Additive bit-serial algorithm for discrete logarithm modulo 2^{k}

A. Fit-Florea, D.W. Matula and M.A. Thornton

A novel algorithm for computing the discrete logarithm modulo 2^k that is suitable for fast software or hardware implementation is described. The chosen preferred implementation is based on a linear-time multiplier-less method and has a critical path of less than k modulo 2^k shift-and-add operations.

Introduction and summary: Hardware capabilities for integer arithmetic generally include addition, multiplication, and division with precision k typically chosen as 16, 32 or 64. Multiplication and division are often implemented by recursive bit serial algorithms employing O(k) serial additions to avoid the size and power requirements of a large multiplier. The integer addition and multiplication operations realised are effectively 'exact' residue arithmetic operations with modulo 2^k .

Hardware support for applications where fast residue arithmetic computation is desirable is typically limited to only residue addition and multiplication. There is a need to find efficiently implementable algorithms for other fundamental residue operations for the 'hardware friendly' modulus 2^k . Furthermore, for implementations where hardware support does not include a large multiplier, there is a particular need for additive bit-serial algorithms for these additional residue operations.

The fundamental residue arithmetic operations supplementing residue addition and multiplication of particular interest for feasibility of hardware implementation are: multiplicative inverse, powering (or exponentiation), and discrete logarithm. Following [1] we herein employ $|n|_{2^k} = j$ to denote the congruence relation $n \equiv j \pmod{2^k}$ with the *residue j* satisfying $0 \le j \le 2^k - 1$. The *discrete logarithm* modulo 2^k with logarithmic base 3dlg(j) = e of an odd residue j, $1 \le j \le 2^k - 1$, is the minimum exponent *e*, when it exists, such that $|3^e|_{2^k} = j$. Similarly, $e = dl_{g(\beta,M)}(j)$ represents the discrete logarithm modulo *M* with logarithmic base β of *j*: $|\beta^e|_M = j$.

From [2–4], $dl_g(j)$ exists whenever $|j|_8 \in \{1, 3\}$, and also $0 \le dl_g(j) \le 2^{k-2} - 1$. Furthermore, for any odd residue *j* with $1 \le j \le 2^k - 1$, there is a unique sign, exponent pair (s, e) with $s \in \{0, 1\}, 0 \le e \le 2^{k-2} - 1$ such that

$$|(-1)^s \times 3^e|_{2^k} = j \tag{1}$$

In [3] we showed that the pair (s, e) of (1) can be determined from the odd input *j* employing O(k) dependent modular multiplications. Our main result in this Letter is showing how to determine the pair (s, e) by a bit serial (shift-and-add) algorithm employing only O(k) dependent additions and a lookup table of size roughly k^2 bits.

Discrete logarithm modulo 2^k —*algebraic properties:* Lemma 1 represents the core result for Algorithm 1. We omit a formal proof and instead proceed with pointing out the essential mathematical properties that lead to a constructive proof and its corresponding algorithm.

Lemma 1: For any $k \ge 2$, every odd integer *j* with $1 \le j \le 2^k - 1$ has a unique modular factorisation

$$j = \left| (-1)^s \prod_{i \in I_j} (2^i + 1) \right|_{2^k}$$

with factor selection specified by $s \in \{0, 1\}$ and $I_j \subseteq \{1\} \cup \{3, 4, \dots, k-1\}$ for $k \ge 3$.

Notationally we use a_j as shorthand for the *j*th digit of A, and a_j^i for the *j*th digit of A_i . Also, we will call a residue $\tau_i = |2^i + 1|_{2^i}$, $3 \le i \le k$ to be a *two-ones residue*. The key advantage of multiplying by two-ones residues τ_i is that a multiplication by τ_i can be performed simply as a less expensive shift-and-add operation:

$$P_i \times \tau_i = P_i + P_i \ll i$$

where $P_i \ll i$ represents an *i* bits left shift of P_i .

Our method consists of three stages. The first stage is initialising $P_2 = A$. The second stage and main iteration step is updating

 $P_{i+1} = |P_i \times B_i|_{2^k}$. Values B_i are to be selected in such a way that after (k-2) steps $P_k \equiv |1|_{2^k}$ is obtained. Finally, in the third stage, the discrete logarithm modulo 2^k of A is readily available. This because $P_k = |A \times \prod_{i=2^k}^{i \leq k} B_i|_{2^k} = 1$, and we have:

$$\left| dlg(A) + \sum_{i=2}^{i \le k} dlg(B_i) \right|_{2^{k-2}} = 0, \text{ hence: } dlg(A) = \left| -\sum_{i=2}^{i \le k} dlg(B_i) \right|_{2^{k-2}}$$

can be directly computed if $dlg(B_i)$ are all known and $P_k \equiv |1|_{2^k}$. For more mathematical details the reader is referred to [3]. We choose $B_i = \tau_i$ and update P_i such that its last *i* digits become 00...01 (i.e. $|P_i|_{2^i} = 1$):

Observation 1: Whenever the binary digit p_i^i of P_i equals 1 (i.e. $|P_i|_{2^i} = 1$), multiplying P_i with the two-ones residue $\tau_i = (2^i + 1)$ results in a product $P_{i+1} = P_i \times \tau_i$ that is congruent with 1 modulo 2^{i+1} . That is:

$$P_{I} \equiv |2^{i} + 1|_{2^{i+1}} \Rightarrow P_{i+1} = P_{i} \times \tau_{i} \equiv |1|_{2^{i+1}}$$

When the binary digit p_i^i of P_i equals 0, P_{i+1} can be set to $P_{i+1} = (P_i \times 1)$ and it is still congruent with $|1|_{2^{i+1}}$.

