SPECTRAL BASED NUMERICAL METHODS

FOR COMBINATIONAL LOGIC SYNTHESIS

Approved by:

Dr. V. S. S. Nair

Dr. Dan I. Moldovan

Dr. Eric C. Lin

Dr. John D. Provence

Dr. Carlos E. Davila

Dr. Mandyam D. Srinath

SPECTRAL BASED NUMERICAL METHODS
FOR COMBINATIONAL LOGIC SYNTHESIS

A Dissertation Presented to the Graduate Faculty of the
School of Engineering and Applied Science
Southern Methodist University
in
Partial Fulfillment of the Requirements
for the degree of
Doctor of Philosophy
with a

Major in Computer Engineering

by

Mitchell Aaron Thornton

(B.S., Oklahoma State University, 1985)
(M.S., University of Texas at Arlington, 1990)
(M.S., Southern Methodist University, 1993)

August 4, 1995

COPYRIGHT 1995
Mitchell Aaron Thornton

All Rights Reserved

ACKNOWLEDGMENTS

There are many people who have provided support and encouragement dur-
ing the time I pursued my graduate studies. I would like to acknowledge all of my
Professors and in particular my advisor, V. S. S. Nair. His optimism and encourage-
ment provided me with considerable motivation for the completion of this work, but
above all, I value his friendship. I would also like to thank all the other members of
my advising committee for their valuable comments and suggestions which helped to
improve this dissertation considerably.

My family provided support for this work in many ways. The sacrifices that
my wife, Misty, and my son, Micah, endured during the time period this work was
undertaken are gratefully acknowledged and a testament to their support for me.
The instillation of the value of education and quest for knowledge in my life must be
attributed to my parents, Dennis and Mary Ann Thornton. They always encouraged
me to achieve my dreams and this work is a product of that encouragement.

Finally, I would like to acknowledge the financial support provided by Southern
Methodist University in the form of a teaching assistantship and that provided by a
grant from the National Science Foundation under contract MIP-9410822. Without

this support, this dissertation would not have been possible.

v

Thornton, Mitchell Aaron B.5., Oklahoma State University, 1985
M.S., University of Texas at Arlington, 1990
M.S., Southern Methodist University, 1993

Spectral Based Numerical Methods
for Combinational Logic Synthesis

Advisor: Assistant Professor V. S. Sukumaran Nair
Doctor of Philosophy degree conferred August 4, 1995

Dissertation completed May 17, 1995

Automated computer-aided design (CAD) methods for the synthesis of digital
logic circuits are typically employed to meet the demands imposed on todays’ chip
designers. As modern technology matures, the size and functionality of integrated
circuits tends to increase proportionally. The use of CAD techniques allows the
designer to expend more effort in the conceptual and behavioral specification portion
of the design process since the tedious task of translating the behavioral description
of a circuit into a structural one is handled by the automated synthesis system.
Unfortunately, the state of modern automated synthesis technology is still in its
infancy.

The development of CAD systems that are more mature and therefore capable
of solving a more general class of problems is an area of research whose results are
responsible for the enormous growth the electronic design automation (EDA) industry
has recently enjoyed. The most common approach in this research area is to expand
upon the principles used in current automated design tools which are typically rule
based systems. The research discussed in this dissertation describes the results of an
investigation into the use of spectral based numerical techniques to perform digital

logic synthesis.

The first phase of this research validates the approach of using spectral quan-
tities by describing a new method for their calculation. In the past, spectral methods
were judged to be inappropriate for automated logic synthesis systems since the nec-
essary calculations were far too time consuming to be exploited in an actual CAD
system. With the advent of an efficient method for computing the spectra, numeri-
cally based techniques provide a viable alternative to the methods that are commonly
employed in the commercial CAD systems in use today.

The second phase of this research describes three ways that numerical methods
may be used in the implementation of automated logic synthesis systems. Altogether
new approaches are developed as well as methods to augment existing CAD sys-
tems. The experimental results of these approaches show that numerical methods
are capable of solving many problems in the area of logic synthesis in an efficient and
timely manner. Further, the results show that the spectral approach offers superior

synthesis solutions for certain classes of circuits.

vi

TABLE OF CONTENTS

LIST OF FIGURES o e X
LIST OF TABLES s xii
Chapter
1. INTRODUCTION e 1
1.1. Modern Logic Synthesis Techniques 1
1.1.1. Synthesis Tools Using Don’t Care Sets 3
1.1.2. Synthesis Tools Using Permissible Functions 4
1.1.3. Other Approaches for Logic Synthesis 5
1.2. Spectral Based Synthesis Methods 6
1.3. Impact and Contributions of this Research 8
1.4. Organization 9
2. EFFICIENT CALCULATION OF THE SPECTRUM OF A BOOLEAN
FUNCTION . .. e 12
2.1. The Concept of Constituent Functions 14
2.2. Output Probabilities of Boolean Circuits 18
2.2.1. OPE Calculation Using Logic Equations as Input .. 23
2.2.2. OPE Calculation Using Logic Diagrams as Input . .. 24
2.2.3. OPE Calculation Using Binary Decision Diagrams
as Inputo o 26

2.3. The Relationship Between Output Probabilities and the Spectra 27
2.4. Efficient Spectral Calculations Using Output Probabilities .. 35
2.4.1. Applicability to Various Types of Circuit Descriptions 37

2.4.2. Implementation Using a Functional Description of the

Logic Circuit 39
2.4.3. Implementation Using a Structural Description of the
Logic Circuit 43
3. SYNTHESIS USING SPECTRAL BASED HEURISTICS 48
3.1. Description of the Synthesis Methodology 51

vii

3.1.1. Optimization Criteria
3.1.2. Spectral Heuristics for Decomposition
3.1.3. Maximum Subfunction Independence
3.2. Development of the Technique
3.2.1. Formulation of the Heuristics
3.2.2. Shannon Decomposition Forms
3.3. Implementation
3.3.1. Processing Flow
3.4. Examples and Results
4. SYNTHESIS USING MAXIMUM CORRELATION
4.1. Description of the Synthesis Method
4.1.1. Processing Flow of the Synthesis Technique
4.1.2. Mathematical Background of the Synthesis Technique
4.1.3. Formulation of the Transformation Matrix
4.1.3.1. Choosing the Constituent Functions
4.1.3.2. Cell Library Considerations
4.1.4. Rules for the Combining Gate
4.2. Implementation of the Iterative Method
4.2.1. Implementation Using an OBDD Input
4.2.1.1. Example Using an OBDD Input
4.2.2. Implementation Using a Truth Table
4.2.2.1. Example Using a Truth Table Input
4.2.3. Complexity of the Iterative Method
4.2.3.1. Complexity Using an OBDD Input
4.2.3.2. Truth Table Method Complexity

5. SYNTHESIS OF GENERALIZED REED-MULLER NETWORKS

viii

52
56
57
57
38
38
62
38
65
67
63
69
71
73
74
74
75
75
76
78
81
83
88
88
90
91

5.1. Review of the RM Transform and Generalized ESOP Forms . 92

5.2. Development of the Real-Valued RM Transform 97
5.2.1. Isomorphic Relationship of the RM Transform and
the Real-Valued Number System 99
5.2.2. Linear System Formulation of the RM Transform . 102
5.2.3. Example of the Computation of the RM Spectrum
Using Real Arithmetic 107
5.3. Efficient Computation of the RM Spectral Coefficients 109
5.4. Implementation of the Synthesis System 112
5.4.1. Experimental Results 112
6. CONCLUSIONS AND AREAS OF FUTURE RESEARCH 121
6.1. Conclusions 121
6.2. Contributions to Synthesis Methodologies 122
6.3. Future Research Directions 123
6.3.1. Extension to BDD Forms Other Than OBDD . . . 124
6.3.2. Application to Low Power Design 125
6.3.3. Design Verification 125
6.3.4. Finite State Machine Synthesis 126
REFERENCES 128

X

Figure
1.1.
1.2.
1.3.

1.4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

LIST OF FIGURES

Processing flow of a typical logic synthesis tool
Logic circuit and truth table before permissible function substitution
Logic circuit after permissible function substitution
Truth table of the function to be transformed using the RW matrix
Transformation matrix and corresponding constituent functions
Example of a binary decision diagram
Truth table for example OPE calculation using a logic diagram
Logic circuit example for OPE computation
Truth table for example OPE calculation using a logic diagram
Output probability calculation example

BDD of the composition function, f(x)- fo(x)

BDD of the composition function, f(x)- fo(x)
Diagram of a single iteration of the heuristic synthesis method
Flowchart of spectral based heuristic synthesis method
Diagram of the two level synthesis technique
Diagram of multi-level synthesis technique
Flowchart of two-level synthesis technique
OBDD of function for synthesis example

First iteration of two-level synthesis of example “function”

14

21

23

24

26

27

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

OBDD of the residual function after the first iteration 30
Final circuit using the design process 81

Truth table contents of the function to be synthesized using the

truth table as input o oo 84
First iteration of two-level synthesis of example function 86
Truth table contents of the function and error function 86
Final circuit using two-level design process 86

Truth table contents of the function and error function for the

second synthesis example o 0oL 87
Final circuit using multi-level design process 88
Venn diagram of various classes of ESOP functions 98

Binary decision diagrams of example function and composition
functiono 112

Block diagram of the generalized RM translation tool 117

xi

Table

10.

11.

12.

13.

14.

15.

16.

