numerical Methods
for Combinational Logic Synthesis

Advisor� Assistant Professor V� S� Sukumaran Nair

Doctor of Philosophy degree conferred August �� ���

Dissertation completed May ��� ���

Automated computer�aided design �CAD� methods for the synthesis of digital

logic circuits are typically employed to meet the demands imposed on todays� chip

designers� As modern technology matures� the size and functionality of integrated

circuits tends to increase proportionally� The use of CAD techniques allows the

designer to expend more e�ort in the conceptual and behavioral speci�cation portion

of the design process since the tedious task of translating the behavioral description

of a circuit into a structural one is handled by the automated synthesis system�

Unfortunately� the state of modern automated synthesis technology is still in its

infancy�

The development of CAD systems that are more mature and therefore capable

of solving a more general class of problems is an area of research whose results are

responsible for the enormous growth the electronic design automation �EDA� industry

has recently enjoyed� The most common approach in this research area is to expand

upon the principles used in current automated design tools which are typically rule

based systems� The research discussed in this dissertation describes the results of an

investigation into the use of spectral based numerical techniques to perform digital

logic synthesis�

v

The �rst phase of this research validates the approach of using spectral quan�

tities by describing a new method for their calculation� In the past� spectral methods

were judged to be inappropriate for automated logic synthesis systems since the nec�

essary calculations were far too time consuming to be exploited in an actual CAD

system� With the advent of an e�cient method for computing the spectra� numeri�

cally based techniques provide a viable alternative to the methods that are commonly

employed in the commercial CAD systems in use today�

The second phase of this research describes three ways that numerical methods

may be used in the implementation of automated logic synthesis systems� Altogether

new approaches are developed as well as methods to augment existing CAD sys�

tems� The experimental results of these approaches show that numerical methods

are capable of solving many problems in the area of logic synthesis in an e�cient and

timely manner� Further� the results show that the spectral approach o�ers superior

synthesis solutions for certain classes of circuits�

vi

TABLE OF CONTENTS

LIST OF FIGURES � x

LIST OF TABLES � xii

Chapter

�� INTRODUCTION �

���� Modern Logic Synthesis Techniques � � � � � � � � � � � � � � � � �

������ Synthesis Tools Using Don�t Care Sets � � � � � � � � �

������ Synthesis Tools Using Permissible Functions � � � � � �

����� Other Approaches for Logic Synthesis � � � � � � � � �

���� Spectral Based Synthesis Methods � � � � � � � � � � � � � � � � � �

��� Impact and Contributions of this Research � � � � � � � � � � � � 	

���� Organization �

�� EFFICIENT CALCULATION OF THE SPECTRUM OF A BOOLEAN
FUNCTION ��

���� The Concept of Constituent Functions � � � � � � � � � � � � � � � ��

���� Output Probabilities of Boolean Circuits � � � � � � � � � � � � � �	

������ OPE Calculation Using Logic Equations as Input � � �

������ OPE Calculation Using Logic Diagrams as Input � � � ��

����� OPE Calculation Using Binary Decision Diagrams
as Input ��

��� The Relationship Between Output Probabilities and the Spectra ��

���� E�cient Spectral Calculations Using Output Probabilities � �

������ Applicability to Various Types of Circuit Descriptions �

������ Implementation Using a Functional Description of the
Logic Circuit �

����� Implementation Using a Structural Description of the
Logic Circuit �

� SYNTHESIS USING SPECTRAL BASED HEURISTICS � � � � � � � � �	

��� Description of the Synthesis Methodology � � � � � � � � � � � � �
�

vii

����� Optimization Criteria �
�

����� Spectral Heuristics for Decomposition � � � � � � � � �
�

���� Maximum Subfunction Independence � � � � � � � � � �
�

��� Development of the Technique �
�

����� Formulation of the Heuristics � � � � � � � � � � � � � � �
	

����� Shannon Decomposition Forms � � � � � � � � � � � � � �
	

�� Implementation ��

���� Processing Flow �
	

��� Examples and Results �

�� SYNTHESIS USING MAXIMUM CORRELATION � � � � � � � � � � � ��

���� Description of the Synthesis Method � � � � � � � � � � � � � � � � �	

������ Processing Flow of the Synthesis Technique � � � � � � ��

������ Mathematical Background of the Synthesis Technique ��

����� Formulation of the Transformation Matrix � � � � � � � �

������� Choosing the Constituent Functions � � � � � ��

������� Cell Library Considerations � � � � � � � � � � ��

������ Rules for the Combining Gate � � � � � � � � � � � � � � �

���� Implementation of the Iterative Method � � � � � � � � � � � � � � �

������ Implementation Using an OBDD Input � � � � � � � � � ��

�������� Example Using an OBDD Input � � � � � � � �	

������ Implementation Using a Truth Table � � � � � � � � � � 	�

�������� Example Using a Truth Table Input � � � � � 	

����� Complexity of the Iterative Method � � � � � � � � � � � 		

������� Complexity Using an OBDD Input � � � � � � 		

������� Truth Table Method Complexity � � � � � � � ��

� SYNTHESIS OF GENERALIZED REED�MULLER NETWORKS � � ��

viii

��� Review of the RM Transform and Generalized ESOP Forms � ��

��� Development of the Real�Valued RM Transform � � � � � � � � � ��

����� Isomorphic Relationship of the RM Transform and
the Real�Valued Number System � � � � � � � � � � ��

����� Linear System Formulation of the RM Transform � ���

���� Example of the Computation of the RM Spectrum
Using Real Arithmetic � � � � � � � � � � � � � � � ���

�� E�cient Computation of the RM Spectral Coe�cients � � � � ���

��� Implementation of the Synthesis System � � � � � � � � � � � � ���

����� Experimental Results ���

�� CONCLUSIONS AND AREAS OF FUTURE RESEARCH � � � � � � � ���

���� Conclusions ���

���� Contributions to Synthesis Methodologies � � � � � � � � � � � � ���

��� Future Research Directions ��

����� Extension to BDD Forms Other Than OBDD � � � ���

����� Application to Low Power Design � � � � � � � � � � � ��

���� Design Veri�cation ��

����� Finite State Machine Synthesis � � � � � � � � � � � � � ���

REFERENCES ��	

ix

LIST OF FIGURES

Figure Page

���� Processing �ow of a typical logic synthesis tool � � � � � � � � � � � � � �

���� Logic circuit and truth table before permissible function substitution

��� Logic circuit after permissible function substitution � � � � � � � � � � �

���� Truth table of the function to be transformed using the RW matrix � 	

� Transformation matrix and corresponding constituent functions � � � ��

�� Example of a binary decision diagram � � � � � � � � � � � � � � � � � � ��

�� Truth table for example OPE calculation using a logic diagram � � � � �

	� Logic circuit example for OPE computation � � � � � � � � � � � � � � ��

�� Truth table for example OPE calculation using a logic diagram � � � � ��

��� Output probability calculation example � � � � � � � � � � � � � � � � � ��

��� BDD of the composition function� f�x� � fc�x� � � � � � � � � � � � � � ��

��� BDD of the composition function� f�x� � fc�x� � � � � � � � � � � � � � ��

�� Diagram of a single iteration of the heuristic synthesis method � � � �

��� Flowchart of spectral based heuristic synthesis method � � � � � � � � ��

�
� Diagram of the two level synthesis technique � � � � � � � � � � � � � � ��

��� Diagram of multi�level synthesis technique � � � � � � � � � � � � � � � ��

��� Flowchart of two�level synthesis technique � � � � � � � � � � � � � � � ��

�	� OBDD of function for synthesis example � � � � � � � � � � � � � � � � ��

��� First iteration of two�level synthesis of example �function� � � � � � � 	�

x

��� OBDD of the residual function after the �rst iteration � � � � � � � � � 	�

��� Final circuit using the design process � � � � � � � � � � � � � � � � � � 	�

��� Truth table contents of the function to be synthesized using the
truth table as input � 	�

�� First iteration of two�level synthesis of example function � � � � � � � 	�

��� Truth table contents of the function and error function � � � � � � � � 	�

�
� Final circuit using two�level design process � � � � � � � � � � � � � � � 	�

��� Truth table contents of the function and error function for the
second synthesis example � 	�

��� Final circuit using multi�level design process � � � � � � � � � � � � � � 		

�	� Venn diagram of various classes of ESOP functions � � � � � � � � � � �	

��� Binary decision diagrams of example function and composition
function ���

�� Block diagram of the generalized RM translation tool � � � � � � � � � ���

xi

LIST OF TABLES

Table Page

�� Rules for Transforming Boolean Operations to Probability Expressions ��

�� A Zeroth Order Spectral Coe�cient for each ISCAS	
 Netlist � � � � ��

� A First Order Spectral Coe�cient for each ISCAS	
 Netlist � � � � � �

�� The First �� Chow Parameters for ISCAS	
 Circuit c��� Output
���gat ��

� The Last �	 Chow Parameters for ISCAS	
 Circuit c��� Output
���gat �

�� Spectral Coe�cients for Various Constituent Functions and ISCAS	

Circuits ��

�� Correspondence of Labeled Inputs with Those in the Constituent
Functions ��

	� Heuristics and Rules for the Synthesis Methodology � � � � � � � � � �
�

�� Chow Parameters for all Boolean Functions of � Variables � � � � � � ��

��� Shannon Decomposition Forms for AND�OR�INVERT Dominance � ��

��� Shannon Decomposition Forms for XOR�XNOR Dominance � � � � � �

��� Comparison of Spectral Based Heuristic Method with misII � � � � � ��

�� Experimental Results of the Spectral Based Heuristic Logic Synthesizer ��

��� Truth Table of Example Function to be Synthesized � � � � � � � � � � ��	

�
� Oth Order RM Coe�cients for Various Netlists � � � � � � � � � � � � � ��

��� �st Order RM Coe�cients for Output ��gat of c�� � � � � � � � � � ���

xii

DEDICATION

To Misty Dawn

CHAPTER �

INTRODUCTION

Computer aided design �CAD� is now the standard approach for almost all

aspects of the design of digital electronic circuitry� The huge advances in very large

scale integration �VLSI� production techniques have provided motivation for the de�

velopment and use of automated design systems in order to handle the increasing

complexity in modern designs� Although CAD methods are used in the design of

most integrated circuits produced today� the underlying principles that form a basis

for the tools are still evolving� One example is the transition from schematic entry

systems which were popular in the early ��	��s to the use of hardware description

languages �HDLs� that are common in todays� design environment�

The overall objective of a CAD tool is the transformation of a high level spec�

i�cation� subject to given design constraints� into a description of circuitry suitable

for production� This transformation is usually divided into a number of intermediate

steps� One of these steps is referred to as the logic synthesis step� This portion of

the CAD tool is the focus of the research results described in this dissertation�

���� Modern Logic Synthesis Techniques

Most logic synthesis tools generally decompose the process into subsequent

steps which are illustrated in Figure ���� The logic synthesis system input is a de�

scription of the function to be synthesized� It usually is in the form of a Boolean

�

equation� set of covering cubes� or� an initial structural representation� The �rst step

minimizes the number of covering cubes� and ultimately the area required for the

realization� The next two steps are often referred to collectively as the technology

mapping portion� The technology mapper �rst decomposes the minimized descrip�

tion into a set of small interconnected subfunctions� and then it maps them to a

corresponding set of library cells� This latter step is usually called Boolean matching

or library binding�

Behavioral or Structural
Description

Logic
Minimization

Cell
Decomposition

Boolean
Matching

Technology Mapping

Specific Library Cells
and Interconnections

Figure ���� Processing �ow of a typical logic synthesis tool

To date� the most successful logic synthesis systems have employed heuristics

that guarantee a pseudo�optimal result since the logic synthesis problem is NP �hard

���� These systems generally use algebraic manipulation of Boolean equations� or�

�

graph algorithms applied to an initial circuit structure� Since these methods are

based on heuristics in order to make the problem tractable� there is much room for

improvement� In particular� as optimization constraints change some approaches

may o�er advantages over others� For instance� a system developed to optimize the

required substrate area may yield circuits with large critical paths� and hence� poor

timing characteristics�

������ Synthesis Tools Using Don�t Care Sets

One of the most popular and commonly used tools for area optimization is

ESPRESSO ��� ��� This tool is based on the Quine�McCluskey �QM� method for

logic minimization ��� �
�� The QM algorithm is well suited for computer implemen�

tation� however it has an exponential complexity with respect to the number of input

variables� By clever exploitation of the don�t care set of cubes� a set of rules can be

obtained that may be applied to the function under consideration� The application of

these rules usually allows for a drastic reduction in the computational requirements

as compared to the QM method and results in a good two�level minimization�

The ESPRESSO algorithm is comprised of a series of functions that em�

ploy various heuristics� The �rst function� EXPAND� replaces each original cube

by a set of all distinct cubes of one dimension higher provided that the replace�

ment cubes do not intersect the complement of the function� Next� the procedure

IRREDUNDANT is applied� IRREDUNDANT attempts to separate the the rel�

atively essential cubes from all others� After the application of IRREDUNDANT �

the REDUCE operation is invoked which attempts to determine as small a set as

possible of the relatively essential cubes that cover the function� These operations

and others are applied repeatedly until no further minimization is achieved�

The minimization of area can be enhanced further by representing a logic

function as a multi�level circuit instead of the two�level result such as that supplied by

ESPRESSO� This enhancement is at the cost of increasing the critical path length

since the two�level circuit always has a path length no larger than � multi�input logic

gates� A popular multi�level logic synthesis algorithm is MIS ���� This technique uses

an initial representation of the structure of the circuit as input� This representation

is ��attened� into an equivalent two�level representation where ESPRESSO�like

heuristics are applied� Next� the reduced two�level representation is decomposed into

small subcircuits which are subsequently matched to a given cell library ����

������ Synthesis Tools Using Permissible Functions

The basic paradigm used in the creation of ESPRESSO and MIS was the

exploitation of don�t care sets to provide area minimization� Another popular syn�

thesis tool paradigm is the use of the concept of permissible functions� The �rst

synthesis tools to use this concept were the TRANSDUCTION and SY LON sys�

tems �	� ���� Permissible functions have also been used recently to develop synthesis

tools by other researchers ���� �����

In order to outline the concept of permissible functions� consider the circuit

shown in Figure ���� In the circuit in Figure ��� each internal node as well as the

primary inputs and output are labeled with a unique variable� The possible logic

levels for each of these nodes is given in the accompanying table� Each internal node

can be viewed as a logic subcircuit� With this viewpoint� a permissible function

�

a

b

c

d

e

f

g

a b c d e f g

0 10 01 1 1
0 0 0 0 01 1
1
1

0 0 0 0 01
1 1 10 0 0

Figure ���� Logic circuit and truth table before permissible function substitution

is any function that has the same output vector as that given in the table� Using

this de�nition� the permissible function for node f is f�� �� �� �g� Therefore� a two�

input NOR gate is a permissible function for f � resulting in an equivalent circuit

as shown in Figure ��� In more complex circuits� the intermediate output vectors

generally include don�t care terms allowing more �exibility in the choice of permissible

functions�

����� Other Approaches for Logic Synthesis

Although the two most popular logic synthesis paradigms have been described

above with some of the speci�c tools referenced� other less popular synthesis method�

ologies have been developed as well� Since the logic synthesis problem can be viewed

a

b

g

Figure ��� Logic circuit after permissible function substitution

as an optimization problem� various researchers have attempted to apply linear pro�

gramming methods� notably that in �����

Another approach where considerable research has been accomplished is the

use of spectral methods for digital logic� These methods usually su�er from high

complexity restricting their usefulness to very small circuits� The spectral approach

is the subject of this dissertation since the research described here has yielded an

e�cient method for the computation of Boolean spectra using numerical techniques�

���� Spectral Based Synthesis Methods

The great success of spectral techniques for signal analysis and linear systems

analysis and design prompted researchers to look for ways to apply these methods to

digital systems� The pioneering work of Karpovsky ��� and Lechner ���� are generally

regarded as the basis of subsequent work in this �eld�

The principles of spectral methods have been applied to many areas in digi�

tal systems engineering� Some of these include synthesis ��� ��
� ���� ���� ��	� �����

partitioning techniques ��� �������� ���� ����� testing ��� ���� ��
� ����� function clas�

si�cation ���� ����� and others� It has been shown that certain problems such as

�

disjoint decomposition ���� ���� and function classi�cation ���� cannot be solved with

less complexity in the Boolean domain than in the spectral domain�

Spectral methods have not enjoyed wide acceptance due to the large complex�

ity required to compute the spectra using past methods� Even when fast spectral

computation methods such as those developed by Cooley and Tukey to compute

the discrete Fourier and later the more applicable Walsh transforms are applied ��	�

����� the calculation of the spectrum of a Boolean function still imposes exponen�

tial complexity� This large complexity arises because the O�NlgN� complexity of

the Cooley�Tukey method translates to O�n�n� complexity for digital circuits since

N � �n where n is the number of circuit inputs�

Most of the transformation matrices used in the past were orthogonal matrices

such as those constructed using Walsh functions� or� the Reed�Muller type� This

allowed the resulting spectrum to be unique for a given function� and easy translation

from the spectral to Boolean domains� Also� it allowed the Cooley�Tukey methods

to be applied resulting in a modest savings in the computations�

By de�nition� the spectrum of a Boolean function is obtained by multiplying

a transformation matrix by the function�s output vector ����� The following example

illustrates an example calculation of a spectrum of a Boolean function whose truth

table is given in Figure ���� The Rademacher�Walsh spectrum of this function is

obtained by using a transformation matrix whose rows are composed of the Walsh

functions with a Rademacher ordering� For transformations using Walsh matrices�

the logic ��� values are represented using the integer ��� and the logic ��� values are

represented by the integer ��� The spectrum is computed as shown in Equation ��

�

x� x� x� f
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure ���� Truth table of the function to be transformed using the RW matrix

�
����������

� � � � � � � �
� � � � �� �� �� ��
� � �� �� � � �� ��
� �� � �� � �� � ��
� � �� �� �� �� � �
� �� � �� �� � �� �
� �� �� � � �� �� �
� �� �� � �� � � ��

�
����������

�
����������

�
��
��
��

�
�

��
�

�
����������

�

�
����������

�
��

�
�
�
�
�
�

�
����������

���

The usefulness of the spectral data is that it provides global information about

the nature of the function with respect to its inputs as opposed to the local infor�

mation provided by a truth table� A notable advantage of spectral methods is that

information regarding the XOR operation is readily available which is often not the

case when methods such as those described in the preceding subsection are applied�

��� Impact and Contributions of this Research

The results described in this work renew the interest in the use of spectral

methods since an e�cient technique for the computation of the spectra is developed�

By reducing the average complexity for computing the spectral coe�cients� new tech�

niques for logic synthesis are formulated� Past spectral based methodologies required

	

the entire spectrum to be used� Since an individual coe�cient may be computed very

e�ciently with the method presented here� emphasis is given to the development of

methods that require only small subsets of coe�cients�

The e�cient spectral calculation technique is also very general in that any

arbitrary transformation matrix may be used� This allows transformation matrices

other than those used in the past to be investigated� The alternative matrices need

not be orthogonal� or even square� since Cooley�Tukey algorithms are not used to

generate the spectrum� Also� the freedom to use arbitrary transformation matrices

allows problems such as Boolean matching to be customized to a speci�c transfor�

mation matrix corresponding to a given cell library�

The use of spectral coe�cients in logic synthesis systems allow complex logic

cells to be included in the resulting design� In particular� the detection and inclusion

of the XOR operator is usually di�cult to achieve since most synthesis algorithms rely

upon algebraic manipulations or graphical techniques� The properties of the XOR

operation are easily detected and exploited when spectral methods are applied� This

result is applicable to standard cell as well as �eld programmable gate array �FPGA�

design solutions since many manufacturers are producing FPGAs with basic logic

blocks that include the XOR gate�

���� Organization

The remainder of this dissertation is organized as follows� Chapter � pro�

vides a discussion of the development of the e�cient spectrum calculation technique�

Chapters and � present new algorithms for the synthesis of multi�level circuits that

are particularly well suited to the e�cient computation method� Chapter
 presents

�

the results that allow the e�cient spectral computation method to be extended to

the case of the Reed�Muller �RM� form�

Chapter � is devoted to the development of the e�cient method for the compu�

tation of the spectral coe�cients� This work provides the necessary background and

results that allow the synthesis methods developed in later chapters to be practical�

In addition to the development of the technique� a brief review of the relevant prop�

erties of binary decision diagrams �BDDs� is presented since the BDD representation

is crucial to the technique�

In Chapter � a spectral based algorithm is described that uses the paradigm of

subfunction independence� This technique attempts to realize a circuit by successively

computing subcircuits with as much degeneracy as possible thereby allowing the

subcircuits to be minimized by the disregard of redundant inputs� In addition� this

method uses a small set of spectral coe�cients and is capable of strictly enforcing

speci�ed timing constraints�

In Chapter �� an alternative technique is described using a maximum cor�

relation paradigm� The maximum correlation paradigm is useful because it allows

the transformation matrix to be customized for a particular cell library� The cus�

tomization results in combining the logic minimization and library binding tasks into

a single operation�

Chapter
 describes how the e�cient calculations can be applied to the realiza�

tion of the Reed�Muller �RM� form of digital circuits� Classic RM circuit realization

using spectral methods requires the use of modulo�� arithmetic for the computation

of the coe�cients� By developing the algebraic relation between modulo�� and real

��

valued arithmetic� it is shown that the e�cient spectral calculation technique may

be applied to Reed�Muller circuit synthesis�

Finally� conclusions and future research areas are given in Chapter �� The

future research areas include extensions to the methods developed here in addition

to the use of spectral computations in other areas of CAD of digital systems�

��

CHAPTER �

EFFICIENT CALCULATION OF THE SPECTRUM
OF A BOOLEAN FUNCTION

An e�cient algorithm for the calculation of the spectrum of a Boolean function

is developed and presented in this chapter� In addition to providing e�ciency in

the computations� the method is very general with no restrictions on the form of

the transformation matrix� Unlike other methods� the transformation matrix is not

required to be recursively de�ned or sparse� The e�ciency of the technique is due

to the fact that it has complexity of the order of the number of edges in a binary

decision diagram �BDD� ��� ����

Although new approaches for e�cient spectral coe�cient calculation schemes

have recently been proposed by other researchers� the method presented here has

many advantages in comparison� In particular� a recent method has been proposed

that utilizes �integer valued� BDDs ��� �� ���� Although this method computes

the resulting transform vector in a very compact method by representing it as an

integer valued BDD� the determination of each individual spectral coe�cient requires

a separate evaluation of the BDD� Furthermore� the size of the integer valued BDDs

can become exponentially large if the transformation matrices used are not sparse

or recursively de�ned� Even for transformation matrices that are sparse or capable

of being de�ned recursively� this method can still generate extremely large integer

valued BDDs if the spectrum contains many dissimilar values� The method proposed

��

here compares favorably with this approach since a single spectral coe�cient is com�

puted in time proportional to the number of edges in a BDD� Further� this method

does not require the transformation matrix to be recursively de�ned or sparse to

preserve the e�ciency of the computation�

Another recently proposed methodology allows for the computation of trans�

form coe�cients directly from a representation of a Boolean function as a set of

disjoint cubes �
� ����� Unfortunately� as the number of inputs to the Boolean func�

tion grows� the corresponding set of disjoint cubes can become extremely large� The

method presented here has the advantage that the function to be transformed can

be represented in very compact manner �as a BDD� and does not require a large set

of product terms�

The formulation of this technique requires the use of probability expressions

for the output of the circuit to be synthesized� Circuit output probability expressions

�OPEs� have been used in the past in areas such as testing ���� analysis ���� and

veri�cation �	�� This chapter discusses the use of output probabilities to compute

spectral coe�cients in an e�cient manner� To that end� a new algorithm to compute

circuit output probabilities is developed�

The primary reason for the reduction in computation complexity is due to

the fact that the output probabilities may be computed e�ciently using a BDD

representation of the logic circuit� The formulation of the output probability expres�

sion requires exponential resources if the Boolean equations are transformed using

algebraic methods� However� when the circuit is represented in BDD form� the for�

mulation can be accomplished with O�kEk� complexity where kEk represents the

number of edges in a BDD�

�

���� The Concept of Constituent Functions

The type of information that the spectral coe�cients yield depends upon the

form of the transformation matrix� One way to interpret the meaning of each spectral

coe�cient is to view it as a measure of correlation between two Boolean functions�

These two Boolean functions are the function being transformed� f�x�� and a con�

stituent function� fc�x�� With this viewpoint� the constituent function is a Boolean

function whose output vector is identical to the row vector in the transformation

matrix used to generate a speci�c spectral coe�cient� Thus� a transformation ma�

trix may be represented as a collection of constituent functions each of whose output

vectors are identical to the various row vectors of the transformation matrix� As an

example� the transformation matrix in Figure ��� has the corresponding constituent

functions to the left�

�
x�
x�
x�

x��x�
x��x�
x��x�

x��x��x�

�
����������

� � � � � � � �
� � � � �� �� �� ��
� � �� �� � � �� ��
� �� � �� � �� � ��
� � �� �� �� �� �� ��
� �� � �� �� �� �� ��
� �� �� �� � �� �� ��
� �� �� �� �� �� �� ��

�
����������

Figure ���� Transformation matrix and corresponding constituent functions

Throughout the remainder of the dissertation� the following notation and def�

initions will be used to describe the development and implementation of the spectral

algorithms�

��

� n is the number of input variables of a Boolean function�

� Small case variables such as x�� x�� etc� denote Boolean variables that have

logic values of ��� or ����

� Upper case variables such as X�� X�� etc� denote the probability that the

corresponding lower case Boolean variables are equal to a logic ��� value� These

quantities are real and exist in the interval ��� ���

� The operator symbol� ���� will refer to the Boolean OR function or the addition

of real numbers depending upon the context of the equation in which it is used�

� The operator symbol� ���� will refer to the Boolean AND operation� The ab�

sence of an operator between two adjacent values in a Boolean equation implies

the presence of the � operator�

� The operator symbol� ���� will refer to the multiplication of two real values�

The absence of an operator between two adjacent values in a real�valued equa�

tion implies the presence of the � operator�

� The operator symbol� ���� will refer to the Boolean XOR operation�

� The operator� ��fg�� denotes the probability transform operator whose argu�

ment is a Boolean function� It will yield the probability that its argument is a

logic ���� Unless otherwise noted� it is assumed that the input variables to the

Boolean function are equally likely to be ��� or ����

�

� Nm is a positive integer that has a value equal to the number of outputs of

f�x� that are identical to those of fc�x� �number of matches� for all possible

common input combinations�

� Nmm is a positive integer that has a value equal to the number of outputs of

f�x� that di�er from those of fc�x� �number of mismatches� over all possible

common input combinations�

� Sf �fc�x�� is the spectral coe�cient associated with the function� f�x�� and the

constituent function� fc�x�� A common de�nition of Sf �fc�x�� is Sf �fc�x�� �

Nm �Nmm ����

� Rf �x� is a real�valued function that maps the output of a Boolean function�

f�x�� from logic value ��� to �� and logic value ��� to � for a given set of

input values� x�

� C is a coe�cient of correlation between two real valued functions and is de�ned

as�

C �
�

�n

n��X
i��

�Rf�mi��Rfc�mi�� ���

The spectral coe�cient values may be interpreted as correlation measures

between the constituent functions and the transformed function� The actual rela�

tionship between a spectral coe�cient and a coe�cient of correlation is given in the

following lemma�

Lemma � The spectral coe�cient� Sf �fc�x�� is directly proportional to the coe�cient

of correlation between f�x� and fc�x��

��

Proof� As provided by the de�nition� the coe�cient of correlation is given by Equa�

tion � as�

C �
�

�n

n��X
i��

�Rf�mi��Rfc�mi�� ��

Where� mi� is the ith unique minterm� Note that each product in the sum�

mation of the series is either � or ��� Thus we can replace
Pn��

i�� �Rf�mi� � Rfc�mi��

with Nm�Nmm� By the de�nition given above� Sf �fc�x�� � Nm�Nmm� Substituting

Sf �fc�x�� into ��

C �
�

�n
Sf �fc�x�� ���

Hence� Sf �fc�x�� is directly proportional to C with a constant proportionality

coe�cient of ���n� �

Similar results can be proven for other de�nitions of spectral coe�cients� For

instance� the Reed�Muller transform ���� ���� can be de�ned using a vector of values

where each component is the number of matching logic ��� outputs �calculated as

�ff � fcg � �n� between the function to be transformed and a constituent function�

���� Output Probabilities of Boolean Circuits

This section discusses the computations of circuit output probabilities by

brie�y reviewing two methods used to compute output probability expressions �OPEs�

and then by directly computing a circuit output probability using BDDs� Also� an

example of a BDD for a speci�c logic function is presented�

��

The OPE of a combinational logic circuit is an algebraic relation that expresses

the probability that the circuit output is a logic ��� given the probabilities that the

input variables have the value of logic ���� It is possible to compute the OPE for a

given circuit by transforming its Boolean equation representation or by calculating

the OPE from a schematic diagram representation ����

In ���� an algorithm is given to compute the OPE directly from a Boolean

expression� This method requires the function to be expressed in a canonical sum�

of�products �SOP� form� Each product term is replaced by an expression for the

probability that the product is at logic ���� The canonical SOP form must be used

since it is necessary for one and only one product term to be at logic value ��� for a

given set of inputs� This constraint serves to preserve statistical independence� The

rules in Table ��� are used to determine the probability expression for each product

in the canonical SOP form� This algorithm has a complexity that is exponential

with respect to the number of input variables since it requires the formulation of the

canonical SOP Boolean function�

Table �����Rules for transforming Boolean operations to
probability expressions

Boolean Boolean Probability
Operation Expression Expression

Inversion x� ��X�

OR x� � x� X� � X� � �X� �X��

XOR x� � x� X� � X� � ��X� �X��
AND x� � x� X� �X�

Idempotence Property x� � x� X�

A more e�cient algorithm for the computation of the OPE of a Boolean

function is also given in ���� This method requires the function to be represented as a

�	

logic diagram� In this formulation� each primary input� each internal interconnection�

and the output is assigned a unique variable name� Using the rules in Table ���� each

internal node is expressed as a function of the primary inputs� This step is performed

through subsequent substitutions until an expression is derived for the output variable

in terms of the primary input variables thus forming the OPE�

Although the OPE algorithm based upon circuit diagrams is e�cient with

respect to the size of the circuit� many times it is desired to compute the spectral

coe�cients of a circuit before it is realized� In particular� spectral based synthesis

algorithms typically use some compact representation of the function in a behavioral

or functional form as input� One compact way of describing a Boolean function

is to utilize its BDD� which provides the motivation for computing a circuit output

probability using a BDD description as input� For the purposes of computing spectral

coe�cients� it is su�cient to compute the output circuit probability for the case where

the input variables are all equally likely to be ��� or ���� Thus it is not necessary

to compute the OPE and then evaluate it for the case where all Xi � ��
 since this

probability may be computed directly from the BDD�

A BDD is a graphical representation of a Boolean logic circuit that consists

of nodes representing input variables and function output values� These nodes are

interconnected by directed edges with the initial node and internal nodes representing

function input variables and the terminal nodes representing function output values�

Each internal node and the initial node has two directed edges pointing to another

node� one of the edges is activated if the input variable is at logic value ��� and the

other is activated if the logic variable is at logic value ���� A complete discussion of

BDDs may be found in ��� ��� ����� In ���� some restrictions were placed upon the

��

formation of BDDs that allowed several e�cient algorithms to be de�ned for their

manipulation� Speci�cally� it was required that the BDDs be formed as �ordered

binary decision diagrams� �OBDDs�� This means that for any given path in the BDD�

a graph node corresponding to a particular input is only encountered once� and� that

subsequent input nodes have an index value greater than their predecessors� The

OBDD form is used in this development to ensure that each input node in a given

path is only encountered once thus ensuring statistical independence� As an example

of an OBDD� consider the function de�ned in Equation
�

f�x� � x�x�x� � x�x�x	x� � x�x�x	x
 � x�x�x	x� � x�x�x	x
 � x�x�x
 �
�

This function would require a truth table with �� entries to be completely

speci�ed� The BDD representation of this function in Figure ��� is quite compact

however�

The BDD�based algorithm for the calculation of the output circuit probability

does not have the exponential complexity of the algebraic method nor does it require

a circuit diagram description of the Boolean function� Only the functionality of the

circuit is required which can be expressed in a very compact manner using BDDs� In

the remainder of this paper� the OBDD form of BDD as de�ned in ��� is used some

of the BDD algorithms cited there are occasionally referenced as well�

The following lemma expresses an important result concerning the BDD of a

logic function�

Lemma � For any one particular combination of primary input values� at most one

path will be activated between the input node and node j where j is any node in the

BDD other than an input node�

��

Proof� If possible� let there be more than one path activated between the input node

and node j� This implies that at least one of the nodes between the input node and

j has both of its outgoing arcs activated for the given input condition which is an

impossibility in a BDD� Therefore� there is at most one path activated for a given

input condition� �

It should be noted that a path may not exist between the input node and j

for certain input conditions�

X1
0 1

0
01

1

0

1

1
0

0 1

X2 X3

X4

X5 X6

1 0

Figure ���� Example of a binary decision diagram

��

The algorithm for computing a circuit output probability using the BDD of

the circuit and assuming that all inputs are likely to be ��� or ��� is described by

the following steps�

Probability Assignment Algorithm

�� Assign probability � � for the input node�

�� If the probability of node j � Pj � assign a probability of �
�
Pj to each of the

outgoing arcs from j�

� The probability� Pk� of node k is the sum of the probabilities of the incoming

arcs�

Lemma � In the probability assignment algorithm� the probability Pk is the proba�

bility that there exists a path from the input node to the node k�

Proof� In the probability assignment algorithm given in the preceding� Pk is calcu�

lated as the sum of the probabilities of reaching node k through various paths from

the input node� From Lemma � all these paths are disjoint and therefore represent

disjoint probability events� Thus� Pk is the probability of reaching node k from the

input node over all possible input variable combinations� �

This BDD based algorithm for the computation of circuit output probabilities

involves the traversal of the BDD from the input node to the terminal nodes� This

enables the output probability of a combinational logic circuit to be computed with

a complexity equal to O�kEk�� where kEk is the number of edges or interconnections

in the BDD� During the traversal of the BDD� a probability is assigned to each node�

This is the probability that the node is reached for a given set of input variable

��

probabilities of the function� Each node probability is a member of a probability

space containing �n experiments� The node probabilities have the desirable feature

of depending only upon their immediate predecessor node probabilities�

������ OPE Calculation Using Logic Equations as Input

As an example of the OPE calculation method using logic equations as input�

consider the function de�ned by the truth table in Figure ���

x� x� x� f
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure ��� Truth table for example OPE calculation using a logic diagram

The canonical SOP form for this function is given in Equation ��

f�x� � x�x�x� � x�x�x� � x�x�x� ���

The resulting OPE using the rules in Table ��� is given in Equation ��

F �X� � X�X� � X�X� �X�X�X� ���

�

������ OPE Calculation Using Logic Diagrams as Input

The OPE can be computed from a structural representation of a Boolean

function such as a netlist or logic diagram as well as a functional representation� As

an example� consider the logic diagram illustrated in Figure ��� that is a realization

of the Boolean equation�

f�x� � x�x�x�x	 � x�x�x�x	 � x�x�x�x	 � x�x�x�x	 � x�x�x�x	 �	�

x1

x2

x3 f(x)

x4

A

B

C

D

F

G

I
H

E

Figure ���� Logic circuit example for OPE computation

Using the variables assigned to each interconnection as shown in Figure ���

and the rules in Table ���� the OPE can be derived as follows� First� the rule for the

Inversion operator is applied�

F � �� C ���

Next� the rule for the Inclusive�OR operator is used�

E � A � B �AB ����

G � B � D �BD ����

��

H � E � F � EF ����

Simplifying the equation for H by substituting equations � and equation ��

yields�

H � � � C � AC � BC �ABC ���

Finally� the rules for the AND and Inversion operations are used�

I � � �HG ����

This equation is simpli�ed and the corresponding input probability variables

are substituted resulting in the OPE�

I � � �X� �X	 � X�X	 � X�X	 �X�X�X	 �X�X�X	 � X�X�X�X	 ��
�

Once the OPE has been computed� the probability that the output is equiva�

lent to a logic ��� value is expressed as a function of the probabilities that the primary

inputs are at a logic ��� value� For a fully speci�ed Boolean function each primary

input will be at logic ��� precisely �n�� times� hence the overall percentage of the

time the logic function is equivalent to a logic ��� may be obtained by substituting

��
 for all primary input probabilities�

�

����� OPE Calculation Using Binary Decision Diagrams as Input

As an example of the OPE calculation� consider the Boolean function�

f�x� � x�x� � x� ����

The truth table for equation �� is given in Figure ��
 and the the corresponding

BDD is given in Figure ����

x� x� x� f
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure ��
� Truth table for example OPE calculation using a logic diagram

It is easily seen from the truth table that the probability that the output is

a ��� is

�
� Using the algorithm above� each node in Figure ��� is labeled with the

probability that it is reached� and it is seen that the terminal ��� node does indeed

have the value

� � ����
�

As mentioned before� this algorithm is applicable only to BDDs that are for�

mulated with restrictions on the variable orderings similar to those �rst presented in

���� The reason for this constraint is to ensure that no infeasible paths are utilized

in the node probability calculations� For example� if a node corresponding to variable

xi is the input node and this node is also present internally in the graph� the straight

��

forward application of the probability calculation would include the possibility of

assuming xi is at logic ��� on the input node and it is at logic ��� on the internal

node� This is clearly an infeasible path� To eliminate infeasible paths� it is su�cient

to constrain all parent nodes to have an index value less than their children nodes�

1
P=0.625

0
P=0.375

X2
P=0.5

0 1

0

0

1

1

X1
P=1

X3
P=0.75

Figure ���� Output probability calculation example

��� The Relationship Between Output Probabilities and the Spectra

This section will develop some relevant properties of spectral coe�cients that

are used in the derivation of the e�cient spectral calculation algorithm� Two useful

properties of spectral coe�cients are provided in the following two Lemmas that �rst

appeared in ����

��

Lemma � For a given function f�x� and a given constituent function fc�x� the re�

sulting spectral coe�cient is given by�

Sf �fc�x�� � �n � �Nmm � �Nm � �n ����

Proof� The maximum possible absolute value of a spectral coe�cient occurs when a

row of the matrix is equal to the function output vector or when each component of the

vector is the negative of the corresponding entry in the transform matrix row� Hence�

the maximum possible absolute value of the spectral coe�cient is jSf �fc�x��j � �n

indicating ���� positive or negative correlation between f�x� and fc�x�� Indeed

in this case� either f�x� � fc�x� or f�x� � fc�x�� Each mismatch present in the

function output vector and the corresponding matrix row entry always produces a

product value of ��� Therefore� Nmm mismatches result in a negative partial sum of

�Nmm�

The only other possibility is a match which is the complement of mismatches

and always produces a product value of ��� Since the spectral coe�cient for and

f�x� and fc�x� is the di�erence between the number of matches� Nm� and the number

of mismatches� Nmm�

Sf �fc�x�� � Nm �Nmm

� Nm � ��n �Nm�

� �Nm � �n

�	

Likewise� substituting Nmm�

Sf �fc�x�� � Nm �Nmm

� ��n �Nmm��Nmm

� �n � �Nmm

Hence� Sf �fc�x�� � �n � �Nmm � �Nm � �n� �

Lemma � The following property of spectral coe�cients holds�

Sf �fc�x�� � �Sf �fc�x�� ��	�

Proof� Let the number of mismatches between the inverse of the constituent func�

tion� fc�x�� be denoted by N �

mm and the corresponding matches denoted by N �

m� thus�

N �

m � Nmm� Using this fact and the results from Lemma ���

Sf �fc�x�� � �n � �Nmm

� �n � �N �

m

� ���N �

m � �n�

� �Sf �fc�x��

�

Since we can compute the spectral coe�cients given the value Nm or Nmm�

an e�cient way to compute these quantities will in e�ect provide an e�cient way

to calculate the spectral coe�cients� Furthermore� if we know the percentage of

��

the matching outputs of a constituent function and the function to be transformed