We show in Table 1 the (valid) 8-bit dlgs associated with the corresponding two-ones residues (i.e. $\tau_i \equiv 3^{dlg(\tau_i)}$). Also, in the last column we suggest how the updating of the partial products P_{i+1} works when $p_i^i = 1$ and values τ_i are to be used. The values $dlg(\tau_i)$ can be precomputed using any dlg method, e.g. the one we presented in [3]. Storing these values in a table requires a lookup table of uncompressed size smaller than k^2 bits.

Table 1: Two-ones discrete log table for k = 8

i	τ_i	$dlg(\tau_i)$	$P_i \times \tau_i \rightarrow P_{i+1}$
3	0000 1001	00 0010	$p_7^3 p_6^3 p_5^3 p_4^3 \ 1001 \times 1001 \rightarrow p_7^4 p_6^4 p_5^4 p_4^4 \ 0001$
4	0001 0001	11 0100	$p_7^4 p_6^4 p_5^{41} \ 0001 \times 1 \ 0001 \rightarrow p_7^5 p_6^5 p_5^{50} \ 0001$
5	0010 0001	10 1000	$p_7^5 p_6^5 10\ 0001 \times 10\ 0001 \to p_7^6 p_6^6 00\ 0001$
6	0100 0001	01 0000	$p_7^6 100\ 0001 \times 100\ 0001 \to p_7^7 000\ 0001$
7	1000 0001	10 0000	$1000 0001 \times 1000 0001 \to 0000 0001$

Shift-and-add DLG algorithm:

Stimulus: A modulus 2^k with $k \ge 3$ and an odd valued residue $A = a_{k-1}$ $a_{k-2} \dots a_0$.

Response: dlg(A), expressed as an (s, e) pair where $|(-1)^s \times 3^e|_{2^k} = A$. **Method:** L1: P := A; $|e|_{2^k} := 0$; s := 0;

L2: if $(p_2 = 1)$ then $s := 1; P := |-P|_{2^k}$; fi L3: if $|P|_{2^3} = 011$ then $|e|_{2^1} := 1; P := |P + P \ll 1|_{2^k}$; fi L4: for *i* from 3 to (k - 1) do L5: if $(p_i = 1)$ then $e := e + dlg(\tau_i); P := |P + |P \ll i|_{2^k}|_{2^k}$; fi L6: Result: $(s, |-e|_{2^{k-2}})$.

The first-initialisation-stage is performed in lines L1–L3. If *A* is not congruent with 1 or 3 modulo 8, then $|-A|_{2^k}$ is, and the algorithm determines the dlg of $|-A|_{2^k}$ (i.e. $P = |-P|_{2^k}$ in L2). The variable *e* represents the exponent of 3 that gives $|P^{-1}|_{2^i} = |3^e|_{2^i}$. It is set to 0 in L1 corresponding to $|P|_{2^3} = 1$. In the case $|P|_{2^3} = 011$, *e* is adjusted in line L3 to be 1, along with the corresponding update of *P* (which is equivalent to $P = |3 \times P|_{2^k}$). In the second stage *P* is iteratively updated (conceptually) as a series of multiplications $P_{i+1} = P_i \times \tau_i$, while *e* is updated with the corresponding values $dlg(\tau_i)$ looked up from a table. The updating of *e* and *P* in line L5 can be performed concurrently. The final result is computed in line L6 as the sign *s* and the exponent $|-e|_{2^{k-2}}$. This is because *e* really represents $e = dlg((-1)^s \times A^{-1})$, hence $dlg((-1)^s \times A) = |-e|_{2^{k-2}}$. As can be seen after a quick look at algorithm 1, its time complexity is essentially *k* dependent shift-and-add modulo 2^k operations.

Figs. 1 and 2 are schematic diagrams of an implementation of the datapath portion of algorithm 1. Fig. 1 implements lines L1-L3 and sets up the appropriate values in the *P* and *B* registers based on the sign of *A* and the values of the least significant bits. Note that no error-checking circuitry is included and it is assumed that only odd values of *A* are used. Fig. 2 implements the iterative portion of the algorithm described in lines L4–L5. This circuit consists of a counter, a small lookup table that may be in compressed form, and three add/accumulate units. The

ELECTRONICS LETTERS 20th January 2005 Vol. 41 No. 2

values of *P* and *B* are stored in shift-registers that shift content to the left. These values are replaced by multiples of 2^k depending on the value of each p_i bit.

Fig. 1 Register setup for L1–L3 of algorithm 1

Fig. 2 Iterative loop for L4–L5 of algorithm 1

© IEE 2005 Electronics Letters online no: 20056993 doi: 10.1049/el:20056993 13 September 2004

A. Fit-Florea, D.W. Matula and M.A. Thornton (*Southern Methodist University, PO Box 750122, Dallas, TX 75275, USA*) E-mail: alex@engr.smu.edu

References

- 1 Szabo, N.S., and Tanaka, R.I.: 'Residue arithmetic and its applications to computer technology' (McGraw-Hill, New York, 1967)
- 2 Benschop, N.F.: 'Multiplier for the multiplication of at least two figures in an original format', US Patent No. 5,923,888, July 13, 1999
- 3 Fit-Florea, A., and Matula, D.W.: 'A digit-serial algorithm for the discrete logarithm modulo 2^k'. IEEE 15th Int. Conf. on Application-Specific Systems, Architectures and Processors, ASAP, 2004
- 4 Niven, I., and Zuckerman, H.S.: 'An introduction to the theory of numbers' (John Wiley & Sons, New York, 1966, 2nd edn.)