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Abstract: Automatic modulation classification is an important component in many modern aeronau-
tical communication systems to achieve efficient spectrum usage in congested wireless environments
and other communications systems applications. In recent years, numerous convolutional deep learn-
ing architectures have been proposed for automatically classifying the modulation used on observed
signal bursts. However, a comprehensive analysis of these differing architectures and the importance
of each design element has not been carried out. Thus, it is unclear what trade-offs the differing
designs of these convolutional neural networks might have. In this research, we investigate numerous
architectures for automatic modulation classification and perform a comprehensive ablation study to
investigate the impacts of varying hyperparameters and design elements on automatic modulation
classification accuracy. We show that a new state-of-the-art accuracy can be achieved using a subset
of the studied design elements, particularly as applied to modulation classification over intercepted
bursts of varying time duration. In particular, we show that a combination of dilated convolutions,
statistics pooling, and squeeze-and-excitation units results in the strongest performing classifier
achieving 98.9% peak accuracy and 63.7% overall accuracy on the RadioML 2018.01A dataset. We
further investigate this best performer according to various other criteria, including short signal
bursts of varying length, common misclassifications, and performance across differing modulation
categories and modes.

Keywords: automatic modulation classification; machine learning; convolutional neural networks

1. Introduction

Automatic modulation classification (AMC) holds particular significance in aerospace
applications, specifically in radio frequency (RF) signal analysis and modern software-
defined radios. It serves a multitude of crucial tasks including “spectrum interference
monitoring, radio fault detection, dynamic spectrum access, opportunistic mesh network-
ing, and numerous regulatory and defense applications” [1]. Upon detection of an RF signal
with unknown characteristics, AMC is a crucial initial procedure in order to demodulate the
signal for receivers supporting a variety of standard and non-standard modulation schemes.
Efficient AMC allows for maximal usage of transmission mediums and can enhance re-
silience in modern cognitive radios. Systems capable of adaptive modulation schemes can
monitor current channel conditions with AMC and adjust exercised modulation schemes
to maximize usage across the transmission medium.

Moreover, for receivers that have a versatile demodulation capability, AMC is a
requisite task. The correct demodulation scheme must be applied, as a first step, to recover
the modulated message within a detected signal. Aerospace communication systems,
such as those employed in satellites, unmanned aerial vehicles (UAVs), and aircraft often
operate in dynamic and congested environments [2]. AMC is critical in these applications
to ensure efficient spectrum utilization. In systems where the modulation scheme is
unknown a priori, AMC allows for efficient prediction of the employed modulation scheme.

Electronics 2023, 12, 3962. https://doi.org/10.3390/electronics12183962 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183962
https://doi.org/10.3390/electronics12183962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3185-7210
https://orcid.org/0000-0003-3559-9511
https://orcid.org/0000-0001-6040-868X
https://doi.org/10.3390/electronics12183962
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183962?type=check_update&version=1


Electronics 2023, 12, 3962 2 of 22

Higher performing AMC can increase the throughput and accuracy of these systems;
therefore, AMC is currently an important research topic in the fields of machine learning
and communication systems, specifically for software-defined radios.

Common benchmarks are formulated with the underlying assumption that the AMC
model needs to perform classification for both the modulation mode (e.g., QAM) and
the specific variant within that mode (e.g., 32QAM as opposed to 64QAM). While many
architectures have proven to be effective at high signal-to-noise ratios (SNRs), performance
degrades significantly at lower SNRs that often occur in real-world applications. Other
works have investigated increasing classification performance at lower SNR levels through
the use of SNR-specific modulation classifiers [3] and clustering based on SNR ranges [4].
For the purpose of classification, various signal characteristics have been explored. Tradi-
tionally, AMC has made use of statistical moments and higher-order cumulants derived
from the received signal [5,6]. Recently, direct employment of the raw in-phase (I) and
quadrature (Q) components in the time domain have been embraced [1,7–9]. Additionally,
alternative studies have investigated supplementary attributes, including I/Q constellation
plots [10–13].

Upon the selection of signal input features, the subsequent step involves the utilization
of machine learning models to discern statistical patterns within the data for classification.
Classifiers such as support vector machines, decision trees, K-nearest neighbors, and
neural networks are commonly used for this application [1,4,7–10,14–17]. Residual neural
networks (ResNets), along with convolutional neural networks (CNNs), have been shown
to achieve high classification performance for AMC [1,4,7–10,18–21]. Thus, deep learning-
based methods in AMC have become more prevalent due to their promising performance
and their ability to generalize to large, complex datasets comprising a variety of standard
and non-standard modulation schemes.

While other works have contributed to increased AMC performance, the importance
of many design elements for AMC remains unclear and a number of architectural elements
have yet to be investigated. Therefore, in this work, we aim to formalize the impact
of a variety of architectural changes and model design decisions on AMC performance.
Numerous modifications to architectures from previous works, including our own [7],
and novel combinations of elements applied to AMC are considered. After an initial
investigation, we provide a comprehensive ablation study in this work to investigate
the performance impact of various architectural modifications. Additionally, we achieve
new state-of-the-art classification performance on the RadioML 2018.01A dataset [22] that
benefits from the results of the ablation study. Using the best-performing model, we provide
additional analyses that characterize its performance across modulation modes and signals
with variable duration bursts.

2. Related Work

The area of AMC has been investigated by several research groups. We provide a
summary of recent results in AMC to provide context and motivation for our contributions
to AMC and the corresponding ablation study described in this paper. The results of the
ablation study are then used to determine a new AMC architecture that demonstrates
increased performance.

Corgan et al. demonstrate that deep convolutional neural networks exhibit notable
classification efficacy, particularly under low SNRs, evidenced by their study on a dataset
encompassing 11 distinct modulation types [8]. It was found that CNNs exceeded perfor-
mance over expertly crafted features. Comparing results with architectures in [1,8], Liu
et al. improved AMC performance utilizing self-supervised contrastive learning [23]. First,
an encoder is pre-trained in a self-supervised manner through creating contrastive pairs
with data augmentation. By creating different views of the input data through augmen-
tation, contrastive loss is used to maximize the cosine similarity between positive pairs
(augmented views of the same input). Once converged, the encoder is frozen (i.e., the
weights are set to fixed values) and two fully-connected layers are added following the
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encoder to form the classifier. The classifier is trained using supervised learning to predict
the 11 different modulation schemes. Chen et al. applied a novel architecture to the same
dataset where the input signal is sliced and transformed into a square matrix and applies a
residual network to predict the modulation schemes [24]. A multidimensional CNN-LSTM
architecture was utilized in [25], where the CNN performed feature extraction that would
later be processed by LSTM (long short-term memory) [26] and classification layers. Other
work has investigated empirical and variational mode decomposition to improve few-shot
learning for AMC [27]. In our work, we utilize a larger, more complex dataset consisting of
24 modulation schemes, as well as modeling improvements.

Spectrograms and I/Q constellation plots in [28] were found to be effective input
features to a traditional CNN achieving nearly equivalent performance as the baseline
CNN network in [1], which used raw I/Q signals. Furthermore, Refs. [10–12] employed
I/Q constellations as input features in their machine learning models, focusing on a more
constrained context involving four or eight modulation types. Additionally, other ap-
proaches have been explored for AMC. For instance, Refs. [29,30] utilized statistical features
in conjunction with support vector machines, while [31,32] integrated fusion methodolo-
gies into CNN classifiers. Mao et al. utilized various constellation diagrams at varying
symbol timings, alleviating symbol timing synchronization concerns [33]. A squeeze-and-
excitation-inspired [34] architecture was used as an attention mechanism to focus on the
most important diagrams.

Although spectrograms and constellation plots have shown promise, they require
additional processing overhead and have had comparable performance to raw I/Q signals.
In addition, models that use raw I/Q signals could be more adept at handling varying-
length signals than constellation plots because they are not limited by periodicity constraints
for short-duration signals (i.e., burst transmissions). Consequently, we utilize raw I/Q
signals in our work.

Expanding upon these investigations, Tridgell’s dissertation [35] explores the appli-
cation of these architectures within the context of resource-limited Field Programmable
Gate Arrays (FPGAs). His research underscores the significance of parameter reduction
for modulation classifiers, given their typical deployment in embedded systems character-
ized by resource constraints. Addressing this concern, Mendis et al. proposed the use of
multiplierless deep belief networks that map directly to binary circuits [36].

In [1], Oshea et al. created a dataset with 24 different types of modulation, known
as RadioML 2018.01A, and achieved high classification performance using convolutional
neural networks, specifically using residual connections (see Figure 1) within the network
(ResNet). A total of six residual stacks were used in the architecture. A residual stack is
defined as a series of a convolutional layers, residual units, and a max pooling operation as
shown in Figure 1. The ResNet employed by [1] attained approximately 95% classification
accuracy at high SNR values. Wang et al. also made use of residual connections along with
depthwise separable convolutions for feature extraction [37]. This architecture was able
to achieve a maximum performance of 97% accuracy and an average of 53.85% accuracy
across all signal-to-noise ratios while greatly reducing model complexity.

Harper et al. proposed the use of X-Vectors [38] to increase classification performance
using CNNs [7]. X-Vectors are traditionally used in speaker recognition and verification
systems making use of aggregate statistics. X-Vectors utilize statistical moments, specifically
the mean and variance, computed over convolutional filter outputs. It can be postulated
that computing the mean and variance of the embedding layer contributes to the removal
of signal-specific details, leaving broader modulation-specific characteristics. Figure 2
illustrates the X-Vector architecture, where statistics are computed over the activations from
a convolutional layer producing a fixed-length vector.
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Figure 1. ResNet architecture used in [1]. Each block represents a unit in the network, which may be
composed of several layers and connections as shown on the right of the figure. Dimensions of the
tensors on the output of each block are also shown where appropriate.

Figure 2. X-Vector architecture overview. The convolutional activations immediately before pooling
are shown. These activations are fed into two statistical pooling layers that collapse the activations
over time, creating a fixed-length tensor that can be further processed by fully connected dense layers.

Additionally, this architecture upholds a completely convolutional framework, en-
abling adaptability to inputs of varying sizes within the network. The utilization of
statistical aggregations capitalizes on this characteristic. With statistical aggregations, the
input to the initial dense layer becomes contingent upon the quantity of filters in the final
convolutional layer. The number of filters is a hyperparameter that remains distinct from
the temporal length of the input signal fed into the neural network.

In the absence of statistical aggregations, input signals for a conventional CNN or
ResNet would require resampling, cropping, or padding to attain a consistent temporal
length for the subsequent dense layers. While the dataset used in this work has uniformly
sized signals in terms of duration, (1024× 2), this is an architectural advantage in our
deployment, as received signals may vary in duration. Instead of modifying the inputs to
the network via sampling, cropping, padding, etc., the X-Vector architecture can directly
operate with variable-length inputs without modifications to the network or input signal.
Work by Li et al. [39] utilizes LSTMs while highlighting this desirable characteristic.

