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Abstract—A fixed-point squaring algorithm is formulated and
implemented based on an approach that allows any number of bits
to be computed in each iterative step. The primary contribution
this new approach offers is the ability for a designer to change
the area latency product through the choice of a different radix
or number of bits per subword to be processed in each iterative
step. When the number of subword bits is increased, latency is re-
duced since fewer iterations are required whereas the area is in-
creased due to the larger subcircuit for squaring each subword.
Alternatively, choosing a smaller subword or radix decreases area
at the expense of increasing latency since more iterations are re-
quired. The subword size can range from a single bit yielding a
bit-serial squarer requiring iterations for an -bit operand
or “squarand,” to using the entire squarand resulting in a fully
parallel squarer requiring no iterations. Because each -bit sub-
word can be considered a single digit in a number system with
radix , the squarer presented here can be considered a mul-
tiple-valued logic (MVL) digit-serial architecture. This method-
ology allows for technologies based on any radix of two or greater
to be used, including emerging technologies, thus yielding a true
multiple-valued logic squaring circuit. The algorithm is derived
through the generalization of a Vedic technique where any arbi-
trary integer-valued radix is used. Prototype hardware implemen-
tations using both a standard cell ASIC and FPGA technologies
are developed. The prototype circuits are analyzed in terms of re-
quired resources and throughput characteristics and compared to
a well-known prior art squaring circuit.

Index Terms—Arithmetic circuit, digit-serial, fixed-point, higher
radix, squaring.

I. INTRODUCTION

S QUARING is an essential arithmetic operation in many
digital systems. Specialized squaring circuits have been

proposed for digital signal processing applications such
as image compression, pattern recognition and others [1].
Squaring is also a common atomic computation in cryptog-
raphy algorithms. The increasing demand for cryptography
hardware support in low power, high-speed mobile devices
[2] provides motivation to devise improved hardware squaring
circuit designs. Squaring circuit architecture is also commonly
incorporated in graphics processors. Several general-purpose
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multiplier circuit designs have also been proposed based on
squaring of input operands [3], [4].
Designers generally have a choice between low-speed

and low-area bit-serial or high-speed and high-area parallel
squaring circuits. There are a few instances of 2-bit serial or
quaternary Booth recoded designs available; however, to our
knowledge our approach is the first generalized method that
allows for the serialization of a squarand substring of any
arbitrary size. When it is the case that bit-serial architectures do
not meet speed requirements, but parallel versions exceed the
speed requirements, a penalty in area results since the parallel
architecture must be used to meet system timing requirements.
A unique feature of the approach described here is that a
hybrid serial/parallel squaring circuit can be formulated by
partitioning the squarand into substrings of bits where

can be of any size as long as the product is equivalent
to the overall squarand wordsize. Each of the substrings is
processed serially while the individual bits comprising a
substring are processed in parallel. Allowing the designer to
choose the value results in a squaring circuit that meets
the timing specification while minimizing the overall area. In
the case where , a fully parallel squaring circuit results
while the choice of results in a bit-serial architecture.
Allowing to vary from a single bit to the entire squarand
wordsize provides the area/delay tradeoff that is the benefit of
our squaring algorithm. Any prior art parallel squaring circuit
may be used as a subcircuit in the approach described here
allowing for the advantages of those past approaches to be
present and enhanced by forming the overall circuit as a hybrid
combination of a serial and parallel approach.
To further illustrate the contribution of our approach, con-

sider an example where a designer wishes to implement a
squaring circuit for a 64-bit squarand. A state-of-the-art 64-bit
parallel squaring circuit may meet the performance require-
ment, or even be faster than the required speed, but it may
also exceed the area requirement. In contrast, a state-of-the-art
bit-serial squaring circuit may meet the area requirement,
or even be much smaller than the maximum allowable area,
but it may not meet the performance requirement. It would
be desirable in either instance to tradeoff the area versus the
performance. In the past, a designer with this difficulty would
be forced to find a new squaring circuit architecture that met
both requirements. Our new approach offers a methodology
whereby the designer can tradeoff the competing area versus
delay characteristics through the choice of an appropriate radix
value or substring size . In essence, the squaring circuit ar-
chitecture described here allows for a designer to optimize the
area latency product of the squaring circuit. For example, the
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designer may be able to meet the performance requirement by
choosing since a 16-bit squaring subcircuit is relatively
fast as compared to the bit-serial approach, but it is not as
fast as the 64-bit parallel squaring circuit. From the point of
view of MVL, choosing is tantamount to using digits
from a radix- number system since each 16-bit sub-
string can be considered a single radix- digit. This
hypothetical solution also provides a substantial reduction in
area since the combination of a single 16-bit parallel squaring
circuit with the digit-serial “wrapper” circuitry described in this
paper is much smaller than a 64-bit parallel squaring circuit.
The digit-serial “wrapper” circuitry is specific to the results
described here but the parallel squaring subcircuit may be of
any desired architecture.
The ability for a designer to meet specific performance re-