LIST OF TABLES
Page

Rules for Transforming Boolean Operations to Probability Expressions 19

A Zeroth Order Spectral Coefficient for each 15C AS85 Netlist 42
A First Order Spectral Coefficient for each ISCAS85 Netlist 43
The First 19 Chow Parameters for I.SCAS85 Circuit ¢432, Output

A21gat 44
The Last 18 Chow Parameters for 1.5C AS85 Circuit ¢432, Output

A2Tgat e 45
Spectral Coefficients for Various Constituent Functions and I.SC AS85

Circuits o 46
Correspondence of Labeled Inputs with Those in the Constituent

Functions o 46
Heuristics and Rules for the Synthesis Methodology 59
Chow Parameters for all Boolean Functions of 2 Variables 60

Shannon Decomposition Forms for AND/OR/INVERT Dominance . 61
Shannon Decomposition Forms for XOR/XNOR Dominance 63
Comparison of Spectral Based Heuristic Method with mesIT 66

Experimental Results of the Spectral Based Heuristic Logic Synthesizer 66

Truth Table of Example Function to be Synthesized 108
O Order RM Coefficients for Various Netlists 115
15 Order RM Coefficients for Output 329gat of 432 116

xii

DEDICATION

To Misty Dawn

CHAPTER 1

INTRODUCTION

Computer aided design (CAD) is now the standard approach for almost all
aspects of the design of digital electronic circuitry. The huge advances in very large
scale integration (VLSI) production techniques have provided motivation for the de-
velopment and use of automated design systems in order to handle the increasing
complexity in modern designs. Although CAD methods are used in the design of
most integrated circuits produced today, the underlying principles that form a basis
for the tools are still evolving. One example is the transition from schematic entry
systems which were popular in the early 1980’s to the use of hardware description
languages (HDLs) that are common in todays’ design environment.

The overall objective of a CAD tool is the transformation of a high level spec-
ification, subject to given design constraints, into a description of circuitry suitable
for production. This transformation is usually divided into a number of intermediate
steps. One of these steps is referred to as the logic synthesis step. This portion of

the CAD tool is the focus of the research results described in this dissertation.

1.1. Modern Logic Synthesis Techniques

Most logic synthesis tools generally decompose the process into 3 subsequent
steps which are illustrated in Figure 1.1. The logic synthesis system input is a de-

scription of the function to be synthesized. It usually is in the form of a Boolean

equation, set of covering cubes, or, an initial structural representation. The first step
minimizes the number of covering cubes, and ultimately the area required for the
realization. The next two steps are often referred to collectively as the technology
mapping portion. The technology mapper first decomposes the minimized descrip-
tion into a set of small interconnected subfunctions, and then it maps them to a
corresponding set of library cells. This latter step is usually called Boolean matching

or library binding.

Behavioral or Structural
Description

L

Logic
Minimization

Cell
Decomposition

Boolean
Matching

Technology lMapping

Specific Library Cells
and Interconnections

Figure 1.1. Processing flow of a typical logic synthesis tool

To date, the most successful logic synthesis systems have employed heuristics
that guarantee a pseudo-optimal result since the logic synthesis problem is N P-hard

[1]. These systems generally use algebraic manipulation of Boolean equations, or,

graph algorithms applied to an initial circuit structure. Since these methods are
based on heuristics in order to make the problem tractable, there is much room for
improvement. In particular, as optimization constraints change some approaches
may offer advantages over others. For instance, a system developed to optimize the
required substrate area may yield circuits with large critical paths, and hence, poor

timing characteristics.

1.1.1. Synthesis Tools Using Don’t Care Sets

One of the most popular and commonly used tools for area optimization is
ESPRESSO [2] [3]. This tool is based on the Quine-McCluskey (QM) method for
logic minimization [4] [5]. The QM algorithm is well suited for computer implemen-
tation, however it has an exponential complexity with respect to the number of input
variables. By clever exploitation of the don’t care set of cubes, a set of rules can be
obtained that may be applied to the function under consideration. The application of
these rules usually allows for a drastic reduction in the computational requirements
as compared to the QM method and results in a good two-level minimization.

The ESPRESSO algorithm is comprised of a series of functions that em-
ploy various heuristics. The first function, EX PAN D, replaces each original cube
by a set of all distinct cubes of one dimension higher provided that the replace-
ment cubes do not intersect the complement of the function. Next, the procedure
IRREDUNDANT is applied. IRREDUNDAN'T attempts to separate the the rel-
atively essential cubes from all others. After the application of IRREDUNDANT,

the REDUCE operation is invoked which attempts to determine as small a set as

possible of the relatively essential cubes that cover the function. These operations
and others are applied repeatedly until no further minimization is achieved.

The minimization of area can be enhanced further by representing a logic
function as a multi-level circuit instead of the two-level result such as that supplied by
ESPRESSO. This enhancement is at the cost of increasing the critical path length
since the two-level circuit always has a path length no larger than 2 multi-input logic
gates. A popular multi-level logic synthesis algorithm is M 1S [6]. This technique uses
an initial representation of the structure of the circuit as input. This representation
is “flattened” into an equivalent two-level representation where ESPRESSO-like
heuristics are applied. Next, the reduced two-level representation is decomposed into

small subcircuits which are subsequently matched to a given cell library [7].

1.1.2. Synthesis Tools Using Permissible Functions

The basic paradigm used in the creation of ESPRFESSO and MI1S was the
exploitation of don’t care sets to provide area minimization. Another popular syn-
thesis tool paradigm is the use of the concept of permissible functions. The first
synthesis tools to use this concept were the TRANSDUCTION and SY LON sys-
tems [8] [9]. Permissible functions have also been used recently to develop synthesis
tools by other researchers [10] [11].

In order to outline the concept of permissible functions, consider the circuit
shown in Figure 1.2. In the circuit in Figure 1.2 each internal node as well as the
primary inputs and output are labeled with a unique variable. The possible logic
levels for each of these nodes is given in the accompanying table. Each internal node

can be viewed as a logic subcircuit. With this viewpoint, a permissible function

—_—— O O
—_—0 = O
[R i
[R ==
_0 o O
S O O =
—_—0 OO =

Figure 1.2. Logic circuit and truth table before permissible function substitution

is any function that has the same output vector as that given in the table. Using
this definition, the permissible function for node f is {1,0,0,0}. Therefore, a two-
input NOR gate is a permissible function for f, resulting in an equivalent circuit
as shown in Figure 1.3. In more complex circuits, the intermediate output vectors
generally include don’t care terms allowing more flexibility in the choice of permissible

functions.

1.1.3. Other Approaches for Logic Synthesis
Although the two most popular logic synthesis paradigms have been described
above with some of the specific tools referenced, other less popular synthesis method-

ologies have been developed as well. Since the logic synthesis problem can be viewed

>

Figure 1.3. Logic circuit after permissible function substitution

as an optimization problem, various researchers have attempted to apply linear pro-
gramming methods, notably that in [12].

Another approach where considerable research has been accomplished is the
use of spectral methods for digital logic. These methods usually suffer from high
complexity restricting their usefulness to very small circuits. The spectral approach
is the subject of this dissertation since the research described here has yielded an

efficient method for the computation of Boolean spectra using numerical techniques.

1.2. Spectral Based Synthesis Methods

The great success of spectral techniques for signal analysis and linear systems
analysis and design prompted researchers to look for ways to apply these methods to
digital systems. The pioneering work of Karpovsky [13] and Lechner [14] are generally
regarded as the basis of subsequent work in this field.

The principles of spectral methods have been applied to many areas in digi-
tal systems engineering. Some of these include synthesis [13] [15] [16] [17] [18] [19],
partitioning techniques [13] [14][20] [21] [22], testing [23] [24] [25] [26], function clas-

sification [16] [27], and others. It has been shown that certain problems such as

6

disjoint decomposition [20] [21] and function classification [16] cannot be solved with
less complexity in the Boolean domain than in the spectral domain.

Spectral methods have not enjoyed wide acceptance due to the large complex-
ity required to compute the spectra using past methods. Even when fast spectral
computation methods such as those developed by Cooley and Tukey to compute
the discrete Fourier and later the more applicable Walsh transforms are applied [28]
[29], the calculation of the spectrum of a Boolean function still imposes exponen-
tial complexity. This large complexity arises because the O(NIgN) complexity of
the Cooley-Tukey method translates to O(n2") complexity for digital circuits since
N = 2" where n is the number of circuit inputs.

Most of the transformation matrices used in the past were orthogonal matrices
such as those constructed using Walsh functions, or, the Reed-Muller type. This
allowed the resulting spectrum to be unique for a given function, and easy translation
from the spectral to Boolean domains. Also, it allowed the Cooley-Tukey methods
to be applied resulting in a modest savings in the computations.

By definition, the spectrum of a Boolean function is obtained by multiplying
a transformation matrix by the function’s output vector [16]. The following example
illustrates an example calculation of a spectrum of a Boolean function whose truth
table is given in Figure 1.4. The Rademacher-Walsh spectrum of this function is
obtained by using a transformation matrix whose rows are composed of the Walsh
functions with a Rademacher ordering. For transformations using Walsh matrices,
the logic “0” values are represented using the integer “1”7 and the logic “1” values are

represented by the integer “1”7 The spectrum is computed as shown in Equation 1.

=

— ==, O OO O
OO O Ow
—OoO—R OO OW
O~ OO = O~

Figure 1.4. Truth table of the function to be transformed using the RW matrix

101 1 1 1 1 1 177 117 1 0°
11 1 1 -1 -1 -1 —1| | =1 4
1 1 -1 -1 1 1 -1 —1| | =1 1
L1 1 -1 1 =1 1-1] |-1]| _ 0 '
1 1 -1 -1 -1 -1 1 1 1] = 0 (1)
1 =1 1 -1 -1 1 -1 1 1 1
1 =1 =1 1 1 -1 -1 1| | =1 1
1 -1 -1 1 -1 1 1 -1 | 1] 0|

The usefulness of the spectral data is that it provides global information about
the nature of the function with respect to its inputs as opposed to the local infor-
mation provided by a truth table. A notable advantage of spectral methods is that
information regarding the XOR operation is readily available which is often not the

case when methods such as those described in the preceding subsection are applied.