�denoted by pm�� we can easily compute Nm � pm�n� This observation is the basis

behind the algorithm to e�ciently compute the spectral coe�cients�

In order to determine pm� we need to use logic equations that indicate when

the outputs of the constituent function and the function to be transformed match� It

is trivial to show that such logic equations can always be formed by using the logical

AND of these two functions for the case when both output a ���� and� the logical

NAND of these two functions when both output a ���� A formal de�nition of these

types of functions follows�

De�nition � A function that is formed by taking the logical AND or NAND of a

constituent function and a function to be transformed is called a �composite function�

and is denoted by fcomp�x��

Therefore� in order to compute the value pm we only need to �nd the prob�

ability that both functions simultaneously output a logic ��� value �pm�� and the

probability that both functions simultaneously output a logic ��� value �pm��� By

forming the BDD of the two fcomp�x� functions� pm� and pm� are simply the proba�

bilities that the terminal node of logic value ��� is reached�

In Lemma � an important result is given relating the spectral coe�cients and

the fcomp�x� functions� This result is presented by using the concepts of canonical

sum�of�products �SOP� and product�of�sum �POS� forms of Boolean expressions�

Lemma 	 Nm � Nm� � Nm�� where Nm� is the number of minterm terms in a

canonical SOP form of f �fc and Nm� is the number of maxterm terms in a canonical

POS form of fc � f

�

Proof� All Boolean expressions may be expressed by indicating the output value

corresponding to each of its �n minterms �this is in fact a truth table�� A canonical

SOP form for a Boolean expression is the inclusive�OR of all minterms that produce

a logic ��� output ���� Hence� the number of minterms present in a canonical SOP

expression represents the number of times the function output is at logic value ����

Likewise� Nm� is equal to the number of maxterms in a canonical POS form

of f � fc since this expression will be at logic ��� if and only if both f and fc output

��� for a common set of inputs�

Since Nm is the number of times a constituent function� fc�x�� and a function

to be transformed� f�x�� have identical outputs for a common set of inputs�

Nm � Nm� � Nm� ����

�

The relationship between the output probability of a composition function

and Nm is established in Lemma ��

Lemma

Nm � �n�� � �ff � fcg � �ff � fcg� ����

Proof� �ff � fcg yields the probability that the function f � fc produces a logical

���� Therefore� � � �ff � fcg is the probability that f � fc produces a logic ����

Since f � fc will output a ��� if and only if both f and fc are at ����

pm� � � � �ff � fcg � ��
�

�n
�Nm�� ����

�

Likewise� �ff � fcg yields the percentage of minterms of f � fc that produce a

logic ��� for the function� f � fc� Since f � fc will output a ��� if and only if both f

and fc are at ����

pm� � �ff � fcg �
�

�n
�Nm�� ����

Substituting Equations �� and �� into Equation �� and observing that pm �

pm� � pm��

Nm � �n�pm� � pm�� � pm�n ���

Thus� the de�nition of Nm is satis�ed and the proof is complete� �

Based on the results of the previous Lemmas� it can now be proven that a

spectral coe�cient may be calculated based upon circuit output probabilities�

Theorem �

Sf �fc�x�� � �n�� � ���ff � fcg � �ff � fcg�� ����

Proof�

From Equation ���

Sf �fc�x�� � �Nm � �n ��
�

From Equation ���

Nm � �n�� � �ff � fcg � �ff � fcg� ����

Substituting �� into �
 and simplifying�

�

Sf �fc�x�� � �n�� � ���ff � fcg � �ff � fcg�� ����

�
Corollary � A compact expression for Sf �fc�x�� is�

Sf �fc�x�� � �n��pm � �� ��	�

Proof� From Theorem ��

Sf �fc�x�� � �n�� � ���ff � fcg � �ff � fcg�� ����

Substituting Equations �� and �� into Equation ���

Sf �fc�x�� � �n���pm� � pm��� �� ���

From the de�nition of pm�

Sf �fc�x�� � �n��pm � �� ���

�

This formulation allows a single spectral coe�cient to be computed by per�

forming output probability calculations on the two compositions functions�f � fc and

f � fc� Almost all applications that use spectral coe�cients require those corre�

sponding to the constituent functions� fci � xi� for all i� These coe�cients may be

obtained by computing only the output probability for one composition function if

the �th�ordered spectral coe�cient has been previously computed�

To develop this simpli�cation� it is �rst noted that the elementary property

of probability theory given in Equation � holds�

�ff � fcg � �ffg� �ffcg � �ff � fcg ���

Substituting this expression into Equation �� results in the expressions given

in Equations and ��

Sf �fc�x�� � �n�� � ��ff � fcg � ��ffg � ��ffcg� ��

Sf �fc�x�� � �n��� ��ff � fcg� ��ffg � ��ffcg� ���

The expression in Equation holds for any general fc� However when fc is

equal to a single primary input� the �ffcg term is always equal to ��� since all primary

inputs will be at logic ��� and logic ��� the same number of times� This fact also

holds true for all constituent functions used to form the Walsh transforms �with the

exception of the �th ordered coe�cient�� This simpli�es the calculation by requiring

only the formation and evaluation of the output probability for the composition

function� f �fc� Since the term� �ffg is related to the �th ordered spectral coe�cient�

the expression to calculate the coe�cients for this class of constituent functions is

given in Equation
�

Sf �fci� � �n���ff � fcg� �� � S��� �
�

These results show that the calculation of spectral coe�cients is translated to

the problem of output probability calculations of the BDDs of composition functions�

�

It should be noted that in most methods that utilize spectral techniques for digital

logic circuits� fc�x� is much less complex than the function to be transformed� f�x��

For example� in the synthesis algorithm described in Chapter � a method for syn�

thesizing a function by decomposing it into a collection of much simpler constituent

functions is given� The decomposition is accomplished by using the information con�

tained in the corresponding spectral coe�cients�

���� E�cient Spectral Calculations Using Output Probabilities

In order to implement these results to formulate an algorithm for the compu�

tation of a spectral coe�cient� the following observations are made� The value pm is

obtained by using the BDD based output probability calculation algorithm presented

in Section ���� pm is computed as the sum of pm� and pm� which are obtained by

applying the output probability calculation algorithm to the BDDs formed by two

composition functions denoted by f�comp�x� and f�comp�x�� These composition func�

tions are given by f�comp�x� � fc�x� � f�x� and f�comp�x� � fc�x� � f�x�� Therefore�

the values pm� and pm� are obtained with a complexity of O�kEcompk� where Ecomp

is the number of edges present in the BDDs of the two composition functions�

If the algorithm APPLY proposed in ��� is used to form the composition

function BDDs� the resulting complexity is O�kEfckkEfk�� Where kEfck is the num�

ber of edges in the BDD of the constituent function� fc�x�� and kEfk is the number

of edges in the BDD of the function to be transformed� f�x�� This bound is very

good since for most transforms the constituent functions are very small as compared

to the function to be transformed and many times kEfk � kEfcompk� In the general

case

however� constituent functions may be as complex as the function to be transformed�

or� even more complex�

Thus� to form a spectral coe�cient it is only necessary to apply the output

probability algorithm to the BDDs of the composition functions and then compute

the following�

pm� � �ff�x� � fc�x�g ���

pm� � �ff�x� � fc�x�g ���

Sf �fc�x�� � �n���pm� � pm��� �� �	�

The algorithm for the e�cient computation of spectral coe�cients is stated

as�

E�cient Spectral Coe�cient Computation Algorithm

�� Formulate the BDDs for the two composition functions using the APPLY

algorithm�

�� Use the output probability calculation algorithm to form the composition func�

tion BDDs�

� Compute pm� � �ff�x� � fc�x�g and pm� � �ff�x� � fc�x�g�

�� Compute Sf �fc�x�� � �n���pm� � pm��� ���

Since the bounding operation in this algorithm is the utilization of the APPLY

algorithm to form the composition function BDDs� computational complexity of this

algorithm is O�kEfk � kEfck��

�

������ Applicability to Various Types of Circuit Descriptions

This algorithm has allowed the computation of spectral coe�cients for some

well known benchmark circuits to occur for the �rst time� Previous methods were

impractical due to both the storage and computation time required� As stated in ����

empirical evidence has indicated that most Boolean functions of practical importance

may be represented with OBDDs that do not have an exponential number of nodes�

For this reason� the spectral computation described here is very applicable� However�

there do exist some functions for which the number of nodes is exponential regardless

of the variable ordering chosen ��
� ����� For these functions� the method presented

here is no worse than other methods for computation of the spectral coe�cients� but

presents no savings in computation as well�

This technique may be applied to alternative representations of Boolean func�

tions also� In fact� it may be applied to any representation that may be used to

directly compute an OPE� As stated in ���� an OPE may be computed directly from

a canonic SOP form where all the product terms are minterms� but the worst case

complexity is exponential since an exponential number of minterms may be present in

the canonic form� The reason that a sum of minterms is required is to ensure that the

OPE transformation operations can be applied to each product term independently

thereby providing statistical independence� If the statistical independence were not

present� the idempotence rule would have to be used� This concept can be extended

further by allowing the calculation to occur using any SOP form as long as all of

the cubes are disjoint� Two cubes are de�ned to be disjoint� if one of them does not

cover the other and vice verse� or alternatively� if the SOP expression contains only

prime implicants ����� This would preserve the property of statistical independence�

�

However� such lists of covering cubes can also become exponentially long for some

functions�

Another common representation is a structural one usually in the form of a

netlist expressed in an HDL� standard such as EDIF� or in terms of a PLA description�

Unfortunately� like the case when algebraic descriptions are used� the OPE must be

formulated �rst and then the output probability is obtained by evaluating it� Unlike

the use of algebraic descriptions there is no way to enforce statistical independence�

thus the OPE must be generated in a symbolic fashion in order to apply the idempo�

tence rule where needed� This method was in fact implemented and the results are

provided in a following section of this paper� but the results were not encouraging�

The one signi�cant outcome of this experiment was that it is possible to compute

spectral coe�cients if the input circuit is in two�level form� This occurs because

the formation of the OPEs at each internal interconnection remain very small until

they are combined at the �nal output� In fact this method did successfully compute

a spectral coe�cient for a circuit containing well over ��� inputs� However� this

technique generally performs poorly when the circuits become large �more than ��

inputs� and are structured in a multilevel arrangement�

������ Implementation Using a Functional Description of the Logic Circuit

An example of the application of this algorithm to a �input logic function in

a functional form� a BDD� can now be given�

Example � Example of the e�cient calculation of a spectral coe�cient using output

probabilities and BDDs�

	

The function to be transformed� f�x�� is given by Equation ��

f�x� � x�x� � x� ���

The constituent function for this example� fc�x�� is given as in Equation ���

fc�x� � x� � x� ����

The BDD for Equation � is given in Figure ���� The BDD for the composition

function� f�x��fc�x�� is given in Figure ��	 and the BDD for the composition function�

f�x� � fc�x�� is given in Figure ����

X2
P=0.5

0

1

0

0

1

1

X1
P=1

X3
P=0.25

1
P=0.125

0
P=0.875

Figure ���� BDD of the composition function� f�x� � fc�x�

�

0 1

X3
P=1

0
P=0.5

1
P=0.5

Figure ��	� BDD of the composition function� f�x� � fc�x�

In order to compute the spectral coe�cient determined by the constituent

function given in Equation ��� the values pm� and pm� are computed using the output

probability algorithm� The node probabilities are shown on the composition BDDs�

These values are�

pm� � ��
 ����

pm� � ����
 ����

Next� the spectral coe�cient is computed as�

Sf �fc�x�� � �������
 � ����
� � �� � � ���

Applying the de�nition of a transform to this problem would have resulted in

computing the dot�product of two vectors with �� elements each� The use of �fast�

algorithms proposed by ��	� and ���� are prohibited since the inclusive�OR based

transform does not yield a sparse or recursively de�ned transformation matrix �the

structure of this transformation matrix for �input variables is given in Figure �����

��

Further� the application of the spectral calculation algorithm presented in ��� ��

��� may result in the formation of a very large �integer�valued� BDD since the matrix

is not sparse and cannot be recursively de�ned�

In order to evaluate this algorithm on circuits typically encountered in in�

dustry� this method was implemented and several standard benchmark circuits were

used as input� The spectrum calculation algorithm was implemented using a popu�

lar OBDD package and by implementing the probability assignment algorithm using

the C programming language� The probability assignment algorithm is similar to a

�breadth��rst search� approach except that instead of each node in the BDD being

visited once� each traversal �or arc� in the graph is visited once� However� the com�

plexity is still of the order of the number of nodes in the BDD since every nonterminal

node has exactly � directed arcs leaving it�

The ISCAS	
 benchmark circuits ��	� were used as inputs to this implemen�

tation to provide the experimental results� The netlists were parsed and an OBDD

was created for each of them� Tables ��� and �� contain spectral coe�cients for a

selected output for each of the benchmark circuits� In addition to the �th and �st or�

dered coe�cients� the sizes of the composite OBDDs are given thus providing a direct

representation of the time complexity and hence� execution time of this approach�

The OBDD size columns are labeled kBDDk and the number of nodes is given for

the original circuit� f � and the composite functions� f � fc� and f � fc�

Tables ��� and �� also contains the number of inputs� n� and the netlist label

of the output that was used to create the OBDD� The spectral coe�cients S�fc��

and S�fci� are scaled by �n for convenience thus they lie in the interval ���� ��� The

two spectral coe�cients are computed using the constituent functions� fc� � � and

��

fci � xi� The speci�c netlist label for the input chosen as xi is also present in the

table�

Table �����A zeroth order spectral coe�cient for each ISCAS	
 netlist

Circuit Output n kBDDk S�fc����n

f f � fc f � fc

c�� ���gat � ��� �� �� �����	�
	 � ����

c��� od� �� �	 ��� ��� ������	�
 � ����

c		� 	�	gat �
 ��� ��� ��� ��������� � ����

c�

 ���gat �� �	 ��� ��� ������	�
 � ����

c���	 �� �� � �� ������� � ����

c���� �	 ��� ��� ��� ��� ��	
� � ����

c
�� ��� �� ���� ���� ���� ������
�� � ����

c
�
 �
	 �� ��

� ��	� ��	
 �
������� � ����

c��		 ����gat �� ���
	 ��	� ���� �������		 � ����

c�

� ��	 ��� ��� ��� � ��������� � ����

Table ����A �rst order spectral coe�cient for each ISCAS	
 netlist

Circuit Output n x� kBDDk S�fci���n

f f � fc f � fc

c�� ���gat � �gat ��� �� �� ���	
���� � ����

c��� od� �� id� �	 ��� ��� �	���
�� � ����

c		� 	�	gat �
 ���gat ��� ��� ��� �������� � ����

c�

 ���gat �� ��gat �	 ��� ��� �	���
�� � ����

c���	 �� �
� �� � �� ������� � ����

c���� �	 ��� �� ��� ��� ��� �	����� � ����

c
�� ��� �� �� ���� ���� ���� ���	��
 � ����

c
�
 �
	 �� ��	 ��

� ��	� ��	
 ���	���
� � ����

c��		 ����gat �� ��gat ���
	 ��	� ���� ��������� � ����

c�

� ��	 ��� �
� ��� ��� � ����
��	
 � ����

The set of spectral coe�cients formed by using each primary input and the

constant logic function� fc� � �� are commonly referred to as the Chow parameters�

��

This subset of the Walsh coe�cients is particularly useful in many areas of spec�

tral based CAD applications� Tables ��� and ��
 contain the complete set of Chow

parameters for the benchmark circuit c���

Table �����The �rst �� chow parameters for ISCAS	
 circuit
c��� output ���gat

Constituent Function kBDDk Chow Parameter
fc f � fc f � fc S�fci���

n

� ��� ��� �����	�
	 � ����

x� � �gat �� �� ���	
���� � ����

x� � �gat
	�
 ������ � ����

x� � ��gat ��� �
 ����	�� � ����

x	 � ��gat ��� �	�� ������ � ����

x
 � ��gat �	� �

 ����	�� � ����

x� � �gat �
� �	�� ������ � ����

x� � �gat �	� �
� ����	�� � ����

x� � �gat �
� �	�� ������ � ����

x �
�gat �	� ��� ����	�� � ����

x�� �
�gat ��	 �	�� ������ � ����

x�� � �gat �	� �	 ����	�� � ����

x�� � ��gat ��� �	�� ������ � ����

x�� � ��gat �	� ��
 ����	�� � ����

x�	 � 	�gat ��� ���� ������ � ����

x�
 � 	�gat �	� ��� ����	�� � ����

x�� � �
gat 	� ��	� ������ � ����

x�� � ���gat 	�� ��� ����	�� � ����

x�� � ��	gat �� ��	
 ������ � ����

Many CAD applications require the use of constituent functions that are more

complex than single primary inputs� In order to demonstrate that this method is

applicable for more complex and generalized constituent functions� coe�cients were

�

Table ��
��The last �	 chow parameters for ISCAS	
 circuit
c��� output ���gat

Constituent Function kBDDk Chow Parameter
fc f � fc f � fc S�fci���n

x� � 	gat ���� ���� �����	�
 � ����

x�� � ��gat ��� ��� ������� � ����

x�� � �gat ��	 ��	 ������� � ����

x�� � ��gat ��� ��� ������� � ����

x�� � ��gat ��� ��� ������� � ����

x�	 � �gat �� �� ������� � ����

x�
 � 	�gat ��	 ��	 ������� � ����

x�� � ��gat
	�
	� ������� � ����

x�� � ���gat
��
�� ������� � ����

x�� � ��gat ��� ���	 ���

� � ����

x� � ��gat �	�	 ��� ���
�
�� � ����

x�� � ��gat �	�	 ��� ���
�
�� � ����

x�� �
gat �	
� ��� ���
�
�� � ����

x�� � ��gat �	�	 ��� ���
�
�� � ����

x�� � ��gat ��
� ��� ���
�
�� � ����

x�	 � ��gat ��� ��� ���
�
�� � ����

x�
 � ��
gat ��� ��� ���
�
�� � ����

x�� � ��
gat �� ��	 ���
�
�� � ����

computed for various circuits and arbitrary constituent functions� The constituent

functions selected are given by the following expressions�

fc� � x� � x� � x� � x	 � x

fc� � x�x�x
 � x�x
 � x�x

fc� � x� � x	

fc	 � x� � x� � � � xn

��

Table ��� contains the coe�cients and the sizes of the BDDs for the constituent

functions given in the preceding� Table ��� gives the correspondence of the inputs xi

with the labeled inputs of the ISCAS	
 circuits�

Table �����Spectral coe�cients for various constituent functions and
ISCAS	
 circuits

Constituent ISCAS	
 Circuit kBDDk Scaled Spectral
Function Circuit Output f � fc f � fc Coe�cient

fc� c		� 	�	gat ��
 ��� ���

�
� � �����

fc� c�� ���gat �
� �	� ���	�� � ����

fc� c�

� ��� ��	 ��	 ����
���� � ����

fc	 c
�� �� ����� ����� 	�

�� � ����

Table �����Correspondence of labeled inputs with those
in the constituent functions

Function x� x� x� x	 x

fc� ���gat ��	gat ���gat 	gat �	gat
fc� �gat �gat � � ��gat
fc� �
�	 � � ���� �
fc	 ���
�
	 �	 ��

����� Implementation Using a Structural Description of the Logic Circuit

The OPE generation method using logic circuits as input was also imple�

mented using the C language� The motivation for this implementation was to observe

the size of the OPE polynomials in relation to the size of a given circuit� Further�

while many Boolean functions may be represented in a very compact manner by using

the BDD form� there does exist certain classes of functions that require an exponen�

tially sized BDD to be represented� A commonly known example of this phenomenon

is that of the multiplier circuit ����� others include the family of expressions given

in ��
�� Clearly� the method for computing spectral coe�cients given here will not

�

result in signi�cant savings in time complexity when the size of the BDD is similar

to the size of the truth table specifying the circuit�

As expected� the sizes of the OPEs grew quite rapidly and contained a number

of OPE product terms of the order of the number of SOP product terms� It is

necessary to symbolically compute the OPE in polynomial form since the idempotence

property must be preserved when formulating the composition functions� This is not

necessary when the composition BDDs are created since the OBDD form is used�

Of the �� ISCAS	
 benchmark circuits� the OPEs were only successfully

computed for � circuit� c����� The reason this occurred is because this circuit contains

many loosely interconnected subcircuits with small depth� Therefore� the polynomials

did not have a chance to grow extremely large� Practically all of the circuits had a few

outputs with small critical paths and for those outputs the OPEs were also computed

successfully� The interesting fact in this outcome is that c���� has over ��� inputs�

This fact would render the application of the de�nition useless for computing the

spectrum since each coe�cient would require the evaluation of a dot product of two

vectors containing well over ���� elements each�

The conclusions of this experiment show that this method is better than the

de�nition for relatively small circuits since a structural description is often more

compact than its corresponding truth table� Also� this method is applicable to large

circuits that have a structure similar to circuit c����� In fact� since all of the circuits

used to test this implementation were multilevel circuits� the results of the experi�

ment may be misleading� The problem occurred when the intermediate polynomials

grew very large� If the circuits were expressed in two�level form� the intermediate

polynomials would be quite small and only the resulting OPE of the circuit would

��

have a chance to grow too large� Therefore� this technique could be used as a viable

alternative for circuits whose OBDDs are too large provided that the circuits are

expressed in a two�level form�

��

CHAPTER

SYNTHESIS USING SPECTRAL BASED HEURISTICS

A synthesis technique using a subset of spectral coe�cients is described in

this chapter� The previous chapter contains the development of a methodology to

compute a single spectral coe�cient in an e�cient manner� however most spectral

based methodologies require the entire spectrum to be computed ��
� ����� Although�

the computational method presented in the preceding chapter reduces the complexity

from exponential to polynomial in terms of the number of primary inputs for most

functions� the entire spectrum of a function still contains an exponential number of

coe�cients� This fact provides the motivation for developing a method that uses

a subset of spectral coe�cients to perform the synthesis� By using a subset of the

coe�cients� each coe�cient may be e�ciently calculated and the number of these

computations is no longer exponential�

It has been shown that all �n spectral coe�cients are required to uniquely

represent a Boolean function when the Walsh family of transformation matrices are

employed ��� ����� Thus� a method that uses a subset of coe�cients must necessarily

employ heuristics since an exact solution cannot be obtained� The use of heuris�

tics in the synthesis of logic functions is very common and has led to some of the

most successful tools available today �� ���� The primary reason that heuristics are

commonly used to solve the synthesis problem is that most logic functions typically

encountered today have such a large output space that it is impractical to search for

�	

the absolute optimal solution in terms of some minimization criteria� In fact� it has

been shown that the optimal solution in terms of minimal area �as measured by a

minimal number of implicants in the algebraic expression� is NP �hard to obtain ���

The method that is presented in this chapter is developed to produce multi�

level circuits that may be optimized for area� device and interconnection minimiza�

tion� timing� and� testability� The one other most popular optimization criteria is

the minimization of power consumption� This algorithm does not incorporate that

criteria since it functions at the gate level� Most low power design methods employed

to date have relied on the use of e�cient cells or architectural modi�cations such

as reducing operating frequencies� or� reducing operating voltages �
��� These tech�

niques are not applicable for gate level design other than ensuring the particular cell

library used is a low power library�

The optimization for timing versus area presents a well known tradeo�� In

order to ensure minimal delay� a two�level circuit composed of a maximally reduced

set of implicants is the best that can be achieved in terms of critical path length�

Alternatively� minimization of area and interconnections generally require a multilevel

circuit so that intermediate term sharing between a set of reduced implicants may

be exploited� As the number of levels of circuitry increase� so does the critical path

length� The approach used in this method is to generate a multilevel circuit� but

to allow the critical path lengths for particular variables to be controlled� This

is reasonable since many real world design problems are speci�ed by considering

some valid input signals to be present at the inputs of the circuit before others�

Hence� to ensure minimal overall circuit delay� it is necessary for the paths to be

shorter for the inputs that arrive last� Further� by generating a multilevel circuit�

��

area and interconnection resources are reduced since at each stage of the synthesis�

the remaining portion of the function to be realized is chosen such that it exhibits

maximal redundancy allowing for primary inputs to be discarded� Finally� testability

is enhanced in this synthesis methodology by producing circuits that have an internal

fanout value no greater than two with the option �at the cost of increased area count�

of restricting it to one�

This method is also highly applicable for use in providing an initial circuit

structure to other area minimizers� Many of the current popular minimizers require

an initial form of the circuit as input ��� �	�� The �nal synthesized output can be

adversely a�ected if a highly ine�cient input circuit was provided� Further� the

optimizations are usually performed by local changes over portions of the circuit�

thus the various delays for input variables tend to remain relatively equivalent� The

method described here can be used to provide an initial circuit with timing delays

strictly minimized and required area loosely optimized� The resulting circuit may

then be used as an initial representation for an area optimizer such as those described

in the introductory chapter�

Another advantage of this synthesis method is that a purely functional de�

scription of the circuit is used for the input form� This allows the synthesis to be

performed by automatically converting the logic relations expressed in an RTL de�

scription of system to OBDDs and then translating them to a gate level circuit� This

relieves the designer from the task of manually converting the RTL level relations

into initial circuit representations� Also� some of the current minimizers �atten the

input circuit into a two�level form in order to apply the minimization techniques� It

is not uncommon for designers to deal with circuits that are so large their two�level

�

form requires more memory than is available� The method proposed here generates

a multilevel circuit without resorting to �rst generating the two�level form�

The rest of this chapter is organized as follows� First� the synthesis method

is presented and an examination of the optimization criteria will be provided� Next�

the development of the method will be described in detail� The formulation of the

spectral heuristics will be explained and the use of the decomposition methods at

each stage of synthesis are discussed� Following the discussion of the philosophy

behind the technique� implementation issues will be discussed including the program

�ow� Finally� some examples of this method are presented�

��� Description of the Synthesis Methodology

This synthesis technique produces a circuit by determining an output gate

�rst and working back toward the inputs� The output gate is chosen by using the

information contained in the subset of spectral coe�cients commonly referred to as

the Chow parameters� Based upon the properties of the Chow parameters� a set

of heuristic rules are applied to choose the appropriate gate� The heuristics have

been formulated such that the chosen gate will be maximally correlated to the entire

function and hence the remaining portion of the function will be simpli�ed� In order

to take advantage of the e�cient method for computing the spectral coe�cients� the

intermediate functions as well as the initial input function are represented in terms

of OBDDs�

At each stage of the synthesis� once the output gate is chosen� at least one

primary input is removed from each remaining intermediate function� Therefore� the

size of the intermediate function always decreases by at least one half� The particular

�

input that is chosen to be removed is determined by the optimization criteria� If tim�

ing optimizations are desired� the slower arriving inputs are removed �rst resulting in

fewer gates in their propagation path� If area and interconnection minimizations are

required� the input is chosen using the principle of maximal subfunction independence

resulting in the intermediate functions being as simple as possible�

Since at least one primary input is discarded at each step in the processing

�ow of the synthesis technique� convergence is guaranteed� The criteria used in

this method may not necessarily realize the absolute optimal circuit� but acceptable

engineering solutions comparable with other popular logic synthesizers will result�

����� Optimization Criteria

This methodology supports optimization for area and interconnection mini�

mization� delay minimization� and� testability� This section will describe how each of

these criteria are included in the synthesis methodology� In addition� the tradeo�s

between these various optimizations are also discussed�

In the past� area minimization has generally been measured as the number

of implicants in a minimized cover of a function and the minimization of gates and

interconnections has been measured as the total number of literals in a minimized

cover ��� The most common way of incorporating this type of optimization has

been by using the concepts of �don�t cares� ��� ���� Another popular method that

has been exploited by many researchers is the use of �permissible functions� �	�� The

minimization criteria used in this implementation is the creation of intermediate func�

tions that are as degenerate as possible� Since a single primary input is guaranteed

to be removed at each stage of the synthesis� the resulting intermediate functions

�

will contain at least one less primary input� However� if the intermediate functions

also become degenerate� additional inputs may be discarded resulting in signi�cantly

simpler functions remaining to be realized� Further� the determination of which if

any of the inputs are redundant is implicitly achieved since the intermediate func�

tions are represented by OBDDs formed by applying the RESTRICT operation on

the original OBDD ����� This occurs because an OBDD is de�ned as a BDD with a

speci�c variable ordering that has been maximally reduced ����� Thus� a redundant

input cannot be contained in an OBDD�

In addition to the exploitation of intermediate function degeneracy� intercon�

nection optimization is achieved through the structure that a circuit synthesized by

this technique must have� Since each stage allows a single primary input to be dis�

carded from the next synthesis step� a characteristic overall circuit structure results�

Primary inputs are discarded through the use of the Shannon Decomposition �
�� in

most cases� Various forms of this decomposition formula imply the structure of each

intermediate portion of the resulting circuit� Figure �� depicts possible forms for

a single iteration of this synthesis technique� By choosing forms that incorporate a

fanout of two� or� by even restricting those forms to no fanout� interconnections can

be minimized and they are also local to the current area of the circuit that is being

synthesized� This method does not result in gates near the input side of the circuit

to directly drive gates near the output end of the circuit� Thus� gates that are not

close together are decoupled within the resulting circuit minimizing interconnection

complexities�

GATE

GATE

GATE

GATE
fr(x)

f(x)

PI

fr1(x)

fr2(x)

PI

f(x)

GATE

GATE

GATE

fr1(x)

fr2(x)

PI

f(x)

GATE
fr3(x)

f(x)

Figure ��� Diagram of a single iteration of the heuristic synthesis method

The timing optimization criteria results from discarding the primary inputs

from each intermediate function� When the designer supplies the OBDD of the circuit

to be synthesized� he must also supply timing information� Speci�cally� he must group

the inputs into classes that are ranked by the speed at which they will appear at the

�

inputs to the resulting circuit� Each class may contain a single input implying a

strict timing order of arrival or� at the other extreme� a single class may be speci�ed

inferring that all signals will be present at the same time� The speci�cation of these

classes in e�ect dictate the delay versus area tradeo� in the �nal result� If a strict

ordering is supplied� the synthesizer is forced to discard the primary inputs from the

intermediate functions in a speci�c order� Therefore� area minimization is achieved

only through the choosing of the particular output gate at each stage� It should be

noted that the heuristics that are used to determine the output gates were developed

with area minimization in mind so that a strict ordering does not necessarily cause

the resulting circuit to be overly large� it just removes a degree of freedom by not

allowing the synthesizer to choose the most prudent input to discard� Alternatively�

if all inputs are in the same class� implying that all will arrive at the input of the

circuit simultaneously� the synthesizer is allowed to choose the input to discard that

will most likely result in an intermediate function with a high degree of redundancy

as well as to choose which type of output gate to use� The practical way to specify

the timing classes is to order only those inputs that are critical in terms of arrival

time and to place all others in the same class� This will not only allow the synthesizer

to enforce the timing criteria but also give it maximum freedom for minimizing the

resultant area�

The third optimization criteria is that of testability� It is well known that

completely fanout free �CFOF� circuits are highly testable since they only require a

number of test vectors to detect any single stuck�at fault in the circuit equal to the

number required to test for a single stuck�at fault at the primary inputs �
��� By

choosing the decompositions at each stage of the synthesis to be such that no fanout

is generated� the resulting circuit will have no internal fanout and be highly testable�

����� Spectral Heuristics for Decomposition

This synthesis methodology employs a set of heuristics based upon properties

of the Chow parameters� The set of heuristics is used to choose the output gate at

each level of synthesis� The basis for the heuristics for the choice of the output gate

was the examination of the Chow parameters for all possible Boolean functions of

two variables� It is essential that the correct gate be chosen when only two primary

inputs remain in order to ensure that the synthesis algorithm terminates and does

not oscillate when this terminal condition occurs� The algorithm is thus guaranteed

to converge since a primary input is discarded at each intermediate stage and at

the terminal stage when only two primary inputs remain a gate is guaranteed to be

chosen that will result in termination of the algorithm� The following section will

describe the details concerning the development of these heuristics and it will list

them in a table�

���� Maximum Subfunction Independence

The other main idea in the implementation is the maximal redundancy test

used to determine which primary input to discard� Since the function to be realized

is in OBDD form� it is very e�cient to apply the OBDD RESTRICT operation for

an input variable� The RESTRICT operation returns a OBDD with a logic � or

� substituted for all instances of a speci�ed input variable� When the RESTRICT

operation is applied the returned OBDD will always depend on � less variable� and�

in many cases several other inputs will also become redundant� The maximal redun�

�

dancy algorithm computes the OBDDs for the restriction of each input and chooses

the input that results in the most redundancy�

��� Development of the Technique

The input to the synthesis program is an OBDD representing the circuit to

be synthesized� A queue is maintained that points to each intermediate OBDD to be

synthesized� Initially� the OBDD of the entire function is placed in the queue� At each

stage of the synthesis� an OBDD is popped from the queue� If the OBDD depends

on � or more inputs� the Chow parameters are computed� Based upon the Chow

parameter heuristics� an output gate is chosen� Once the output gate is chosen� the

primary input to discard from the remainder functions must be obtained� If there is

a timing optimization� the primary input corresponding to the largest arrival time is

chosen� Otherwise� the maximal redundancy test is applied to choose the appropriate

primary input to be discarded�

����� Formulation of the Heuristics

The heuristics were derived by observing the Chow parameters for all �� pos�

sible Boolean functions of ��variables and by exploiting the properties of spectral

coe�cients� The set of rules are organized in a hierarchical manner so that the rules

providing the simplest residual OBDDs are chosen �rst� Table �� contains the list

of heuristics and rules used in the synthesis tool� The heuristics in Table �� is in�

complete and more will be added� The value � is de�ned as the sum of the �rst

order spectral coe�cients as given in Equation �� and f�i� f�i represent the functions

expressed in Equations �
 and ���

�

� �
nX

i��

S�xi� ����

f� � f�x�� � � � � xi��� �� xi��� � � � � xn� ��
�

f� � f�x�� � � � � xi��� �� xi��� � � � � xn� ����

Table ����Heuristics and rules for the synthesis methodology

MAIN SECONDARY FUNCTION
HEURISTIC HEURISTIC CHOICE

kS���k � �n S��� � � f � �
S��� � � f � �

kS�xi�k � �n S�xi� � � f � xi
S�xi� � � f � xi

kS�xi�k � �n � kS���k S��� � � and S�xi� � � f � xi � f�
S��� � � and S�xi� � � f � xi � f�
S��� � � and S�xi� � � f � xi � f�
S��� � � and S�xi� � � f � xi � f�

S��� � � � � � NOR
� � � AND

� � � and S�x�� � � AND
� � � and S�x�� � � NOR

S��� � � � � � NAND
� � � OR

� � � and S�x�� � � OR
� � � and S�x�� � � NAND

S��� � � S�xi� � ��i XOR
� � � AND
� � � OR

� � � and S�x�� � � XNOR
� � � and S�x�� � � XOR

To illustrate how the heuristics were chosen consider the Boolean functions

and their associated Chow parameters given in Table ��� There are �� entries in

Table �� corresponding to all possible functions of � variables�

As an example� consider the function� x� � x�� The zero order spectral coe��

cient� S���� is less than � and the sum of the �rst order coe�cients� �� is greater than

	

�� Therefore� whenever S��� � � and � � �� the OR gate is chosen as the dominant

function�

Table ����Chow parameters for all boolean functions of �
variables

FUNCTION CHOW PARAMETERS � GATE
S��� S�x�� S�x��

� � � � � constant �
x�x� � � � � AND
x�x� � � �� � NOR
x� � � � � literal x�
x�x� � �� � � NOR
x� � � � � literal x�

x� � x� � � � � XOR
x� � x� �� � � � OR
x� � x� � �� �� �� NOR
x� � x� � � � � XNOR
x� � � �� �� literal x�

x� � x� �� � �� �� OR
x� � �� � �� literal x�

x� � x� �� �� � �� OR
x�x� �� �� �� �� NAND

� �� � � �� constant �

����� Shannon Decomposition Forms

Once the dominant output gate is chosen� the function must be decomposed

into two residual functions� The decomposition method used in this synthesis tool is

based on variations of the Shannon decomposition formula when the chosen output

gate is not the XOR or XNOR� The Shannon form was chosen since at least one

primary input is guaranteed to be discarded� In order to accommodate the various

output gate forms� the Shannon Decomposition Boolean formula was rearranged into

several forms� Tables � and �� list the various forms� In the tables� f� and f� are

used as de�ned in Equations �
 and ���

�

Table ���Shannon decomposition forms for AND�OR�INVERT dominance

TYPE CANDIDATE RESIDUALS
FORM

xif� � xif� f��f�
f�f� � xif�f� � xif�f� f�f��f�f ��f�f�

OR f� � f� � xi�f� � f� � xifo � f�� f � � f ��f� � f��f� � f �
f�f� � �f�f� � xi�f� � f��� f�f��f�f��f� � f�

f� � f� � ��f� � f��� xi�f� � f��� f � � f��f� � f��f� � f�
f�f� � �f�f� � xi�f� � f��� f�f��f�f��f� � f�

�f� � f�� � ��f� � f��� xi�f� � f��� f � � f��f� � f��f� � f�

�xi � f���xi � f�� f��f�
�f�f���xi � f �f���xi � f�f�� f �f ��f�f��f�f �

AND �f� � f���xi � f� � f���xi � f� � f�� f� � f��f� � f��f� � f�
f�f���xi � f�f�� � �f� � f��� f�f��f�f��f� � f�

�f� � f��f�xi � �f� � f�� � �f� � f��g f� � f��f� � f��f� � f�
�f�f����xi � f�f�� � �f� � f��� f�f��f�f��f� � f�

�f� � f��f�xi � �f� � f��� � �f� � f��g f� � f��f� � f��f� � f�

xif� � xif� f��f�
f �f � � xif �f� � xif�f� f�f��f�f��fof�

NOR f� � f� � xi�f� � f�� � xi�f� � f�� f� � f��f� � f��f� � f�
f�f� � �f�f� � xi�f� � f��� f�f��f�f��f� � f�

�f� � f�� � ��f� � f��� xi�f� � f��� f� � f��f� � f��f� � f�
f�f� � �f�f � � xi�f� � f��� f�f��f�f��f� � f�

�f� � f�� � ��f� � f��� xi�f� � f��� f� � f��f� � f��f� � f�

�xi � f ���xi � f�� f��f�
�f�f���xi � f�f���xi � f�f�� f�f��f�f��f�f�

NAND �f � � f���xi � f� � f ���xi � f� � f�� f � � f ��f� � f��f� � f�

�f�f���f�f� � xi�f� � f��� f�f��f�f��f� � f�
�f� � f����f� � f��� xi�f� � f��� f � � f��f� � f��f� � f�

�f�f���f�f� � xi�f� � f��� f�f��f�f��f� � f�
�f� � f����f� � f ��� xi�f� � f��� f � � f��f� � f��f� � f�

��

When the output gate is chosen as the XOR or XNOR� a spectral based

decomposition is attempted �rst� Usually the spectral based decomposition is very

e�ective in terms of partitioning the primary inputs� however� in those cases where

inferior decompositions are achieved� the Shannon decomposition rules in Table ��

are used�

The idea behind the spectral based decomposition method is to determine two

partitioned subfunctions such that one depends only on highly correlated primary

inputs while the other depends upon inputs with a small correlation� When the

dominant gate is chosen to be the XOR� the function� f � is partitioned in the form as

shown in Equation ��� The subfunction� g� is formed by evaluating f with all highly

correlated inputs set to a logic � as given in Equation �	�

f � g � h ����

g � f��� �� �� � � � � xn�i� xn�i��� � � � � xn� ��	�

The choice of the highly correlated inputs is made by choosing those in�

puts whose corresponding spectral coe�cients have a magnitude greater than j�n��j�

Mathematically stated� the criteria for choosing the highly correlated inputs is given

in expression ��� Once g is computed� the corresponding h subfunction is obtained

directly by evaluating Equation
��

jSf �xi�j � �n�� � use � for xi ����

h � f � g �
��

��

Table ����Shannon decomposition forms
for XOR�XNOR dominance

TYPE CANDIDATE RESIDUALS
FORM

xif� � xif� f��f�
XOR f� � xi�f� � f�� f��f� � f�

f� � xi�f� � f�� f��f� � f�

xif� � xif� f ��f�
XNOR f� � xi�f� � f�� f��f� � f�

f� � xi�f� � f�� f��f� � f�

�� Implementation

This synthesis technique was implemented using the C programming language�

The basic data structure used in the implementation is a �rst�in �rst�out �FIFO�

queue that contains pointers to the intermediate OBDDs� Initially the queue is

initialized to point to the OBDD representing the function to be realized� At each

stage of the synthesis� the OBDD pointed to by the pointer at the top of the FIFO

is operated upon and an output gate is chosen for implementation� If any remainder

OBDDs are created� pointers corresponding to them are inserted at the tail of the

FIFO� The synthesis is complete when the FIFO becomes empty indicating the entire

circuit has been built�

���� Processing Flow

The �owchart depicted in Figure �� illustrates the structure of this tool� The

primary data structures are the OBDDs used to represent the Boolean functions and

a FIFO queue that contains pointers to the OBDDs� Each iteration operates on a

��

single OBDD removed from the top of the queue and generates one or more simpler�

residual OBDDs that are inserted at the tail of the queue�

Each residual OBDD results from the application of the RESTRICT opera�

tion ��� which sets a given primary input to a constant logic value and returns the

corresponding OBDD� This fact may be used to compute the Chow parameters of

the function represented by the output OBDD of the RESTRICT operation directly

from those of the input OBDD� However� this requires extra storage since all OBDDs

must have their associated Chow parameters stored� This modi�cation proved to be

useful only for those functions that required very large OBDDs for their representa�

tion since the probability assignment algorithm �PAA� is very e�cient for compact

OBDDs�

��� Examples and Results

Several of the ISCAS	
 and IWLS benchmark circuits were converted to

OBDDs and synthesized using this technique� In order to determine the relative

e�ectiveness of this technique� the IWLS benchmarks were synthesized using the

misII tool from Berkeley using a cell library identical to the one used in the method

described here� Two di�erent misII scripts were used to synthesize these benchmarks�

The �rst script consisted of an ESPRESSO minimization followed by the misII

simplify and sweep commands� The second misII script omitted the ESPRESSO

simpli�cation and consisted of the collapse� simplify� and sweep commands� Table

�

START

Insert OBDD of
f into FIFO

Pop Top OBDD
From FIFO

Compute Chow
Parameters

NO

YES
Rules

Satisified
?

