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 The advantages of quantum computing as compared to classical computing are 

currently being researched; therefore, the ability to correctly simulate quantum circuits is 

becoming increasingly more important.  A Quantum Multiple-valued Decision Diagram, 

or QMDD, is a structure which allows for an efficient implementation of a quantum 

circuit simulator.  This structure can be used to create a quantum circuit simulator that is 

both computationally efficient as well as economic with memory usage. 

 In this thesis, a background of quantum computing and analyzing quantum gates 

and circuits is given.  The concept of a QMDD is presented, and the relationship between 

a QMDD and a quantum circuit simulator is discussed.  In addition to these topics, the 

basic theory behind creating a quantum circuit simulator is discussed. 

 This thesis proposes two different approaches for creating a quantum circuit 

simulator and analyzes the results generated from both approaches.  The first approach 

utilizes explicit matrix-vector multiplication using QMDD representations of the 

quantum circuit as well as the input vector.  The second approach utilizes implicit matrix-

vector multiplication where a QMDD structure representing the quantum circuit 

undergoes a guided traversal based on the input vector.  Both of these approaches are 
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compared to explicit multiplication using matrices and vectors instead of the QMDD 

structure.  Finally, results are discussed, and the effectiveness of the two circuit 

simulation methods is analyzed and compared with an existing quantum circuit simulator. 
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Chapter 1 

INTRODUCTION 

 

 Recently, there has been much interest in the concept of quantum computing since 

many problems that are intractable with classical computers can be solved by quantum 

computers in polynomial time.  For example, both Shor’s factorization algorithm [1] and 

Grover’s search algorithm [2] are intractable problems in the realm of classical 

computing; however, these problems are able to be solved in polynomial time with the 

use of quantum computations.  In addition to the ability to solve complex problems, 

quantum logic operations are reversible [19].  For this reason, there is additional interest 

in these types of circuits because only reversible circuits can approach the theoretical 

limit of no heat dissipation [13] [14]; therefore, there is significant interest in developing 

practical quantum logic circuits because of the prospect of very low power dissipation. 

 The novel concept behind quantum computing is directly related to the smallest 

unit of data available.  In classical computing, the smallest unit of data is the bit.  This 

unit of data either holds a “one” or a “zero”.  These small units of data can be stored in 

memory, transported through logic gates, and stored in memory again.  Conversely, in 

quantum computation, the smallest unit of data is the qubit.  Just like a bit, a qubit can 

hold a value of “one” or “zero”; however, the thing that makes a qubit different is that it
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can also hold a superposition of one and zero.  In a quantum computer, these qubits 

(which are stored in registers) undergo evolutions in time or space.  Each of these 

evolutions represents a quantum gate operation. 

 As a part of the development of quantum computing, it is necessary to find 

efficient ways to design the quantum circuits.  A quantum logic circuit represents 

transformations of the state of one or more qubits over time or space.  These circuits are 

modeled as a cascade of one or more quantum logic gates.  A quantum logic gate can be 

represented by a unitary transformation matrix (as discussed in Chapter 2).  Due to this 

property of quantum circuits, the transformation of a number of qubits from their initial 

state into a final state can be computed through the use of matrix-vector multiplication 

[13].  The downfall of this method is the fact that for an n-qubit circuit, the 

transformation matrix is of size 2n×2n and the vector representing the initial state of the 

set of qubits is of size 2n.  Due to these extreme sizes, the simulation of quantum logic 

circuits using a matrix-vector multiplication method is only useful for circuits with a very 

small number of qubits.   

 This thesis presents two different methods for simulating quantum circuits.  Both 

methods utilize a structure called a Quantum Multiple-valued Decision Diagram, or 

QMDD.  These methods eliminate the problem of exponential growth of the size of 

representational matrices so that very large quantum circuits can be simulated in a 

relatively short amount of time.   

 The remainder of this thesis is organized as follows.  Chapter 2 provides an 

overview of quantum logic, including quantum gates and matrix representations of 

quantum gates.  Chapter 3 discusses the QMDD structure in detail.  Chapter 4 details the 
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quantum circuit simulator that has been developed as a direct result of this research.  

Finally, Chapter 5 presents the computational results of the quantum circuit simulator 

discussed in Chapter 4 and compares these results with those of  another quantum logic 

circuit simulator, QuIDDPro [11] [12]. 
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Chapter 2 

QUANTUM LOGIC 

 

 Quantum logic, which is analogous to digital logic in classical computing, defines 

the way in which quantum bits, or qubits, are transformed according to certain functions.  

As stated in the introduction, a special property of quantum gates and circuits is their 

reversibility.  The reversibility of these logic gates allows for their representation by 

unitary matrices [21].  The work in [3] provides a very detailed background of quantum 

logic.  Here, the basics of quantum gates and circuits are discussed. 

 

2.1.  Quantum Gates 

 In classical computing, a logic gate is described as a piece of hardware that 

performs a logical operation on one or more logical inputs to produce a single logical 

output.  Quantum gates are analogous to digital logic gates, but there are a number of 

differences.  Classical computing circuits consist of wires and logic gates.  The wires 

carry information around the circuit, and the logic gates perform operations on that 

information.  Additionally, memory may be included as part of a circuit to store the 

values of various bits.  In order to understand the functionality of a quantum gate, some 

examples are introduced.    
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 First, some background on quantum physics is provided to clarify the material to 

follow.  The notation used to describe a quantum state is called “braket” notation.  This 

name is used since this notation represents the inner product of two states denoted by a 

bracket, <φ|ψ>.  The left part, <φ|, is termed the “bra”, while the right part, |ψ>, is called 

the “ket”.  In quantum physics, the state of a physical system is identified by a point in 

the Hilbert space of the system (an abstract vector space in which distances and angles 

can be measured) [15].  The ket is used to represent a quantum state.  In the case of 

quantum logic, there are two distinct quantum states, one and zero.  These are represented 

by |1> and |0>.  For the remainder of this thesis, the quantum state |ψ> will be used to 

represent 

α|0> + β|1> 

which is a superposition of the two distinct quantum states.  In this case α and β represent 

the probability of each of the quantum states.  Since the Hilbert space is a vector space, a 

quantum state can also be expressed in vector notation.  For example, in the equation 

|ψ> = α|0> + β|1> 

|ψ> could also be expressed as the vector 

⎥
⎦

⎤
⎢
⎣

⎡
β
α

 

The use of the “braket” notation is common because of the work of Dirac in quantum 

mechanics. 

 For example, consider the only single input, single output, classical logic gate, the 

NOT gate.  The NOT gate simply takes a logic input and provides the negation of this 

input as the output of the circuit.  In other words, the gate interchanges the 0 and 1 states 
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of classical bits.  A good place to start is to show how a quantum NOT gate is 

constructed.  Recall that quantum bits can represent the zero state (|0>), the one state 

(|1>), or any superposition of states in between.  These states can also be expressed in 

vector notation.  The following definitions describe how the zero and one states are 

expressed in vector notation. 

|0> = ⎥
⎦

⎤
⎢
⎣

⎡
0
1

 and |1> = ⎥
⎦

⎤
⎢
⎣

⎡
1
0

 

In order to perform a quantum NOT, a gate is needed that will reverse the probabilities of 

each quantum state.  Since quantum gates can be represented as unitary matrices, the 

quantum NOT gate can be represented by the following matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
01
10

 

 In order to verify the functional operation of this gate, the following example is 

presented.  The quantum state α|0> + β|1> written in vector notation is  

⎥
⎦

⎤
⎢
⎣

⎡
β
α

. 

To compute the output of the quantum gate, a matrix-vector product is generated.  For 

example if α=0 and β=1, it can be seen that 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
0
1

1
0

01
10

. 

Thus, the quantum NOT gate has been realized.  It is also important to notice that this 

quantum gate (along with all other quantum gates) is completely reversible.  If the output 

of the previous equation were to be substituted for the input, the original quantum vector 

would be the result.   
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 As an example, another commonly used quantum gate is the controlled-NOT gate, 

or CNOT gate.  This gate operates on two qubits (as opposed to one with the NOT gate).  

One qubit is designated the “control” while the other is designated the “target”.  The 

operation of the CNOT gate is defined as follows:  when the control qubit has a value of 

|1> the target qubit is reversed, otherwise, the target qubit remains unchanged.  In both 

cases, the control qubit is unchanged by the CNOT gate. 

 

 

 

Figure 2.1.  Quantum CNOT Gate 

 

Just like logic gates, quantum gates can be represented in a diagram form.  Figure 2.1 

shows a graphical representation of the quantum CNOT gate.  The smaller, closed circle 

indicates the control qubit while the larger, open circle indicates the target qubit. 

 Figure 2.2 shows the graphical representation of another commonly used quantum 

gate, the controlled-controlled-NOT or Toffoli gate.  
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Figure 2.2.  3-qubit Toffoli Gate 

 

 The Toffoli gate is a quantum logic gate that involves three qubits.  The function 

of the Toffoli gate is based on the two qubits designated “controls”.  Analogous to the 

functionality of the CNOT gate, the Toffoli gate will invert the “target” qubit if, and only 

if, both of the “control” qubits are set to |1>.  Another version of the Toffoli gate is the 

generalized Toffoli gate.  This gate utilized three or more qubits as “control” qubits.  In 

the case of a generalized Toffoli involving n qubits, n-1 qubits are controls and the 

remaining qubit is the target.  The gate will reverse the target qubit if, and only if, all of 

the control qubits have a state of |1>. 

 The other quantum gates that are used in this thesis are the Controlled-V and 

Controlled-V† gates.  (Although a small set of gates are used for the examples presented 

in this thesis, the QMDD structure is easily extended to use other common quantum 

gates.)  The Controlled-V gate is often referred to as the square root of NOT gate, since a 

cascade of two such gates produces the same transformation as a quantum NOT gate.  

The Controlled-V gate operates in a similar manner to the CNOT gate in that the 

transformation is applied to the target qubit if, and only if, the control qubit is set.  In the 
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event that the control qubit is set, the Controlled-V gate applies the transformation, given 

by the following matrix, to the target qubit: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+
=

1
1

2
1

i
iiV  

Similarly, the Controlled-V† applies the following transformation if the control qubit is 

set to |1>: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

1
1

2
1 V†

i
ii  

This transformation is actually equivalent to the inverse of the V transformation matrix.  

The symbols for these gates are shown in Figures 2.3 and 2.4. 

 

 

Figure 2.3.  Controlled-V Gate 

 

 

Figure 2.4.  Controlled-V†
 Gate 
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2.2.  Matrix Representations 

 A special property of quantum gates is their ability to be represented by a 

transformation matrix.  A quantum gate that operates on n qubits can be represented by a 

2n×2n unitary matrix.  As an example, Figure 2.5(a) shows the matrix representation of 

the 3-qubit Toffoli gate shown in Figure 2.5(b).  In this example, the qubits labeled x0 and 

x2 are the control qubits, while the qubit marked x1 is the target.  This particular gate is 

denoted T(x2, x0; x1) because x2 represents the most significant qubit.  All gates 

mentioned in this thesis are denoted in a similar fashion. 

 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

    

(a)               (b)  

Figure 2.5.  Matrix Representation of a Toffoli Gate 

 

 The ability to represent a quantum gate with a unitary matrix allows for many 

complex operations to be performed through linear algebraic methods.  For example, by 

using matrix-vector multiplication, it is possible to produce the output vector from a 

specific input vector representing the quantum states of the qubits provided as inputs to a 

quantum gate.   
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2.3.  Quantum Circuits 

 A quantum circuit is simply a circuit comprised of one or more quantum gates.  

Multiple quantum gates may be cascaded together to form a quantum circuit.  Quantum 

circuits such as the one presented in Figure 2.6 represent a transformation through time or 

space.  The transformation is generally read from left to right; however, since all quantum 

gates are reversible, the transformation may also be read in the opposite direction. 

 

 

Figure 2.6.  Quantum Full-Adder Circuit (rd32) 

 

 As an example, the circuit in Figure 2.6 is a quantum full-adder circuit [9].  In this 

particular circuit, the third qubit output represents the sum and the fourth qubit output 

represents the carry. 

 Individual quantum gates have the special property that they can be represented 

by a single unitary matrix.  Similarly, a quantum circuit can be represented by a single 

unitary matrix.  This property of quantum circuits is used extensively when designing a 

quantum circuit simulator.  It is shown in Chapter 4 that representing an entire quantum 

circuit with a single matrix allows the circuit simulation to be performed using matrix 
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multiplication.  Additionally, Chapter 4 demonstrates how the QMDD structure can be 

used to perform the same simulations without the use of matrix multiplication. 

 This example illustrates how a unitary matrix representing an entire quantum 

circuit is built.  The circuit shown in Figure 2.6 will be utilized for this example.  The 

first step in generating the representational matrix is to build the unitary matrix for each 

individual gate.  Since the rightmost Controlled-NOT gate involves two qubits, the 

representational matrix will be of size 22×22, or 4×4.  Since this example is considering 

only the |0> and |1> states, the matrix can be thought of as a permutation matrix.  The 

matrix below is the representational matrix for this gate.   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0100
1000
0010
0001

 

However, this matrix cannot be used to build the matrix representing the entire circuit.  

Since the entire circuit has four qubits, it is necessary to “extend” this matrix to the size 

of 24×24.  To perform the extension, the Kronecker operation is used.  The Kronecker 

operation is defined in [8] as the following: 

11 1

1

n

m mn

a B a B
A B

a B a B

⎡ ⎤
⎢ ⎥⊗ = ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O M

L

 

 In order to properly extend the matrix, a Kronecker operation is performed on the 

representational matrix with an identity matrix.  If the unused qubit lies above the target 

qubit, the identity matrix is placed on the right side of the representational matrix, 

otherwise it is place on the left.  For example, to extend the matrix mentioned before, a 
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Kronecker operation is performed on the left and right sides of the representational 

matrix. 

⎥
⎦

⎤
⎢
⎣

⎡
⊗

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊗⎥
⎦

⎤
⎢
⎣

⎡
10
01

01000000
10000000
00100000
00010000
00000100
00001000
00000010
00000001

10
01

0100
1000
0010
0001

10
01  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0010000000000000
0001000000000000
1000000000000000
0100000000000000
0000100000000000
0000010000000000
0000001000000000
0000000100000000
0000000000100000
0000000000010000
0000000010000000
0000000001000000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

 

This process can be continued until all four gates have individual representational 

matrices.  Finally, in order to generate the representational matrix for the entire circuit, 

the matrices are multiplied together using traditional matrix multiplication.  The matrices 

for the gates in the circuit in Figure 2.6 can be seen below. 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0100000000000000
1000000000000000
0001000000000000
0010000000000000
0000100000000000
0000010000000000
0000001000000000
0000000100000000
0000000010000000
0000000001000000
0000000000100000
0000000000010000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

1G

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000100000000000
0000010000000000
0000001000000000
0000000100000000
1000000000000000
0100000000000000
0010000000000000
0001000000000000
0000000010000000
0000000001000000
0000000000100000
0000000000010000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

2G

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0100000000000000
1000000000000000
0010000000000000
0001000000000000
0000100000000000
0000010000000000
0000001000000000
0000000100000000
0000000001000000
0000000010000000
0000000000100000
0000000000010000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

3G
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0010000000000000
0001000000000000
1000000000000000
0100000000000000
0000100000000000
0000010000000000
0000001000000000
0000000100000000
0000000000100000
0000000000010000
0000000010000000
0000000001000000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

4G

 

Now the matrices can be multiplied together to obtain the following product. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×××

0000010000000000
0000100000000000
0000000100000000
0000001000000000
0001000000000000
0010000000000000
1000000000000000
0100000000000000
0000000000100000
0000000000010000
0000000010000000
0000000001000000
0000000000001000
0000000000000100
0000000000000010
0000000000000001

4321 GGGG

 

This matrix is the representational matrix for the entire quantum circuit.  This same 

procedure can be used to build the representational matrices for any quantum circuit. 
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Chapter 3 

THE QMDD STRUCTURE 

 

 The Quantum Multiple-valued Decision Diagram structure is first introduced in 

[4] as a means of representing a quantum or reversible circuit with a structure based on 

decision diagrams.  The idea of storing and manipulating matrices with decision diagram 

structures has been previously introduced in [22]. 

 

3.1.  Motivation 

 The main motivation for the innovation of the QMDD structure is the regular 

structure of the matrices that represent quantum gates and circuits.  For a binary circuit, 

the dimensions of the representative matrices are always powers of 2; therefore, the 

matrices can always be partitioned into four quadrants.  For example, the 2n×2n matrix M 

can be partitioned as 

M =
M0 M1

M2 M3

⎡

⎣
⎢

⎤

⎦
⎥  

where each of the partitions has dimensions 2n-1×2n-1.  Furthermore, each of the 

remaining partitions can be subdivided into four smaller matrices.  This process can 

recursively continue until only single values remain.  Eventually, these single values 

represent the weights of the four outgoing edges from a node of the decision diagram.  A 

quality that arises in many quantum and reversible circuits is repetition within the 
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representational matrix.  For example, in the matrix shown below, the partition of the 

upper-left quadrant can be further partitioned into four matrices; however, the two pairs 

of the newly partitioned matrices are identical. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00100000
01000000
10000000
00010000
00001000
00000100
00000010
00000001

 

The characteristic repetition within the representational matrices makes representing a 

quantum circuit as a decision diagram compact.  Due to the repetitiveness, many of the 

repeated submatrices do not need to be stored more than once.  This is a great help in 

reducing the amount of memory necessary to simulate a quantum or reversible circuit. 

 

3.2.  Design of the QMDD Structure 

 Many of the specific details of the Quantum Multiple-valued Decision Diagram 

structure are discussed in [4] and [7], but some of the important relevant aspects are 

summarized here.  A binary decision diagram is a data structure that can be utilized to 

represent a Boolean function.  A binary decision diagram is defined as a rooted, directed, 

acyclic graph consisting of decision nodes and two terminal nodes called 0-terminal and 

1-terminal.  In a binary decision diagram, each decision node is labeled by a Boolean 

variable and has two child nodes.  The edge from a decision node to a child node 

represents an assignment of the Boolean variable to either 0 or 1.  A binary decision 
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diagram is also referred to as “ordered” if different variables always appear in the same 

order on all paths from the root.  Further details on binary decision diagrams can be 

found in [6] and [23]. 

 As an example, Figure 3.1 shows a binary decision tree structure. 

 

x1

x2 x2

0 1

x3 x3 x3x3
0 01 1

1 1 1 10 0 0 0
0 0 0 01 1 1 1

 

Figure 3.1.  Binary Decision Tree Structure 

 

This decision tree represents the function  

f=Σ(0,3,6,7) 

The binary decision diagram structure for this same function is shown in Figure 3.2.  All 

of the redundant nodes have been removed. 
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x1

x2 x2

01

x3 x3

0 1

10

01 1

10

0

 

Figure 3.2.  Binary Decision Diagram 

 

 Similar to a binary decision diagram, a Quantum Multiple-valued Decision 

Diagram is a compact structure used to represent quantum circuits.  The details of such a 

diagram are discussed in the following sections. 

 

3.2.1.  Characteristics of a QMDD 

 Although the binary decision diagram is completely defined, it is necessary to 

create another similar structure to use with quantum and reversible circuits; this is the 

inspiration for the QMDD structure.  There are significant differences between the 

QMDD structure and the binary decision diagram.  Some of the differences are discussed 

below: 

• There is only one terminal vertex.  This vertex has an associated value of one 

and has no outgoing edges. 
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• Each non-terminal node has four outgoing edges (as opposed to two for a 

traditional binary decision diagram). 

• Each edge in the QMDD has a complex-valued weight associated with it.  

Every edge with a weight of 0 points to the terminal node. 

• No non-terminal vertex is redundant.  This means that any vertices that have 

four outgoing edges all with the same weights and all pointing to the same 

vertices are only stored once to avoid repetition. 

• All non-terminal vertices are normalized.  This means that when looking at 

the outgoing edges from left to right, the first edge with a non-zero weight 

must have a weight of one.  All edges to the left of this edge must have 

weights of zero. 

• Finally, all non-terminal vertices are unique.  This ties in with the previously 

stated fact that no non-terminal vertex is redundant. 

 As an example, Figure 3.3 shows a QMDD structure representing a single Toffoli 

gate with variables x0 and x2 as controls and x1 as the target. 
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x2

x1x1

x0 x0 x0

1

1 1

0 0

1 1

0 0

1 0 0 1

1 1
11

1 0 0 0 0 0 0 1

 

Figure 3.3.  Sample QMDD Structure 

 

This QMDD structure encompasses many of the characteristics presented in the list 

above.  For example, there is only one terminal node, which is labeled with a 1.  Also, 

each of the non-terminal nodes have four outgoing edges. 

 This QMDD structure completely represents the quantum circuit consisting of this 

one Toffoli gate.  In order to verify that this is true, it is possible to build the 

representational matrix from the QMDD structure.  This is done through a series of 

reverse Kronecker operations.  Since there are three qubits, the resulting matrix will be of 

size 8×8.  The first step in generating the matrix is to look at the initial node.  Each of the 

four edges “points to” one of the 4×4 submatrices of the representational matrix.  If any 

of these edges has a weight of zero, that entire submatrix is a zero matrix.  For example, 
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after examining the initial node, the matrix can be partially completed as the matrix 

below shows. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000

0000
0000
0000
0000

 

Next, the nodes on the next level down are examined.  Each of these nodes represents one 

of the 4×4 matrices that is yet to be filled in.  A similar method is used to fill in these 

submatrices.  Each of the edges of these nodes points to a 2×2 submatrix.  The matrix 

below shows the representation matrix after examining the nodes at the level of variable 

x1. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000

000000
000000
000000
000000

 

Finally, when the lowest level of nodes is reached, the weights of the outgoing edges of 

each of these nodes fill in the remaining 2×2 submatrices.  The final representational 

matrix is seen below. 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00100000
01000000
10000000
00010000
00001000
00000100
00000010
00000001

 

  

 

3.2.2.  Building a QMDD Structure 

 This section describes how a QMDD structure is built from a circuit netlist.  The 

QMDD software package is described in detail in [4] and [7], but the process of building 

a QMDD structure is presented here for continuity.   

 In order for a QMDD structure that represents a quantum or reversible structure to 

be built, it is necessary to first build a QMDD structure for each individual gate.  The 

variable order is as follows: the variables are labeled x0, x1, …, xn-1 from the terminal 

node to the start node.  Additionally, each quantum logic gate is specified by the base 

transition matrix M. When the QMDD structure for a particular gate is being built, it is 

actually built from the terminal vertex working its way up to the start vertex.  The 

procedure has three phases as described in [7] which are outlined here. 

 First, structures are constructed for the variables that lie “below” the target 

variable in the variable ordering (“below” referring to variables that are closer to the 

terminal vertex in the variable ordering).  For each of these variables, there are four 

separate QMDD structures that are created.  Out of these four QMDD structures, the (i × 
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2 + j)th QMDD structure has a path that follows the values required to activate the 

controls to the terminal value Mi,j while all other paths lead to zero.  As an example of 

this, consider the simple quantum circuit presented in Figure 3.4. 

 

 

Figure 3.4.  Simple Quantum Circuit 

 

This quantum circuit consists of just one quantum gate, a Toffoli gate. 

Based on the description given above, the 2nd QMDD structure has a path following the 

values required to activate the controls which then points to the terminal value in the 

matrix.  Such a QMDD structure is given in Figure 3.5. 
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0

1

0 0

0

1 0 0

 

Figure 3.5.  QMDD Structure for Variable Below the Target 

 

Any variables that are not target or control variables (there are none in the above 

example) are taken into account through the use of identity matrices.  These matrices are 

combined with the rest of the QMDD using Kronecker multiplication. 

 After these QMDD structures have been created, a single structure is created for 

the target variable.  The source node of this QMDD structure is assigned the target 

variable.  The edges of this source node point to the QMDD structures that were created 

in the previous step. 

 Finally, there are additional steps for the variables that lie above the target 

variable.  Similar to those lying below the target, the upper part of the QMDD has a path 

that follows the values required to activate the controls, and all of the other paths lead to 

0.  The non-control variables are accounted for through the use of identity matrices and 

the Kronecker multiplication operation. 

 The efficiency of the QMDD building process comes from the fact that the 

structures are built in a single pass through the variables.  The building begins from the 

variable associated with the terminal node and continues up through the initial node with 
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no backtracking.  Once a QMDD structure has been created for each of the gates in the 

QMDD circuit, the structures are combined through the QMDD-based multiplication 

operation discussed in detail in [4]. 

 

3.2.3.  Variable Labels 

 Throughout the building process, attention is given to the variable labels.  This is 

an essential step because the variable names are important for simulation.  The procedure 

described in the previous section gives information about how the variable labeling is 

performed. 

 Proper node labeling is necessary for correct circuit simulation.  It must be 

ensured that when a QMDD structure is traversed from the initial node to the terminal 

node, each variable is encountered at most one time.  Of course, some traversal paths will 

not include every variable.  According to [16], this will only occur in the case when an 

edge points directly to the terminal node and has a weight of zero. 

 Figure 3.4 shows the complete QMDD structure for the quantum circuit in Figure 

3.1. 
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x2

x1 x1

1

x0 x0 x0

1

1 11

1 1
0

1

1 0 0 0 0 0 0 1

0 0

0

1

0 0 0 1

 

Figure 3.6.  Complete QMDD Structure 

 

 

In this particular quantum circuit, the QMDD structure that is built has a redundant node.  

This node is denoted by the circle drawn with a dashed line.  This means that two 

different nodes have four edges with equivalent weights all pointing to the same nodes.  

In these cases, the redundant node is only stored in memory once, and multiple edges 

from a parent node point to this redundant node.  An example of this can be seen in the 

nodes labeled with variable x0 in Figure 3.6.  Notice that the two nodes on the right side 

have all four edges with the exact same weights that all point to the terminal node.  In this 

case, the node would only be stored one time.  Figure 3.7 shows the QMDD structure 

with the redundancy removed. 
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x2

x1 x1

1

x0 x0

1

1 11

1 1
0

1

1 0 0 0 0 0 0 1

0 0

0
1

 

Figure 3.7.  Complete QMDD Structure with Redundancy Removed 

 

3.3.  Implementation of a QMDD Package 

 In [7], the details of the QMDD package used for this thesis are discussed.  Some 

important points are discussed here as they relate to results presented later in this thesis. 

 

3.3.1  Node Storage 

 An important aspect of the QMDD package is the way in which the nodes are 

stored in memory.  It is important that redundant nodes are not stored multiple times 

since the structure of the QMDD leads to many redundant nodes.   

 The choice for node storage in this particular package is the use of a unique table.  

A unique table is used to store references to each of the nodes.  Whenever a new node is 

created for the QMDD structure, the unique table is first traversed to see if a redundant 

node has already been defined.  If the node already exists in the unique table, instead of 
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creating a new node, the software refers to the unique table when using the node in the 

QMDD structure.  If the node does not yet exist, it is created and then added to the unique 

table.  By using this method, only the unique nodes are stored in memory, saving the 

amount of memory necessary to store redundant nodes multiple times. 

 

3.3.2.  Complex Numbers 

 In addition to saving memory by using a unique table, memory can also be saved 

by using a complex number table.  Each of the outgoing edges from a QMDD node has a 

complex-valued weight associated with it.  In order to reduce the amount of storage 

necessary, a complex number table is created.  This table is similar to the unique table 

previously mentioned, except this table stores complex numbers as opposed to QMDD 

nodes.  The operation of the table is very similar to the unique table.  When a new edge is 

to be added, the complex number table is inspected to see if the weight of the edge has 

already been stored in the complex number table.  If that particular number has already 

been stored in the table, there is no need to add it.  If the number does not yet exist, it is 

added to the complex number table. 

 Additionally, to save more memory, instead of assigning the complex value to the 

weight of each edge, an integer is assigned to each edge weight.  This integer represents 

an index in the complex number table.  Therefore, instead of using enough memory to 

store a complex number for each of the edges, only a single integer is stored. 
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3.3.3.  Operation Tables 

 Another time saving addition to the QMDD package is operation tables.  These 

tables store the results of the addition, multiplication, or division of two complex 

numbers.  Since these complex computations are relatively expensive, having an 

operation table can save additional computational time. 

 Similar to the operation of the other tables recently discussed, the operation tables 

are traversed any time a complex operation is performed.  If the operation has not been 

previously performed, it is added to the operation table.  Additionally, the commutative 

properties of complex addition and multiplication are accounted for so that no repetitive 

operations are performed. 

 

3.3.4.  Computed Table 

 Distinctly similar to an operation table, a computed table is a common feature of 

decision diagram packages [6].  A computed table assures that no redundant 

computations are performed.  The computed table is used to keep track of any instances 

of matrix addition, matrix multiplication, or Kronecker multiplication [8] performed on 

two QMDD structures.  Additionally, the operations themselves are recursive, so the 

subcomputations are stored in the table and checked before performing any operation. 

 

3.3.5.  Zero and Identity Matrices 

 Due to the nature of the QMDD, both zero and identity matrices occur very 

frequently.  Methods are in place to efficiently handle both of these cases.  First of all, the 

zero matrix case is handled where, any time a zero matrix is encountered, it is represented 
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as an edge with a weight of zero pointing to the terminal node.  Using this method, no 

other precautions need to be taken for dealing with a zero matrix. 

 To facilitate dealing with identity matrices, a flag associated with each vertex 

indicates if the vertex and its descendants represent an identity matrix.  If the vertex 

represents an identity matrix, many of the matrix operations can be simplified.  For 

example, when performing matrix multiplication, if one of the matrices is the identity 

matrix, the operation becomes much simpler.  The equations below demonstrate how the 

multiplication becomes simpler. 

A × I = I × A = A 

 

3.4.  Conclusion 

 There are many other optimization details included in the implementation of the 

QMDD package [4] [7].  The result is a software package that represents quantum and 

reversible circuits efficiently.  The QMDD structure and the software representing it are 

both integral parts of the remainder of the work discussed. 
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Chapter 4 

QUANTUM CIRCUIT SIMULATOR 

 

 Without the ability to simulate quantum circuits, the states of qubits in quantum 

circuits would have to be determined by hand or through a physical quantum circuit.  In 

order to fully utilize all that quantum circuits have to offer, it is necessary to design a 

circuit simulator that is both efficient and accurate.  The background for some methods of 

quantum circuit simulation is provided in [11] and [12], specifically, a quantum circuit 

simulator called QuIDDPro.  This chapter first presents the method the QuIDDPro 

approach uses for quantum circuit simulation, and then explores a variety of different 

options for simulating quantum circuits that are implemented in this work.  Finally, the 

options are compared to QuIDDPro and to each other based on the results of a number of 

simulations. 

 

4.1.  Quantum Circuit Netlist Formulas 

 When working with quantum and reversible circuits, there are number of different 

ways that the circuits can be described.  In previous versions of the QMDD package, a 

particular format has been used.  This format (tfc files) is the same that is used by 

Maslov in his benchmark circuit set [9].  
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 Another common format used to describe quantum and reversible circuits is the 

QASM format.  The QASM format is a text-format language used to describe quantum 

circuits.  More information on the QASM format can be found in [10]. 

In order to make this quantum circuit simulator a useful tool for those working in 

the area of quantum and reversible circuits, the simulator is compatible with both tfc 

formatted circuits as well as QASM formatted circuits.  Since the software previously 

developed is compatible with the tfc format, a simple program has been written to 

translate a QASM specification into the tfc format.  Once the translation is complete, 

the resulting file can be used with the existing software.   

 To demonstrate the differences in the file formatting, Figures 4.1 and 4.2 show 

examples of a file in tfc format and QASM format respectively. 

 

 

#rd32.qasm 
 
qubit a 
qubit b 
qubit c 
qubit d 
 
toffoli a,b,d 
cnot a,b 
toffoli b,c,d 
cnot b,c 
 

Figure 4.1.  rd32.qasm 

 

 

.v a,b,c,d 
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.i a,b,c 

.o d,c 

.c 0 
 
BEGIN 
t3 a,b,d 
t2 a,b 
t3 b,c,d 
t2 b,c 
END 
 

Figure 4.2.  rd32.tfc 

 

These two files represent the exact same quantum circuit (rd32, or the full-adder) in both 

formats.   

 

4.2.  Input Vector Formation 

 For the purposes of these simulators, it is assumed that the input vectors are 

represented by an n-qubit register with all qubits initialized to basis or eigenstate values 

of |0> or |1>.  In order to perform matrix-vector multiplication for simulation, the first 

step is that the register of eigenstate values must be transformed from Dirac notation into 

a vector of appropriate values.  This vector is formed through the use of the Kronecker 

product.  This operation is used to transform the Dirac-ket notation, defined in Chapter 2, 

into the proper column vector format [3]. 

One property of the Kronecker operation is that it is not commutative; it is, in 

fact, associative.  In order to account for the lack of a commutative Kronecker product, in 

the simulators described in this thesis, the Kronecker operation is evaluated as a series of 

Kronecker products evaluated from right to left. 
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 As an example, consider the original register values of |100>.  The column vector 

associated with these original eigenstates is formed as shown below: 

⎥
⎥
⎥
⎥
⎥
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⎥
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⎦
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0
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0
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0

100|  

The column vector that is the result of these operations is the “input vector” for the 

quantum circuit.  The input vector is used by the simulator to calculate the proper output 

for the circuit. 

 

4.3.  Circuit Simulation Methods 

 This section will discuss several different simulation methods that have been 

implemented.  This thesis will focus on two primary methods for circuit simulation.  First 

is the explicit multiplication based simulator.  This method is compared with the other 

method developed in this project, the implicit multiplication based simulator.  In addition 

to the implementation of these methods, the naïve linear algebraic approach involving 

matrix-vector multiplication is also implemented for comparison purposes.  Finally, we 

describe an existing method described in [11] [12] and [20] that is also considered here 

for comparison purposes. 
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4.3.1.  Linear Algebra Approach 

 The linear algebra approach is implemented as a part of the development of the 

quantum circuit simulator.  The matrix-vector multiplication that occurs is actually a 

representation of what happens when the QMDD structures are used for quantum circuit 

simulation.  This approach is implemented for two reasons: to check simulation outputs 

during development of the quantum circuit simulator and as a basis for comparison to the 

QMDD-based simulation methods.  This approach is implemented as a matrix-vector 

explicit multiplication.   

 

4.3.2.  Output Conversion 

 With the linear algebra approach as well as the other simulation methods, a 

conversion of the output vector is necessary so that the results may be presented to the 

user in Dirac-ket notation.  To handle this task, an algorithm is implemented to convert 

an output vector back to Dirac-ket notation.  Figure 4.3 gives the pseudocode for this 

algorithm. 
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for(i=number of elements in output vector; i>1; i=i/2) 
{ 
 Search the first half of the vector for a ‘1’ 
 If ‘1’ is found 
 { 
  Store ‘0’ in last available position of Dirac-ket vector 
 } 
 Else 
 { 
  Store ‘1’ in last available position of Dirac-ket vector 
  Copy second half of output vector into first half 
 } 
} 
 

Figure 4.3.  Pseudocode for Formatting Output 

  

 In general, this conversion process can be difficult since it would mathematically 

require formulating a Kronecker product factorization.  However, in the case of this 

simulator it is assumed that all outputs will be given in eigenstate form.  Due to this fact, 

the algorithm described above is sufficient to perform this translation. 

 A full example of this method is given here.  For simplicity, a circuit consisting of 

a single quantum gate will be simulated.  Assume that the circuit consists of a single 

Toffoli gate as shown in Figure 4.4.   
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Figure 4.4.  Sample Quantum Circuit for Simulation 

 

In this case, the matrix representing the quantum circuit is given below: 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

Following the same methods as before, assume that the input vector is given by the 

eigenstates |101>.  This can be translated into the proper input vector format through 

Kronecker multiplication as shown below.  
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 39   

Once this is complete, the matrix vector multiplication is performed. 
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As a final step, the algorithm to translate the output vector back to Dirac-ket notation is 

invoked, yielding |111>.  The final step actually performs the factorization seen below. 
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The quantum circuit verifies that this is the proper output. 

 Utilizing matrices and vectors is a very inefficient way to perform circuit 

simulation.  In fact, using matrices and vectors will only work for very small circuits.  

For any circuits larger than approximately seven qubits, the matrix and vectors become so 

large that there is not enough memory to handle the multiplication.  This is the inspiration 

for using the QMDD structure to perform quantum circuit simulation.  Sections 4.3.4 and 

4.3.5 discuss the two methods proposed for quantum circuit simulation using the QMDD 
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structure, but first, the QuIDDPro simulation mechanism is introduced for comparison 

purposes. 

 

4.3.3.  QuIDDPro Quantum Circuit Simulator 

The main structure in the QuIDDPro software package is the QuIDD, or Quantum 

Information Decision Diagram.  QuIDDPro makes use of the decision diagram package 

CUDD, developed by Somenzi [17].  The decision diagrams implemented in CUDD as 

well as QuIDDPro are algebraic decision diagrams.  More details on algebraic decision 

diagrams are presented in [18] and [22].   

The QuIDDPro software begins simulation by creating a QuIDD for each of the 

gates in the quantum circuit.  Next, these QuIDD structures are multiplied together to 

create a single QuIDD which represents the entire quantum circuit.  A QuIDD structure is 

now created to represent the input vector.  Finally, the QuIDD representing the quantum 

circuit is multiplied by the QuIDD representing the input vector.  After the multiplication 

is complete, measurement functions designed specifically for QuIDDPro extract the 

output values. 

 This thesis presents alternate methods for quantum circuit simulation using the 

QMDD structure.  The two main methods that are used in this research are described in 

the next two sections. 
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4.3.4.  Explicit Multiplication Based Simulator 

 The first QMDD method for circuit simulation is the explicit multiplication based 

simulator.  This simulator relies on the same basic concept as the linear algebra approach, 

but the use of the QMDD structure allows for an improvement in execution time.   

A problem with the linear algebra approach for quantum circuit simulation is the 

size of the matrices.  For an n-qubit circuit, the size of the representative matrix is 2n×2n.  

The sizes of these matrices grow exponentially.  For example, assume the circuit to be 

simulated has 10 qubits.  This results in a representative matrix with 220 elements.  If the 

assumption is made that the matrix is storing short integers (1 byte each), this results in a 

matrix needing 1MB of storage.  As compared to some of the benchmark circuits 

commonly used for quantum circuit simulation, this quantum circuit has a small number 

of qubits.  This shows that even quantum and reversible circuits with few qubits require 

an excessive amount of memory to store the representational matrix. 

In an effort to create a method for quantum circuit simulation that is not as 

memory intensive, a new method is created for circuit simulation.  The QMDD structure 

is what allows the creation of such a method.  Because of the ability of a QMDD 

structure to represent an entire quantum circuit without a very large representational 

matrix, a much larger circuit can be represented in a much smaller memory space. 

In order for this method to work, the QMDDmultiply function written for the 

QMDD software package is used.  This function is described in detail in [7], but the main 

idea behind it is the ability to multiply two QMDD structures and to return a QMDD 

structure as a result.  This is equivalent to multiplying the matrices that each QMDD 
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represents, but by using the QMDD multiplication function, the memory storage for the 

matrices is not necessary.   

In order to perform the necessary QMDD multiplication operations, it is first 

necessary to represent the column vectors representing |0> and |1> as QMDD structures.  

Since the column vectors for each of these eigenstates only utilize two matrix elements, 

only the 0- and 2-edges of a QMDD vertex are utilized.  The other two edges of the 

QMDD vertex are set to point at NULL in order to conserve more memory.  These 

structures are shown in Figure 4.5. 

 

 

 

|0> ⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

   |1> ⎥
⎦

⎤
⎢
⎣

⎡
1
0

 

1 0 0 0 0 0

 

Figure 4.5.  QMDD Structures for |0> and |1> 

 

 In addition to the QMDDmultiply function, there is also another function in the 

QMDD software package which represents a Kronecker multiplication of two QMDD 

structures.  This function is used to combine multiple QMDD structures into a single 
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QMDD representing the input vector.  After each of the qubits is represented as a QMDD 

structure, the structures are combined through Kronecker multiplication in a way similar 

to that mentioned in Section 4.2 of this thesis.  The result of the Kronecker operations is a 

single QMDD structure representing the input vector. 

 After the QMDD representing the input vector has been formed, it is necessary to 

create the QMDD that represents the entire quantum circuit.  A call to a function within 

the QMDD software package is sufficient to perform this task.  At this point, there are 

two separate QMDD structures:  one to represent the input vector and one to represent the 

quantum or reversible circuit. 

 The next step is to perform the actual multiplication of the QMDD structures.  

This represents the same procedure as multiplying the matrices that each of the QMDD 

structures represent.  The actual multiplication is carried out by a function in the QMDD 

software package [7].   

 The result of this operation is another QMDD structure.  This structure represents 

the resulting matrix after the matrix multiplication has been performed.  As described 

above, some of the edges of the QMDD structures representing the input vector are 

pointing at NULL.  Because of this, the resulting QMDD will represent a matrix that has 

some invalid values.  The only part that is used for output in the resulting matrix is the 

first column.  A function already exists in the QMDD software package that traverses a 

QMDD structure and builds the representational matrix.  For the purposes of this 

simulator, this function has been modified such that it traverses the QMDD structure in a 

way that only the first column of the representational matrix is extracted.  By only 

extracting the first column of the result matrix, it is not necessary to utilize storage for the 
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entire 2n×2n matrix.  It is wasteful to extract the entire matrix since it consumes great 

quantities of memory space. 

 The final step of the simulation is similar to that of the matrix multiplication 

method.  The output vector represents the result of the multiplication, but it is necessary 

to convert this result back to Dirac-ket notation so it is understandable to the user.  The 

same algorithm which was used before is used to perform this conversion.  The results 

may then be presented to the user. 

 The explicit multiplication based simulator is exemplified below.  For simplicity, 

the same circuit that was used as an example for the matrix multiplication method will be 

used as an example here (Figure 4.4).  The first step to be performed is to convert the 

input vector into a QMDD structure.  The QMDD structure representing the eigenstate 

|101> is given in Figure 4.6 below: 

 

 

Figure 4.6.  QMDD Representing Input Vector |101> 
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 Additionally, it is necessary to build the QMDD structure which represents the 

entire quantum or reversible circuit.  In terms of this example, the QMDD structure 

which represents the circuit is given in Figure 4.7 below: 

 

x2

x0x0x0

x1x1

1

1

0 0

1

1
0 0

1

1 0 0 1

1

1 1

1

1 0 0 0 0 0 0 1

 

Figure 4.7.  QMDD Representing Quantum Circuit 

 

 The next step is to multiply the two structures together using the function that has 

been previously written for the QMDD software package.  In this particular case, the 

multiplication gives the following resulting QMDD: 
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Figure 4.8.  Result QMDD 

 

 Finally, the first column of the result matrix is extracted from the QMDD.  This 

column is then translated to Dirac-ket notation, giving the resulting eigenstate of |111>, 

which is the same result achieved from the example computation given in section 4.3.2. 

 

4.3.5.  Implicit Multiplication Based Simulator 

 The other QMDD method of circuit simulation that is presented in this thesis is 

one that performs an implicit multiplication of QMDD structures.  This method does not 

perform an actual multiplication, but rather it traverses the QMDD structure guided by 

the values of the initial state of the n-qubit register.   

 The first step of this simulation method is identical to the first step of the explicit 

multiplication method in that a QMDD structure which represents the entire quantum or 

reversible circuit is constructed.  After this structure has been built, it is traversed in a 
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guided manner based on the input vector component values.  The components of the 

output vector are computed during the traversal.  The specific manner in which the 

QMDD structure is traversed is discussed next. 

As an example, let e designate an edge which is pointing to a QMDD structure 

which describes a quantum circuit.  Additionally, let vector represent an array consisting 

of the initial eigenstates of the qubits.  Also, T(e) represents a function that returns a 

Boolean value.  The function returns true if and only if the edge e points to the terminal 

node in the QMDD structure, otherwise it returns false.  The recursive traversal function 

is described in the pseudocode below: 

1.  If T(e) is true, then the weight of e is stored in the ith position of the output vector. 

2.  If T(e) is false, then if the value in vector corresponding to the variable of the current  
 vertex = 0, the following procedure is followed: 
 
 a.  Call the recursive function with the 0th edge of the current vertex. 
 b.  Call the recursive function with the 2nd edge of the current vertex. 
 Otherwise, 
 c.  Call the recursive function with the 1st edge of the current vertex. 
 d.  Call the recursive function with the 3rd edge of the current vertex. 
 

Figure 4.9.  Traversal Algorithm 

 

 Using either the 0 edge and the 2 edge or the 1 edge and the 3 edge is due to the 

structure of the matrices and the form of the resulting product of the matrices with 

vectors representing |0> and |1>.  A square matrix with dimensions that are powers of 

two can be partitioned into four equal parts.  When this square matrix is multiplied by a 

vector representing either a zero or one qubit, only half of the matrix is represented in the 
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resulting vector.  The example below shows how the particular edges are selected based 

on matrix multiplication. 
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 The example below shows in detail how the matrix traversal is performed.  For 

simplicity, the same quantum circuit will be used as that in Figure 4.4.  Once again, the 

QMDD representing the quantum circuit must be created.  Since the same quantum 

circuit is used as in the previous example, the QMDD in Figure 4.7 applies to this 

example as well. 

 The input qubits will be the same as those used in the previous example (|101>).  

The algorithm given in Figure 4.9 is used here to traverse the QMDD structure.  The first 

node that is traversed is not a terminal node.  Therefore, step 2 of the algorithm is 

followed.  The first qubit in the input is |1>, thus the 1 and 3 edges of the vertex are 

traversed.  Figure 4.10 shows the first traversal as well as the output vector after this first 

step. 
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Figure 4.10.  Result After First Step 

 

 After the first step of the algorithm, the first edge which is traced points straight to 

the terminal node.  This means that the first half of the output vector is set to the weight 

of that particular edge.  Since that edge has a weight of 0, the first four elements of the 

output vector are set to 0.  The other edge which is traversed points to a non-terminal 

node.  The algorithm is recursively applied to that node now.  Figure 4.11 shows the 

results. 
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Figure 4.11.  Result After Second Step 

 

 With this particular step in the algorithm, the edges leading from the vertex are 

non-terminal, so no new values are filled into the output vector.  The input qubit for this 

variable is |0>, so the 0 and 2 edges are traversed.  The final step is shown in Figure 4.12.   
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Figure 4.12.  Result After Final Step 

 

 In the final step of the algorithm, the 1 and 3 edges of each of the nodes are 

traversed since the input qubit is |1>.  Each of the edges coming out of these nodes are 

terminal edges, so their values are recorded in the output vector.  It can be seen that the 

weights of these edges (from left to right) are 0, 0, 0, and 1.  Thus, the output vector has 

all of its entries completed.  Now, the output vector may be condensed into Dirac-ket 

notation, and the simulation is complete.  This simulation method does not actually 

perform a multiplication (using QMDD structures or matrices); instead, traversals of the 

QMDD structure create the same result as the other methods.   
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Chapter 5 

RESULTS AND CONCLUSIONS 

 

 In order to evaluate the performance of the quantum logic simulations, it is 

necessary to examine the results generated during the experimentation and to compare 

them with other simulation methods.  This chapter compares the two QMDD methods 

discussed in Chapter 4 to determine which is the best.  Additionally, these methods are 

also compared with the naïve linear algebra method and with the QuIDDPro simulator, a 

previously developed quantum circuit simulator [20]. 

 

5.1.  Results of Building QMDD Structures 

 All of the results presented in this section have been generated using a Dell PE 

2650 computer with a Dual Intel Xeon processor running at 3.2GHz with 4 GB of RAM 

running a Linux operating system.   

When examining the results of the tests performed on each method, there are a 

number of observations that can be made.  As mentioned in the description of the linear 

algebra approach, this approach is inefficient in terms of memory.  The size of the 

representational matrix for a quantum or reversible circuit with n qubits is 2n×2n.  Thus, 

when the size of the circuit grows larger than approximately seven qubits, the memory 

demand is too high, and the simulator simply cannot complete the simulation.  Based on 
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this, the linear algebra approach is not a valid method for quantum circuit simulation, but 

it is used as a basis of comparison for the QMDD-based methods. 

Other observations about the circuit simulation methods can be made by looking 

at the results of the sample simulations.  Before the simulation can be completed using a 

QMDD-based approach, it is necessary to build the QMDD structure which represents 

the quantum or reversible circuit.  Table 5.1 details the experimental results generated 

during the building of the QMDD structure.   

 

GC on GC off GC on GC off
Ham3 3 5 50 50 <0.000 <0.000 10
3_17 3 6 53 53 <0.000 <0.000 10
rd32 4 4 52 52 <0.000 <0.000 9
mod5adders 6 21 303 303 <0.000 <0.000 38
5mod5tc 6 17 394 394 <0.000 <0.000 28
Hwb7 7 289 8746 8746 0.025 0.025 179
rd53rcmg 7 30 1220 1220 <0.000 <0.000 103
Hwb9-1541 9 1541 50000 128731 0.494 0.535 683
Hwb11 11 9314 50000 2205109 11.536 66.544 2639
0410184.nct 14 46 1156 1156 <0.000 <0.000 39
ham15a 15 132 50000 161493 0.496 0.475 26346
Cycle17_3 20 48 3040 3040 0.004 0.004 236
mod1048576
adder

40 210

Time to Build Circuit Resultant 
QMDD Size 

Circuit 
Name

Number of 
Qubits

Number of 
Gates

Peak Node Count to 
Build Circuit

 

Table 5.1.  Experimental Results for Building QMDD Structure 

 

5.1.1.  Results of Building QMDD Structures 

Table 5.1 gives the results for a number of quantum circuits taken from Maslov’s 

quantum circuit benchmark website [9].  The first column of this table gives the name of 

the quantum benchmark circuit.  The second column of the table gives the number of 
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qubits in the benchmark circuit.  The circuits are listed such that the number of qubits is 

given in ascending order.  Next is the number of gates in the quantum circuit cascade.  

This information is provided to give a general sense of the size of the circuit that is being 

dealt with.   

The next pair of columns detail the peak node count during the building of the 

QMDD structure which represents the circuit.  Two results are given; one column 

represents when garbage collect is turned on and the other represents when garbage 

collect is turned off.  The garbage collect threshold is set at 50,000 nodes, so this explains 

why circuits such as hwb11 have a peak node count of 50,000 when garbage collect is 

turned on.  In most cases, the garbage collect procedure is never activated which explains 

why the peak node counts are the same regardless of whether or not garbage collect is 

turned on.  In the case of some of the largest circuits, the peak node count without 

garbage collect is much larger than 50,000.   

The next set of columns indicates the time taken to build the QMDD structure 

representing the quantum circuit.  These results are given both with garbage collection on 

and off.  It can be seen that for many of the circuits with a smaller number of gates, the 

time to build the circuit is negligible.  For larger circuits, the amount of time to build the 

circuit generally increases as the number of quantum gates increases.  (Throughout this 

chapter, any operations that are not complete within a time period of one hour are listed 

in the results tables as “timeout”.)  Also, the difference when garbage collection is turned 

on can be seen.  In almost all cases, garbage collection reduces the amount of time 

necessary to build the structure. 
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Finally, the last column indicates the resultant size of the QMDD structure.  This 

value indicates the number of nodes in the QMDD structure after it has been completely 

built.  This value is not dependant on garbage collection.  Notice that this value is 

significantly smaller than the peak node count.  This is due to the excessive number of 

intermediary nodes that are created during the building of a QMDD structure.  

 

5.1.2.  Observations on Building QMDD Structures 

 A number of observations can be made about the results presented in Table 5.1.  

First of all, notice that garbage collection can actually have a significant impact on the 

building of a QMDD structure.  The high peak node counts of some of the QMDD 

structures can make the building process very inefficient.  Garbage collect helps to 

alleviate some of the stress put on the software package by keeping the number of nodes 

in the unique table relatively low. 

 Additionally, observations can be made about the time required to build a QMDD 

structure.  When combined with the results in the next section, Table 5.1 demonstrates 

that most of the time required to simulate a quantum circuit comes from the building of 

the structure.  Once the structure is built, the simulation takes less time as compared to 

the building of the structure. 
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5.2.  Quantum Circuit Simulation Results 

 In addition to the results already discussed, Table 5.2 presents the results of the 

simulation (after the QMDD structure has already been built).  The results presented here 

focus mostly on the timing of the various simulation methods discussed. 

 

Circuit 
Name

Number of 
Qubits

Number of 
Gates

Number of 
Input 

Vectors

Average 
CPU 

Runtime for 
Linear 

Algebra  
Approach 

(sec)

Average CPU 
Runtime for 

QMDD Explicit 
Multiplication 
Approach (sec)  

GC On

Average 
Resultant 

QMDD Size for 
Explicit 

Multiplication 
Approach

Peak Node 
Count During 

Explicit 
Multiplication 

Approach

Average CPU 
Runtime for 

Implicit 
Multiplication  
Approach (sec)  

GC On

Ham3 3 5 8 < 0.000 0.00004 11.000 20 0.00005
3_17 3 6 8 < 0.000 0.00007 12.000 21 0.00005
rd32 4 4 16 <0.000 0.00006 17.875 28 0.00006
mod5adders 6 21 64 <0.000 0.00007 45.844 51 0.00007

5mod5tc 6 17 64 <0.000 0.00006 38.000 52 0.00007
Hwb7 7 289 128 0.040 0.00014 219.500 309 0.00016
rd53rcmg 7 30 128 <0.000 0.00010 126.500 188 0.00008
Hwb9-1541 9 1541 512 timeout 0.00086 850.551 1176 0.00084

Hwb11 11 9314 2048 timeout 0.00988 3311.512 4557 0.01028
0410184.nct 14 46 16384 timeout 0.00009 74.752 105 0.00207

ham15a 15 132 328 timeout 1.00677 36617.000 49594 0.99800
Cycle17_3 20 48 1048 timeout 0.00026 255.000 277 0.12637
mod1048576
adder

40 210 timeout timeout timeout

 
 

Table 5.2.  Simulation Results Using QMDD Structures 

 

5.2.1.  Discussion of Quantum Circuit Simulation Results 

 For the results presented in Table 5.2, there are a number of observations that can 

be made.  The first three columns of the table are the same as those from Table 5.1.  The 

same quantum circuits are used so that comparisons may more easily be made.  The next 

column presents the number of input vectors used for simulation.  For the circuits with 11 

qubits or fewer, all of the possible test vectors are used.  This means that every possible 

set of inputs are simulated.  The average of the simulation times for each simulation is 
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presented in the table.  For some of the larger circuits, only a subset of the possible input 

vectors are used.  For example, the circuit “cycle17_3” has 20 qubits.  This means that 

there are a total of 220 possible input vectors.  In order to simulate all of the possible 

vectors (over one million), it would take well over 36 hours.  Due to this fact, a subset of 

1048 vectors is used to represent all possible input vectors. 

 The next column represents the average CPU runtime for the linear algebra 

approach.  For many of the small circuits, this method works in a reasonable amount of 

time.  However, for circuits with more than 7 qubits, the simulation using the linear 

algebra method took over the threshold time of one hour, with most of the circuits never 

completing.  This is due to the fact that no linear algebra techniques to simplify matrix 

multiplication are used.  In this table, all simulations that did not complete in a time of 

one hour were recorded as “timeout”.  The results further the idea that the linear algebra 

method is not an efficient method for quantum circuit simulations. 

 The next column shows the average runtimes for the explicit multiplication 

method.  As mentioned earlier, the majority of the simulation time is used building the 

QMDD structure.  These results support this assertion.  For the majority of the circuits, 

the simulation time is small.  Coupled with these results, the next column shows the 

average number of nodes in the resultant QMDD structure.  This is the size of the QMDD 

structure (including the original circuit QMDD) after the explicit multiplication has been 

performed.  Since each input vector generates a distinct QMDD structure after the 

multiplication process, it makes sense to present this as an average.  When this column 

and the previous column are observed together, significant observations can be made.  It 
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can be seen that the time for simulation is directly proportional to the number of nodes in 

the resultant QMDD structure. 

 The next column indicates the peak node count during the explicit multiplication 

process.  The explicit multiplication process manipulates the QMDD structure, and 

similar to when the structure is built, there are many intermediate nodes that are used 

during the manipulation.  The peak node count given in this column represents the peak 

node count for all of the possible input vectors.  This “peak, peak node count” is given 

here because there is a less than 5% variance among the peak node counts for all of the 

possible input vectors.  This column, along with the previous column, demonstrates that 

the manipulations involved in performing the explicit multiplication operation generate 

intermediate nodes that are not a part of the final QMDD structure. 

 Finally, the last column indicates the amount of time necessary for the simulation 

using the implicit multiplication method.  When these values are compared to the explicit 

simulation method, it is clear that the times are very close to each other.  These results 

make deciding on a simulation method difficult.  These results are discussed in the next 

section. 

 

5.3.  Comparison with QuIDDPro 

 The experimental results have been presented for the QMDD-based quantum 

circuit simulation methods, but it is still desired to compare these results with the results 

produced by QuIDDPro.  Table 5.3 sums up the results of the QMDD-based methods 

compared with QuIDDPro. 
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Circuit 
Name

Number of 
Qubits

Number of 
Gates

Number of 
Input 

Vectors

Average 
CPU 

Runtime for 
QuIDDPro 
Simulation 

(sec)

Average CPU 
Runtime for 

QMDD Explicit 
Multiplication 
Approach (sec) 

GC On

Average CPU 
Runtime for 

Implicit 
Multiplication  
Approach (sec) 

GC On

Ham3 3 5 8 0.060004 0.00004 0.00005
3_17 3 6 8 0.064004 0.00007 0.00005
rd32 4 4 16 0.088006 0.00006 0.00006
mod5adders 6 21 64 0.136009 0.00007 0.00007
5mod5tc 6 17 64 0.340021 0.00006 0.00007
rd53rcmg 7 30 128 0.556034 0.00010 0.00008
0410184.nct 14 46 16384 3.040190 0.00009 0.00207
ham15a 15 132 328 4.628290 1.50277 1.49400
Cycle17_3 20 48 1048 0.812051 0.00426 0.13037  

Table 5.3.  Comparison of QMDD and QuIDDPro Simulators 

 

 For comparison purposes, a subset of the benchmark circuits used in the previous 

tables are included in this table.  The first four columns are the same as those in Table 

5.2.  The next column shows the average runtime for the QuIDDPro quantum circuit 

simulator.  The remaining two columns show the average runtimes for these same 

benchmark circuits using the two QMDD-based simulation approaches.  These three 

columns include the time used to read in the circuit file, build the structure representing 

the circuit, and perform the quantum circuit simulation. 

 When the last three columns are compared, it can be seen that the QuIDDPro 

simulation takes longer than the simulation based on the QMDD structure.  For each 

benchmark circuit, the QMDD methods are at least three times faster.  In some cases, the 

improvement is as much as four orders of magnitude.  In all cases, the QMDD based 

methods prove to be quicker than the QuIDDPro methods. 
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5.4.  Conclusions 

 A quantum circuit simulator is a critical tool for the development of quantum or 

reversible circuits.  The quantum circuit simulator presented in this thesis uses the 

Quantum Multiple-valued Decision Diagram to expedite the simulation process.  As 

compared to other simulation processes such as QuIDDPro, this circuit simulator has 

shown to have faster simulation times. 

 Some important discoveries have been made during the development of this 

simulator.  It is still unclear which method is the most efficient for quantum and 

reversible circuit simulation.  As demonstrated in this thesis, the implicit and explicit 

multiplication methods are similar in their execution times.  There are only slight 

differences in the result times that are produced.  There is still much study that can be 

done to determine which of these methods is more efficient, but it is shown in this 

chapter that these two methods have distinct advantages over strictly using matrices to 

represent the quantum circuit and input vector and over the QuIDDPro simulation. 

 

5.5.  Future Work 

 The concept of quantum circuit simulation can still be scrutinized further in future 

research.  One particular area that is of interest for quantum circuit simulations is the idea 

of dynamic variable reordering.  For this thesis, all of the QMDD structures have a 

variable ordering such that all variables appear in order from the terminal node to the 

initial node.  It has been shown in [24] that reordering the variables in a binary decision 

diagram changes the number of nodes in the diagram.  More recently in [25], it has been 

shown that the same idea applied to the QMDD structure.  Future work can be done in the 
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area of variable sifting to determine a variable ordering for each quantum circuit that will 

minimize the simulation time.  When the idea of sifting is combined with quantum circuit 

simulation, it could allow for the efficient simulation of quantum circuits with even more 

qubits than those analyzed in this research. 
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