1.3. Impact and Contributions of this Research

The results described in this work renew the interest in the use of spectral
methods since an efficient technique for the computation of the spectra is developed.
By reducing the average complexity for computing the spectral coefficients, new tech-

niques for logic synthesis are formulated. Past spectral based methodologies required

the entire spectrum to be used. Since an individual coefficient may be computed very
efficiently with the method presented here, emphasis is given to the development of
methods that require only small subsets of coefficients.

The efficient spectral calculation technique is also very general in that any
arbitrary transformation matrix may be used. This allows transformation matrices
other than those used in the past to be investigated. The alternative matrices need
not be orthogonal, or even square, since Cooley-Tukey algorithms are not used to
generate the spectrum. Also, the freedom to use arbitrary transformation matrices
allows problems such as Boolean matching to be customized to a specific transfor-
mation matrix corresponding to a given cell library.

The use of spectral coefficients in logic synthesis systems allow complex logic
cells to be included in the resulting design. In particular, the detection and inclusion
of the XOR operator is usually difficult to achieve since most synthesis algorithms rely
upon algebraic manipulations or graphical techniques. The properties of the XOR
operation are easily detected and exploited when spectral methods are applied. This
result is applicable to standard cell as well as field programmable gate array (FPGA)
design solutions since many manufacturers are producing FPGAs with basic logic

blocks that include the XOR gate.

1.4. Organization

The remainder of this dissertation is organized as follows. Chapter 2 pro-
vides a discussion of the development of the efficient spectrum calculation technique.
Chapters 3 and 4 present new algorithms for the synthesis of multi-level circuits that

are particularly well suited to the efficient computation method. Chapter 5 presents

the results that allow the efficient spectral computation method to be extended to
the case of the Reed-Muller (RM) form.

Chapter 2 is devoted to the development of the efficient method for the compu-
tation of the spectral coefficients. This work provides the necessary background and
results that allow the synthesis methods developed in later chapters to be practical.
In addition to the development of the technique, a brief review of the relevant prop-
erties of binary decision diagrams (BDDs) is presented since the BDD representation
is crucial to the technique.

In Chapter 3, a spectral based algorithm is described that uses the paradigm of
subfunction independence. This technique attempts to realize a circuit by successively
computing subcircuits with as much degeneracy as possible thereby allowing the
subcircuits to be minimized by the disregard of redundant inputs. In addition, this
method uses a small set of spectral coefficients and is capable of strictly enforcing
specified timing constraints.

In Chapter 4, an alternative technique is described using a maximum cor-
relation paradigm. The maximum correlation paradigm is useful because it allows
the transformation matrix to be customized for a particular cell library. The cus-
tomization results in combining the logic minimization and library binding tasks into
a single operation.

Chapter 5 describes how the efficient calculations can be applied to the realiza-
tion of the Reed-Muller (RM) form of digital circuits. Classic RM circuit realization
using spectral methods requires the use of modulo-2 arithmetic for the computation

of the coefficients. By developing the algebraic relation between modulo-2 and real

10

valued arithmetic, it is shown that the efficient spectral calculation technique may
be applied to Reed-Muller circuit synthesis.

Finally, conclusions and future research areas are given in Chapter 6. The
future research areas include extensions to the methods developed here in addition

to the use of spectral computations in other areas of CAD of digital systems.

11

CHAPTER 2

EFFICIENT CALCULATION OF THE SPECTRUM
OF A BOOLEAN FUNCTION

An efficient algorithm for the calculation of the spectrum of a Boolean function
is developed and presented in this chapter. In addition to providing efficiency in
the computations, the method is very general with no restrictions on the form of
the transformation matrix. Unlike other methods, the transformation matrix is not
required to be recursively defined or sparse. The efficiency of the technique is due
to the fact that it has complexity of the order of the number of edges in a binary
decision diagram (BDD) [30] [31].

Although new approaches for efficient spectral coefficient calculation schemes
have recently been proposed by other researchers, the method presented here has
many advantages in comparison. In particular, a recent method has been proposed
that utilizes “integer valued” BDDs [32] [33] [34]. Although this method computes
the resulting transform vector in a very compact method by representing it as an
integer valued BDD, the determination of each individual spectral coefficient requires
a separate evaluation of the BDD. Furthermore, the size of the integer valued BDDs
can become exponentially large if the transformation matrices used are not sparse
or recursively defined. Even for transformation matrices that are sparse or capable
of being defined recursively, this method can still generate extremely large integer

valued BDDs if the spectrum contains many dissimilar values. The method proposed

12

here compares favorably with this approach since a single spectral coefficient is com-
puted in time proportional to the number of edges in a BDD. Further, this method
does not require the transformation matrix to be recursively defined or sparse to
preserve the efficiency of the computation.

Another recently proposed methodology allows for the computation of trans-
form coefficients directly from a representation of a Boolean function as a set of
disjoint cubes [35] [22]. Unfortunately, as the number of inputs to the Boolean func-
tion grows, the corresponding set of disjoint cubes can become extremely large. The
method presented here has the advantage that the function to be transformed can
be represented in very compact manner (as a BDD) and does not require a large set
of product terms.

The formulation of this technique requires the use of probability expressions
for the output of the circuit to be synthesized. Circuit output probability expressions
(OPEs) have been used in the past in areas such as testing [36], analysis [37], and
verification [38]. This chapter discusses the use of output probabilities to compute
spectral coefficients in an efficient manner. To that end, a new algorithm to compute
circuit output probabilities is developed.

The primary reason for the reduction in computation complexity is due to
the fact that the output probabilities may be computed efficiently using a BDD
representation of the logic circuit. The formulation of the output probability expres-
sion requires exponential resources if the Boolean equations are transformed using
algebraic methods. However, when the circuit is represented in BDD form, the for-
mulation can be accomplished with O(||E||) complexity where || E|| represents the

number of edges in a BDD.

13

2.1. The Concept of Constituent Functions

The type of information that the spectral coefficients yield depends upon the
form of the transformation matrix. One way to interpret the meaning of each spectral
coefficient is to view it as a measure of correlation between two Boolean functions.
These two Boolean functions are the function being transformed, f(x), and a con-
stituent function, f.(x). With this viewpoint, the constituent function is a Boolean
function whose output vector is identical to the row vector in the transformation
matrix used to generate a specific spectral coefficient. Thus, a transformation ma-
trix may be represented as a collection of constituent functions each of whose output
vectors are identical to the various row vectors of the transformation matrix. As an
example, the transformation matrix in Figure 2.1 has the corresponding constituent

functions to the left.

ortr 1 1 1 1 1 1 17

x»x (1 1 1 1 -1 -1 -1 —1

x (1 1 -1 -1 1 1 -1 —1

xzs (1 -1 1 -1 1 -1 1 —1

r1+2, (11 -1 -1 -1 -1 -1 —1
r1+23 (1 -1 1 -1 -1 -1 -1 —1
ro+23 |1 -1 -1 -1 1 —1 -1 —1
r1+x+2s [1 -1 -1 -1 -1 —1 —1 —1]

Figure 2.1. Transformation matrix and corresponding constituent functions

Throughout the remainder of the dissertation, the following notation and def-
initions will be used to describe the development and implementation of the spectral

algorithms.

14

n is the number of input variables of a Boolean function.

Small case variables such as xg, =1, etc. denote Boolean variables that have

logic values of “1” or “0”.

Upper case variables such as Xy, Xj, etc. denote the probability that the
corresponding lower case Boolean variables are equal to a logic “1” value. These

quantities are real and exist in the interval [0, 1].

The operator symbol, “+7, will refer to the Boolean OR function or the addition

of real numbers depending upon the context of the equation in which it is used.

The operator symbol, “”, will refer to the Boolean AND operation. The ab-
sence of an operator between two adjacent values in a Boolean equation implies

the presence of the - operator.

The operator symbol, “x”, will refer to the multiplication of two real values.
The absence of an operator between two adjacent values in a real-valued equa-

tion implies the presence of the x operator.

The operator symbol, “@”, will refer to the Boolean XOR operation.

The operator, “p{}”, denotes the probability transform operator whose argu-
ment is a Boolean function. It will yield the probability that its argument is a
logic “1”. Unless otherwise noted, it is assumed that the input variables to the

Boolean function are equally likely to be “1”7 or “0”.

15

N,, 1s a positive integer that has a value equal to the number of outputs of
f(z) that are identical to those of f.(x) (number of matches) for all possible

common input combinations.

Npm 18 a positive integer that has a value equal to the number of outputs of
f(z) that differ from those of f.(x) (number of mismatches) over all possible

common input combinations.

S¢lfo(x)] is the spectral coefficient associated with the function, f(x), and the
constituent function, f.(x). A common definition of S¢[f.(x)] is S¢[f.(x)] =

Ny — Ny [39].

Rs(x) is a real-valued function that maps the output of a Boolean function,
f(x), from logic value “1” to —1 and logic value “0” to 1 for a given set of

input values, .

(' is a coeflicient of correlation between two real valued functions and is defined

as:

1 n—1

=5 Y [Ry(mi) x Rye(my)] (2)

=0

The spectral coefficient values may be interpreted as correlation measures

between the constituent functions and the transformed function. The actual rela-

tionship between a spectral coefficient and a coefficient of correlation is given in the

following lemma.

Lemma 1 The spectral coefficient, S¢[f.(x)] is directly proportional to the coefficient

of correlation between f(x) and f.(x).