Choose PI By
Maximum Subfunction

Independence

Choose Output Gate
Using Heuristics

Determine Best
Decomposition Form

Output a Portion
of Resulting Netlist

Insert Residual
OBDDs into FIFO

(if any)

Choose PI Based
on Timing Constraint

Choose PI Based
on Rule Used

Timing
Constraint

?

NO

YES

Synthesis Complete

NO

YESFIFO
Empty

?

Figure ��� Flowchart of spectral based heuristic synthesis method

��

�
 contains a summary of these results� The column labeled �misII�ESPRESSO

Size� contains the number of logic gates misII required when the �rst script was

used as input� The �fth column labeled �misII Size� contains the number of gates the

resulting circuit required when the ESPRESSO minimization was not used� Finally�

the column labeled �Heuristic Size� contains the number of logic gates in the resulting

circuit using the synthesis method just described�

Table �
��Comparison of spectral based heuristic method with misII

Circuit Output Number misII misII�ESPRESSO Heuristic
Name Name Inputs Size Size Method Size
xor
 output�
 � �� �
rd
 output�
 �� �� �
rd
 output
 � �� �
con� output� � 	 � ��
con� output� � � � �

Table �� contains a summary of the results obtained when signi�cantly larger

circuits are synthesized� The �rst column contains the name of the benchmark circuit�

The remaining columns contain the name of the output� the number of primary circuit

inputs� and� the resulting circuit size in terms of logic gates�

Table ����Experimental results of
the spectral based heuristic logic

synthesizer

Circuit Output Inputs Size
c		� 	��gat �� ���
c		� 	�gat � ��
c���� ��� �� ��
c
�� �� �� ��
c
�� �� �
 ��
c
�
 ���� � �

c
�
 ��� �� ��

�

Some of the results are surprisingly good� This can be attributed to the high

degree of redundancy present in the initial netlist� Since this method was designed

to exploit redundancy through the principle of maximum subfunction independence�

these results are expected and verify the usefulness of this approach�

��

CHAPTER �

SYNTHESIS USING MAXIMUM CORRELATION

This chapter presents an iterative logic synthesis methodology based upon

the paradigm of maximum correlation between the constituent and target functions�

This approach allows the synthesis to be performed with generalized transformation

matrices that do not require any special properties other than being of full rank� The

method di�ers from previous work in that the synthesized circuit is allowed to be

composed of any of several types of subfunctions including basic logic gates as well as

more complex functions� Previous spectral based methods focused on the realization

of the circuit with predominately a single type of logic gate as the basic building

block �����

The fact that any generalized matrix may be employed makes this approach

especially attractive for use with existing cell libraries� The only requirement is that

each cell in the library be represented by either its truth table or OBDD� Another

major advantage of this approach is that the constituent functions may be as simple

or as complex as the designer desires� For example� a
�input AND�OR�Invert �AOI�

circuit is as readily usable as a ��input NAND gate� This gives great �exibility to

the designer as well as allowing the method to be easily interfaced with existing cell

libraries�

The following development of this technique is provided in the context of

using linear algebra to obtain the coe�cients� However� it may be implemented using

��

OBDDs and hence� the e�cient methods for computing the spectra as described in

Chapter �� Once the necessary mathematical results are derived� a discussion of the

implementation of the synthesis method is provided�

���� Description of the Synthesis Method

It has been shown that the Rademacher�Walsh transform provides Boolean

function output correlation measures with respect to various combinations of input

variables added together via modulo�� arithmetic �
�� This result allowed a synthesis

methodology to be formulated by using the XOR gate predominately� Unfortunately�

this method required that the transformation matrix be restricted to the Walsh type

since orthogonality was required� Since any general constituent function can also

be correlated with a function to be realized as proven in Lemma �� the method de�

veloped here utilizes a more general transformation without requiring orthogonality�

and hence any arbitrary constituent function may be used�

The technique can be implemented by using truth tables or alternatively� OB�

DDs as input� The two methods of implementation result in synthesis methodologies

with di�erent characteristics� When truth tables are used as input� this method can

produce either two�level or multi�level circuits� However� when OBDDs are used to

represent the input functions� a two�level circuit is obtained�

The majority of automated synthesis systems developed thus far have used

minimized algebraic expressions� This method is unique in that it does not require

an intermediate Boolean function to be realized� Since there is no need for any

symbolic manipulation� this technique is especially well suited for implementation as

a computer program� Furthermore� the XOR gate is fully exploited as a potential

candidate for incorporation into the design in addition to the AND and OR gates�

�	

Most design techniques require symbolic manipulation of Boolean functions to achieve

inclusion of the XOR gate� Indeed� it has been stated that algebraic techniques in

general are not well suited for circuit realization using XOR circuits� The algebraic

methods presented here are rigorously developed and are very well suited for XOR

type circuits�

������ Processing Flow of the Synthesis Technique

The basic philosophy of this technique is to choose the constituent function

that has the highest correlation with the function to be realized in an iterative fashion�

Since the spectral coe�cients provide a measure of correlation as given by Lemma ��

they can be used to determine the candidate constituent function�

Once a highly correlated constituent function has been chosen� it is used to

realize a portion of the desired circuit with the remainder of the circuit being com�

puted in truth table or OBDD form through the use of a �combining� operation�

The �combining operator� allows the portion of the circuit not covered by the chosen

constituent function to be explicitly formed as a new Boolean function and used in

the next iteration of the process�

This method realizes the target circuit by constructing it from the input side

initially and iteratively forming portions that become closer to the output� Figure

��� depicts the �ow that occurs when a two�level realization is desired� In the �rst

iteration� the maximally correlated constituent function �denoted by F ��x� in Figure

���� is used to realize a portion of the circuit� Next� the remainder� or error func�

tion� e��x�� is computed using some combining operator� The combining operator is

generally a simple Boolean logic gate� The choice of the exact type of combining gate

��

is discussed fully in a subsequent section� At this point� the system iterates with

e��x� as the next function to be realized�

F(x)

e'(x)

Combine

F'(x)

F(x)

Combine

F'(x)

F(x)

F''(x)

e (x)

Figure ���� Diagram of the two level synthesis technique

At each step of the synthesis� the error functions become increasingly sim�

pli�ed since a constituent function is chosen that covers a maximum amount of the

output space of the target function� If a multi�level solution is desired� the combining

operator is chosen anew with each iteration� The processing �ow for the multi�level

case is depicted in Figure ����

��

F(x)

e'(x)

Combine

F'(x)

F(x)

F'(x)

F''(x)

e''(x)

Combine
Combine F(x)

Figure ���� Diagram of multi�level synthesis technique

������ Mathematical Background of the Synthesis Technique

The notion of an output vector of a boolean function was described earlier�

A qualitative discussion of the derivation of transformation matrices extends this

notion such that the rows of the transformation matrix are viewed as output vectors

of the constituent functions� The constituent functions are generally simple functions

using only a single operator �although they need not be�� For instance� if it is desired

to compute the correlation between a constituent function� x 	 y� and a function to

be transformed� one row of the transformation matrix would consist of the output

vector of the constituent function� Hence� the spectral coe�cient resulting from the

dot product of this row and the function output vector provides a measure of

��

correlation between the overall function and the constituent function� x 	 y� In fact�

a measure of correlation with any arbitrary constituent function may be computed in

this manner� Each correlation measure �or spectral coe�cient� contains information

regarding the exact number of matching outputs between the constituent function

and the transformed function for a given common set of inputs�

The transformations used in this synthesis method are linear and they are

conveniently visualized as vector�matrix products although the implementation may

employ the e�cient methods described in Chapter �� Multiplication and addition

operations are performed over the �eld of integer numbers� not over the binary �eld�

Using ��� and ���� instead of ��� and ��� for the binary valued digits allows the

zero�valued function outputs to accumulate in each spectral quantity�

In general� any set of constituent functions may be used for this technique

as long as they form a functionally complete set of operators for Boolean algebra�

A transform must be constructed from an orthogonal set of basis functions for the

spectrum and original function to form a unique pair� Fortunately� this technique

does not rely on transform pair uniqueness� Thus� transform matrices that are not

necessarily orthogonal may be used� The transformation matrix must be full rank

however� for convergence of this algorithm to be guaranteed� In this paper� we

construct transforms using any arbitrary set of functions to form the constituent

functions� In addition to choosing a set of basic circuits for the constituent functions�

matrix rows are usually included that correspond to each component of the x vector

and the fc�x� � � function �i�e�� the Chow parameters� in case of high correlation

with regard to a single input to f�x�� The spectral coe�cient Sf��� indicates the

overall dominant operator of the function�

��

The following theorem states the properties necessary to ensure the conver�

gence of this synthesis algorithm�

Theorem � Any given boolean function� F �x�� may be realized with the proposed

synthesis technique if the transformation matrix used for the synthesis is of full rank�

Proof� This proof is a statement that any N �order vector can be produced as a com�

bination of a subset of vectors from a set that are linearly independent over N �space�

Each Boolean function to be realized is viewed as a N �order vector with compo�

nents from the binary �eld� The synthesis procedure described in the preceding text

�chooses� a matrix row in each iteration �each row corresponds to a constituent func�

tion� to be �combined� with an appropriate combining operator� This process forms

the output vector as a combination of row vectors from the transformation matrix�

Hence if the transformation matrix contains at least N rows that span N �space� any

function output vector can be realized by a �nite number of combined transformation

matrix rows� �

The one caveat is that this synthesis method can not realize any arbitrary

function using a set of constituent functions that do not form a functionally complete

set since the resulting transformation matrix will not be of full rank� For example� a

function may not be realized if all constituent functions use only the AND operator�

����� Formation of the Transformation Matrix

The matrix is formed by choosing a set of constituent functions and using

their output vectors to form the transformation matrix rows� Thus� if the designer

wishes to optimize the resulting circuit for low power� he may choose low power

�

constituent functions to form the matrix� Similarly� other desired optimizations may

be incorporated by the judicious choice of the constituent functions used to form the

transformation matrix�

������� Choosing the Constituent Functions

It is easy to add extensions to this technique to produce output with desired

properties� For instance� if only two�input gates are desired� all constituent functions

in the transformation matrix are restricted to functions of two�inputs only� Also� by

restricting the constituent function operators to a certain type allows the resulting

circuit to contain only those operator �gate� types�

If optimization for circuit speed is desired� each spectral coe�cient may be

weighted by the inverse of the corresponding constituent function delay� This would

cause those constituent functions with the least delay and highest correlation to be

used�

������� Cell Library Considerations

Existing standard cell logic libraries may be used with this synthesis technique�

All that is required is the output vector of each standard logic cell to be used as a

row in the transformation matrix� This allows the synthesis technique presented here

to be easily interfaced to existing design environments without the need for changing

anything other than the �synthesis engine� itself�

������ Rules for the Combining Gate

The error function may always be computed with respect to an exclusive�OR

operator since it is the most robust in terms of the possible operators available for

��

providing the combining stage in the circuit� This robustness is due the fact that an

XOR can be used to change a � to � error as well as a � to � error� The following

list describes the properties that determine other gate types that may be used as an

error operator�

�� XOR � x� � � x� errors may be ��� or ���

�� AND � x� � x and x� � �� all errors must be ���

� OR � x � � � � and x � � � x� all errors must be ���

���� Implementation of the Iterative Method

This technique can be implemented using OBDD� or� truth table descriptions

of the constituent functions and the function to be realized as input� The truth table

method has obvious disadvantages since it requires an exponential amount of storage�

However� it does have the advantage that the type of errors �� � � or � � �� can

be easily seen thus allowing the combining operator to be chosen with each iteration

resulting in a multi�level circuit� If the truth table method is combined with an

appropriate pre�synthesis partitioning technique� a multi�level synthesis solution can

be obtained without incurring excessively high cost in terms of required CPU time�

Implementation using the OBDD as input allows the e�cient spectral com�

putation method to be employed resulting in reduced CPU execution time� It is not

easy to determine the types of errors at each iteration when OBDDs are used� hence

the two�level circuit is the best choice in this case�

������ Implementation Using an OBDD Input

�

By implementing this technique using OBDD descriptions as input� the e��

cient spectral computation method can be employed� Figure �� illustrates the overall

�ow of the synthesis methodology� User supplied input consists of the OBDD rep�

resentation of the function to be synthesized and optionally� the maximum number

of inputs per gate� Ninp� and preferences of the types of gates� fGtg� to be used �the

choice of constituent functions�� The two optional parameters� Ninp and the set fGtg

are used to determine the set of constituent functions� ffc�x�g� that are used to con�

struct the spectral vector� The following list of procedural steps provides a detailed

description of logic synthesis process depicted in Figure ���

��

START

2-Level Synthesis Complete

NO

YES

Realize
Error Function

Directly

Compute the
Composition

Function BDDs

Apply
Probability
Assignment
Algorithm
to BDDs

Choose Maximum
of Absolute
Value of the

Spectral Quantities

Compute the
Spectral

Coefficients

Compute the
Error Function

Figure ��� Flowchart of two�level synthesis technique

OBDD�Based Maximum Correlation Synthesis Algorithm

�� Formulate the composition OBDDs using ffc�x�g and f�x��

�� Apply the Probability Assignment Algorithm to the composition

OBDDs�

� Compute the spectral coe�cients using Equation
�

�� Choose the largest �in magnitude� spectral coe�cient�

��

� Realize the function fc�x� that corresponds to the chosen

coe�cient in step ��

�� Compute the OBDD representation of the error function�

e�x� � Fc�x�� F �x��

�� If e�x� indicates that there are w or fewer errors� go to step 	�

Otherwise iterate on the synthesis by going to step � and use

e�x� as the next function to be synthesized�

	� Combine all the intermediate realizations of the various chosen

Fc�x� functions using the � operator and directly

realize the function e�x� for the remaining w or fewer errors�

This technique generates two�level tree�type circuits� For two�level realiza�

tions� each chosen fc�x� is realized in the �rst stage of the circuit with one multi�

input logic gate� The second stage consists of a single combination gate that uses the

outputs of all of the chosen constituent functions as its� inputs� The circuits result�

ing from this synthesis technique are completely fan�out free �CFOF� and have the

desirable property of requiring a set of test vectors equal to the number of primary

circuit inputs to test all possible single stuck�at faults� As discussed in ��
�� the use

of spectral design techniques for logic synthesis is known for the ability to produce

easily tested circuits�

�������� Example Using an OBDD Input

In this section� an example of the synthesis technique is given� In the example�

it is assumed that there are no restrictions on the number of inputs per constituent

�	

function and that only XOR� AND� and the AND�OR�INVERT �AOI� functions may

be used�

Consider the realization of the function represented by the OBDD in Figure

���� The set of constituent functions includes functions that are equal to each com�

ponent of the x vector and the fc�x� � � function �the Chow parameters�� These

values are especially useful since they indicate the correlation between the output of

the function with respect to each of its inputs�

X10 1

X2

X3

X5

10 0

1

X2 X3

X3

X4

X4

X4 X3

X4 X4

01

0

0

0

0

0

0

0

0

0
0

0
0

1
1

1

1

1

1

1

1 1

1

0

0 1

1

Figure ���� OBDD of function for synthesis example

First� the composition function OBDDs are computed� Next� the spectral

coe�cients are computed using the probability assignment algorithm and Equation

�

��

In the �rst iteration� the maximum absolute valued spectral coe�cient is �	

and corresponds to an AOI constituent function� Since the AOI constituent function�

Fc�x� � x�x� � x�x	 � x
� produced the largest spectral coe�cient �in magnitude��

it is chosen and the �rst portion of the circuit is realized as shown in Figure ��
�

F(x)

x1
x2
x3
x4
x5

e'(x)

AOIx1
x2
x3
x4
x5

Figure ��
� First iteration of two�Level synthesis of example �function�

The error function is computed with respect to an exclusive�OR operator since

it is the most robust in terms of the possible operators available for providing the

combining stage in the circuit� This robustness is due the fact that an XOR can be

used to change a � to � error as well as a � to � error�

After� the �rst iteration� the OBDD of the error function is computed by using

the APPLY algorithm with f�x� and x�x� � x�x	 � x
 as inputs� The resulting

OBDD is shown in Figure ����

	�

X10 1

X2

X5

1

0

X2

X3

X4X4

0

0

1

1

X3

0
10

1

11

1

1

0

0

0

0

0

Figure ���� OBDD of the residual function after the �rst iteration

The synthesis algorithm requires more iterations to completely realize the

desired circuit� On the second iteration� the constituent function� fc�x� � x�x�x��

produces the largest spectral coe�cient �Sf �fc�x�� � ��� and is chosen as a term in

the �nal circuit� The next iteration indicates fc�x� � x�x�x	 should be used since

it has the highest valued spectral coe�cient �Sf �fc�x�� � ���� Finally� a single term

remains� x�x�x�x	x
� and it is chosen to directly realize the circuit� The complete

circuit is given in Figure ����

	�

F(x)

AOIx1
x2
x3
x4
x5

Figure ���� Final circuit using the design process

������ Implementation Using a Truth Table

The implementation of this technique using a truth table description has some

advantages� If the function to be synthesized can be e�ectively described in terms of

a truth table� the complexity of computing the spectral coe�cients by invoking an

inner product computation are usually not severe� Further� the resulting synthesized

circuit can have a multi�level topology� allowing for the bene�ts of reduced fanin and

term sharing to be exploited�

As in the OBDD implementation of this algorithm� the user provides the max�

imum number of inputs per gate� Ninp� and preferences of the types of gates to be

used� fGtg� in addition to the truth able description of the circuit� The two op�

tional parameters� Ninp and the set fGtg are used to determine the set of constituent

functions� ffc�x�g to be used in the formation of the transformation matrix�

The following list gives a detailed description of each synthesis step for the

process�

	�

Truth Table�Based Maximum Correlation Synthesis Algorithm

�� Convert the input truth table to ��s and ���s using a � to denote a logic ���

and a �� to denote a logic ����

�� Compute the transformation matrix using the constituent functions�

� Compute the spectral coe�cients via vector�matrix multiplication between the

transformation matrix and the output vector of the function to be synthesized�

�� Choose the largest �in magnitude� spectral coe�cient�

� Realize the function fc�x� that corresponds to the chosen coe�cient in step ��

�� Compute the error function� e�x� � fc�x� 	 f�x� with respect to some operator�

	�

�� If e�x� indicates that there are w or fewer errors� go to step 	� Otherwise

iterate on the synthesis by going to step and use e�x� as the next function to

be synthesized�

	� Combine all the intermediate realizations of the various chosen fc�x� functions

using the 	 operator and directly realize the function e�x� for the remaining w

or fewer errors�

This technique can be used to generate two�level and multi�level tree�type

circuits� For two�level realizations� each chosen fc�x� can be realized in the �rst stage

of the circuit with one multi�input logic gate� The second stage consists of a single

combining gate that uses the outputs of all of the chosen constituent functions as its�

inputs�

	

If a multi�level circuit is desired� the same design procedure is used but the

error function computation is performed slightly di�erently� The di�erence is that a

new combining gate is used at each iteration� This allows for changing the operator

used to de�ne the error function �i�e�� the combination operator� at each iteration�

Note that the only real di�erence between the two�level and multi�level syn�

thesis techniques is in the choice of new error operators at each iteration� This allows

for greater �exibility when it is desired to use one gate type as much as possible since

that type may be able to be used for the error operator in each iteration�

�������� Example Using Truth Table Input

Examples of the truth table input form of this synthesis technique will now be

given� In the �rst example� it is assumed that there are no restrictions on the number

of inputs per logic gate and the types of logic gate are chosen to be the AND� OR�

XOR and their complements� The �rst example will show how a two�level circuit can

be synthesized� The second example shows how a multi�level circuit can be realized

with the constraints that only two�input gates should be used and that the gate type

should be OR as much as possible�

Consider the realization of the following function�

f�x� � x�x� � x�x�x� � x�x� � x�x� �
��

First� the function truth table is computed� Figure ��	 shows the contents of

the truth table for the function given in Equation
��

	�

x� x� x� f
� � � ��
� � �� �
� �� � ��
� �� �� ��

�� � � �
�� � �� ��
�� �� � ��
�� �� �� �

Figure ��	� Truth table contents of the function to be synthesized using the truth
table as input

Next� the transformation matrix is computed in terms of OR� AND� and

XOR operations� Note that rows are not included for the NOR� NAND� and XNOR

operations since by Lemma
 the arithmetic sign of the spectral coe�cients can be

used to indicate when the complementary gates are needed� Also� for each gate type

we compute fc�x� functions for all possible combinations of two or more inputs since

we have no restrictions on the maximum number of inputs per gate�

The transformation matrix is computed as�

�
x�
x�
x�

x� � x�
x� � x�
x� � x�

x� � x� � x�
x� � x�
x� � x�
x� � x�

x� � x� � x�
x�x�
x�x�
x�x�

x�x�x�

�
��������������������������

� � � � � � � �
� � � � �� �� �� ��
� � �� �� � � �� ��
� �� � �� � �� � ��
� � �� �� �� �� � �
� �� � �� �� � �� �
� �� �� � � �� �� �
� �� �� � �� � � ��
� � �� �� �� �� �� ��
� �� � �� �� �� �� ��
� �� �� �� � �� �� ��
� �� �� �� �� �� �� ��
� � � � � � �� ��
� � � � � �� � ��
� � � �� � � � ��
� � � � � � � ��

�
��������������������������

	

The resulting spectral coe�cient vector is�

ST
f �ffc�x�g� � ������� ����� ����� ����� ����� �� �������������� �
��

Since the constituent function� fc�x� � x��x��x�� has the largest magnitude

spectral coe�cient� it is chosen and the �rst portion of the circuit is realized with an

exclusive�NOR as shown in Figure ���� Next� the output vectors of the residual and

error functions are computed and the are given in the table shown in Figure �����

x1
x2
x3

Combine

e'(x)

F'(x)

F(x)
x1
x2
x3

Figure ���� First iteration of two�level synthesis of example function

x� x� x� f�x� f ��x� e�x�
� � � �� �� �
� � �� � � �
� �� � �� � ��
� �� �� �� �� �

�� � � � �� �
�� � �� �� �� �
�� �� � �� �� �
�� �� �� � � �

Figure ����� Truth table contents of the function and error function

Since the output vector for e�x� indicates that there is only � disagreement

	�

between f�x� and f ��x�� the terminal condition has been reached and the remaining

term is realized directly� The complete circuit is given in Figure �����

F(x)

x1
x2
x3

x1
x2
x3

Figure ����� Final circuit using two�level design process

The design of a multi�level circuit with the restriction that all gates are two�

input and must be OR type gates as much as possible is given for the second example�

The OR operator cannot be used to form a functionally complete set of operators

for Boolean algebra� Therefore� at least one other type of gate is needed for the

synthesis� This example will also realize the function given in Equation
��

The transformation matrix is computed in terms of the Chow parameters and

two input OR expressions only� The spectral vector for the �rst iteration is given in

Equation
�

ST
f �ffc�x�g� � ������� ����� ����� �� �
�

In this case� all spectral coe�cients have equal magnitudes� The constituent

function fc�x� � x� � x� is arbitrarily chosen as a starting point for the synthesis�

It is also desirable to use an OR operation for the error function operator since this

circuit is to be realized with predominately OR�type gates� By examining the truth

table it is seen there are � to � and � to � discrepancies which restrict the error

operator to be of type XOR� Figure ���� illustrates the truth table in terms of the

	�

function to be realized and the error function�

x� x� x� f�x� e�x�
� � � �� ��
� � �� � �
� �� � �� �
� �� �� �� �

�� � � � ��
�� � �� �� �
�� �� � �� �
�� �� �� � ��

Figure ����� Truth table contents of the function and error function for the second
synthesis example

Next� the spectrum for e�x� is computed� resulting in the following vector of

spectral coe�cients�

ST
e �ffc�x�g� � ��� ����������������� �
��

The constituent function corresponding to �� is chosen since it is a maximum

�in magnitude� which is fc�x� � x� � x�� There is a discrepancy in only one place in

the truth table� hence we can use a NOR to directly realize this term� The resulting

circuit is given in Figure ����

		

F(x)

x1
x2
x3

x1
x2

x2
x3

Figure ���� Final circuit using multi�level design process

����� Complexity of the Iterative Method

The section discusses the computational complexity of the method for both

types of implementations� The implementation using the OBDD representations

clearly reduces the computational complexity incurred in the calculation of each

individual coe�cient� In contrast to other spectral synthesis methodologies� it is not

required to maintain the the entire spectral vector only the maximally correlated

coe�cient� Thus there are no storage problems encountered for maintaining a very

large vector of spectral values�

������� Complexity Using an OBDD Input

In order to analyze the complexity of the synthesis algorithm it is convenient

to consider the transformation matrix that could be used in lieu of the more e��

cient method for computing spectral coe�cients provided in the preceding section�

The matrix would consist of several row�vectors each of dimension �n� Thus� the

computation of a single spectral coe�cient would require �n scalar multiplications�

Clearly� this is an exponentially bounded computation� However� if OBDDs and the

probability assignment algorithm are used� the complexity is reduced from O��n� to

O�j Efc jj Ef j� for the computation of each spectral coe�cient�

	�

Since there is a spectral coe�cient computed for each member of set ffc�x�g�

the overall algorithm complexitywill depend upon the set size� Suppose the constraint

Ninp � � is imposed� This means that the resulting circuit must contain only ��input

logic gates� If all �� possible ��variable logic functions are present in the set ffc�X�g�

the total number of rows in the transformation matrix can be easily computed as

shown in Equation

� This calculation simply considers all possible combinations of

the primary inputs for a two�input gate� Since there are �� total constituent functions�

the number of combinations is multiplied by 	� The reason 	 is used instead of �� is

because each member in the set of constituent functions has an inverse that is also

in the set� Thus by Lemma
 the Sf �fc�x�� value for a particular fc�x� is simply the

negative value of the spectral coe�cient for fc�x� so it is not necessary to compute

the spectral coe�cient for both�

	

�
BB�
n

�

	
CCA � ��n��n � �� � �n� � �n �

�

Added to this value is n�� additional matrix rows for the computation of the

Chow parameters �
� yielding a total number of rows equal to �n�� n� � � O�n��

in row�size complexity of the matrix�

Therefore� the total complexity of the one iteration of the synthesis algorithm

is O�n��j Efc jj Ef j��� A further observation is that an e�cient variable ordering of

a OBDD can result in the number of edges being of order� O�n�� �
�� �

�� Thus the

total complexity of an iteration of the synthesis algorithm is O�n	� assuming e�cient

OBDD orderings and equal complexity of the OBDDs used to express f�x� and each

member in the set ffc�X�g�

��

������� Truth Table Method Complexity

Although it is readily apparent that this matrix grows in size with respect

to the size of the x vector� as discussed in the preceding section the matrix space

complexity is O�n�� if the design is restricted to two�input gates�

However� the computation of each coe�cient has a complexity of O��n��

Therefore� the overall complexity when all possible two�input gates are used as con�

stituent functions is O�n��n�� This exponentially bounded complexity precludes this

method from being applied to functions of a larger size� However� if partitioning

or decomposition methods are used� this technique can provide a viable synthesis

solution�

��

CHAPTER

SYNTHESIS OF GENERALIZED REED�MULLER NETWORKS

As the complexity of VLSI circuitry increases� size and testability concerns

tend to grow proportionally� The Exclusive�OR Sum Of Products �ESOP� form of

a Boolean logic circuit provides two distinct advantages over the more traditional

canonical forms� The ESOP form is similar to the Sum Of Products �SOP� represen�

tation with the di�erence that exclusive OR gates are used instead of inclusive OR

gates� It has been shown that ESOP forms generally require fewer logic gates than

the SOP forms �
��� For symmetric functions it has been proven that the ESOP form

will never require more product terms than the number needed for the correspond�

ing SOP realization �
��� Many �eld programmable gate arrays �FPGAs� are now

being manufactured that utilize the XOR gate as a basic cell component requiring

ESOP implementations to be considered when an FPGA implementation is desired�

Another chief advantage of the ESOP form is that all single stuck�at faults can be

tested with a minimal number of test vectors �
	�� Finally� recent developments in

layout technology have reduced the layout area required for the XOR gate so that it

is comparable with other basic logic gates �
���

Previously� the automated synthesis of ESOP logic circuits was accomplished

via symbolic Boolean algebra manipulations ���� ����� or the use of the Reed�Muller

transforms ���� ���� ����� The research results discussed in this chapter are used

to develop an approach similar to the Reed�Muller transform technique� however�

��

a more general mathematical framework is derived allowing the calculations to be

performed over the �eld of real numbers� This allows the problem to be speci�ed

in a manner that is suitable for the application of the e�cient spectral calculation

technique discussed in Chapter �� Speci�cally� it is shown that the Reed�Muller �RM�

synthesis methodology can be reduced to solving a system of linear equations over

the real�number �eld�

These theoretical results were used to implement an ESOP synthesis system in

the form of a behavioral to structural translator using the V erilog hardware descrip�

tion language �HDL�� The use of automatic behavioral to structural translators in the

design of digital circuits allow the designer to spend more time in the speci�cation

stage of the design cycle� This is particularly advantageous when the desired circuit

is speci�ed with a behavioral description in terms of an HDL� By using automatic

behavioral to structural translation tools� the design process becomes closer to the

goal of simply specifying a circuit and then allowing automated tools to perform the

implementation� Another advantage is that the problem of error introduction during

the manual translation of the behavioral to structural circuit description is eliminated

allowing for faster design turn�around time and ultimately reducing the design cost�

�� Review of the RM Transform and Generalized ESOP Forms

Before the real�valued RM transform is developed� a brief review of ESOP

forms is presented� The ESOP form can be closely related to the SOP form and

the development of this relationship leads to the RM transform� A mathematically

succinct development of the RM transform is given in ����� In this development it

is pointed out that the XOR and AND operations are identical to the additive and

�

multiplicative operators in the modulo�� �nite �eld algebra� formally known as the

Galois �eld algebra and denoted as GF���� This coincidence is extremely useful since

all the axioms of GF algebras may be used to develop new CAD techniques�

In order to derive the RM transform� it is noted that the modulo�� multiplica�

tive operator and the Boolean algebra multiplicative operator are both realized by

the AND function� The additive operators for these two algebras di�er however� The

Boolean algebra uses the inclusive�OR operation while the modulo�� algebra uses the

exclusive�OR operation for addition� The relationship between these two algebraic

systems can be derived using the axioms and postulates of Boolean algebra beginning

with the relation given in Equation
��

a � b � a� b� a � b �
��

An implicit result of this relationship leads to the following Lemma�

Lemma � The ESOP form is functionally complete and hence any arbitrary digital

logic function may be realized in ESOP form�

Proof� It is a well�known fact that the AND� OR� and NOT �inversion� operations

form a functionally complete set� Each of these operations may be formulated in

terms of the GF��� additive and multiplicative operators �which were previously

noted to be identical to the XOR and AND functions respectively� as�

a � b � a � b �
��

a � b � a� b� a � b �
	�

a � �� a �
��

Therefore� by inference� the GF��� additive and multiplicative operators form

a functionally complete set� �

��

The relationships given in Lemma 	 may be used to develop a formal trans�

formation method� All possible Boolean functions of one variable may be expressed

as the relationship in Equation �� where di � � or ��

f�x�� � d�x� � d�x� ����

Using de Morgan�s theorem and the relationships in Lemma 	� Equation ��

can be rewritten and is given in Equation ���

f�x�� � d� � �d� � d��x� ����

At this point it is useful to de�ne two additional variables� c� � d�� and

c� � d� � d�� Substituting these de�nitions into Equation �� yields the relationship

given in Equation ���

f�x�� � c� � c� � x� ����

It is easy to see that the transformation from the di values to the ci values is

given by the relationship in Equation ��

c�
c�

�
�

� �
� �

�

d�
d�

�
���

It is recognized that the matrix of coe�cients in Equation � is the well known

RM transformation matrix for Boolean functions of one variable� All operations in the

RM transform relation given in Equation � are performed using modulo�� arithmetic�

The matrix of coe�cients is referred to as G� where the subscript denotes the number

of variables in the expression to be transformed� The RM transformation matrix can

be conveniently de�ned in a recursive manner for functions of more than one variable

as shown in Equation ���

�

Gn �

Gn�� �
Gn�� Gn��

�
����

This form of the RM transformation matrix yields a speci�c type of ESOP

expression referred to as the complement�free ring�sum form since no input variables

are complemented in the transformed expression� This is only one of the generalized

RM �GRM� forms� In past literature the GRM forms were classi�ed using a polarity

number ����� The complement�free ring�sum expression is equivalent to the polarity�

�n � � RM form where the polarity value refers to inputs that are present in the

expression in inverted form�

For any general function� there exist �n di�erent unique �xed polarity forms

since there are �n di�erent inverted and non�inverted primary input combinations

possible for an n�input function� The polarity numbers are positive integers whose

value lie in the interval� ��� �n���� The particular polarity number refers to which

primary inputs are inverted� For example� the polarity�� GRM expression contains

only the x� primary input in non�inverted form while the polarity� form indicates

that both x� and x� are present in a non�inverted form with the remaining n � �

inputs being complemented� There is a unique polarity�k expression for every possi�

ble Boolean function� hence there exists a unique RM transformation matrix for each

polarity�k form as well� The derivation of the polarity��n�� form of RM transforma�

tion matrix has been given above� the transformation matrices corresponding to the

other polarization numbers may also be easily derived and the details can be found

in �����

The uniqueness of the �n di�erent GRM forms ultimately arise because for

a given polarity� every input may be present in either complemented or uncomple�

��

mented form� but not both� However� in the most general sense� an ESOP form

can include both complemented and uncomplemented literals in a single expression�

In the work of Sasao ����� the more general expressions are classi�ed in terms of

the number of di�erent possible representations for a given Boolean function� The

complement�free ring�sum �or polarity��n form� is called the positive polarity RM

expression �PPRME�� The class of �n GRM �or �xed polarity� RM expressions are

denoted as the �xed�polarity RM expressions �FPRME�� The PPRME is a subset of

the FPRME class and is unique� thus it contains a single member� These other forms

are de�ned by observing the structure of the algebraic expression used to describe

them� The ESOP form is described by Equation �
 and the other forms are described

by Equation ���

f�x�� x�� � � � � xn� � r�p� � r�p� � � � � � rkpk ��
�

Where each pi refers to a product composed of any number of literals�

f�x�� x�� � � � � xn� � r� � r� x� � � � � � rn xn � r�� x� x��

r�� x� x� � � � � � rn�n�� xn xn�� � � � � � r�����n x� x� � � � xn ����

In the work in ����� Equation �� represents major classes of ESOP forms

which are di�erentiated by the following properties�

GRME� xk � xk or xk

FPRME� xk � xk or xk exclusively

PPRME� xk � xk

The most general form� the ESOP� may have a particular product term� p� �

x�x�� and another product term� p� � x�x� while this would not be allowed for the

��

more restrictive GRME class�

The diagram in Figure
�� shows the relationship of the various ESOP forms�

While a unique form exists for a given polarity� the fact that �n di�erent polarities

are present allows for the consideration of the minimal polarity form for a given

function� The minimization problem can be further generalized by considering all

possible ESOP forms� Currently� the ESOP minimization problem is open and an

active area of research� The various proposed minimization techniques for ESOP

circuits provide the motivation for determining an e�cient way to realize a particular

ESOP form given a particular polarity number�

ESOP (no specific set of products)

GRME (literals both inverted & non-inverted)

FPRME (literals always inverted or non-inverted)

PPRME (no inverted literals)

Figure
��� Venn diagram of various classes of ESOP functions

�� Development of the Real�Valued RM Transform

The development of the mathematical foundations of the computation of the

RM transform using real arithmetic rely upon the concepts of algebraic rings and

their morphisms�

�	

A Boolean ring satis�es all of the properties of a general ring in addition to

the idempotence property ���� The familiar Boolean algebra may be expressed in

terms of a Boolean ring�
� de�ned as follows�

 � f�� ���� �g

Where � and � denote the logic values of zero and one� the addition operator�

�� denotes the binary XOR operation� and the multiplicative operator� �� denotes the

binary AND function� The set�
� forms a Boolean ring since all of the properties of

a general ring are satis�ed ���� along with the idempotence property�

Next� consider an alternative set�
�� This set contains the following elements�

� � f�� I����g

Where�

� � f�������� � � � ��j� � � �g ����

and�

I � f���
� � � � ���i � ��� � � �g ��	�

Thus� � and I are the sets of all even integers �including �� and all odd integers

�excluding ��� respectively� The two operators in the set�
�� are the additive operator�

�� and the multiplicative operator� �� These operators perform real addition and

real multiplication� respectively�
� also satis�es the properties of a Boolean ring ����

���� Isomorphic Relationship of the RM Transform

and the Real�Valued Number System

��

The following lemma establishes the relationship between the two rings
 and

��

Lemma � � The function� f�x� � x�mod��� forms a ring morphism from
� to
�

Proof� To prove this lemma� we demonstrate that the following relationships exist�

f�a � b� � f�a�� f�b� ����

f�a� b� � f�a� � f�b� ����

for the following three exhaustive cases�

Case �� �a� b� � �

Case �� �a� b� � I

Case � a � �� b � I

Case ��

Let a � �n and b � �m�

f�a � b� � f��n � �m�

� ���n � m���mod��

� �

f�a�� f�b� � ��n�mod���� ��m�mod���

� � � �

� �

 ��f�a � b� � f�a�� f�b�

���

f�a� b� � f��n � �m�

� �nm�mod��

� �

f�a� � f�b� � ��n�mod��� � ��m�mod���

� � � �

� �

 ��f�a� b� � f�a� � f�b�

Case ��

Let a � �n � � and b � �m � ��

f�a � b� � f��n � � � �m � ��

� ���n � m � ����mod��

� �

f�a�� f�b� � ��n � ���mod��� ��m � ���mod��

� �� �

� �

 ��f�a � b� � f�a�� f�b�

f�a� b� � f ���n � �� � ��m � ���

� ����nm � n � m� � ���mod��

� �

f�a� � f�b� � ��n � ���mod�� � ��m � ���mod��

� � � �

� �

 ��f�a� b� � f�a� � f�b�

���

Case �

Let a � �n and b � �m � ��

f�a � b� � f��n � �m � ��

� ���n � m� � ���mod��

� �

f�a�� f�b� � �n�mod��� ��m � ���mod��

� � � �

� �

 ��f�a � b� � f�a�� f�b�

f�a� b� � f ��n � ��m � ���

� ����nm � n���mod��

� �

f�a� � f�b� � �n�mod�� � ��m � ���mod��

� � � �

� �

 ��f�a� b� � f�a� � f�b�

Since Equations �� and �� hold for all cases� f�x� � x�mod�� forms a ring

morphism between
� and
� �

���� Linear System Formulation of the RM Transform

In this section� an alternate de�nition of the RM transform in terms of the

solution of a linear system of equations is provided� This formulation makes use of

the isomorphic relation described in the preceeding and ultimately allows an e�cient

