Additive bit-serial algorithm for discrete logarithm modulo $\mathbf{2}^{k}$

A. Fit-Florea, D.W. Matula and M.A. Thornton

A novel algorithm for computing the discrete logarithm modulo 2^{k} that is suitable for fast software or hardware implementation is described. The chosen preferred implementation is based on a linear-time multiplier-less method and has a critical path of less than k modulo 2^{k} shift-and-add operations.

Introduction and summary: Hardware capabilities for integer arithmetic generally include addition, multiplication, and division with precision k typically chosen as 16,32 or 64 . Multiplication and division are often implemented by recursive bit serial algorithms employing $O(k)$ serial additions to avoid the size and power requirements of a large multiplier. The integer addition and multiplication operations realised are effectively 'exact' residue arithmetic operations with modulo 2^{k}.

Hardware support for applications where fast residue arithmetic computation is desirable is typically limited to only residue addition and multiplication. There is a need to find efficiently implementable algorithms for other fundamental residue operations for the 'hardware friendly' modulus 2^{k}. Furthermore, for implementations where hardware support does not include a large multiplier, there is a particular need for additive bit-serial algorithms for these additional residue operations.

The fundamental residue arithmetic operations supplementing residue addition and multiplication of particular interest for feasibility of hardware implementation are: multiplicative inverse, powering (or exponentiation), and discrete logarithm. Following [1] we herein employ $|n|_{2^{k}}=j$ to denote the congruence relation $n \equiv j\left(\bmod 2^{k}\right)$ with the residue j satisfying $0 \leq j \leq 2^{k}-1$. The discrete logarithm modulo 2^{k} with logarithmic base $3 \operatorname{dlg}(j)=e$ of an odd residue $j, 1 \leq j \leq 2^{k}-1$, is the minimum exponent e, when it exists, such that $\left|3^{e}\right|_{2^{k}}=j$. Similarly, $e=d g_{(\beta, M)}(j)$ represents the discrete logarithm modulo M with logarithmic base β of $j:\left|\beta^{e}\right|_{M}=j$.

From [2-4], $\operatorname{dlg}(j)$ exists whenever $|j|_{8} \in\{1,3\}$, and also $0 \leq \operatorname{dlg}(j) \leq 2^{k-2}-1$. Furthermore, for any odd residue j with $1 \leq j \leq 2^{k}-1$, there is a unique sign, exponent pair (s, e) with $s \in$ $\{0,1\}, 0 \leq e \leq 2^{k-2}-1$ such that

$$
\begin{equation*}
\left|(-1)^{s} \times 3^{e}\right|_{2^{k}}=j \tag{1}
\end{equation*}
$$

In [3] we showed that the pair (s, e) of (1) can be determined from the odd input j employing $O(k)$ dependent modular multiplications. Our main result in this Letter is showing how to determine the pair (s, e) by a bit serial (shift-and-add) algorithm employing only $O(k)$ dependent additions and a lookup table of size roughly k^{2} bits.

Discrete logarithm modulo 2^{k}-algebraic properties: Lemma 1 represents the core result for Algorithm 1. We omit a formal proof and instead proceed with pointing out the essential mathematical properties that lead to a constructive proof and its corresponding algorithm.

Lemma 1: For any $k \geq 2$, every odd integer j with $1 \leq j \leq 2^{k}-1$ has a unique modular factorisation

$$
j=\left|(-1)^{s} \prod_{i \in I_{j}}\left(2^{i}+1\right)\right|_{2^{k}}
$$

with factor selection specified by $s \in\{0,1\}$ and $I_{j} \subseteq\{1\} \cup\{3,4, \ldots$, $k-1\}$ for $k \geq 3$.

Notationally we use a_{j} as shorthand for the j th digit of A, and a_{j}^{i} for the j th digit of A_{i}. Also, we will call a residue $\tau_{i}=\left|2^{i}+1\right|_{2^{k}}, 3 \leq i<k$ to be a two-ones residue. The key advantage of multiplying by two-ones residues τ_{i} is that a multiplication by τ_{i} can be performed simply as a less expensive shift-and-add operation:

$$
P_{i} \times \tau_{i}=P_{i}+P_{i} \ll i
$$

where $P_{i} \ll i$ represents an i bits left shift of P_{i}.
Our method consists of three stages. The first stage is initialising $P_{2}=A$. The second stage and main iteration step is updating
$P_{i+1}=\left|P_{i} \times B_{i}\right|_{2^{k}}$. Values B_{i} are to be selected in such a way that after $(k-2)$ steps $P_{k} \equiv|1|_{2^{k}}$ is obtained. Finally, in the third stage, the discrete logarithm modulo 2^{k} of A is readily available. This because $P_{k}=\left|A \times \prod_{i=2}^{i \leq k} B_{i}\right|_{2^{k}}=1$, and we have:

$$
\left|\operatorname{dlg}(A)+\sum_{i=2}^{i \leq k} d l g\left(B_{i}\right)\right|_{2^{k-2}}=0, \quad \text { hence: } d \lg (A)=\left|-\sum_{i=2}^{i \leq k} d \lg \left(B_{i}\right)\right|_{2^{k-2}}
$$

can be directly computed if $\operatorname{dlg}\left(B_{i}\right)$ are all known and $P_{k} \equiv|1|_{2^{k}}$. For more mathematical details the reader is referred to [3]. We choose $B_{i}=\tau_{i}$ and update P_{i} such that its last i digits become $00 \ldots 01$ (i.e. $\left|P_{i}\right|_{2^{i}}=1$):

Observation 1: Whenever the binary digit p_{i}^{i} of P_{i} equals 1 (i.e. $\left|P_{i}\right|_{2^{i}}=1$), multiplying P_{i} with the two-ones residue $\tau_{i}=\left(2^{i}+1\right)$ results in a product $P_{i+1}=P_{i} \times \tau_{i}$ that is congruent with 1 modulo 2^{i+1}. That is:

$$
P_{I} \equiv\left|2^{i}+1\right|_{2^{i+1}} \Rightarrow P_{i+1}=P_{i} \times \tau_{i} \equiv|1|_{2^{i+1}}
$$

When the binary digit p_{i}^{i} of P_{i} equals $0, P_{i+1}$ can be set to $P_{i+1}=\left(P_{\mathrm{i}} \times 1\right)$ and it is still congruent with $|1|_{2^{i+1}}$.

We show in Table 1 the (valid) 8-bit $d l g s$ associated with the corresponding two-ones residues (i.e. $\tau_{i} \equiv 3^{\operatorname{dlg}\left(\tau_{i}\right)}$). Also, in the last column we suggest how the updating of the partial products P_{i+1} works when $p_{i}^{i}=1$ and values τ_{i} are to be used. The values $\operatorname{dlg}\left(\tau_{i}\right)$ can be precomputed using any dlg method, e.g. the one we presented in [3]. Storing these values in a table requires a lookup table of uncompressed size smaller than k^{2} bits.

Table 1: Two-ones discrete \log table for $k=8$

i	τ_{i}	$d l g\left(\tau_{i}\right)$	$P_{i} \times \tau_{i} \rightarrow P_{i+1}$
3	00001001	000010	$p_{7}^{3} p_{6}^{3} p_{5}^{3} p_{4}^{3} 1001 \times 1001 \rightarrow p_{7}^{4} p_{6}^{4} p_{5}^{4} p_{4}^{4} 0001$
4	00010001	110100	$p_{7}^{4} p_{6}^{4} p_{5}^{4} 10001 \times 10001 \rightarrow p_{7}^{5} p_{6}^{5} p_{5}^{5} 00001$
5	00100001	101000	$p_{7}^{5} p_{6}^{5} 100001 \times 100001 \rightarrow p_{7}^{6} p_{6}^{6} 000001$
6	01000001	010000	$p_{7}^{6} 1000001 \times 1000001 \rightarrow p_{7}^{7} 0000001$
7	10000001	100000	$10000001 \times 10000001 \rightarrow 00000001$

Shift-and-add DLG algorithm:

Stimulus: A modulus 2^{k} with $k \geq 3$ and an odd valued residue $A=a_{k-1}$ $a_{k-2} \ldots a_{0}$.
Response: $d \lg (A)$, expressed as an (s, e) pair where $\left|(-1)^{s} \times 3^{e}\right|_{2^{k}}=A$. Method: L1: $P:=A ;|e|_{2^{k}}:=0 ; s:=0$;

L2: if $\left(p_{2}=1\right)$ then $s:=1 ; P:=|-P|_{2^{k}} ; \mathbf{f i}$
L3: if $|P|_{2^{3}}=011$ then $|e|_{2^{1}}:=1 ; P:=|P+P \ll 1|_{2^{k}}$; fi
L4: for i from 3 to $(k-1)$ do
L5: if $\left(p_{i}=1\right)$ then $e:=e+\operatorname{dlg}\left(\tau_{i}\right) ; P:=\left|P+|P \ll i|_{2^{k}}\right|_{2^{k}} ; \mathbf{f i}$
L6: Result: $\left(s,|-e|_{2^{k-2}}\right)$.
The first-initialisation-stage is performed in lines L1-L3. If A is not congruent with 1 or 3 modulo 8 , then $|-A|_{2^{k}}$ is, and the algorithm determines the $d l g$ of $|-A|_{2^{k}}$ (i.e. $P=|-P|_{2^{k}}$ in L2). The variable e represents the exponent of 3 that gives $\left|P^{-1}\right|_{2^{i}}=\left|3^{e}\right|_{2^{i}}$. It is set to 0 in L1 corresponding to $|P|_{2^{3}}=1$. In the case $|P|_{2^{3}}=011$, e is adjusted in line L3 to be 1 , along with the corresponding update of P (which is equivalent to $P=|3 \times P|_{2^{k}}$). In the second stage P is iteratively updated (conceptually) as a series of multiplications $P_{i+1}=P_{i} \times \tau_{i}$, while e is updated with the corresponding values $\operatorname{dlg}\left(\tau_{i}\right)$ looked up from a table. The updating of e and P in line L5 can be performed concurrently. The final result is computed in line L6 as the $\operatorname{sign} s$ and the exponent $|-e|_{2^{k-2}}$. This is because e really represents $e=\operatorname{dlg}\left((-1)^{s} \times A^{-1}\right)$, hence $d l g\left((-1)^{s} \times A\right)=|-e|_{2^{k-2}}$. As can be seen after a quick look at algorithm 1, its time complexity is essentially k dependent shift-and-add modulo 2^{k} operations.

Figs. 1 and 2 are schematic diagrams of an implementation of the datapath portion of algorithm 1. Fig. 1 implements lines L1-L3 and sets up the appropriate values in the P and B registers based on the sign of A and the values of the least significant bits. Note that no error-checking circuitry is included and it is assumed that only odd values of A are used. Fig. 2 implements the iterative portion of the algorithm described in lines L4-L5. This circuit consists of a counter, a small lookup table that may be in compressed form, and three add/accumulate units. The
values of P and B are stored in shift-registers that shift content to the left. These values are replaced by multiples of 2^{k} depending on the value of each p_{i} bit.

Fig. 1 Register setup for L1-L3 of algorithm 1

Fig. 2 Iterative loop for L4-L5 of algorithm 1
(C) IEE 2005

13 September 2004
Electronics Letters online no: 20056993
doi: 10.1049/el:20056993
A. Fit-Florea, D.W. Matula and M.A. Thornton (Southern Methodist University, PO Box 750122, Dallas, TX 75275, USA)
E-mail: alex@engr.smu.edu

References

1 Szabo, N.S., and Tanaka, R.I.: 'Residue arithmetic and its applications to computer technology’ (McGraw-Hill, New York, 1967)
2 Benschop, N.F.: 'Multiplier for the multiplication of at least two figures in an original format', US Patent No. 5,923,888, July 13, 1999
3 Fit-Florea, A., and Matula, D.W.: 'A digit-serial algorithm for the discrete logarithm modulo 2^{k}. IEEE 15th Int. Conf. on Application-Specific Systems, Architectures and Processors, ASAP, 2004
4 Niven, I., and Zuckerman, H.S.: 'An introduction to the theory of numbers' (John Wiley \& Sons, New York, 1966, 2nd edn.)