16

Proof: As provided by the definition, the coefficient of correlation is given by Equa-
tion 2 as:

1 n—1

C = o7 2 [Ry(mi) x Rye(my)] (3)

=0
Where, m;, is the 2 unique minterm. Note that each product in the sum-
mation of the series is either 1 or —1. Thus we can replace Y7 [Ry(my) X Ry (ms)]
with N, — Ny . By the definition given above, S¢[f.(x)] = Ny — Ny . Substituting

S¢lfo(x)] into 2:

C = 5:51/u()] (4

Hence, S¢[f.(x)] is directly proportional to C' with a constant proportionality
coefficient of 1/2". 0
Similar results can be proven for other definitions of spectral coefficients. For
instance, the Reed-Muller transform [40] [41] can be defined using a vector of values
where each component is the number of matching logic “1” outputs (calculated as

o{f - f.} x2") between the function to be transformed and a constituent function.

2.2. Output Probabilities of Boolean Circuits

This section discusses the computations of circuit output probabilities by
briefly reviewing two methods used to compute output probability expressions (OPEs)
and then by directly computing a circuit output probability using BDDs. Also, an

example of a BDD for a specific logic function is presented.

17

The OPE of a combinational logic circuit is an algebraic relation that expresses
the probability that the circuit output is a logic “1” given the probabilities that the
input variables have the value of logic “1”7. It is possible to compute the OPE for a
given circuit by transforming its Boolean equation representation or by calculating
the OPE from a schematic diagram representation [36].

In [36], an algorithm is given to compute the OPE directly from a Boolean
expression. This method requires the function to be expressed in a canonical sum-
of-products (SOP) form. Each product term is replaced by an expression for the
probability that the product is at logic “1”7. The canonical SOP form must be used
since it is necessary for one and only one product term to be at logic value “1” for a
given set of inputs. This constraint serves to preserve statistical independence. The
rules in Table 2.1 are used to determine the probability expression for each product
in the canonical SOP form. This algorithm has a complexity that is exponential
with respect to the number of input variables since it requires the formulation of the

canonical SOP Boolean function.

Table 2.1.—Rules for transforming Boolean operations to
probability expressions

Boolean Boolean Probability
Operation Expression Expression
Inversion T 1-X5
OR 1+ 29 Xy + Xo — (Xy x Xy)
XOR 1 D x4 Xy + Xo —2(X; x Xy)
AND T Ty X, x Xo
Idempotence Property 1T X4

A more efficient algorithm for the computation of the OPE of a Boolean

function is also given in [36]. This method requires the function to be represented as a

18

logic diagram. In this formulation, each primary input, each internal interconnection,
and the output is assigned a unique variable name. Using the rules in Table 2.1, each
internal node is expressed as a function of the primary inputs. This step is performed
through subsequent substitutions until an expression is derived for the output variable
in terms of the primary input variables thus forming the OPE.

Although the OPE algorithm based upon circuit diagrams is efficient with
respect to the size of the circuit, many times it is desired to compute the spectral
coefficients of a circuit before it is realized. In particular, spectral based synthesis
algorithms typically use some compact representation of the function in a behavioral
or functional form as input. One compact way of describing a Boolean function
is to utilize its BDD, which provides the motivation for computing a circuit output
probability using a BDD description as input. For the purposes of computing spectral
coefficients, it is sufficient to compute the output circuit probability for the case where
the input variables are all equally likely to be “1”7 or “0”. Thus it is not necessary
to compute the OPFE and then evaluate it for the case where all X; = 0.5 since this
probability may be computed directly from the BDD.

A BDD is a graphical representation of a Boolean logic circuit that consists
of nodes representing input variables and function output values. These nodes are
interconnected by directed edges with the initial node and internal nodes representing
function input variables and the terminal nodes representing function output values.
Each internal node and the initial node has two directed edges pointing to another
node, one of the edges is activated if the input variable is at logic value “1”7 and the
other is activated if the logic variable is at logic value “07. A complete discussion of

BDDs may be found in [30] [31] [42]. In [31], some restrictions were placed upon the

19

formation of BDDs that allowed several efficient algorithms to be defined for their
manipulation. Specifically, it was required that the BDDs be formed as “ordered
binary decision diagrams” (OBDDs). This means that for any given path in the BDD,
a graph node corresponding to a particular input is only encountered once, and, that
subsequent input nodes have an index value greater than their predecessors. The
OBDD form is used in this development to ensure that each input node in a given
path is only encountered once thus ensuring statistical independence. As an example

of an OBDD, consider the function defined in Equation 5.

f(x) = 1125T6 + T1T324T6 + T1T3TaT5 + T102T4T6 + T102T4Ts + 17275 (5)

This function would require a truth table with 2° entries to be completely
specified. The BDD representation of this function in Figure 2.2 is quite compact
however.

The BDD-based algorithm for the calculation of the output circuit probability
does not have the exponential complexity of the algebraic method nor does it require
a circuit diagram description of the Boolean function. Only the functionality of the
circuit is required which can be expressed in a very compact manner using BDDs. In
the remainder of this paper, the OBDD form of BDD as defined in [31] is used some
of the BDD algorithms cited there are occasionally referenced as well.

The following lemma expresses an important result concerning the BDD of a
logic function.

Lemma 2 For any one particular combination of primary input values, at most one
path will be activated between the input node and node j where j is any node in the

BDD other than an input node.

20

Proof: If possible, let there be more than one path activated between the input node
and node j. This implies that at least one of the nodes between the input node and
J has both of its outgoing arcs activated for the given input condition which is an
impossibility in a BDD. Therefore, there is at most one path activated for a given
O

input condition.

It should be noted that a path may not exist between the input node and j

for certain input conditions.

Figure 2.2. Example of a binary decision diagram

21

The algorithm for computing a circuit output probability using the BDD of
the circuit and assuming that all inputs are likely to be “1” or “0” is described by

the following steps:
Probability Assignment Algorithm

1: Assign probability = 1 for the input node.

2: If the probability of node j = P;, assign a probability of %Pj to each of the

outgoing arcs from j.

3: The probability, Py, of node k is the sum of the probabilities of the incoming
arcs.
Lemma 3 In the probability assignment algorithm, the probability Py is the proba-

bility that there exists a path from the input node to the node k.

Proof: In the probability assignment algorithm given in the preceding, P is calcu-
lated as the sum of the probabilities of reaching node k through various paths from
the input node. From Lemma 2 all these paths are disjoint and therefore represent
disjoint probability events. Thus, Py is the probability of reaching node k from the
input node over all possible input variable combinations. a

This BDD based algorithm for the computation of circuit output probabilities
involves the traversal of the BDD from the input node to the terminal nodes. This
enables the output probability of a combinational logic circuit to be computed with
a complexity equal to O(]| F||), where || F|| is the number of edges or interconnections
in the BDD. During the traversal of the BDD, a probability is assigned to each node.

This is the probability that the node is reached for a given set of input variable

22

probabilities of the function. Each node probability is a member of a probability
space containing 2" experiments. The node probabilities have the desirable feature

of depending only upon their immediate predecessor node probabilities.

2.2.1. OPE Calculation Using Logic Equations as Input

As an example of the OPE calculation method using logic equations as input,

consider the function defined by the truth table in Figure 2.3.

T3 Ty 1 f
0 0 010
0 0 110
0 1 010
0 1 111
1 0 0]0
1 0 110
1 1 011
1 1 111

Figure 2.3. Truth table for example OPE calculation using a logic diagram

The canonical SOP form for this function is given in Equation 6.

flx) = Tawquy + 30271 + w3222 (6)

The resulting OPE using the rules in Table 2.1 is given in Equation 7.

F(X) — X2X1 —|— X3X2 - X3X2X1 (7)

23

2.2.2. OPE Calculation Using Logic Diagrams as Input

The OPE can be computed from a structural representation of a Boolean
function such as a netlist or logic diagram as well as a functional representation. As
an example, consider the logic diagram illustrated in Figure 2.4 that is a realization

of the Boolean equation:

f(2) = T ToT3Ty + T1To2324 + T1T2x3Ty + £1T2T3Ty + 1T223T4 (8)

X1
;)

E
X2 ‘
H
X3¢ D@ d D o f(x)
G

Figure 2.4. Logic circuit example for OPE computation

Using the variables assigned to each interconnection as shown in Figure 2.4
and the rules in Table 2.1, the OPE can be derived as follows. First, the rule for the

Inversion operator is applied:

F=1-C 9)

Next, the rule for the Inclusive-OR operator is used:

E=A+B—AB (10)

G=B+D—BD (11)

24

H=E+F—EF (12)

Simplifying the equation for H by substituting equations 9 and equation 10

yields:

H=1-C+AC+ BC — ABC (13)

Finally, the rules for the AND and Inversion operations are used:

I=1-HG (14)

This equation is simplified and the corresponding input probability variables

are substituted resulting in the OPE:

IT=1—-X; —Xyg+ XoXa+ Xa Xy — X1 X5 Xy — Xo XXy + X7 X X5X, (15)

Once the OPE has been computed, the probability that the output is equiva-
lent to a logic “1” value is expressed as a function of the probabilities that the primary
inputs are at a logic “1”7 value. For a fully specified Boolean function each primary
input will be at logic “1” precisely 2"7! times, hence the overall percentage of the
time the logic function is equivalent to a logic “1” may be obtained by substituting

0.5 for all primary input probabilities.

25

2.2.3. OPE Calculation Using Binary Decision Diagrams as Input

As an example of the OPE calculation, consider the Boolean function,

flz) =717 + 3 (16)

The truth table for equation 16 is given in Figure 2.5 and the the corresponding

BDD is given in Figure 2.6.

T3 Ty X1 f
0 0 01
0 0 110
0 1 010
0 1 110
1 0 01
1 0 111
1 1 011
1 1 111

Figure 2.5. Truth table for example OPE calculation using a logic diagram

It is easily seen from the truth table that the probability that the output is

a “1” is 2. Using the algorithm above, each node in Figure 2.6 is labeled with the

8
probability that it is reached, and it is seen that the terminal “1” node does indeed
have the value % = 0.625.

As mentioned before, this algorithm is applicable only to BDDs that are for-
mulated with restrictions on the variable orderings similar to those first presented in
[31]. The reason for this constraint is to ensure that no infeasible paths are utilized

in the node probability calculations. For example, if a node corresponding to variable

x; 1s the input node and this node is also present internally in the graph, the straight

26

forward application of the probability calculation would include the possibility of
assuming «; is at logic “1” on the input node and it is at logic “0” on the internal
node. This is clearly an infeasible path. To eliminate infeasible paths, it is sufficient

to constrain all parent nodes to have an index value less than their children nodes.

Figure 2.6. Output probability calculation example

2.3. The Relationship Between Output Probabilities and the Spectra

This section will develop some relevant properties of spectral coefficients that
are used in the derivation of the efficient spectral calculation algorithm. Two useful
properties of spectral coefficients are provided in the following two Lemmas that first

appeared in [39].

27

Lemma 4 For a given function f(x) and a given constituent function f.(x) the re-

sulting spectral coefficient is given by:

Sf[fc(x)] =2" = 2Ny = 2N, — 27 (17)

Proof: The maximum possible absolute value of a spectral coefficient occurs when a
row of the matrixis equal to the function output vector or when each component of the
vector is the negative of the corresponding entry in the transform matrix row. Hence,
the maximum possible absolute value of the spectral coefficient is |S¢[f.(x)]| = 2"
indicating 100% positive or negative correlation between f(x) and f.(z). Indeed
in this case, either f(z) = f.(z) or f(z) = f.(z). Each mismatch present in the
function output vector and the corresponding matrix row entry always produces a
product value of -1. Therefore, N,,,, mismatches result in a negative partial sum of
—Npm.-

The only other possibility is a match which is the complement of mismatches
and always produces a product value of +1. Since the spectral coefficient for and
f(z) and f.(x) is the difference between the number of matches, N,,, and the number

of mismatches, N,.:

Silfe(@)] = N = Nom
= N, —[2" = N,]
= 2N, —2"

28

Likewise, substituting N,,,,:

Silfe(@)] = No = Nom

= 2" =2Num

Hence, S¢[f.(z)] = 2" — 2N = 2N, — 27 O

Lemma 5 The following property of spectral coefficients holds:

Selfe(@)] = =55 fe(2)] (18)

Proof: Let the number of mismatches between the inverse of the constituent func-

tion, f.(x), be denoted by N/ and the corresponding matches denoted by N/ , thus,

N!' = Njpm. Using this fact and the results from Lemma 4:,

Silfx)] = 202N,
= 2" — 2N/
= (2N}, -2

= —=5ylfe(2)]

a

Since we can compute the spectral coefficients given the value N,, or N,
an efficient way to compute these quantities will in effect provide an efficient way

to calculate the spectral coefficients. Furthermore, if we know the percentage of

29

the matching outputs of a constituent function and the function to be transformed
(denoted by p,), we can easily compute N,, = p,,2". This observation is the basis
behind the algorithm to efficiently compute the spectral coefficients.

In order to determine p,,, we need to use logic equations that indicate when
the outputs of the constituent function and the function to be transformed match. It
is trivial to show that such logic equations can always be formed by using the logical
AND of these two functions for the case when both output a “1”7, and, the logical
NAND of these two functions when both output a “0”. A formal definition of these
types of functions follows:

Definition 1 A function that is formed by taking the logical AND or NAND of a

constituent function and a function to be transformed is called a 'composite function’

and is denoted by feomp().

Therefore, in order to compute the value p,, we only need to find the prob-
ability that both functions simultaneously output a logic “1”7 value (p,1) and the
probability that both functions simultaneously output a logic “0” value (pmo). By
forming the BDD of the two f.,mp(x) functions, p,o and p,,1 are simply the proba-
bilities that the terminal node of logic value “1” is reached.

In Lemma 6 an important result is given relating the spectral coefficients and
the feomp(x) functions. This result is presented by using the concepts of canonical
sum-of-products (SOP) and product-of-sum (POS) forms of Boolean expressions.
Lemma 6 N, = N, + N0, where N, is the number of minterm terms in a

canonical SOP form of f- f. and N, ts the number of maxterm terms in a canonical

POS form of fo+ f

30

Proof: All Boolean expressions may be expressed by indicating the output value
corresponding to each of its 2" minterms (this is in fact a truth table). A canonical
SOP form for a Boolean expression is the inclusive-OR of all minterms that produce
a logic “1”7 output [43]. Hence, the number of minterms present in a canonical SOP
expression represents the number of times the function output is at logic value “17.

Likewise, N, is equal to the number of maxterms in a canonical POS form
of f+ f. since this expression will be at logic “0” if and only if both f and f. output
“0” for a common set of inputs.

Since N, is the number of times a constituent function, f.(x), and a function

to be transformed, f(x), have identical outputs for a common set of inputs.

O
The relationship between the output probability of a composition function

and N, 1s established in Lemma 7:

Lemma 7
Nm:2n[1+@{f'fc}_@{f‘|‘fc}] (20)

Proof: p{f + f.} yields the probability that the function f + f. produces a logical
“17. Therefore, 1 — p{f + f.} is the probability that f + f. produces a logic “0”.

Since f 4 f. will output a “0” if and only if both f and f. are at “0”:

pro=1={f + 3 =1 - (Noo) 21)

31

Likewise, p{f - f.} yields the percentage of minterms of f - f. that produce a
logic “1” for the function, f - f.. Since f - f. will output a “1” if and only if both f

and f. are at “17:
1
Pt = S feb = 50 (Noua) (22)

Substituting Equations 21 and 22 into Equation 20 and observing that p,, =

Pmi1 —I' Pmo:

Thus, the definition of N,, is satisfied and the proof is complete. a
Based on the results of the previous Lemmas, it can now be proven that a

spectral coefficient may be calculated based upon circuit output probabilities.

Theorem 1

Silfe(@)] = 2" 1+ 2(p{f - fe} — p{S + [e})] (24)

Proof:

From Equation 17:
SyLF(w) = 2N, — 2" (25)
From Equation 20:
No =21+ o{f - fo} = o{/ + [}] (26)
Substituting 26 into 25 and simplifying:

32

Silfe(@)] = 2" 1+ 2(p{f - fe} — p{S + [e})] (27)

Corollary 1 A compact expression for S¢[f.(x)] is:

Sylfe(z)] = 2" [2pm — 1] (28)

Proof: From Theorem 1,

Silfe(@)] = 2" 1+ 2(p{f - fe} — p{S + [e})] (29)

Substituting Equations 21 and 22 into Equation 29:

Sylfe(@)] = 2"[2(pr1 + prmo) — 1] (30)

From the definition of p,,:

Sylfe(z)] = 2" [2pm — 1] (31)

a

This formulation allows a single spectral coefficient to be computed by per-
forming output probability calculations on the two compositions functions, f - f. and
f+ f.. Almost all applications that use spectral coefficients require those corre-
sponding to the constituent functions, f.; = z;, for all . These coefficients may be
obtained by computing only the output probability for one composition function if

the 0""-ordered spectral coefficient has been previously computed.

33

To develop this simplification, it is first noted that the elementary property

of probability theory given in Equation 32 holds.

ol f + [} =} +olfe} —olf - 1} (32)

Substituting this expression into Equation 27 results in the expressions given

in Equations 33 and 34.

Silfe(o)] = 2"[L+4p{f - fo} = 20{f} — 2p{/.}] (33)

Silfe(x)] = 2"[L —dp{f + fo} + 20{f} + 2p{/.}] (34)

The expression in Equation 33 holds for any general f.. However when f. is
equal to a single primary input, the p{f.} term is always equal to 1/2 since all primary
inputs will be at logic “1” and logic “0” the same number of times. This fact also
holds true for all constituent functions used to form the Walsh transforms (with the
exception of the 0 ordered coefficient). This simplifies the calculation by requiring
only the formation and evaluation of the output probability for the composition
function, f- f.. Since the term, p{f} is related to the 0** ordered spectral coefficient,
the expression to calculate the coefficients for this class of constituent functions is

given in Equation 35.

Sf[fci] = 2n(4@{f) fc} + 1) - S[O] (35)

These results show that the calculation of spectral coefficients is translated to

the problem of output probability calculations of the BDDs of composition functions.

34

It should be noted that in most methods that utilize spectral techniques for digital
logic circuits, f.(x) is much less complex than the function to be transformed, f(z).
For example, in the synthesis algorithm described in Chapter 4 a method for syn-
thesizing a function by decomposing it into a collection of much simpler constituent
functions is given. The decomposition is accomplished by using the information con-

tained in the corresponding spectral coefficients.

2.4. FEfficient Spectral Calculations Using Output Probabilities

In order to implement these results to formulate an algorithm for the compu-
tation of a spectral coefficient, the following observations are made. The value p,, is
obtained by using the BDD based output probability calculation algorithm presented
in Section 2.2. p,, is computed as the sum of p,o and p,,; which are obtained by
applying the output probability calculation algorithm to the BDDs formed by two

composition functions denoted by fl.omy() and f2omp(2). These composition func-

tions are given by fleomp(@) = fo() - f(2) and f2eomp(x) = fo(x) - f(2). Therefore,
the values p,,1 and pno are obtained with a complexity of O(||Ecomp||) Where Eeomyp
is the number of edges present in the BDDs of the two composition functions.

If the algorithm APPLY proposed in [31] is used to form the composition

is the num-

function BDDs, the resulting complexity is O(]| £y,

| £¢]]). Where ||y,

ber of edges in the BDD of the constituent function, f.(x), and ||E¢| is the number
of edges in the BDD of the function to be transformed, f(x). This bound is very
good since for most transforms the constituent functions are very small as compared
to the function to be transformed and many times ||| > ||£5,,,.,||- In the general

case

35

however, constituent functions may be as complex as the function to be transformed,
or, even more complex.

Thus, to form a spectral coefficient it is only necessary to apply the output
probability algorithm to the BDDs of the composition functions and then compute

the following:

pm1 = 9{f(x) - fe(w)} (36)

pmo = 9{f(x) - fe(w)} (37)

Selfe(x)] = 2"[2(pm1 + pmo) — 1] (38)

The algorithm for the efficient computation of spectral coefficients is stated

as:

Efficient Spectral Coefficient Computation Algorithm

1: Formulate the BDDs for the two composition functions using the APPLY
algorithm.

2: Use the output probability calculation algorithm to form the composition func-

tion BDDs.

3: Compute p,1 = p{f(x) - fo(z)} and puo = {f(z) - fo(2)}.

4: Compute S¢[fo(z)] = 2"[2(pm1 + pmo) — 1].

Since the bounding operation in this algorithm is the utilization of the APPLY
algorithm to form the composition function BDDs, computational complexity of this

).

algorithm is O(|| Fy|| x || £y,

36

2.4.1. Applicability to Various Types of Circuit Descriptions

This algorithm has allowed the computation of spectral coefficients for some
well known benchmark circuits to occur for the first time. Previous methods were
impractical due to both the storage and computation time required. As stated in [44]
empirical evidence has indicated that most Boolean functions of practical importance
may be represented with OBDDs that do not have an exponential number of nodes.
For this reason, the spectral computation described here is very applicable. However,
there do exist some functions for which the number of nodes is exponential regardless
of the variable ordering chosen [45] [46]. For these functions, the method presented
here is no worse than other methods for computation of the spectral coefficients, but
presents no savings in computation as well.

This technique may be applied to alternative representations of Boolean func-
tions also. In fact, it may be applied to any representation that may be used to
directly compute an OPE. As stated in [36], an OPE may be computed directly from
a canonic SOP form where all the product terms are minterms, but the worst case
complexity is exponential since an exponential number of minterms may be present in
the canonic form. The reason that a sum of minterms is required is to ensure that the
OPE transformation operations can be applied to each product term independently
thereby providing statistical independence. If the statistical independence were not
present, the idempotence rule would have to be used. This concept can be extended
further by allowing the calculation to occur using any SOP form as long as all of
the cubes are disjoint. Two cubes are defined to be disjoint, if one of them does not
cover the other and vice verse, or alternatively, if the SOP expression contains only

prime implicants [47]. This would preserve the property of statistical independence.

37

However, such lists of covering cubes can also become exponentially long for some
functions.

Another common representation is a structural one usually in the form of a
netlist expressed in an HDL, standard such as EDIF, or in terms of a PLA description.
Unfortunately, like the case when algebraic descriptions are used, the OPE must be
formulated first and then the output probability is obtained by evaluating it. Unlike
the use of algebraic descriptions there is no way to enforce statistical independence,
thus the OPE must be generated in a symbolic fashion in order to apply the idempo-
tence rule where needed. This method was in fact implemented and the results are
provided in a following section of this paper, but the results were not encouraging.
The one significant outcome of this experiment was that it is possible to compute
spectral coefficients if the input circuit is in two-level form. This occurs because
the formation of the OPEs at each internal interconnection remain very small until
they are combined at the final output. In fact this method did successfully compute
a spectral coefficient for a circuit containing well over 200 inputs. However, this
technique generally performs poorly when the circuits become large (more than 20

inputs) and are structured in a multilevel arrangement.

2.4.2. Implementation Using a Functional Description of the Logic Circuit
An example of the application of this algorithm to a 3-input logic function in

a functional form, a BDD, can now be given.

Example 1 Frample of the efficient calculation of a spectral coefficient using output

probabilities and BDDs.

38

The function to be transformed, f(x), is given by Equation 39.

flz) =TTy + a3 (39)

The constituent function for this example, f.(x), is given as in Equation 40.

fe(x) = a2+ 25 (40)

The BDD for Equation 39 is given in Figure 2.6. The BDD for the composition

function, f(x)- f.(x), is given in Figure 2.8 and the BDD for the composition function,

f(x) - feo(x), is given in Figure 2.7:

Figure 2.7. BDD of the composition function, f(z)- f.(x)

39

Figure 2.8. BDD of the composition function, f(z)- f.(x)

In order to compute the spectral coefficient determined by the constituent
function given in Equation 40, the values p,,; and p,,0 are computed using the output
probability algorithm. The node probabilities are shown on the composition BDDs.

These values are:

Pmo = 0.125 (42)

Next, the spectral coefficient is computed as:

Selfe(x)] = 2°[2(0.5 4 0.125) — 1] = 2 (43)

Applying the definition of a transform to this problem would have resulted in
computing the dot-product of two vectors with 2° elements each. The use of “fast”
algorithms proposed by [28] and [29] are prohibited since the inclusive-OR based
transform does not yield a sparse or recursively defined transformation matrix (the

structure of this transformation matrix for 3-input variables is given in Figure 2.1).

40

Further, the application of the spectral calculation algorithm presented in [32] [33]
[34] may result in the formation of a very large “integer-valued” BDD since the matrix
is not sparse and cannot be recursively defined.

In order to evaluate this algorithm on circuits typically encountered in in-
dustry, this method was implemented and several standard benchmark circuits were
used as input. The spectrum calculation algorithm was implemented using a popu-
lar OBDD package and by implementing the probability assignment algorithm using
the C' programming language. The probability assignment algorithm is similar to a
“breadth-first search” approach except that instead of each node in the BDD being
visited once, each traversal (or arc) in the graph is visited once. However, the com-
plexity is still of the order of the number of nodes in the BDD since every nonterminal
node has exactly 2 directed arcs leaving it.

The 15C AS85 benchmark circuits [48] were used as inputs to this implemen-
tation to provide the experimental results. The netlists were parsed and an OBDD
was created for each of them. Tables 2.2 and 2.3 contain spectral coefficients for a
selected output for each of the benchmark circuits. In addition to the 0** and 1** or-
dered coefficients, the sizes of the composite OBDDs are given thus providing a direct
representation of the time complexity and hence, execution time of this approach.
The OBDD size columns are labeled ||BDD|| and the number of nodes is given for
the original circuit, f, and the composite functions, f - f., and f + f..

Tables 2.2 and 2.3 also contains the number of inputs, n, and the netlist label
of the output that was used to create the OBDD. The spectral coefficients S(fu0)
and S(f.) are scaled by 2" for convenience thus they lie in the interval [—1,1]. The

two spectral coefficients are computed using the constituent functions, f.o = 0 and

41

fesi = x;. The specific netlist label for the input chosen as x; is also present in the

table.

Table 2.2.—A zeroth order spectral coefficient for each 1.5C AS585 netlist

Circuit | Output | n |BDD] S(f0)/2"

A NEY:

c432 421gat | 36 | 3970 | 3963 10 —7.068958 x 107!
499 od0 41 | 3378 | 6307 | 6307 | —9.921875 x 10!
880 878gat | 45 | 3101 | 2930 | 3100 | —2.779270 x 107!
c1355 | 1324gat | 41 | 3378 | 6307 | 6307 | —9.921875 x 101
¢1908 66 33 71 63 12 7.690430 x 107!
2670 308 122 | 219 219 216 9.338531 x 107!
3540 409 49 | 36071 | 36071 | 36099 | —2.162547 x 107!
¢h315 658 67 | 66552 | 43486 | 43485 | —5.000000 x 10~
c6288 | 4946gat | 24 | 17058 | 14387 | 6722 | —2.929688 x 10~
c7552 418 194 | 466 466 1 —9.999999 x 107!
Table 2.3.—A first order spectral coefficient for each I.SC AS85 netlist
Circuit | Output | n T |BDD] S(f)]2"

f | f : fc | f + fc |
c432 421gat | 36 dgat 3970 | 3963 10 —2.852917 x 1071 |
499 od0 41 1d13 3378 | 6307 6307 | —8.437500 x 107! |
|
|
|

880 878gat | 45 | 210gat | 3101 | 2930 | 3100 2.411922 x 107!
c1355 | 1324gat | 41 | 92gat | 3378 | 6307 | 6307 | —8.437500 x 107"
¢1908 66 33 952 71 63 12 4.923096 x 107!
c2670 308 122 69 219 219 216 3.890991 x 102 |
¢3540 409 49 213 | 36071 | 36071 | 36099 | —7.837453 x 107" |
¢H315 658 67 248 | 66552 | 43486 | 43485 | —7.827759 x 1073 |
c6288 | 4946gat | 24 | 273gat | 17058 | 14387 | 6722 | —2.441406 x 1072 |
c7552 418 194 | 150 466 466 1 —1.257285 x 1077 |

The set of spectral coefficients formed by using each primary input and the

constant logic function, f., = 0, are commonly referred to as the Chow parameters.

42

This subset of the Walsh coefficients is particularly useful in many areas of spec-
tral based CAD applications. Tables 2.4 and 2.5 contain the complete set of Chow

parameters for the benchmark circuit ¢432.

Table 2.4.—The first 19 chow parameters for I.SC AS85 circuit
c432, output 421gat

Constituent Function |BDD] Chow Parameter
Je [LI+ F S(fei)/2"
0 3970 [3970 | —7.068958 x 107!
r1 = 4dgat 3963 10 —2.852917 x 1071
r9 = lgat 3589 | 3335 2.433660 x 1071
x3 = 1lgat 3779 | 3653 | —2.318131 x 1072
xq = 1Tgat 3647 1860 3.022123 x 1072
xs = 24gat 3780 | 3655 | —2.318131 x 1072
rg = 30gat 3650 1862 3.022123 x 1072
xy = 3Tgat 3780 | 3659 | —2.318131 x 1072
rg = 43gat 3656 1866 3.022123 x 1072
xg = d0gat 3780 | 3667 | —2.318131 x 1072
10 = H6gat 3668 1874 3.022123 x 1072
x11 = 63¢gat 3780 | 3683 | —2.318131 x 1072
12 = 69¢gat 3692 1890 3.022123 x 1072
x13 = T6gat 3780 | 3715 | —2.318131 x 1072
r14 = 82¢at 3740 1922 3.022123 x 1072
15 = 89¢gat 3780 | 3779 | —2.318131 x 1072
16 = 9dgat 3836 1986 3.022123 x 1072
x17 = 102¢at 3844 | 3969 | —2.318131 x 1072
r18 = 108¢at 3963 1985 3.022123 x 1072

Many CAD applications require the use of constituent functions that are more
complex than single primary inputs. In order to demonstrate that this method is

applicable for more complex and generalized constituent functions, coefficients were

43

Table 2.5.-The last 18 chow parameters for 1.5C AS85 circuit
c432, output 421gat

Constituent Function |BDD] Chow Parameter
I f- L+ [S(fe)/2"

T19 = 8gat 2047 | 2947 1.474875 x 107!
Tog = 21gat 3649 | 3649 1.422319 x 1072
T91 = ddgat 3648 | 3648 1.422319 x 1072
Xoo = ATgat 3646 | 3646 1.422319 x 1072
o3 = 60¢gat 3642 | 3642 1.422319 x 1072
Toq = T3gat 3634 | 3634 1.422319 x 1072
Tos = 86gat 3618 | 3618 1.422319 x 1072
Tog = 99¢gat 3586 | 3586 1.422319 x 1072
Tor = 112¢gat 3522 | 3522 1.422319 x 1072
Tog = ldgat 3971 1668 7.755330 x 1072
X9 = 2Tgat 2818 | 3074 | —7.505239 x 10~3
30 = 40¢gat 2818 | 3010 | —7.505239 x 1073
31 = H3gat 2850 | 3010 | —7.505239 x 10~3
T3 = 66gat 2898 | 3042 | —7.505239 x 1073
x33 = 19¢gat 2954 | 3090 | —7.505239 x 1073
T34 = 92¢at 3014 | 3146 | —7.505239 x 10~3
35 = 105¢gat 3076 | 3206 | —7.505239 x 10~3
36 = 115gat 3139 | 3268 | —7.505239 x 10~°

computed for various circuits and arbitrary constituent functions. The constituent

functions selected are given by the following expressions:

Ja = 21D 2D as®ay D s
feo = TiTaxs + 21Ts5 + 12T5
fc3 = T1Dxs

Jo = 21D 1y

44

Table 2.6 contains the coefficients and the sizes of the BDDs for the constituent
functions given in the preceding. Table 2.7 gives the correspondence of the inputs z;

with the labeled inputs of the 1.5C AS85 circuits.

Table 2.6.—Spectral coefficients for various constituent functions and

I1S5C AS85 circuits

Constituent | ISCAS85 | Circuit |BDD] Scaled Spectral
Function Circuit [Output | f-f. [f+ /e Coefficient

Je1 880 878¢gat | 3045 | 3022 | 1.455054 x 1072

fe2 c432 421¢gat | 3659 3782 2.318131 x 1072

fe3 7552 276 208 208 | —1.250000 x 107!

fea ¢3540 369 16172 | 16174 8.553743 x 1077

Table 2.7.—Correspondence of labeled inputs with those
in the constituent functions

| Function | @y | @y | @3 | x4 | x5 |
fa 210gat | 268gat | 219gat | Sgat | 138gat
o2 dgat lgat — — 24gat
fes 4528 — — 1492 —
fea 169 50 58 63 20

2.4.3. Implementation Using a Structural Description of the Logic Circuit

The OPE generation method using logic circuits as input was also imple-
mented using the €' language. The motivation for this implementation was to observe
the size of the OPE polynomials in relation to the size of a given circuit. Further,
while many Boolean functions may be represented in a very compact manner by using
the BDD form, there does exist certain classes of functions that require an exponen-
tially sized BDD to be represented. A commonly known example of this phenomenon
is that of the multiplier circuit [46], others include the family of expressions given

in [45]. Clearly, the method for computing spectral coefficients given here will not

45

result in significant savings in time complexity when the size of the BDD is similar
to the size of the truth table specifying the circuit.

As expected, the sizes of the OPEs grew quite rapidly and contained a number
of OPE product terms of the order of the number of SOP product terms. It is
necessary to symbolically compute the OPE in polynomial form since the idempotence
property must be preserved when formulating the composition functions. This is not
necessary when the composition BDDs are created since the OBDD form is used.

Of the 10 ISC AS85 benchmark circuits, the OPEs were only successfully
computed for 1 circuit, ¢2670. The reason this occurred is because this circuit contains
many loosely interconnected subcircuits with small depth. Therefore, the polynomials
did not have a chance to grow extremely large. Practically all of the circuits had a few
outputs with small critical paths and for those outputs the OPEs were also computed
successfully. The interesting fact in this outcome is that ¢2670 has over 200 inputs.
This fact would render the application of the definition useless for computing the
spectrum since each coefficient would require the evaluation of a dot product of two
vectors containing well over 22°° elements each.

The conclusions of this experiment show that this method is better than the
definition for relatively small circuits since a structural description is often more
compact than its corresponding truth table. Also, this method is applicable to large
circuits that have a structure similar to circuit ¢2670. In fact, since all of the circuits
used to test this implementation were multilevel circuits, the results of the experi-
ment may be misleading. The problem occurred when the intermediate polynomials
grew very large. If the circuits were expressed in two-level form, the intermediate

polynomials would be quite small and only the resulting OPE of the circuit would

46

have a chance to grow too large. Therefore, this technique could be used as a viable
alternative for circuits whose OBDDs are too large provided that the circuits are

expressed in a two-level form.

47

CHAPTER 3
SYNTHESIS USING SPECTRAL BASED HEURISTICS

A synthesis technique using a subset of spectral coefficients is described in
this chapter. The previous chapter contains the development of a methodology to
compute a single spectral coefficient in an efficient manner, however most spectral
based methodologies require the entire spectrum to be computed [15] [16]. Although,
the computational method presented in the preceding chapter reduces the complexity
from exponential to polynomial in terms of the number of primary inputs for most
functions, the entire spectrum of a function still contains an exponential number of
coefficients. This fact provides the motivation for developing a method that uses
a subset of spectral coefficients to perform the synthesis. By using a subset of the
coefficients, each coefficient may be efficiently calculated and the number of these
computations is no longer exponential.

It has been shown that all 2" spectral coefficients are required to uniquely
represent a Boolean function when the Walsh family of transformation matrices are
employed [13] [49]. Thus, a method that uses a subset of coefficients must necessarily
employ heuristics since an exact solution cannot be obtained. The use of heuris-
tics in the synthesis of logic functions is very common and has led to some of the
most successful tools available today [3] [6]. The primary reason that heuristics are
commonly used to solve the synthesis problem is that most logic functions typically

encountered today have such a large output space that it is impractical to search for

48

the absolute optimal solution in terms of some minimization criteria. In fact, it has
been shown that the optimal solution in terms of minimal area (as measured by a
minimal number of implicants in the algebraic expression) is N P-hard to obtain [3].

The method that is presented in this chapter is developed to produce multi-
level circuits that may be optimized for area, device and interconnection minimiza-
tion, timing, and, testability. The one other most popular optimization criteria is
the minimization of power consumption. This algorithm does not incorporate that
criteria since it functions at the gate level. Most low power design methods employed
to date have relied on the use of efficient cells or architectural modifications such
as reducing operating frequencies, or, reducing operating voltages [50]. These tech-
niques are not applicable for gate level design other than ensuring the particular cell
library used is a low power library.

The optimization for timing versus area presents a well known tradeoff. In
order to ensure minimal delay, a two-level circuit composed of a maximally reduced
set of implicants is the best that can be achieved in terms of critical path length.
Alternatively, minimization of area and interconnections generally require a multilevel
circuit so that intermediate term sharing between a set of reduced implicants may
be exploited. As the number of levels of circuitry increase, so does the critical path
length. The approach used in this method is to generate a multilevel circuit, but
to allow the critical path lengths for particular variables to be controlled. This
is reasonable since many real world design problems are specified by considering
some valid input signals to be present at the inputs of the circuit before others.
Hence, to ensure minimal overall circuit delay, it is necessary for the paths to be

shorter for the inputs that arrive last. Further, by generating a multilevel circuit,

49

area and interconnection resources are reduced since at each stage of the synthesis,
the remaining portion of the function to be realized is chosen such that it exhibits
maximal redundancy allowing for primary inputs to be discarded. Finally, testability
is enhanced in this synthesis methodology by producing circuits that have an internal
fanout value no greater than two with the option (at the cost of increased area count)
of restricting it to one.

This method is also highly applicable for use in providing an initial circuit
structure to other area minimizers. Many of the current popular minimizers require
an initial form of the circuit as input [6] [8]. The final synthesized output can be
adversely affected if a highly inefficient input circuit was provided. Further, the
optimizations are usually performed by local changes over portions of the circuit,
thus the various delays for input variables tend to remain relatively equivalent. The
method described here can be used to provide an initial circuit with timing delays
strictly minimized and required area loosely optimized. The resulting circuit may
then be used as an initial representation for an area optimizer such as those described
in the introductory chapter.

Another advantage of this synthesis method is that a purely functional de-
scription of the circuit is used for the input form. This allows the synthesis to be
performed by automatically converting the logic relations expressed in an RTL de-
scription of system to OBDDs and then translating them to a gate level circuit. This
relieves the designer from the task of manually converting the RTL level relations
into initial circuit representations. Also, some of the current minimizers flatten the
input circuit into a two-level form in order to apply the minimization techniques. It

is not uncommon for designers to deal with circuits that are so large their two-level

30

form requires more memory than is available. The method proposed here generates
a multilevel circuit without resorting to first generating the two-level form.

The rest of this chapter is organized as follows. First, the synthesis method
is presented and an examination of the optimization criteria will be provided. Next,
the development of the method will be described in detail. The formulation of the
spectral heuristics will be explained and the use of the decomposition methods at
each stage of synthesis are discussed. Following the discussion of the philosophy
behind the technique, implementation issues will be discussed including the program

flow. Finally, some examples of this method are presented.

3.1. Description of the Synthesis Methodology

This synthesis technique produces a circuit by determining an output gate
first and working back toward the inputs. The output gate is chosen by using the
information contained in the subset of spectral coefficients commonly referred to as
the Chow parameters. Based upon the properties of the Chow parameters, a set
of heuristic rules are applied to choose the appropriate gate. The heuristics have
been formulated such that the chosen gate will be maximally correlated to the entire
function and hence the remaining portion of the function will be simplified. In order
to take advantage of the efficient method for computing the spectral coefficients, the
intermediate functions as well as the initial input function are represented in terms
of OBDDs.

At each stage of the synthesis, once the output gate is chosen, at least one
primary input is removed from each remaining intermediate function. Therefore, the

size of the intermediate function always decreases by at least one half. The particular

51

input that is chosen to be removed is determined by the optimization criteria. If tim-
ing optimizations are desired, the slower arriving inputs are removed first resulting in
fewer gates in their propagation path. If area and interconnection minimizations are
required, the input is chosen using the principle of maximal subfunction independence
resulting in the intermediate functions being as simple as possible.

Since at least one primary input is discarded at each step in the processing
flow of the synthesis technique, convergence is guaranteed. The criteria used in
this method may not necessarily realize the absolute optimal circuit, but acceptable

engineering solutions comparable with other popular logic synthesizers will result.

3.1.1. Optimization Criteria

This methodology supports optimization for area and interconnection mini-
mization, delay minimization, and, testability. This section will describe how each of
these criteria are included in the synthesis methodology. In addition, the tradeoffs
between these various optimizations are also discussed.

In the past, area minimization has generally been measured as the number
of implicants in a minimized cover of a function and the minimization of gates and
interconnections has been measured as the total number of literals in a minimized
cover [3]. The most common way of incorporating this type of optimization has
been by using the concepts of “don’t cares” [2] [6]. Another popular method that
has been exploited by many researchers is the use of “permissible functions” [8]. The
minimization criteria used in this implementation is the creation of intermediate func-
tions that are as degenerate as possible. Since a single primary input is guaranteed

to be removed at each stage of the synthesis, the resulting intermediate functions

52

will contain at least one less primary input. However, if the intermediate functions
also become degenerate, additional inputs may be discarded resulting in significantly
simpler functions remaining to be realized. Further, the determination of which if
any of the inputs are redundant is implicitly achieved since the intermediate func-
tions are represented by OBDDs formed by applying the REST RIC'T operation on
the original OBDD [44]. This occurs because an OBDD is defined as a BDD with a
specific variable ordering that has been maximally reduced [44]. Thus, a redundant
input cannot be contained in an OBDD.

In addition to the exploitation of intermediate function degeneracy, intercon-
nection optimization is achieved through the structure that a circuit synthesized by
this technique must have. Since each stage allows a single primary input to be dis-
carded from the next synthesis step, a characteristic overall circuit structure results.
Primary inputs are discarded through the use of the Shannon Decomposition [51] in
most cases. Various forms of this decomposition formula imply the structure of each
intermediate portion of the resulting circuit. Figure 3.1 depicts 3 possible forms for
a single iteration of this synthesis technique. By choosing forms that incorporate a
fanout of two, or, by even restricting those forms to no fanout, interconnections can
be minimized and they are also local to the current area of the circuit that is being
synthesized. This method does not result in gates near the input side of the circuit
to directly drive gates near the output end of the circuit. Thus, gates that are not
close together are decoupled within the resulting circuit minimizing interconnection

complexities.

33

PI

. GATE — f®
° fr(x)
[]
PI
GATE
S | frlx) L]
. | GATE £x)
GATE
Pl — —> s i
[[]
PI
GATE
s | fl
[J
GATE —| GATE fx)
T |
[]
GATE
b B 109!
[J

Figure 3.1. Diagram of a single iteration of the heuristic synthesis method

The timing optimization criteria results from discarding the primary inputs
from each intermediate function. When the designer supplies the OBDD of the circuit
to be synthesized, he must also supply timing information. Specifically, he must group

the inputs into classes that are ranked by the speed at which they will appear at the

o4

inputs to the resulting circuit. Fach class may contain a single input implying a
strict timing order of arrival or, at the other extreme, a single class may be specified
inferring that all signals will be present at the same time. The specification of these
classes in effect dictate the delay versus area tradeoff in the final result. If a strict
ordering is supplied, the synthesizer is forced to discard the primary inputs from the
intermediate functions in a specific order. Therefore, area minimization is achieved
only through the choosing of the particular output gate at each stage. It should be
noted that the heuristics that are used to determine the output gates were developed
with area minimization in mind so that a strict ordering does not necessarily cause
the resulting circuit to be overly large, it just removes a degree of freedom by not
allowing the synthesizer to choose the most prudent input to discard. Alternatively,
if all inputs are in the same class, implying that all will arrive at the input of the
circuit simultaneously, the synthesizer is allowed to choose the input to discard that
will most likely result in an intermediate function with a high degree of redundancy
as well as to choose which type of output gate to use. The practical way to specify
the timing classes is to order only those inputs that are critical in terms of arrival
time and to place all others in the same class. This will not only allow the synthesizer
to enforce the timing criteria but also give it maximum freedom for minimizing the
resultant area.

The third optimization criteria is that of testability. It is well known that
completely fanout free (CFOF) circuits are highly testable since they only require a
number of test vectors to detect any single stuck-at fault in the circuit equal to the

number required to test for a single stuck-at fault at the primary inputs [52]. By

)

choosing the decompositions at each stage of the synthesis to be such that no fanout

is generated, the resulting circuit will have no internal fanout and be highly testable.

3.1.2. Spectral Heuristics for Decomposition

This synthesis methodology employs a set of heuristics based upon properties
of the Chow parameters. The set of heuristics is used to choose the output gate at
each level of synthesis. The basis for the heuristics for the choice of the output gate
was the examination of the Chow parameters for all possible Boolean functions of
two variables. It is essential that the correct gate be chosen when only two primary
inputs remain in order to ensure that the synthesis algorithm terminates and does
not oscillate when this terminal condition occurs. The algorithm is thus guaranteed
to converge since a primary input is discarded at each intermediate stage and at
the terminal stage when only two primary inputs remain a gate is guaranteed to be
chosen that will result in termination of the algorithm. The following section will
describe the details concerning the development of these heuristics and it will list

them in a table.

3.1.3. Maximum Subfunction Independence
The other main idea in the implementation is the maximal redundancy test
used to determine which primary input to discard. Since the function to be realized
is in OBDD form, it is very efficient to apply the OBDD RESTRICT operation for
an input variable. The REST RICT operation returns a OBDD with a logic 1 or
0 substituted for all instances of a specified input variable. When the RESTRICT
operation is applied the returned OBDD will always depend on 1 less variable, and,

in many cases several other inputs will also become redundant. The maximal redun-

56

dancy algorithm computes the OBDDs for the restriction of each input and chooses

the input that results in the most redundancy.

3.2. Development of the Technique

The input to the synthesis program is an OBDD representing the circuit to
be synthesized. A queue is maintained that points to each intermediate OBDD to be
synthesized. Initially, the OBDD of the entire function is placed in the queue. At each
stage of the synthesis, an OBDD is popped from the queue. If the OBDD depends
on 2 or more inputs, the Chow parameters are computed. Based upon the Chow
parameter heuristics, an output gate is chosen. Once the output gate is chosen, the
primary input to discard from the remainder functions must be obtained. If there is
a timing optimization, the primary input corresponding to the largest arrival time is
chosen. Otherwise, the maximal redundancy test is applied to choose the appropriate

primary input to be discarded.

3.2.1. Formulation of the Heuristics

The heuristics were derived by observing the Chow parameters for all 16 pos-
sible Boolean functions of 2-variables and by exploiting the properties of spectral
coefficients. The set of rules are organized in a hierarchical manner so that the rules
providing the simplest residual OBDDs are chosen first. Table 3.1 contains the list
of heuristics and rules used in the synthesis tool. The heuristics in Table 3.1 is in-
complete and more will be added. The value o is defined as the sum of the first
order spectral coefficients as given in Equation 44 and fo;, f1; represent the functions

expressed in Equations 45 and 46.

57

fOZf(xlv"

flzf(xlv"

.,:1;2'_1,0,:1;24_1, ce

e L1, 1,$Z'_|_1, Ce

Table 3.1.—Heuristics and rules for the synthesis methodology

MAIN SECONDARY FUNCTION
HEURISTIC HEURISTIC CHOICE
[S(0)] =27 5(0) <0 f=1

S(0) >0 f=0
BE=7 S0 <0 =
S(xi) >0 f=ai
[SCa)ll =27 = [1S0)[[| 5(0) <0 and S(z;) <0 | f=Ti+ [y
S(0) <0and S(z;) >0 | f=x,4+fo
S(0)>