���

spectral computation method to be applied� The complement�free ring sum formu�

lation of the canonical RM form for a three�variable function may be expressed as

shown in Equation ���

f�x� � r� � r� x� � r� x� � r� x� � r	 x� x� � r
 x� x� � r� x� x� � r� x� x� x� ����

Where the dotted variables represent function inputs that are all uncomple�

mented� The ri terms are Boolean constants that have value ��� or ��� and are

in fact the RM spectral coe�cients� Equation �� contains operations and elements

from the Boolean ring�
 �the omission of a binary operator between two consecutive

variables in Equation �� implies that the operation denoted by � occurs�� Equation

�� is rewritten in the form given in Equation ���

f�x� � r�g� � r�g� � r�g� � r�g� � r	g	 � r
g
 � r�g� � r�g� ����

Where the ri are Boolean constants described above� and each gi is the AND

�product� of a subset of the function�s literals� Each particular realization of the

complement�free ring sum of the RM form is given by a speci�ed set of ri values that

will be referred to as the vector� R� The set of functions� gi� will be referred to as the

�product functions� of f�x�� It is convenient to rewrite Equation �� in vector matrix

form as�

GR � F ���

Where the elements of the function vector� F � and the transformation matrix�

G� are known �or are easily computed�� and the elements of the R vector specify the

complement�free ring sum formulation of the RM canonical form� The column vectors

��

formed from all possible outputs of the product functions� gi� are concatenated to form

the coe�cient matrix� G� and the corresponding function outputs are concatenated

to form the function vector� F �

This formulation di�ers from that typically used to compute the RM spectrum

of a logic function� As described in ���� ����� the RM spectrum may be computed as

given in Equation �� where all operations are performed using those de�ned in
�

R � GF ����

The reason Equation �� holds is because G � G�� in the ring
� However

G �� G�� in the ring�
�� therefore the solution of GR � F is required when real

valued arithmetic is used�

The RM transformation matrix was derived in the previous section� however

the following de�nition is useful since it de�nes the matrix in terms of the solution

of the linear equation shown in �� This de�nition is for the polarity��n � � matrix�

however all of the results hold for matrices of any arbitrary polarity since they may

be formed by reordering the rows of the polarity��n � � matrix�

De�nition � � The matrix� G� is a concatenation of the output column vectors of

the product functions� gi� Each row of the matrix is considered to be the output vector

of a constituent function� fc�x��

Consider the small G matrix� denoted as G�� where the subscript indicates

the number of function inputs�

���

G� �

g� g� g� g��
��

� � � �
� � � �
� � � �
� � � �

�
��

fc�
fc�
fc�
fc�

Where the product functions are de�ned as�

g� � �
g� � x�
g� � x�
g� � x� � x�

And the constituent functions are de�ned as�

fc� � x� � x�
fc� � x�
fc� � x�
fc� � �

Lemma �� � The coe�cient matrix G is triangular with all gii � ��

Proof� The trivial matrix�

G� �

� �
� �

�
��
�

is triangular�

Also� from De�nition �� G� is also seen to be triangular� Higher ordered

matrices� Gn� may be recursively de�ned using G� as a kernel since all functions� gi�

are AND functions or literal values themselves� The following de�nition holds�

Gn �

Gn�� �
Gn�� Gn��

�
����

Since G� and G� are triangular and Gn may derived in terms of Gn��� by

induction� Gn is also triangular since it is formed with sub�matrices� Gn��� along its

diagonal with the all zero sub�matrix in one quadrant� �

��

Next� we will show that the solution vector� R� always contains components

that are members from the �eld of positive and negative integers� Z� Where Z is

de�ned as�

Z � f� � � ��������� �� �� �� � � � �g

Lemma �� � The solution vector� R� in the equation� GR � F � contains only integer

components�

Proof� As mentioned previously� the coe�cient matrix� Gn� contains only � and �

elements� Also� this matrix is triangular with diagonals consisting of all ��s� Hence�

det�Gn� � �

It is desired to solve the equation�

GR � F

The solution to this equation is well known and may be expressed in terms of

the cofactors of G as�

R � G��F

� �det�G�����cofactor�G��F

� ����cofactor�G��F

Since the cofactor matrices are formed with no division operations� the matrix�

�cofactor�G��� contains only integers� Since the matrix� G� always has a determinant

of �� the solution vector� R� is formed as a vector�matrix multiplication of the integer

matrix� �cofactor�G��� and the integer vector� F � Hence the solution vector always

contains integer components� �

���

This lemma establishes the fact that the solution of Equation � is performed

over the Boolean ring�
�� This result along with the previous de�nitions and lemmas

allow the following theorem to be stated and proved�

Theorem � � Given any Boolean function� f � and a binary vector� B � �b�� b�� b�� � � � � bn�T

such that f � b�g�� b�g�� � � �� bngn� then there exists a vector� R with each ri � Z�

such that GR � F and R�mod�� � B� Where F is the binary vector formed from

the output column of the truth table of the function� f �

Proof� From Lemma ��� R has the property that each ri � Z� From Lemma ��

the function� f�x� � x�mod�� forms a ring morphism between
� and
� Hence� the

application of f�x� to each component in the vector� R� isomorphically maps R to B�

�

Corollary � � Every Boolean function has a unique complement�free ring sum form

of the RM expansion�

Proof� From Lemma �� it was proven that all Gn matrices are triangular� From

De�nition � it was noted that all gii � �� Hence the determinant of the coe�cient

matrices is �� guaranteeing a unique matrix inverse exists� Since R and B from

Theorem are isomorphic and R is unique due to the existence of a unique inverse

of G then B also is unique� �

This section has presented the mathematical justi�cation computing the RM

coe�cients using real arithmetic� This result allows the e�cient spectral calculation

method formulated in Chapter � to be extended to the RM case�

��� Example of the Computation of the RM Spectrum

���

Using Real Arithmetic

Consider the Boolean function speci�ed by the truth table in Figure
���

x� x� x� F
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure
��� Truth table of example function to be synthesized

The resulting matrix equation is given as�

�
����������

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
����������

R �

�
����������

�
�
�
�
�
�
�
�

�
����������

Solving this system in the real �eld yields the following solution vector�

RT � � � � �� � � � �� � �

Mapping this vector� from
� to
 using f�x�� we obtain�

��	

!RT � � � � � � � � � � �

Each element of the solution vector corresponds to a speci�c ri resulting in a

realization of the RM form as given in Equation ��� The resulting function is�

f�x� � �� x� � x�x� � x�x� � x�x� ����

� E�cient Computation of the RM Spectral Coe�cients

In the development given in the preceding subsection� it was shown that a RM

spectral coe�cient may be obtained by �rst computing a value in
� �denoted as r��

and then mapping it to
� Unfortunately the formation and solution of the matrix

equation to compute the values in
� has a complexity similar to computing the

coe�cient directly using GF ��� arithmetic� However� the r� value can be computed

without resorting to solving a matrix equation by exploiting its relation to the output

probability of a circuit� Before this result is derived� the following de�nition is helpful�

De�nition � A Boolean function� f � fc� which is composed as the AND of a func�

tion to be transformed� f � and a constituent function� fc� is termed the composition

function and is denoted by fcomp�

De�nition allows Lemma �� to be easily stated and proven�

Lemma �� The real value� r�� is directly proportional to the output probability of the

Boolean function� fcomp�

Proof� The value� r�� can be viewed as the inner product of the output vector of the

function to be transformed� f � and some constituent function� fc� Since each element

���

in these two output vectors is either � or �� each partial product of the inner product

is also � or �� In fact� the partial product value of � only occurs when both f and fc

produce an output of � for a common given set of input values� Thus� r� is the total

number of times the composition function� fcomp � f � fc� produces an output of ��

If the output probability of fcomp is known �denoted by �ffcompg� then r� is easily

computed as shown in Equation �	�

r� � �n � �ffcompg ��	�

Therefore r� is directly proportional to the output probability of the compo�

sition function with a constant of proportionality of �n where n is the number of

primary inputs� �

It is now clear that the value of r� can be obtained without computing an

inner product if the output probability is known� This leads to the result that allows

the e�cient spectral computation technique to be applied to the case of the RM

spectrum�

Theorem � A RM spectral coe�cient� r� may be directly computed using the value

of the output probability of fcomp�

Proof�

From Lemma � it was shown that a particular RM coe�cient can be computed

from a real value as�

r � r��mod�� ����

From Lemma ��� the value� r� is related to the output probability� �ffcompg�

Substituting Equation �	 into Equation �� yields the �nal result as given in Equation

���

	��

r � ��n�ff � gcg��mod�� �	��

�

Theorem � provides the necessary theoretical relation for the implementa�

tion of a method for computing a RM spectral coe�cient without requiring storage

resources proportional to the size of a functions� truth table�

��� Example Computation

Before the results of the implementation of this method are given� a small

example is provided so that the method may be clearly understood� As an example

of the computation� consider the Boolean function described by Equation 	��

f�x� � x�x� � x�x�x� � x�x� � x�x� �	��

The constituent function corresponding to the �th RM spectral coe�cient for

a polarity��n � � transform is given by Equation 	��

fc��x� � x� �	��

The output vector of Equation 	� is identical to the �th row of the polarity�

�n�� RM transformation matrix for a variable function� The corresponding OBDD

representations for f�x� and f�x� � fc��x� are given in Figure
��

���

X1
01

0 01 1

10 0 1

X2 X2

X3X3

0 110

X1
0 1

0 01 1

10

X2 X2

X3

0 11 0

1

P=1

P=0.5

P=0.25

P=0.125

P=0.5

P=0.125 P=0.25 P=0.25

P=0.25

Figure
�� Binary decision diagrams of example function and composition function

The PAA algorithm is applied to the composition function� f�x� � fc��x�� and

the probabilities assigned to each node are shown in Figure
�� The required quantity

is the sum of all probabilities at each terminal logic ��� node and is given as �ff�x� �

fc��x�g � ����
� Substituting the probability value into Equation 	� yields the RM

spectral coe�cient as shown in Equation 	�

r� � ��� � ����
��mod�� � � �	�

�� Implementation of the Synthesis System

A program for the e�cient computation of the RM spectral coe�cients was

implemented using the C programming language� The BDD package developed by

David Long was used for all BDD processing� The program receives the BDD de�

scription of the circuit to be transformed as input� Based upon the desired po�

larity number� a set of constituent functions corresponding to the rows of the RM

���

transformation matrix are speci�ed� For each computation of a spectral value� an

OBDD representation of each composition function is formed� After the formation

of the OBDD representing fc� the APPLY algorithm ��� is invoked thus forming

the OBDD representing the composition function� fcomp� Next� the PAA is invoked

resulting in the output probability which is converted to the RM spectral coe�cient

according to Equation 	��

Many logic functions are represented in a very compact form when they are

expressed as BDDs ��� in contrast to the exponentially large size �in terms of num�

ber of inputs� required by a truth table� and hence an output vector� This fact

allows the methodology implemented here to compute a RM coe�cient with com�

plexity O�kEcompk� where kEcompk is the number of edges in the BDD representing

fcomp� However� there are some functions that have a number of BDD nodes that

are comparable to the number of truth table values ��
� ����� For these cases� this

methodology degenerates to having a complexity equivalent to performing the matrix

calculations� Fortunately� many functions of practical importance are described with

far fewer BDD nodes than truth table entries�

The overall time complexity of the approach is O�kEfk�kEgck� for each RM

coe�cient since each application of the APPLY algorithm visits each node in the

BDD representing f a number of times equal to the size of the OBDD representing

gc� Since the constituent functions for the RM transform are extremely simple� the

OBDD representing fcomp is generally comparatively small with respect to the OBDD

for f � Most of the time kEcompk � kEfk � kEgck so the PAA algorithm requires

relatively little computation time� The storage requirement also has a complexity of

O�kEcompk since only the storage of the composition function BDD is required�

��

Instead of computing and storing a probability value �which lies in the interval

��� ���� the numerator of the probability value is stored �which lies in the interval�

��� �n��� This modi�cation alleviates possible under�ow errors� however the numerator

value can over�ow for large values of n� The potential over�ow problem was addressed

by storing a mantissa and exponent value at each node� The exponent value is a power

of � and is always as large as possible� Therefore� a node at the kth level in the OBDD

always has an exponent value that is at least n � k� This observation leads to an

interesting fact as given in Lemma ��

Lemma �� A necessary condition for a RM spectral coe�cient� ri� to have a value

of � is that the OBDD representing the composition function� f � fci� must contain a

path consisting of n non�terminal nodes and a logic�� valued terminal node�

Proof� Since the initial node is labeled with an exponent value of n and the proba�

bility value of a node is halved to obtain the value of subsequent nodes� each node at

the kth level of the OBDD will have an exponent that is at least n�k in value� Since

the coe�cient� ri is computed as the modulo�� value of the product of the probability

value and �n as given in Equation 	�� the exponent of the terminal ��� node must

be equal to zero in order for ri � �� An exponent value can never reach zero unless

n nodes in a single path have been traversed� allowing the initial nodes� exponent

value� n� to be decremented n times� �

���� Experimental Results

This implementation was tested using some of the ISCAS	
 benchmark cir�

cuits as input� The following tables contain some results of the computations� For

���

ease of description� the subset of RM coe�cients corresponding to constituent func�

tions containing m literals is referred to as the mth�order subset of RM coe�cients�

The particular polarity of each literal is determined by the polarity number of the

corresponding RM transformation matrix which de�nes the constituent functions�

Table
�� contains the results of the �th�order �fc � �� RM coe�cients for

several di�erent ISCAS	
 circuits� The label assigned to the particular output in

the netlist description is given followed by the number of inputs� the size of the OBDD

in terms of vertices� and� the CPU time the computations required on a DECstation

���� The CPU time also includes the time required to convert the ISCAS netlist

into an OBDD representation� Since the OBDD for fcomp is exactly the same as the

OBDD for f in the case of the �th�order RM coe�cient� only kfk is given in Table

���

Table
����Oth order RM coe�cients for various netlists

Netlist Output " Inputs kfk System Time �sec�
c�� ��gat �	 ���� ���
c		� 	
�gat �� ��� � ���
c���� �		 �� �� ���
c
�� �� �� �	
 ���
c��		 ����gat �� ���
� ���
c�

� �� �	
� ��

Table
�� contains some of the �st�order RM coe�cients for the circuit� c���

output ��gat which has �� inputs and ���� vertices in its OBDD representation�

The entire amount of CPU time required for the computation of Table
�� was ���

seconds on a DECstation
��� including the time required to parse the input netlist

and construct the OBDD�

��

Table
�����st order RM coe�cients
for output ��gat of c��

Constituent Spectral
Function kf � fck Coe�cient

�gat �	� �

�gat ��
� �

��gat �	� �

��gat ���� �

��gat �� �

�gat ���	 �

�gat ���� �

�gat ��	� �

�gat ���� �

��gat ��		 �

�gat �

	 �

	�gat ���� �

��gat ���	 �

���gat ���� �

This code was incorporated into a prototype synthesis tool that uses OBDD

descriptions of Boolean functions as input and produces V erilog netlists in gener�

alized RM form as output� The tool was implemented in two main modules� The

�rst module receives the BDD description and the polarity number of the desired

GRM form as input� Upon receiving these inputs� a BDD representation of each

composition function is formed sequentially� After the formation of the fc BDD� the

APPLY algorithm ��� is invoked forming the BDD representing the composition

function� fcomp� Next� the PAA is invoked resulting in the output probability which

is converted to the RM spectral coe�cient according to Equation 	�� Each time a

coe�cient is computed� it is passed to the second module which generates a portion

of the output netlist�

The second portion of this tool served as the netlist generator� Although the

���

V erilog hardware description language �HDL� was chosen as the output medium�

any netlist format would have been possible� An overall block diagram of the tool is

given in Figure
���

INPUT: Behavioral Description
(Binary Decision Diagram)

OUTPUT: Structural Description
(Verilog netlist)

Spectral
Computations

C-Language

Netlist
Generator

C-Language

Figure
��� Block diagram of the generalized RM translation tool

The synthesis tool has successfully synthesized several di�erent functions of

varying complexity� The �rst circuit is a small
�input function described by the

following V erilog module�

Example ��

module exm�beh �f� inp� � inp� � inp� � inp�� inp� 	

output f

input inp��inp��inp��inp��inp�

assign�f� ��inp� �� �inp� �� inp�		 �� ��inp�	 �� inp� �� inp� �� ��inp�	

endmodule

This behavioral description was used to generate the OBDD for the synthe�

sis computations� The synthesis computations and netlist generator modules were

���

invoked next� The resulting output netlist �le follows�

module rmcircuit �f� inp� � inp� � inp� � inp� � inp� 	

output f

input inp��inp��inp��inp��inp�

and g�� � wir� � inp�� inp�	

and g�� � wir� � inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�� inp�� inp�	

xor g�� � f� ��b�� inp�� wir�� wir�� wir�� wir�� wir�� wir�	

endmodule

�

The next example is a slightly larger circuit� The behavioral description for

this circuit follows�

Example 	�

module exm�beh �f� inp� � inp� � inp� � inp�� inp�� inp�� inp�� inp� 	

output f

input inp��inp��inp��inp��inp��inp��inp��inp�

assign�f� ��inp� �� �inp� �� inp�		 �� ��inp�	 �� inp� �� inp� �� ��inp�	
�� inp�����inp� �� inp���inp�	

endmodule

The resulting output structural description is�

module rmcircuit �f� inp� � inp� � inp� � inp� � inp� � inp� � inp� � inp� 	

output f

input inp��inp��inp��inp��inp��inp��inp��inp�

and g�� � wir� � inp�� inp�	

and g�� � wir� � inp�� inp�	

��	

and g�� � wir� � inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�� inp�� inp�	

and g�� � wir� � inp�� inp�� inp�� inp�� inp�	

and g��� � wir�� � inp�� inp�� inp�� inp�� inp�� inp�	

and g��� � wir�� � inp�� inp�� inp�� inp�� inp�� inp�	

and g��� � wir�� � inp�� inp�� inp�� inp�� inp�� inp�	

and g��� � wir�� � inp�� inp�� inp�� inp�� inp�� inp�� inp�	

and g��� � wir�� � inp�� inp�� inp�� inp�� inp�� inp�� inp�� inp�	

xor g��� � f� ��b�� inp�� wir�� wir�� wir�� wir�� wir�� wir��

wir�� wir�� wir�� wir�� wir��� wir��� wir��� wir��� wir��	

endmodule

�

These results show the output of the synthesis tool� The output form in these

two examples is an ESOP form with all inputs uncomplemented� This is the polarity�

�n� � GRM form� Other unique ESOP forms can also be computed by changing the

polarity number which is used to specify the ordering of the constituent functions�

Although all RM transformation methods su�er from the requirement of necessarily

computing an exponential number of coe�cients� this method has provided a very

e�cient way of computing each coe�cient� In addition� it has been shown in Lemma

� that OBDDs representing fcomp functions that do not have a maximal path will

always yield a coe�cient value of �� This fact may be exploited by allowing the

spectral coe�cients to be computed only when the fcomp contains a maximal path�

���

CHAPTER �

CONCLUSIONS AND AREAS OF FUTURE RESEARCH

The research presented in this dissertation has demonstrated the viability of

spectral methods for digital logic synthesis� Although spectral based methods have

been developed in the past� their use was limited to very small circuits deeming

the approach impractical� By devising a technique to e�ciently compute a spectral

coe�cient� the computational hurdles of past methods have been overcome�

���� Conclusions

Spectral based synthesis methodologies typically impose demanding compu�

tational requirements� By using extremely compact representations of Boolean func�

tions� each spectral coe�cient can be computed very e�ciently� Further� by devel�

oping a synthesis system that utilizes a very small number of coe�cients� excessive

storage requirements are avoided in addition to limiting the number of required co�

e�cient computations�

The e�cient spectral calculation technique is also very general requiring no

special transformation matrix properties� This generality allowed a synthesis method�

ology to be developed that combines the optimization and technology mapping phases

into a single processing step� By building the transformation matrix as a collection

of constituent functions that correspond to the particular logic cells in a library� the

