
Additive bit-serial algorithm for discrete
logarithm modulo 2k

A. Fit-Florea, D.W. Matula and M.A. Thornton

A novel algorithm for computing the discrete logarithm modulo 2k that

is suitable for fast software or hardware implementation is described.

The chosen preferred implementation is based on a linear-time

multiplier-less method and has a critical path of less than k modulo

2k shift-and-add operations.

Introduction and summary: Hardware capabilities for integer arith-

metic generally include addition, multiplication, and division with

precision k typically chosen as 16, 32 or 64. Multiplication and

division are often implemented by recursive bit serial algorithms

employing O(k) serial additions to avoid the size and power require-

ments of a large multiplier. The integer addition and multiplication

operations realised are effectively ‘exact’ residue arithmetic opera-

tions with modulo 2k.

Hardware support for applications where fast residue arithmetic

computation is desirable is typically limited to only residue addition

and multiplication. There is a need to find efficiently implementable

algorithms for other fundamental residue operations for the ‘hardware

friendly’ modulus 2k. Furthermore, for implementations where hard-

ware support does not include a large multiplier, there is a particular

need for additive bit-serial algorithms for these additional residue

operations.

The fundamental residue arithmetic operations supplementing resi-

due addition and multiplication of particular interest for feasibility of

hardware implementation are: multiplicative inverse, powering (or

exponentiation), and discrete logarithm. Following [1] we herein

employ jnj2k¼ j to denote the congruence relation n� j (mod 2k) with

the residue j satisfying 0� j� 2k
� 1. The discrete logarithm modulo 2k

with logarithmic base 3dlg(j)¼ e of an odd residue j, 1� j� 2k
� 1, is

the minimum exponent e, when it exists, such that j3e
j2k¼ j. Similarly,

e¼ dlg(b,M)(j) represents the discrete logarithm modulo M with loga-

rithmic base b of j: jbe
jM¼ j.

From [2–4], dlg(j) exists whenever j jj82 {1, 3}, and also

0� dlg(j)� 2k�2
� 1. Furthermore, for any odd residue j with

1� j� 2k
� 1, there is a unique sign, exponent pair (s, e) with s2

{0, 1}, 0� e� 2k�2
� 1 such that

jð�1Þs � 3ej2k ¼ j ð1Þ

In [3] we showed that the pair (s, e) of (1) can be determined from the

odd input j employing O(k) dependent modular multiplications. Our

main result in this Letter is showing how to determine the pair (s, e) by

a bit serial (shift-and-add) algorithm employing only O(k) dependent

additions and a lookup table of size roughly k2 bits.

Discrete logarithm modulo 2k—algebraic properties: Lemma 1 repre-

sents the core result for Algorithm 1. We omit a formal proof and instead

proceed with pointing out the essential mathematical properties that lead

to a constructive proof and its corresponding algorithm.

Lemma 1: For any k� 2, every odd integer j with 1� j� 2k
� 1 has a

unique modular factorisation

j ¼ ð�1Þs
Q

i2Ij

ð2i þ 1Þ

�
�
�
�
�

�
�
�
�
�
2k

with factor selection specified by s2 {0, 1} and Ij� {1}[{3, 4, . . . ,

k� 1} for k� 3.

Notationally we use aj as shorthand for the jth digit of A, and aj
i for

the jth digit of Ai. Also, we will call a residue ti¼ j2
i
þ 1j2k, 3� i < k to

be a two-ones residue. The key advantage of multiplying by two-ones

residues ti is that a multiplication by ti can be performed simply as a

less expensive shift-and-add operation:

Pi � ti ¼ Pi þ Pi � i

where Pi� i represents an i bits left shift of Pi.

Our method consists of three stages. The first stage is initialising

P2¼A. The second stage and main iteration step is updating

Piþ1¼ jPi�Bij2k. Values Bi are to be selected in such a way that after

(k� 2) steps Pk� j1j2k is obtained. Finally, in the third stage, the

discrete logarithm modulo 2k of A is readily available. This because

Pk¼ jA�
Q

i¼2
i� kBij2k¼ 1, and we have:

dlgðAÞ þ
Pi�k

i¼2

dlgðBiÞ

�
�
�
�

�
�
�
�
2k�2

¼ 0; hence: dlgðAÞ ¼ �
Pi�k

i¼2

dlgðBiÞ

�
�
�
�

�
�
�
�
2k�2

can be directly computed if dlg(Bi) are all known and Pk� j1j2k. For

more mathematical details the reader is referred to [3]. We choose

Bi¼ ti and update Pi such that its last i digits become 00. . . 01 (i.e.

jPij2i¼ 1):

Observation 1: Whenever the binary digit pi
i of Pi equals 1 (i.e.

jPij2i¼ 1), multiplying Pi with the two-ones residue ti¼ (2i
þ 1) results

in a product Piþ1¼Pi� ti that is congruent with 1 modulo 2iþ1. That is:

PI � j2
i þ 1j2iþ1)Piþ1 ¼ Pi � ti � j1j2iþ1

When the binary digit pi
i of Pi equals 0, Piþ1 can be set to

Piþ1¼ (Pi� 1) and it is still congruent with j1j2iþ1.

We show in Table 1 the (valid) 8-bit dlgs associated with the

corresponding two-ones residues (i.e. ti� 3dlg(ti)). Also, in the last

column we suggest how the updating of the partial products Piþ1 works

when pi
i
¼ 1 and values ti are to be used. The values dlg(ti) can be pre-

computed using any dlg method, e.g. the one we presented in [3].

Storing these values in a table requires a lookup table of uncompressed

size smaller than k2 bits.

Table 1: Two-ones discrete log table for k¼ 8

i ti dlg(ti) Pi� ti!Piþ1

3 0000 1001 00 0010 p7
3p6

3 p5
3p4

3 1001� 1001! p7
4p6

4 p5
4p4

4 0001

4 0001 0001 11 0100 p7
4p6

4p5
41 0001� 1 0001! p7

5p6
5 p5

50 0001

5 0010 0001 10 1000 p7
5p6

510 0001� 10 0001! p7
6p6

600 0001

6 0100 0001 01 0000 p7
6100 0001� 100 0001! p7

7000 0001

7 1000 0001 10 0000 1000 0001� 1000 0001! 0000 0001

Shift-and-add DLG algorithm:

Stimulus: A modulus 2k with k� 3 and an odd valued residue A¼ ak�1

ak�2 . . . a0.

Response: dlg(A), expressed as an (s, e) pair where j(�1)s
� 3e
j2k¼A.

Method: L1: P :¼A; jej2k :¼ 0; s :¼ 0;

L2: if (p2¼ 1) then s :¼ 1; P :¼ j�Pj2k; fi

L3: if jPj23¼ 011 then jej21 :¼ 1; P :¼ jPþP� 1j2k; fi

L4: for i from 3 to (k� 1) do

L5: if (pi¼ 1) then e:¼ eþ dlg(ti); P :¼ jPþjP� ij2kj2k; fi

L6: Result: (s, j�ej2k�2).

The first-initialisation-stage is performed in lines L1–L3. If A is not

congruent with 1 or 3 modulo 8, then j�Aj2k is, and the algorithm

determines the dlg of j�Aj2k (i.e. P¼ j�Pj2k in L2). The variable e

represents the exponent of 3 that gives jP�1
j2i¼ j3e

j2i. It is set to 0 in L1

corresponding to jPj23¼ 1. In the case jPj23¼ 011, e is adjusted in line

L3 to be 1, along with the corresponding update of P (which is

equivalent to P¼ j3�Pj2k). In the second stage P is iteratively updated

(conceptually) as a series of multiplications Piþ1¼Pi� ti, while e is

updated with the corresponding values dlg(ti) looked up from a table.

The updating of e and P in line L5 can be performed concurrently. The

final result is computed in line L6 as the sign s and the exponent

j�ej2k�2. This is because e really represents e¼ dlg((�1)s
�A�1), hence

dlg((�1)s
�A)¼ j�ej2k�2. As can be seen after a quick look at algo-

rithm 1, its time complexity is essentially k dependent shift-and-add

modulo 2k operations.

Figs. 1 and 2 are schematic diagrams of an implementation of the

datapath portion of algorithm 1. Fig. 1 implements lines L1–L3 and sets

up the appropriate values in the P and B registers based on the sign of A

and the values of the least significant bits. Note that no error-checking

circuitry is included and it is assumed that only odd values of A are

used. Fig. 2 implements the iterative portion of the algorithm described

in lines L4–L5. This circuit consists of a counter, a small lookup table

that may be in compressed form, and three add=accumulate units. The

ELECTRONICS LETTERS 20th January 2005 Vol. 41 No. 2

values of P and B are stored in shift-registers that shift content to the

left. These values are replaced by multiples of 2k depending on the

value of each pi bit.

Fig. 1 Register setup for L1–L3 of algorithm 1

Fig. 2 Iterative loop for L4–L5 of algorithm 1

IEE 2005 13 September 2004

Electronics Letters online no: 20056993

doi: 10.1049/el:20056993

A. Fit-Florea, D.W. Matula and M.A. Thornton (Southern Methodist

University, PO Box 750122, Dallas, TX 75275, USA)

E-mail: alex@engr.smu.edu

References

1 Szabo, N.S., and Tanaka, R.I.: ‘Residue arithmetic and its applications to
computer technology’ (McGraw-Hill, New York, 1967)

2 Benschop, N.F.: ‘Multiplier for the multiplication of at least two figures in
an original format’, US Patent No. 5,923,888, July 13, 1999

3 Fit-Florea, A., and Matula, D.W.: ‘A digit-serial algorithm for the discrete
logarithm modulo 2k’. IEEE 15th Int. Conf. on Application-Specific
Systems, Architectures and Processors, ASAP, 2004

4 Niven, I., and Zuckerman, H.S.: ‘An introduction to the theory of
numbers’ (John Wiley & Sons, New York, 1966, 2nd edn.)

ELECTRONICS LETTERS 20th January 2005 Vol. 41 No. 2

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