Figure 3 outlines the employed X-Vector architecture in [7] where F = [ f1, f2, ..., f7] = 64
and K = [k1, k2, ..., k7] = 3. Mean and variance pooling are performed on the final con-
volutional outputs, concatenated, and fed through a series of dense layers creating the
fixed-length X-Vector. A maximum of 98% accuracy was achieved at high SNR levels.
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Figure 3. Proposed CNN Architecture in [7]. This is the first work to employ an X-Vector-inspired
architecture for AMC showing strong performance. This architecture is used as a baseline for the
modifications investigated in this paper. The f and k variables shown designate the number of kernels
and size of each kernel, respectively, in each layer. These parameters are investigated for optimal
sizing in our initial investigation.

The work of [7] replicated the ResNet architecture from [1] and compared the results
with the X-Vector architectures as seen in Figure 4. Harper et al. [7] were able to reproduce
this architecture, achieving a maximum of 93.7% accuracy. The authors attribute the
difference in performance to differences in the train and test set separation that they used,
since these parameters were unavailable.

Figure 4. Accuracy comparison of the ResNet reproduced in [1] and the X-Vector-inspired model
from [7] over varying SNRs. This accuracy comparison shows the superior performance of the
X-Vector architecture, especially at higher SNRs, and supports using this architecture as a baseline for
the improvements investigated in this paper.

As expected, the classifiers perform with a higher accuracy as the SNR value increases.
At low SNR values, the classification task becomes more difficult due to the increased
presence of noise. High SNR values are not invariably guaranteed in software-defined
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radios. However, notable enhancements are evident when compared to random chance,
even under conditions of diminished SNR. In time-critical classification scenarios, this
factor gains heightened significance, potentially leading to a pivotal advantage, as fewer
demodulation schemes would require trial-and-error application to ascertain the correct
scheme, thus streamlining the process.

One challenge of AMC is that it is desirable for performance to work well across a
large range of SNRs. For instance, Figure 4 illustrates that modulation classification perfor-
mance reached a plateau beyond +8 dB SNR, and approached chance-level classification
performance when the SNR dipped below −8 dB on the RadioML 2018.01A dataset. This
range is denoted by the shaded region. Harper et al. investigated methods to improve
classification performance in this range by employing an SNR regression model to aid
separate modulation classifiers (MCs). While other works have trained models to be robust
across diverse SNR scenarios, Harper et al. employed SNR-specific MCs [3].

Six MCs were created by discretizing the SNR range to ameliorate performance be-
tween −8 dB and +8 dB SNR. These groupings were chosen in order to provide sufficient
training data to avoid overfitting the MCs and provide enough resolution, so that combining
MCs provided more value than a single classifier.

Firstly, by predicting the SNR of the received signal with a regression model, an
SNR-specific MC that was trained on signals with the predicted SNR is applied to make
the final prediction. While the dataset’s SNR values are discretized, the SNR is measured
on a continuous scale in practical deployment scenarios, subject to temporal fluctuations.
Consequently, a regression approach is adopted instead of classification. By employing
this methodology, various classifiers can tailor their feature processing to accommodate
distinct SNR ranges. Each MC in this approach uses the same architecture as that proposed
in [7]; however, each MC is trained with signals within each MC’s SNR training range (see
Table 1).

Table 1. SNR-specific modulation classifiers (MCs) groupings during training and inference phases,
adapted from [3].

AMC Model Training Range (dB) Employed during Inference (dB)

MC 1 [−20, −8] (−∞, −8)
MC 2 [−8, −4] [−8, −4)
MC 3 [−4, 0] [−4, 0)
MC 4 [0, 4] [0, 4)
MC 5 [4, 8] [4, 8)
MC 6 [8, 30] [8, ∞)

Illustrating enhancements across diverse SNR levels, Figure 5 presents the performance
improvement (expressed as percentage accuracy) achieved through the employment of
the SNR-informed architecture, contrasted with the baseline classification architecture
detailed in [7]. While a marginal decline in performance was evident at −8 dB and a more
substantial reduction at −2 dB, discernible enhancement is observable across most SNR
conditions, with a pronounced emphasis on the desired range, spanning from −8 dB to
+8 dB.

Declined performance at specific SNRs could be attributed to the optimization of a
specific modulation classifier (MC), which led to an enhanced performance for a specific
SNR grouping at the cost of lower performance for an individual value within the same
group. To elaborate, the MC designed for the [−4, 0) dB range may have bolstered the
overall performance by accurately classifying signals at −4 dB and 0 dB, potentially at
the expense of −2 dB accuracy. Given the substantial size of the testing dataset, these
marginal percentage gains hold significance, as they result in thousands of additional
correct classifications. Importantly, all outcomes achieve statistical significance according to
McNemar’s test [40], consequently achieving new state-of-the-art performance at the time.
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Figure 5. Summary of percentage improvement in accuracy over [7] seen in [3]. This work showed
how the baseline architecture could be tuned to specific SNR ranges. Positive improvement is
observed for most SNR ranges.

Soltani et al. found that SNR regions of [−10,−2] dB, [0, 8] dB, and [10, 30] dB had
similar classification patterns [4]. Instead of predicting exact modulation variants, the
authors grouped commonly confused variants into a more generic, coarse-grained label.
This grouping increases the performance of AMC by combining modulation variants that
are commonly confused. However, it also decreases the sensitivity of the model to the
numerous possible variants.

Cai et al. utilized a transformer-based architecture to aid performance at low SNR
levels with relatively few training parameters (approximately 265,000 parameters) [41].
Ren et al. proposed ResSwinT-SwinT, making use of transformers to denoise signals under
low SNR conditions prior to classification [17]. A multi-scale network along with center
loss [42] was used in [43]. It was found that larger kernel sizes improved AMC performance.
We further explore kernel size performance impacts in this work. Zhang et al. proposed
a high-order attention mechanism using the covariance matrix achieving a maximum
accuracy of 95.49% [44].

Although many discussed works use the same RadioML 2018.01A dataset, there is a
lack of a uniform dataset split to establish a benchmark for papers to report performance.
In an effort to make AMC more reproducible and comparable across publications, we have
made our dataset split and accompanying code available on GitHub (https://github.com/
caharper/Automatic-Modulation-Classification-with-Deep-Neural-Networks).

While numerous works have investigated architectural improvements, we aim to
improve upon these works by introducing additional modifications, as well as a compre-

https://github.com/caharper/Automatic-Modulation-Classification-with-Deep-Neural-Networks
https://github.com/caharper/Automatic-Modulation-Classification-with-Deep-Neural-Networks
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hensive ablation study that illustrates the improvement of each modification. With the new
modifications, we achieve new state-of-the-art AMC performance.

3. Dataset

In order to assess different machine learning architectures, we employ the RadioML
2018.01A dataset, which encompasses a collection of 24 distinct modulation types [1,22].
Due to the complexity and variety of modulation schemes in the dataset, it is fairly repre-
sentative of typically encountered modulation schemes. Moreover, this variety increases
the likelihood that AMC models will generalize to more exotic or non-existing modulation
schemes in the training data that are derived from these traditional variants.

There are a total of 2.56 million labeled signals, S(T), each consisting of 1024 time
domain digitized intermediate frequency (IF) samples of in-phase (I) and quadrature (Q)
signal components where S(T) = I(T) + jQ(T). The data were collected at a 900 MHz IF
with an assumed sampling rate of 1MS/sec, such that each 1024 time domain digitized I/Q
sample is 1.024 ms [8]. The 24 modulation types and the representative groups that we
chose for each are listed as follows:

• Amplitude: OOK, 4ASK, 8ASK, AM-SSB-SC, AM-SSB-WC, AM-DSB-WC, and AM-
DSB-SC.

• Phase: BPSK, QPSK, 8PSK, 16PSK, 32PSK, and OQPSK.
• Amplitude and Phase: 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM,

64QAM, 128QAM, and 256QAM.
• Frequency: FM and GMSK.

Each modulation type has a total of 106,496 observations ranging from −20 dB to
+30 dB SNR in 2 dB increments. In total, there are 26 different SNR values. The SNR is
assumed to be consistent over the same window length as the I/Q sample window.

The dataset was partitioned into 1 million training observations and 1.5 million testing
observations through a random shuffle split, as carried out in [3,7]. This division was
performed in a stratified manner, taking into account modulation type and the SNR. As a
result of this balanced approach, the anticipated performance for a classifier employing
random chance is 1/24 or approximately 4.2%. Considering the dataset’s incorporation of
diverse SNR levels, it is reasonable to expect that the classifier’s accuracy would increase
with the SNR. For consistency, each model investigated in this work was trained and
evaluated on the same train and test set splits.

4. Initial Investigation

In this work, we use the architecture described in [7] as the baseline architecture. We
note that [3] improved upon the baseline; however, each individual MC used the baseline
architecture, except each is trained on specific SNR ranges. Therefore, the base architectural
elements were similar to [7], but separated for different SNRs. In this work, our focus is to
improve upon the employed CNN architecture for an individual MC rather than the use of
several MCs. Therefore, we use the architecture from [7] as our baseline.

Before exploring an ablation study, we make a few notable changes from the baseline
architecture in an effort to increase AMC performance. This initial exploration is for clarity
as it reserves the ablation study that follows from requiring an inordinate number of
models. It also introduces the general training procedures that assist and orient the reader
in following the ablation study—the ablation study mirrors these procedures. We first
provide an initial investigation exploring these notable changes.

We train each model using the Adam optimizer [45] with an initial learning rate
lr = 0.0001, and a decay factor of 0.1, if the validation loss does not decrease for 12 epochs,
and a minimum learning rate of 1 × 10−7. If the validation loss does not decrease after
20 epochs, training is terminated and the models are deemed converged. For all experi-
ments, mini-batches of size 32 are used. As has been established in most programming
packages for neural networks, we refer to fully connected neural network layers as dense
layers, which are typically followed by an activation function.
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4.1. Architectural Changes

A common property of neural networks is using fewer but larger kernels in the early
layers of the network, and an increased number of smaller kernels is used in the later layers,
compared to the baseline architecture. This is commonly referred to as the information
distillation pipeline [46]. By utilizing a smaller number of large kernels in early layers, we
are able to increase the temporal context of the convolutional features without dramatically
increasing the number of trainable parameters. Numerous, but smaller kernels are used
in later convolutional layers to create more abstract features. Configuring the network in
this manner is especially popular in image classification, where later layers represent more
abstract, class-specific features.

We investigate this modification in three stages, using the baseline architecture de-
scribed in Figure 3 [7]. We denote the number of filters in the network and the filter sizes as
F = [ f1, f2, ..., f7] and K = [k1, k2, ...k7] in Figure 3. The baseline architecture used f = 64
(for all layers) and k = 3 (consistent kernel size for all layers). Our first modification to
the baseline architecture is F = [32, 48, 64, 72, 84, 96, 108], but keeping k = 3 for all layers.
Second, we use the baseline architecture, but change the size of filters in the network where
f = 64 (the same as the baseline) and K = [7, 5, 7, 5, 3, 3, 3]. Third, we make both modifi-
cations and compare the result to the baseline model where F = [32, 48, 64, 72, 84, 96, 108]
and K = [7, 5, 7, 5, 3, 3, 3]. These modifications are not exhaustive searches; rather, these
modifications are meant to guide future changes to the network by understanding the
influence of filter quantity and filter size in a limited context.

4.2. Initial Investigation Results

As shown in Table 2, increasing the size of the filters in earlier layers increases both
average and maximum test accuracy over [7], but at the cost of additional parameters. A
possible explanation for the increase in performance is the increase in temporal context
due to the larger kernel sizes. Increasing the number of filters without increasing temporal
context decreases performance. This is possibly because it increases the complexity of the
model without adding additional signal context.

Table 2. Initial investigation performance overview. All architectures employ the baseline with
varying numbers of kernels and kernel sizes.

Notes # Params Avg.
Accuracy

Max
Accuracy

Reproduced ResNet [1] 165,144 59.2% 93.7%

X-Vector [7] 110,680 61.3% 98.0%

More Filters
(Same Filter Sizes) 149,168 61.0% 96.1%

Larger Filter Sizes
(Same # Filters) 143,960 62.6% 98.2%

Combined 174,000 62.9% 98.6%

Figure 6 illustrates the change in accuracy with varying SNR. The combined model,
utilizing various kernel sizes and numbers of filters, consistently outperforms the other
architectures across changing SNR conditions.

Although increasing the number of filters decreases performance alone, combining the
approach with larger kernel sizes yields the best performance in our initial investigation.
Increasing the temporal context may have allowed additional filters to better characterize
the input signal. Because increased temporal context improves AMC performance, we
are inspired to investigate additional methods, such as squeeze-and-excitation blocks and
dilated convolutions, that can increase global and local context [34,47].
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Figure 6. SNR vs. accuracy comparison of the initial investigation using the X-Vector baseline
architecture [7]. Noticeable improvements can be observed across all SNRs.

5. Ablation Study Architecture Background

Building upon our findings from our initial investigation, we make additional mod-
ifications to the baseline architecture. For the MCs, we introduce dilated convolutions,
squeeze-and-excitation blocks, self-attention, and other architectural changes. We also
investigate various kernel sizes and the quantity of kernels employed from the initial
investigation. Our goal is to improve upon existing architectures while investigating the
impact of each modification on classification accuracy through an ablation study. In this
section, we describe each modification performed.

5.1. Squeeze-and-Excitation Networks

Squeeze-and-excitation (SE) blocks introduce a channel-wise attention mechanism,
first proposed in [34]. Due to the limited receptive field of each convolutional filter, SE
blocks propose a recalibration step based on global statistics across channels (average
pooling) to provide global context. Although initially utilized for image classification
tasks [34,48,49], we argue the use of SE blocks can provide meaningful global context to
the convolutional network used for AMC over the time domain.

Figure 7 depicts an SE block. The squeeze operation is defined as temporal global
average pooling across convolutional filters. For an individual channel, c, the squeeze
operation is defined as:

zc = Fsq(xc) =
1
T

T

∑
i=1

xi,c (1)

where X ∈ RT×C = [x1, x2, ..., xC], Z ∈ R1×C = [z1, z2, ..., zC], T is the number of samples
in time, and C is the total number of channels. To model nonlinear interactions between
channel-wise statistics, Z is fed into a series of dense layers followed by nonlinear activa-
tion functions:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (2)

where δ is the rectified linear (ReLU) activation function, W1 ∈ R C
r ×C, W2 ∈ RC× C

r , r is
a dimensionality reduction ratio, and σ is the sigmoid activation function. The sigmoid
function is chosen, as opposed to the softmax function, so that multiple channels can
be accentuated and are not mutually exclusive. That is, the normalization term in the
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softmax can cause dependencies among channels, so the sigmoid activation is preferred.
W1 imposes a bottleneck to improve generalization performance and reduce parameter
counts, while W2 increases the dimensionality back to the original number of channels
for the recalibration operation. In our work, we use r = 2 for all SE blocks to ensure a
reasonable number of trainable parameters without over-squashing the embedding size.

Figure 7. Squeeze-and-excitation block proposed in [34]. One SE block is shown applied to a single
layer convolutional output activation. Two paths are shown: a scaling path and an identity path. The
scaling vector is applied across channels to the identity path of the activations.

The final operation in the SE block, scaling or recalibration, is obtained by scaling the
the input X by s:

x̂c = Fscale(xc, sc) = scxc (3)

where X̂ ∈ RT×C = [x̂1, x̂2, ..., x̂C].

5.2. Dilated Convolutions

As proposed in [47], Figure 8 depicts dilated convolutions, where the convolutional
kernels are denoted by the colored components. In a traditional convolution, the dilation
rate is equal to 1. Dilated convolutions build temporal context by increasing the receptive
field of the convolutional kernels without increasing parameter counts, as the number of
entries in the kernel remains the same.

Figure 8. Dilated convolutions diagram. The top shows a traditional kernel applied to sequential time
series points. The middle and bottom diagrams illustrate dilation rates of two and three, respectively.
These dilations serve to increase the receptive field of the filter without increasing the number of
trainable variables in the kernel.

Also, dilated convolutions do not downsample the signals like strided convolutions.
Instead, the output of a dilated convolution can be the exact size of the input after properly
handling edge effects at the beginning and end of the signal.
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5.3. Final Convolutional Activation

We also investigate the impact of using an activation function (ReLU) after the last
convolutional layer, just before statistics pooling. Because ReLU transforms the input
sequence to be non-negative, the distribution characterized by the pooling statistics may
become skewed. In [3,7], no activation was applied after the final convolutional layer, as
shown in Figure 3. We investigate if this transformation impacts classification performance.

5.4. Self-Attention

Self-attention allows the convolutional outputs to interact with one another, enabling
the network to learn to focus on important outputs. Self-attention before statistics pooling
essentially creates a weighted summation over the convolutional outputs, weighting their
importance similarly to [50–52].

We use the attention mechanism described by Vaswani et al. in [53], where each output
element is a weighted sum of the linearly transformed input, where the dimensionality of
K is dk, as seen in Equation (4).

Attention(Q, K, V) = so f tmax
(

QKT

|
√

dk|

)
V (4)

In the case of self-attention, Q, K, and V are equal. A scaling factor of 1
|
√

dk |
is applied

to counteract vanishing gradients in the softmax output when dk is large.

6. Ablation Study Architecture

Applying the specified modifications to the architecture in [7], Figure 9 illustrates the
proposed architecture with every modification included in the graphic. Each colored block
represents an optional change to the architecture that will be investigated in the ablation
study. That is, each combination of network modifications is analyzed to aid understanding
of each modification’s impact on the network.

Figure 9. Proposed architecture with modifications including SENets, dilated convolutions, optional
ReLU activation before statistics pooling, and self-attention. The output tensor sizes are also shown
for each unit in the diagram. * denotes where the sizes differ from the baseline architecture.

Each convolutional layer has the following parameters: number of filters, kernel size,
and dilation rate. The asterisk next to each dilation rate represents the changing of dilation
rates in the ablation study. If dilated convolutions are used, then the dilation rate value in
the graphic is used. If dilated convolutions are not used, each dilation rate is set to 1. That
is, a traditional convolution is applied. All convolutions use a stride of 1, and the same
training procedure from the initial investigation is used.
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7. Evaluation Metrics

We present several evaluation metrics to compare the different architectures considered
in the ablation study. In this section, we will discuss each evaluation technique used in the
results section.

Due to the varying levels of SNRs in the employed dataset, we plot classification
accuracy over each true SNR value. This allows for a visualization of the trade-off in
performance, as noise becomes more or less dominant in the received signals. Additionally,
we report average accuracy and maximum accuracy across the entire test set for each
model. While we note that average accuracy is not indicative of the model’s performance,
as accuracy is highly correlated to the SNR of the input signal, we share this result to give
other researchers the ability to reproduce and compare works.

As discussed in [35], AMC is often implemented on resource-constrained devices.
In these systems, using larger models in terms of parameter counts may not be feasible.
We report the number of parameters for each model in the ablation study to examine the
trade-off in AMC performance and model size.

Additional analyses are also carried out. However, due to the large number of models
investigated in this study, we will select the best-performing model from the ablation
study for brevity and analyze the performance of this model in greater detail. For example,
confusion matrices for the best-performing model from the ablation study are provided to
show common misclassifications for each modulation type. Additionally, there exist several
use-cases where relatively short signal bursts are received. For example, a wide-band
scanning receiver may only detect a short signal burst. Therefore, signal duration in the
time domain versus AMC performance is investigated to determine the robustness of the
best-performing model when short signal bursts are received.

8. Ablation Results
8.1. Overall Performance

Table 3 lists the maximum and average accuracy performance for each model in the
ablation study. A binary naming convention is used to indicate the various methods used for
each architecture. Similarly to the result found in Section 4, increasing the temporal context
typically results in increased performance. Models that incorporate dilated convolutions
tended to have higher average accuracies than models without dilated convolutions.

The best-performing model, in terms of average accuracy across all SNR conditions,
included SE blocks, dilated convolutions, and a ReLU activation, prior to statistics pooling
(model 1110), with an average accuracy of approximately 63.7%. This model also achieved
the highest maximum accuracy of about 98.9% at a 22 dB level. Both values achieve new
state-of-the-art performance on the RadioML 2018.01A dataset. In terms of overall accuracy,
model 1110 outperforms the results reported in prior work [1,3,7,37,54] (all between 52.47%
and 61.3%) and all other models investigated in this work. In terms of peak accuracy, model
1110 outperforms the methods proposed in [1,3,4,7,37,39,41,43,44,54]—each with a reported
peak accuracy between 80% and 98%.

SE blocks did not increase performance compared to model 0000, with the exception
of models 1110 and 1111. However, SE blocks were incorporated in the best-performing
model, 1110. Self-attention was not found to aid classification performance in general with
the proposed architecture. Self-attention introduces a large number of trainable parameters,
possibly forming a complex loss space.

Table 4 lists the performances of single modification (from baseline) architectures. Each
component of the ablation study, with the exception of dilated convolutions, decreased
performance when applied individually. When combined, however, the best-performing
model was found. Therefore, we conclude that each component could possibly aid the
optimization of each other—and, in general, dilated convolutions tend to have the most
dramatic performance increases.
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Table 3. Ablation study performance overview.

Model Name Notes SENet Dilated
Convolutions

Final
Activation Attention # Params Avg.

Accuracy
Max

Accuracy

— Reproduced ResNet [1] — — — — 165,144 59.2% 93.7%

— X-Vector [7] — — — — 110,680 61.3% 98.0%

0000
Best-performing

model from the initial
investigation

— — — — 174,000 62.9% 98.6%

0001 — — — 3 221,088 62.3% 97.6%

0010 — — 3 — 174,000 62.8% 98.6%

0011 — — 3 3 221,088 62.3% 97.5%

0100 — 3 — — 174,000 63.2% 98.9%

0101 — 3 — 3 221,088 63.1% 97.9%

0110 — 3 3 — 174,000 63.2% 98.9%

0111 — 3 3 3 221,088 63.0% 98.0%

1000 3 — — — 202,880 62.9% 98.5%

1001 3 — — 3 249,968 62.6% 98.2%

1010 3 — 3 — 202,880 62.6% 98.3%

1011 3 — 3 3 249,968 62.8% 98.1%

1100 3 3 — — 202,880 62.8% 98.2%

1101 3 3 — 3 249,968 63.0% 97.7%

1110
Overall best

performing model 3 3 3 — 202,880 63.7% 98.9%

1111 3 3 3 3 249,968 63.0% 97.8%

Table 4. Individual network modification performance overview. Entries are repeated from Table 3
for clarity.

Model Name Notes SENet Dilated
Convolutions

Final
Activation Attention # Params Avg.

Accuracy
Max

Accuracy

— X-Vector [7] — — — — 110,680 61.3% 98.0%

0000 — — — — 174,000 62.9% 98.6%

0001 — — — 3 221,088 62.3% 97.6%

0010 — — 3 — 174,000 62.8% 98.6%

0100 — 3 — — 174,000 63.2% 98.9%

1000 3 — — — 202,880 62.9% 98.5%

1110 Best-performer 3 3 3 — 202,880 63.7% 98.9%

8.2. Accuracy over Varying SNR

Figure 10 summarizes the ablation study in terms of classification accuracy over
varying SNR levels. We add this figure for completeness and reproducibility for other
researchers. The accuracy within each SNR band is shown along with the modifications
used, similar to Table 3. The coloring in the figure denotes the accuracy in each SNR band.
The performance follows a trend similar to that of a sigmoid function, where the rate at
which peak classification accuracy is achieved is the most distinguishing feature between
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the different models. With the improved architectures, a maximum of 99% accuracy is
achieved at high SNR levels (starting around 12 dB SNR).

Figure 10. Ablation study results in terms of classification accuracy across SNR ranges. The repro-
duced ResNet [1] and X-Vector baseline [7] architectures are included. The best-performing model is
in the second-to-last row and displays strong performance across SNR values.

While the proposed changes to the architectures generally improve performance at
higher SNR levels, the largest improvements occur between −12 dB and 12 dB, compared
to the baseline model in [7]. For example, at 4 dB, the performance increases from 75%
up to 82%. Incorporating these modifications to the network may prove to be critical
in real-world situations, where noisy signals are likely to be obtained. Improving AMC
performance at lower SNR ranges (<−12 dB) is still an open research topic, with accuracies
at near-chance level.

A receiver using model 1110 within its demodulator achieves a notable 91% classifica-
tion accuracy at 6 dB SNR, which is an improvement compared to previous work [1], which
achieved a similar accuracy of around 10 dB, and [7], which achieved a similar accuracy
of around 8 dB. Wireless communications systems employed in various applications can
suffer from poor reception in low SNR environments due to environmental conditions,
such as complex channel characteristics, multipath interference, fading, and man-made
conditions, such as congested channels, among other factors. Therefore, any improvement
that can increase performance at low SNR is desirable. Because AMC can directly impact
decision-making algorithms, in situations where reliable communications are essential,
such as emergency response systems, military operations, or autonomous vehicle networks,
the ability to accurately classify modulations under challenging SNR conditions becomes a
pivotal determinant of system effectiveness and safety.

One observation is that the best-performing model can vary with the SNR. In systems
that have available memory and processing power, an approach similar to [3] may be used
to utilize several models and intelligently choose predictions based on estimated SNR
conditions. That is, if the SNR of the signal of interest is known, a model can be tuned to
increase performance slightly, as shown in [3]. Using the results presented here, researchers
could also choose the architecture differences that perform best for a given SNR range
(although performance differences are subtle).

8.3. Parameter Count Trade-Off

An overview of each model’s complexity and overall performance across the entire
testing set is shown in Table 3. This information is also shown graphically in Figure 11
for the maximum accuracy over SNR and the average accuracy across all SNRs. Whether
looking at the maximum or the average measures of performance, the conclusions are
similar. The previously described binary model name also appears in the figure. We



Electronics 2023, 12, 3962 16 of 22

found a slight correlation between the number of model parameters and overall model
performance; however, with the architectures explored, there was a general parameter
count where performance peaked. Models with parameter counts between approximately
170 k and 205 k generally performed better than smaller and larger models. We note that
the models with more than 205 k parameters included self-attention, which was found
to decrease model performance with the proposed architectures. This implies that one
possible reason self-attention did not perform as well as other modifications is because of
the increase in parameters, resulting in a more difficult loss space, from which to optimize.

Figure 11. Ablation study parameter count trade-off including the reproduced ResNet [1] and X-
Vector baseline [7]. The x-axis shows the number of trainable variables in each model and the y-axis
shows max or average accuracy. The callout for each point denotes the model name, as shown in
Table 3.

9. Best-Performing Model Investigation

Due to the large volume of models, we focus upon the best-performing model, model
1110, for the remainder of this work. As previously mentioned, this model employs all
modifications except self-attention.

9.1. Top-K Accuracy

As discussed, in systems where the modulation schemes must be classified quickly,
it is advantageous to apply fewer demodulation schemes in a trial-and-error fashion.
This is particularly significant at lower SNR values, where accuracy is mediocre. Top-k
accuracy allows an in-depth view of the expected number of trials before finding the
correct modulation scheme. Although traditional accuracy (top-1 accuracy) characterizes
the performance of the model in terms of classifying the exact variant, top-k accuracy
characterizes the percentage of the classifier predicting the correct variant among the top-k
predictions (sorted by descending class probabilities). We plot the top-1, top-2, and top-5
classification accuracy over varying SNR conditions for each modulation grouping, as
defined in Section 3 in Figure 12.

Although performance decays to approximately random chance for the overall (all
modulation schemes) performance curves for each top-k accuracy, it is notable that some
modulation group performances drop below random chance. The models are trained to
maximize the overall model performance. This could explain why certain modulation
groups dip below random chance but the overall performance and other modulation groups
remain at or above random chance.

Using the proposed method greatly reduces the correct modulation scheme search
space. While high performance in top-1 accuracy is increasingly difficult to achieve with low
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SNR signals, top-2 and top-5 accuracies converge to higher values at a much faster rate. This
indicates that our proposed method greatly reduces the search space from 24 modulation
candidates to fewer candidate types when employing trial-and-error methods to determine
the correct modulation scheme. Further, if the group of modulation is known (e.g., FM),
one can view a more specific trade-off curve in terms of SNR and top-k accuracy, as given
in Figure 12.

Figure 12. Top-1 (top left), top-2 (top right), and top-5 (bottom) accuracy over varying SNR condi-
tions for model 1110. Random chance for each is defined as 1/24, 2/24, and 5/24, respectively.

9.2. Short-Duration Signal Bursts

Due to the rapid scanning characteristic of some modern software-defined radios, we
investigate the performance trade-off of varying signal duration and AMC performance.
This analysis is meant to emulate the situation wherein a receiver only detects a short RF
signal burst. We investigate signal burst durations of 1.024 ms (full length signal from
original dataset), 512 µs, 256 µs, 128 µs, 64 µs, 32 µs, and 16 µs. We assume the same
1 MS/sec sampling rate, as in the previous analyses, such that the 16 µs burst is captured
in 16 I/Q samples.

In this section, we use the same test set as our other investigations; however, a
uniformly random starting point is determined for each signal such that a contiguous
sample of the desired duration, starting at the random point, is chosen. Thus, the chosen
segment from a test set sample is randomly assigned.

We also note that, although the sample length for the evaluation is changed, the best-
performing model is the same architecture with exactly the same trained weights, because
this model uses statistics pooling from the X-Vector-inspired modification. A significant
benefit of the X-Vector-inspired architecture is its ability to handle variable-length inputs
without the need of padding, retraining, or other network modifications. This is achieved
by taking global statistics across convolutional channels, producing a fixed-length vector,
regardless of signal duration. Due to this flexibility, the same model (model 1110) weights
are used for each duration experiment. This fact also emphasizes the desirability of using
X-vector-inspired AMC architectures for receivers that are deployed in an environment
where short-burst and variable duration signals are anticipated to be present.
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For each signal duration in the time domain, we plot the overall classification accuracy
over varying SNR conditions, as well as the accuracy for each modulation grouping defined
in Section 3 in Figure 13, which demonstrates the trade-off for various signal durations,
where n is the number of samples from the time domain I/Q signal. The first observation
is, as we would expect, that classification performance degrades with decreased signal
duration, similarly to [39]. For example, the maximum accuracy begins to degrade at
256 µs and is more noticeable at 128 µs. This is likely a result of using sample statistics that
result in unstable or biased estimates for short signal lengths, since the number of received
signal data points are insufficient to characterize the sample statistics used during training.
Random classification accuracy is approximately 4% and is shown in the black dotted line
in Figure 13. Although classification performance decreases with decreased duration, we
are still able to achieve significantly higher classification accuracy than random chance,
down to 16 µs of signal capture.

Figure 13. Trade-off in accuracy for various signal lengths across the SNR, grouped by modulation
category for the best-performing model, 1110. The top plot shows the baseline performance using the
full sequence. Subsequent plots show the same information using increasingly smaller signal lengths
for classification.

FM (frequency modulation) signals were typically more resilient to noise interference
than AM (amplitude modulation) and AM–PM (amplitude and phase modulation) signals
in our AMC. This was observed across all signal burst durations and our top-k accuracy
analysis. This behavior indicates that the performance of our AMC for short bursts, in the
presence of increasing amounts of noise, is more robust for signals modulated by changes
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in the carrier frequency and is more sensitive to signals modulated by varying the carrier
amplitude. We attribute this behavior to our AMC architecture, the architecture of the
receiver, or a combination of both of the AMC and receiver.

9.3. Confusion Matrices

While classification accuracy provides a holistic view of model performance, it lacks
the granularity to investigate where misclassifications are occurring. Confusion matrices
are used to analyze the distribution of classifications for each given class. For each true
label, the proportion of correctly classified samples is calculated along with the proportion
of incorrect predictions for each opposing class. In this way, we can see which classes
the model is struggling to distinguish from one another. A perfect classifier would be the
identity matrix where the diagonal values represent the true class, and which match the
predicted class. Each matrix value represents the percentage of classifications for the true
label and each row sums to 1 (100%).

Figure 14 illustrates the class confusion matrices for SNR levels greater than or equal
to 0 dB for models 1110, the reproduced ResNet architecture from [1], and the baseline
X-Vector architecture from [7], respectively. Shown in [7], the X-Vector architecture was able
to distinguish PSK and AM-SSB variants to a higher degree and performed better overall
than [1]. Both architectures struggled to differentiate QAM variants.

Figure 14. Confusion matrices for model 1110—the best-performing model from this work (top left),
the reproduced ResNet model from [1] (top right), and the X-Vector-inspired model from [7] (bottom)
with SNR ≥ 0 dB.

Model 1110 improved upon these prior results for QAM signals and, in general, has
higher diagonal components than the other architectures. This, again, supports a conclusion
that model 1110 achieves a new state of the art in AMC performance.

10. Conclusions

A comprehensive ablation study was carried out with regard to AMC architectural
features using the extensive RadioML 2018.01A dataset. This ablation study built upon
a strong performance of a new baseline model that was also introduced in the initial
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investigation of this study. This initial investigation informed the design of a number of
AMC architecture modifications—specifically, the use of X-Vectors, dilated convolutions,
and SE blocks. With the combined modifications, we achieved a new state of the art in
AMC accuracy, improving upon prior work by approximately 2.5% overall accuracy on the
RadioML 2018.01A dataset. We also achieve a new state of the art in peak performance with
98.9% accuracy at high SNR values. Among these modifications, dilated convolutions were
found to be the most critical architectural feature for model performance. Self-attention was
also investigated, but was not found to increase performance—although increased temporal
context improved upon prior works. Additionally, the best-performing model was found
to be robust against signals of varying duration, down to 128 µs of signal capture.
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