���

circuit resulting from the maximum correlation synthesis method is already described

in terms of actual layout cells�

The extension of the e�cient spectrum computation technique allowed it to

be applied to the Reed�Muller forms of spectra� The desirable properties of the Reed�

Muller family of circuits such as testability and compactness has increasingly lead

to their inclusion in modern designs� Unfortunately� the current state of CAD tools

for Reed�Muller design has lagged far behind those that target other circuit forms�

Therefore� computational advances in Reed�Muller circuit synthesis are especially

relevant in the area of automated CAD research�

���� Contributions to Synthesis Methodologies

Most common logic synthesis tools in use today are based upon an area mini�

mization criteria� The trend in VLSI technology is that the required substrate area for

a given design tends to decrease by ��� every � to
 years� While physical limitations

will eventually halt this trend� the short term result has caused designers to worry

more about timing optimization and less about area conservation� By incorporating

a strict critical path minimization criteria into the synthesis method described in

Chapter � this problem has been addressed without an extreme sacri�ce in required

area�

Many of todays� CAD tools are used to aid designers in supplying semi�custom�

standard cell solutions to customer requirements� Typically� these tools perform the

optimizations in a technologically independent fashion �using generic logic gates� and

are then faced with the daunting task of mapping the design in terms of the standard

���

cell library� By exploiting the fact that any generalized transform may be computed

using the e�cient technique� a synthesis methodology was described in Chapter � that

uni�es the optimization and technology mapping phases� This formulation allows

the designers� choice of the standard cell library to inherently de�ne the spectral

transformation�

Although heuristic�based systems for Reed�Muller circuit design do exist� they

are primarily the products of academic research and lack the maturity needed for

inclusion in commercial products� The designer is generally forced to use an exhaus�

tive method for synthesizing a Reed�Muller circuit structure� Unlike the more com�

mon canonical forms� no e�cient Karnaugh mapping or Quine�McCluskey tabulation

methods exist for the Reed�Muller case� Thus� the designer is faced with performing

cumbersome Boolean algebraic manipulations� or� computing the Reed�Muller spec�

trum� The exponential complexity of spectral calculations generally precludes the

use of the latter approach� However� by extending the e�cient spectral computation

method to handle the Reed�Muller coe�cients� it is now practical to consider the

spectral approach to Reed�Muller circuit design�

��� Future Research Directions

Future research areas include the extension and improvement of the methods

presented here as well as the application of spectral techniques to other areas of

digital systems engineering� The use of BDDs to construct probability expressions

is a fundamental result that allows the methods of probability and statistics to be

applied to many areas that involve discrete� and in particular� Boolean systems� The

���

following subsections outline a few speci�c areas of research that will be investigated

in the near future�

����� Extension to BDD Forms Other Than OBDD

Several extensions to the e�cient spectral computation technique are worthy

of investigation� Although most functions are represented in OBDD form much more

compactly than when their algebraic or truth table descriptions are used� there are

certain classes that require an exponential number of BDD vertices ���� ��
�� This

problem has recently been addressed through the development of indexed BDDs

�IBDDs� ��
�� The extension of the spectrum calculation method presented here to

use IBDDs as input would further increase its value for CAD applications� However�

in the IBDD form� nodes labeled with the same primary input can be encountered

more than once in a single path� This means that the BDD traversal algorithm in

the PAA will have to be modi�ed to store additional intermediate data� A careful

analysis of the amount of extra data required must be performed to analyze the

feasibility of this modi�cation�

The nature of a BDD is to represent a single output Boolean function in a

compact manner� Many of todays logic synthesis tools have the desirable feature

of handling multi�output circuits that depend on a common set of primary inputs�

Recently� researchers have proposed a new form of BDD that represents multi�output

functions called shared BDDs �SBDDs� ����� The SBDDs could provide the means

for extending the logic synthesis methodologies presented here to handle the multi�

output circuit� In order to use SBDDs� e�cient counterparts to the APPLY and

RESTRICT operations de�ned for OBDDs will need to be developed�

��

����� Application to Low Power Design

As portable computing and communications devices increase in popularity�

more emphasis is placed on designs that operate with reduced power consumption�

Low power design techniques are currently a research topic of great interest� To

date� the most successful approaches have utilized architectural modi�cations such

as reduced operating voltages and frequencies� or� device level changes such as the

development and use of low power standard cell libraries� The lack of e�ective meth�

ods at the logic design level have resulted in an area that is ripe for new research

endeavors�

One possible approach is to relate the switching activity at internal circuit

nodes in a CMOS circuit to power dissipation levels� In the research presented here�

output probability computations have been described in detail� By computing switch�

ing probabilities at each node of a logic circuit as it is synthesized� it may be possible

to formulate constraints that attempt to keep the probabilities very high or very low�

If the switching probabilities at each node are not close to the value� ���� the overall

switching activity� and hence� power dissipation levels are minimized�

���� Design Veri�cation

Another area closely related to logic synthesis is that of design veri�cation�

As CAD tools mature� the circuit to be realized is represented at various levels of

abstraction� Each level of abstraction subsequently becomes closer to the ultimate

design description as the designer adds further speci�cations� The design veri�cation

system is tasked with ensuring that all representations of the circuit are functionally

equivalent�

���

It has been proven that the design veri�cation problem is NP �Complete �����

For this reason� interest has been generated in the use and development of statistical

veri�cation systems that do not necessarily guarantee ���� functional equivalence�

but do guarantee a high percentage of equivalence in a very short time� Since a set

of spectral coe�cients forms a unique signature of a logic function regardless of its

form of representation� the e�cient spectral computation method may be used to

formulate a statistical veri�cation technique� One aspect of this research area will

be to determine which subset of spectral coe�cients should be used to maximize the

percentage of veri�cation while keeping the total number of coe�cients needed as low

as possible�

It has been shown in past work that the Chow parameters can be used to

partition all possible Boolean functions of n variables into a collection of disjoint

subsets using the principles of NPN equivalence ����� Two functions are said to be

NPN equivalent if the output of one is identical to the output of the other when

appropriate inputs are negated �N�� permuted �P �� and the output may or may not

be negated �N�� The number of of NPN classes is generally very large compared

to all possible functions of n inputs� Thus� determining if two functions are NPN

equivalent is analogous to verifying they are the same with some degree of error based

upon the number of functions within the given NPN class�

����� Finite State Machine Synthesis

Before the logic synthesis task is invoked� most CAD systems execute a module

responsible for �nite state machine �FSM� partitioning and state assignment� Since

Boolean expressions may be readily converted to output probability expressions� all

��

transition relations in a FSM may be represented as probabilities� Thus� the FSM is

transformed to a representation of a Markov chain�

The vast amount of results available from discrete stochastic systems theory

can be used for tasks such as FSM partitioning and state assignment once the FSM

has been transformed to a Markov chain model� For example� a logical partitioning

paradigm may prove to be the restriction of high probability transitions within a

single FSM and to partition by �cutting� the low probability transitions� This would

especially be bene�cial when very large FSMs are implemented using multiple FPGAs

or PLDs since interchip state transitions can occur much more quickly than intrachip

transitions�

���

References

��� G� De Micheli� Synthesis and Optimization of Digital Circuits� Mc�Graw�Hill�
New York� New York� �����

��� R� Rudell and A� L� Sangiovanni�Vincintelli� Espresso�mv� Algorithms for
multiple�valued logic minimization� Proceedings IEEE Cust� Int� Circ� Conf�

CICC���� pages ������ May ��	
�

�� R� K� Brayton� G� D� Hachtel� C� T� McMullen� and A� L� Sangiovanni�
Vincintelli� Logic Minimization Algorithms for VLSI Synthesis� Kluwer Aca�
demic Publishers� Boston� Massachusetts� ��	��

��� W� V� Quine� The Problem of Simplifying Truth Functions� Am� Math� Monthly�
vol�
�� No� 	�
���
�� October ��
��

�
� E� J� McCluskey� Minimization of Boolean Functions� Bell System Tech� J�� vol�

����������� November ��
��

��� R� K� Brayton� R� Rudell� A� L� Sangiovanni�Vincintelli� and A� R� Wang� Mis�
A multiple�level logic optimization system� IEEE Trans� on CAD� vol� CAD���
no� ���������	�� November ��	��

��� K� Keutzer� Dagon� Technology binding and local optimization by dag matching�
Proceedings of ACM�IEEE Design Automation Conference� pages Miami Beach�
Florida� ��	��

�	� S� Muroga� Y� Kambayashi� H� C� Lai� and J� N� Culliney� The Transduction
Method � Design of Logic Networks Based on Permissible Functions� IEEE
Trans� on Comp�� vol� 	� no� ������������� October ��	��

��� K� C� Chen and S� Muroga� SYLON�DREAM� A Multi�Level Network Synthe�
sizer� Proceedings ICCAD� pages

��

� ��	��

���� K� C� Chen� Y� Matsunaga� S� Muroga� and Fujita M� A Resynthesis Approach
for Network Optimization� Proceedings DAC� pages �
	���� �����

���� H� Sato� Y� Yasue� Y� Matsunaga� and M� Fujita� Boolean Resubstitution with
Permissible Functions and Ordered Binary Decision Diagrams� Proceedings DAC�
�����

���� S� Jeong� F� Somenzi� and T� Sasao �editor�� A New Algorithm For ��� Pro�
gramming Based on Binary Decision Diagrams
Chap� � in Logic Synthesis
and Optimization� Kluwer Academic Publishers� Boston� Massachusetts� ����

��� M� G� Karpovsky� Finite Orthogonal Series in the Design of Digital Devices�
John Wiley� New York� NY� �����

���� R� Lechner� Harmonic Analysis of Switching Functions� in Recent developments
in switching theory� pages ������	� �����

��
� C� R� Edwards� The Design of Easily Tested Circuits using Mapping and Spectral
Techniques� Radio and Electronic Engineer� vol� ��� no� �������� �����

���

���� S� L� Hurst� D� M� Miller� and J� C� Muzio� Spectral Techniques in Digital Logic�
Academic Press� Orlando� Florida� ��	
�

���� A� M� Lloyd� A Consideration of Orthogonal Matrices� other than the
Rademacher�Walsh Types� for the Synthesis of Digital Networks� J� Electronics�
vol� ��� no� ���
����� �����

��	� M� A� Perkowski� M� Driscoll� J� Liu� D� Smith� J� Brown� L� Yang� A� Sham�
sapour� M� Helliwell� B� Flakowski� and A� Sarabi� Integration of Logic Synthesis
and High�Level Synthesis into the DIADES Design Automation System� Pro�
ceedings of 		nd IEEE Int� Symp� on Circuits � Systems� pages ��	��
�� ��	��

���� M� Stankovi#c� Z� To$si#c� and S� Nikoli#c� Synthesis of Maitra Cacades by Means
of Spectral Coe�cients� IEE Proceedings� vol� ��� Pt� E� No� ��������	� July
��	�

���� R� L� Ashenhurst� The Decomposition of Switching Functions� Proceedings of
an International Symposium on the Theory of Switching� pages ������� April
��
��

���� V� M� Tokmen� Disjoint Decomposability of Multiple Valued Functions by Spec�
tral Means� Proceedings IEEE ��th Int� Symp� Mult� Valued Logic� pages 		���
��	��

���� D� Varma and E� A� Trachtenberg� Design Automation Tools for E�cient Im�
plementation of Logic Functions by Decomposition� IEEE Trans� on CAD� vol�
	� no� 	��������� August ��	��

��� T� Damarla� Generalized Transforms for Multiple Valued Circuits and their
Fault Detection� IEEE Trans� Comp�� vol� C���� no� ������������ September
�����

���� T� C� Hsiao and S� C� Seth� An Analysis of the Use of Rademacher�Walsh
Spectrum in Compact Testing� IEEE Trans� Comp�� vol� C�� no� ���������
October ��	��

��
� D� M� Miller and J� C� Muzio� Spectral Fault Signatures for Single Stuck�At
Faults in Combinational Networks� IEEE Trans� Comp�� vol� C�� no� 	���
�
��	� August ��	��

���� A� K� Susskind� Testing by Verifying Walsh Coe�cients� IEEE Trans� Comp��
vol� C��� no� ����	����� February ��	�

���� C� R� Edwards� The Application of the Rademacher�Walsh Transform to Boolean
Function Classi�cation and Threshold Logic Synthesis� IEEE Trans� Comp��
pages �	���� ���
�

��	� J� W� Cooley and J� W� Tukey� An Algorithm for the Machine Calculation of
Complex Fourier Series� Math� Computation� vol� ���������� ���
�

���� J� L� Shanks� Computation of the Fast Walsh�Fourier Transform� IEEE Trans�
Comp�� vol� C��	��
���
�� May �����

��� S� B� Akers� Binary Decision Diagrams� IEEE Trans� Comp�� vol� C���� no�
��
���
��� June ���	�

��	

��� R� E� Bryant� Graph�Based Algorithms for Boolean Function Manipulation�
IEEE Trans� Comp�� vol� C�
� no� 	��������� August ��	��

��� E� M� Clarke� K� L� McMillan� X� Zhao� and M� Fujita� Spectral Transforms for
Extremely Large Boolean Functions� Proceedings of the IFIP WG ���� Workshop
on Applications of the Reed�Muller Expansion in Circuit Design� pages 	�����
September ����

�� E� M� Clarke� K� L� McMillan� X� Zhao� M� Fujita� and J� Yang� Spectral
Transformations for Large Boolean Functions with Applications to Technology
Mapping� Proceedings of ACM�IEEE Design Automation Conference� pages
��
��� ����

��� E� M� Clarke� X� Zhao� M� Fujita� Y� Matsunaga� R� McGeer� and J� Yan� Fast
Walsh Transform Computation with Binary Decision Diagram� Proceedings of
the IFIP WG ���� Workshop on Applications of the Reed�Muller Expansion in
Circuit Design� pages 	��	
� September ����

�
� B� J� Falkowski� I� Schafer� and M� A� Perkowski� Calculation of the Rademacher�
Walsh Spectrum from a Reduced Representation of Boolean Functions� Proceed�
ings of the European Design Automation Conference� pages �	���	�� September
�����

��� K� P� Parker and E� J� McCluskey� Probabilistic Treatment of General Combi�
national Networks� IEEE Trans� Comp�� vol� c������	����� June ���
�

��� S� K� Kumar and M� A� Breuer� Probabilistic Aspects of Boolean Switching
Functions via a New Transform� Journal of the ACM� vol� �	� No� �
���
���
July ��	��

�	� J� Jain� J� Bitner� D� S� Fussell� and J� A� Abraham� Probabilistic Design Veri�ca�
tion� Technical Report� University of Texas at Austin� UT�CERC�TR�JAA������
April �����

��� M� A� Thornton and V� S� S� Nair� An Iterative Combinational Logic Synthe�
sis Technique Using Spectral Information� Proceedings of the European Design
Automation Conference� pages
	��� September ����

���� D� Green� Modern Logic Design� Addison�Wesley� Reading� Massachusetts� ��	��

���� M� A� Thornton and V� S� S� Nair� A Numerical Method for Reed�Muller Circuit
Synthesis� Proceedings of the IFIP WG ���� Workshop on Applications of the
Reed�Muller Expansion in Circuit Design� pages ������ September ����

���� C� Y� Lee� Representation of Switching Circuits by Binary�Decision Programs�
Bell System Technical Journal� vol� 	��	
����� July ��
��

��� M� Mano� Digital Design� Prentice Hall� Englewood Cli�s� New Jersey� ��	��

���� R� E� Bryant� Symbolic Boolean Manipulation with Ordered Binary�Decision
Diagrams� ACM Computing Surveys� vol� ��� no� �����	� September �����

��
� S� Devadas� Comparing Two�Level and Ordered Binary Decision Diagram Rep�
resentations of Logic Functions� IEEE Trans� CAD�ICAS� vol� ��� no�
��������
May ����

���

���� R� Bryant� On the Complexity of VLSI Implementations and Graph Represen�
tations of Boolean Functions with Applications to Integer Multiplication� IEEE
Trans� Comp�� vol� ��� no� ����
���� February �����

���� F� J� Hill and G� R� Peterson� Computer Aided Logical Design With Emphasis
on VLSI� John Wiley % Sons� Inc�� New York� New York� ����

��	� D� Bryan� The ISCAS	
 Benchmark Circuits and Netlist Format� ISCAS��
Benchmark Documentation� ��	
�

���� M� Davio� J��P� Deschamps� and A� Thayse� Discrete and Switching Functions�
Mc�Graw�Hill� New York� New York� ���	�

�
�� P� Wayner� Silicon in Reverse� BYTE Magazine� vol� ���	�� �����

�
�� C� E� Shannon� Symbolic Analysis of Relay and Switching Circuits� Trans�
AIEE� vol�
�������� ��	�

�
�� D� K� Pradham �editor�� Fault�Tolerant Computing Theory and Techniques Vol�
ume I� Prentice�Hall� Englewood Cli�s� New Jersey� ��	��

�
� S� L� Hurst� The Application of Chow Parameters and Rademacher�Walsh Ma�
trices in the Synthesis of Binary Functions� Comput� J�� vol� ��� no� �� ����

�
�� S� Milak� A� R� Wang� R� K� Brayton� and A� Sangiovanni�Vincentelli� Logic
Veri�cation using Binary Decision Diagrams in a Logic Synthesis Environment�
Proceedings of ICCAD� pages ���� ��		�

�

� M� Fujita� H� Fujisawa� and N� Kawato� Evaluation and Improvements of Boolean
Comparison Method Based on Binary Decision Diagrams� Proceedings of IC�
CAD� pages ��
� ��		�

�
�� T� Sasao and P� Besslich� On the complexity of mod�� sum pla�s� IEEE Trans�
Comp�� vol� C��� no� ���������� February �����

�
�� U� R� Rollwage� The complexity of mod�� sum pla�s for symmetric functions�
Proceedings IFIP WG ���� Workshop on Applications of the Reed�Muller Ex�
pansion in Circuit Design� pages ����� Spetember ����

�
	� S� M� Reddy� Easily testable realizations for logic functions� IEEE Trans� Comp��
vol� C���� no� �����	���		� November �����

�
�� A� Sarabi and M� Perkowski� Fast Exact Quasi�Minimal Minimization of Highly
Testable Fixed�Polarity ANDXOR Canonical Networks� Proceedings of the IEEE
Design Automation Conference� pages ��
� �����

���� D�E� Muller� Application of Boolean Algebra to Switching Circuit Design and
to Error Detection� IRE Trans� Elec� Comp�� pages ����� September ��
��

���� A� Mukhopadhyay and G� Schmitz� Minimization of EXCLUSIVE OR and
LOGICAL EQUIVALENCE Switching Circuits� IEEE Trans� Comp�� C���� no�
��������� �����

���� T� �editor� Sasao� Logic Synthesis and Optimization� Kluwer Academic Publish�
ers� Boston� Massachusetts� ����

��

��� T�C� Bartee� I�L� Lebow� and I�S� Reed� Theory and Design of Digital Machines�
Mc�Graw�Hill� New York� New York� �����

���� V�H� Larney� Abstract Algebra A First Course� Prindle� Weber� and Schmidt�
Boston� Massachusetts� ���
�

��
� J� Jain� M� Abadir� J� Bitner� D� S� Fussell� and J� A� Abraham� IBDDs� An E��
cient Functional Representation or Digital Cir cuits� Proceedings of the European
Design Automation Conference� March �����

���� S� Minato� N� Ishiura� and S� Yajima� Shared Binary Decision Diagram with
Attributed Edges for E�cient Boolean Function Manipulation� Proceedings of
the ACM�IEEE Design Automation Conference� pages
��
�� �����

���� R� Wei and A� L� Sangiovanni�Vincentelli� PROTEUS� A Logic Veri�cation
System for Combinational Circuits� Proceedings of the International Test Con�
ference� pages
��
�� ��	��

��

