Addition-based exponentiation modulo $\mathbf{2}^{\boldsymbol{k}}$

A. Fit-Florea, D.W. Matula and M.A. Thornton

A novel method for performing exponentiation modulo 2^{k} is described. The algorithm has a critical path consisting of k dependent shift-and-add modulo 2^{k} operations. Although 3 is the preferred exponent base, the algorithm can be extended easily in order to perform the general binary powering operation.

Introduction and background: The basic integer arithmetic operations of addition/subtraction, multiplication and division are implemented typically in hardware using k bits of precision with k usually 16,32 , or 64 , and up to 1024 in the case of cryptography. Having a precision limited to k bits makes the arithmetic operations equivalent to their corresponding residue arithmetic modulo 2^{k} operations along with appropriate overflow handling. When the hardware support does not include a large multiplier, there is a particular need for additive bit-serial algorithms for these and additional residue operations. In this Letter we present a bit-serial algorithm for the fundamental residue arithmetic operation of powering (or exponentiation). Following [1] we herein employ $|n|_{2^{k}}=j$ to denote the congruence relation $n \equiv j\left(\bmod 2^{k}\right)$ with the residue j satisfying $0 \leq j \leq 2^{k}-1$.

When computing the exponentiation operation $\beta^{e}\left(\bmod 2^{k}\right)$ of a basis β (our preferred case is $\beta=3$), usually some variation of the square-andmultiply algorithm is being employed. In this method the squaring operation is performed sequentially obtaining $\left|3^{2^{1}}\right|_{2^{k}},\left|3^{2^{2}}\right|_{2^{k}},\left|3^{2^{3}}\right|_{2^{k}}$, $\ldots,\left|3^{2^{k-1}}\right|_{2^{k}}$. From these residues a subset is selected to be part of the product corresponding to $\left|3^{e}\right|_{2^{k}}$:

$$
\begin{equation*}
\left|3^{e}\right|_{2^{k}}=\left|3^{\sum_{i \in B_{e}}\left(2^{i}\right)}\right|_{2^{k}}=\left|\prod_{i \in B_{e}} 3^{2^{i}}\right|_{2^{k}}=\left.\left.\left|\prod_{i \in B_{e}}\right| 3^{2^{i}}\right|_{2^{k}}\right|_{2^{k}} \tag{1}
\end{equation*}
$$

The exponent e is expressed as a sum of powers of 2 reflecting its binary representation, and B_{e} is the set of weights for the 1 digits in the binary representation of e. For example $B_{19}=\left\{\begin{array}{lll}0, & 1, & 4\} \\ \text { since }\end{array}\right.$ $19=2^{0}+2^{1}+2^{4}$.

Using a square-and-multiply method, $O(k)$ squaring and $O(k / 2)$ multiplications modulo 2^{k} are to be performed in the worst case [2]. Storing in a k-entries lookup table the results of the squaring operations $\left|3^{2^{i}}\right|_{2^{k}}$ reduces the computations needed to $O(k / 2)$ multiplication modulo 2^{k}. In the following we present a method that virtually replaces each multiplication with one shift and two concurrent add modulo 2^{k} operations, thus having the potential to improve a hardware implementation in both area and time over a square-and-multiply method implementation.

Relevant algebraic properties: We note the fact that the exponentiation modulo 2^{k} is cyclic with period 2^{k-2} [3], hence we consider w.l.g. the exponents e to be in the range $0,1, \ldots,\left(2^{k-2}-1\right)$. The algebraic property that makes possible expressing any exponent e as a sum of powers of 2 is the fact that $\mathcal{B}=\left\{2^{i}: 0 \leq i<(k-2)\right\}$ is a basis for the additive group of residues e modulo 2^{k-2}. Decomposing e as a sum of elements of another basis still produces a correct result. In the following we present such a basis and show that using it has the advantage of eliminating the need for multiplications when computing the exponentiation modulo 2^{k}.

We denote the discrete logarithm modulo 2^{k} with logarithmic base 3 of A (in case it exists) by $\operatorname{dlg}(A)$. This simply represents the exponent e such that 3^{e} is congruent with $\left(A \bmod 2^{k}\right)$. That is: $|A|_{2^{k}}=\left|3^{d \operatorname{dlg}(A)}\right|_{2^{k}}$. For more details the reader is referred to [3]. Also from [3], we mention the following result:

Lemma 1: Let ρ be a residue modulo 2^{k} of the form

$$
\begin{equation*}
\rho=1+2^{i}+2^{i+1} \varrho, \quad 2<i<k, \quad 0 \leq \varrho<2^{k-i-1} \tag{2}
\end{equation*}
$$

Its corresponding discrete logarithm $\operatorname{dlg}(\rho)$ is then of the form

$$
\begin{equation*}
d l g(\rho)=2^{i-2}+\delta_{\rho} \times 2^{i-1}, \quad \text { for some } \delta_{\rho}, \quad 0 \leq \delta_{\rho}<2^{k-i-1} \tag{3}
\end{equation*}
$$

We use τ_{i} to denote what we call the two-ones residues modulo 2^{k} : $\tau_{i}=\left|2^{i}+1\right|_{2^{k}}$. The following observation comes as a direct consequence of Lemma 1 .

Observation 1: The discrete logarithm of two-ones residues τ_{i} is of the form:
$d l g\left(\tau_{i}\right)=2^{i-2}+2^{i-1} \times \theta_{i}, \quad 2<i<k, \quad$ for some $\theta_{i}, \quad 0 \leq \theta_{i}<2^{k-i-1}$
In Table 1 we show the two-ones residues and their corresponding discrete logarithms for $k=8$. As it can be inferred directly from Observation 1, the set $\mathcal{B T}=\left\{\operatorname{dlg}\left(\tau_{i}\right): i=1,3,4, \ldots,(k-1)\right\}$ represents a basis for residues $e, 0 \leq e<2^{k-2}$, in the sense that, again, any exponent e can be represented as a sum of elements from $\mathcal{B T}$. Consequently, $\left|3^{e}\right|_{2^{k}}$ can be expressed as a product:

$$
\begin{align*}
\left|3^{e}\right|_{2^{k}} & =\left|3^{\sum_{i \in \beta_{e}} d l g\left(\tau_{i}\right)}\right|_{2^{k}}=\left.\left.\left|\prod_{i \in \beta_{e}}\right| 3^{d l g\left(\tau_{i}\right)}\right|_{2^{k}}\right|_{2^{k}} \\
& =\left|\prod_{i \in \beta_{e}}\left(2^{i}+1\right)\right|_{2^{k}}=\left|\prod_{i \in \beta_{e}} \tau_{i}\right|_{2^{k}} \tag{4}
\end{align*}
$$

for a set β_{e} of indices unique to any e. Once the set β_{e} is known, $\left|3^{e}\right|_{2^{k}}$ can be computed as a product of two-ones residues. Multiplying by $\tau_{i}=\left(2^{i}+1\right)$ has the advantage that it can be performed as a modulo 2^{k} shift-and-add operation: $A \times \tau_{i}:=A+A \ll(i)$, thus eliminating the need for a multiplier. In the following we show an algorithm for selecting the elements of sets β_{e} in a serial fashion.

Table 1: Two-ones discrete \log table for $k=8$

i	τ_{i}	$d \lg \left(\tau_{i}\right)$
1	00000011	000001
3	00001001	000010
4	00010001	110100
5	00100001	101000
6	01000001	010000
7	10000001	100000

Exponentiation modulo 2^{k} algorithm:

Stimulus: An exponent e (modulo 2^{k-2}).
Response: $\left|3^{e}\right|_{2^{k}}$.
Method: L1: $P:=1 ;\left|e^{\prime}\right|:=e$;
L2: if $\left(e_{0}^{\prime}=1\right)$ then $P:=11 ;\left|e^{\prime}\right|:=e^{\prime}-1 ;$
L3: for i from 1 to $(k-3)$ do
L4: if $\left(e_{i}^{\prime}=1\right)$ then
L5: $\quad e^{\prime}:=\left|e^{\prime}-\operatorname{dlg}\left(\tau_{i+2}\right)\right|_{2^{k-2}}$;
L6: $\quad P:=\left|P+|P \ll(i+2)|_{2^{k} \mid} 2^{k}\right.$;
L7: Result: P.

The initialisation is performed in lines L 1 and L 2 . The product P is set to either 1 or 11 (corresponding to $e=0$ or $e=1$). The working variable exponent e^{\prime} is always set in such a way that P corresponds to 3 raised at exponent $\left(e-e^{\prime}\right)$ and the least significant i digits of e^{\prime} are all 0 s . The algorithmic step of lines L3 - L6 is updating e^{\prime} by subtracting $\operatorname{dlg}\left(\tau_{i}+2\right)$, the exponent of $\tau_{i}=\left(2^{i}+1\right)$, and the product P to reflect the changes in exponent, $P:=P \times\left(2^{i+2}+1\right)$. Eventually, after $(k-2)$ steps, e^{\prime} becomes 0 and the 'product' P corresponds to $\left|3^{e-0}\right|_{2^{k}}=\left|3^{e}\right|_{2^{k}}$. The values $\operatorname{dlg}\left(\tau_{i+2}\right)$ can be computed beforehand (e.g. using the algorithm described in [3]), and stored in a lookup table of uncompressed size $(k-2)^{2}$ bits.

Fig. 1 Iterative loop for L3-L6 of algorithm 1

The algorithm has a critical path determined by $(k-2)$ dependent shift-and-add modulo 2^{k} operations. This is because the subtractions of lines L5 and L6 can be performed concurrently. An extension of the algorithm for computing exponentiation of a base β different than 3 is suggested in the section entitled 'Base exchange for discrete logarithm modulo 2^{k}, of [3]. The same formula that works for regular logarithms can be employed:

$$
\begin{equation*}
\beta^{e}=3^{e \times d l g(\beta)} \tag{5}
\end{equation*}
$$

Using it comes at the cost of computing an extra $\operatorname{dlg}(\beta)$ while keeping the same tables.

Fig. 1 is a schematic diagram of an implementation of the datapath portion of the algorithm. It implements the iterative portion of the algorithm described in lines L3-L6. This circuit consists of a counter, a small lookup table that may be in compressed form, and two add/accumulate units. The value of P is stored in shift-registers that shift content to the left. These values are replaced by multiples of 2^{i+2} depending on the value of each e_{i}^{\prime} bit.

(C) IEE 2005

22 October 2004

Electronics Letters online no: 20057538
doi: 10.1049/el:20057538
A. Fit-Florea, D.W. Matula and M.A. Thornton (Southern Methodist University, PO Box 750122, Dallas, TX 75275, USA)
E-mail: alex@engr.smu.edu

References

1 Szabo, N.S., and Tanaka, R.I.: 'Residue arithmetic and its applications to computer technology’ (McGraw-Hill, New York, 1967)
2 Lam, K.-Y., and Hui, L.C.K.: 'Efficiency of SS(1) square-and-multiply exponentiation algorithms', Electron. Lett., 1994, 30, (25), pp. 21152116
3 Fit-Florea, A., and Matula, D.W.: 'A digit-serial algorithm for the discrete logarithm modulo 2^{k}. IEEE 15th Int. Conf. on Applicationspecific Systems, Architectures and Processors, ASAP, 2004