quirements is crucial for some applications of squaring circuits.
In particular, for those systems with real-time constraints, it
is essential that system component delays do not cause dead-
lines to be missed. One example of such a system is in modern
communication systems that utilize squaring-intensive subsys-
tems such as Viterbi decoders [21], [22]. In such systems, it is
mandatory tomeet the delay requirements and a highly desirable
requirement to minimize area. The approach described in this
paper allows for a squaring circuit to be formulated such that
these requirements are met without excessive slack. Another
application that has a strict performance requirement is that of
adaptive sample rate digital notch filters [23]. These notch filters
can be implemented with squaring operations and the delay of
the squaring unit must not cause the system to violate the system
sample rate specifications, while at the same time it is desirable
for the squaring units to utilize as few transistors as possible. Yet
another application is that of direct digital frequency synthesis
circuits that have numerous applications including digital radio
implementations. In these applications, the area-latency product
is an important optimization parameter and to meet these strin-
gent requirements, methods that provide approximate squaring
values are often used such as the CORDIC algorithm for rectan-
gular-to-polar conversions [24]. Rectangular-to-polar conver-
sions are very squaring intensive operations and the squaring
method provided in this paper is directly applicable for opti-
mization of the area latency product allowing approximate
methods such as CORDIC to be replaced with our exact method.
The other significant advantage of our approach is that

true Multiple-Valued Logic (MVL) squaring circuits can be
designed using emerging MVL circuit components. Circuits
utilizing components with non-binary (or powers of 2) radices
can be designed with this algorithm. Because we did not have
access to FPGAs nor standard cell libraries that are non-binary,
our experimental results are limited to using binary circuitry
with digits formed as a grouping of bits. However, should
FPGAs or standard cell libraries with elements based on a
radix of , where is not a power of two become available, the
technique described here is applicable.
Bit-serial designs have been proposed in [4]–[7] which can be

considered a case where and is the squarand wordsize
in units of bits. All these designs require 2 nm iterations to gen-
erate a squared result of 2 nm bits in size. These designs have
seen improvements in area and delay through various improved

architectures, but they still have limitations on throughput due
to their bit-serial nature.
Bit-parallel designs have also been proposed to obtain ap-

proximate squaring results [8]–[12], [18]–[23]. Most parallel
squaring designs make use of the fact that generation of the re-
sult, , can be accomplished through the formulation of one-
half of the number of partial products as compared to the use of
a general multiplication circuit [1].
Several designs have been published based on Booth re-

coding and Booth folding techniques that use adder trees for
accumulation of the partial products of [9]–[11], [14].
Higher-radix parallel-array designs with a left-to-right dual
recoding method is described in [12] and with a right-to-left
significant bit recoding of the input operand described in [13].
Bit-parallel architectures may make use of some form

of Booth recoding and efficient multi-operand tree addition
structures. Though these approaches do not suffer from the
performance limitations inherent in bit-serial architectures and
can output more than one or two resultant bits per cycle, a
relatively large amount of circuitry is required to provide sup-
port for the multi-operand addition circuit used to accumulate
the partial products. Some notable recent parallel squaring
circuits include [18] and [19]. [18] provides a method that
produces the square as an approximation that can be iteratively
corrected to any degree of required accuracy thus allowing for
a speed versus accuracy tradeoff. [19] allows for a squaring
circuit based on a radix-10 Vedic method whose performance
is enhanced through retiming. Both of these are binary methods
whereas our approach can utilize any arbitrary radix. These,
or other approaches, can be used as sub-circuit components in
our approach for computing the square of an individual digit if
desired by the designer.
Arithmetically, the technique presented here assumes the

squarand is represented as a higher-radix digit string consisting
of radix- digits. Each radix- digit is a member of the
canonical set . Each iteration of the squaring
algorithm produces two radix- digits in the resulting output
squared value. The squaring operation is completed after iter-
ations have occurred, thus this technique is properly described
as an MVL digit-serial technique. The final squared output
value is in the form of a string of radix- digits.
When the target technology is conventional digital elec-

tronics, the allowable choices of radices are restricted to .
This restriction is only due to the fact that we are using digital
circuitry since the theory behind the approach is general and
supports any arbitrary radix that is a positive integer of value
two or greater. When , the squaring circuit produces a 2
nm bit length result, , based on a corresponding input operand
(squarand) of -bits in length. The circuit produces bits
in the output during each iterative step. By considering an
-bit grouping within the squarand as representing a single

radix- digit, the circuit can be considered a MVL digit-serial
implementation that produces two MVL digits per iteration in
the form of a single -bit string.
This digit-serial architecture allows for a tradeoff between

bit-serial and parallel architectures by allowing for each operand
digit to be implicitly represented by bits. Because bits of
the result are computed in each iterative step, varying can
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yield more or less parallelism while inversely affecting the re-
quired circuit area. Thus, a minimal area circuit can be realized
when is small (bit-serial for the case ) and a large par-
allel circuit results at the other extreme when is set to the
wordsize of the squarand. It is envisioned that designers will
choose an appropriate value of such that performance re-
quirements are met while minimizing the amount of circuitry
required.
The paper is organized as follows. Section II provides

the theoretical results that are used as the basis of the algo-
rithm. Section III contains the foundations of the algorithm
and Section IV contains a statement of the algorithm and an
explanation of how the theoretical results from the previous
section relate to the method. In Section V, we describe how the
algorithm is applied to squarands expressed as fixed-point bit
strings and how the algorithm is implemented as a synchronous
hardware logic circuit. Section VI contains an evaluation of
the prototype implementation when synthesized as both a pro-
grammable logic circuit and as a standard cell ASIC. The paper
concludes in Section VII where a summary of the approach and
directions for future related work is given.

II. BACKGROUND OF APPROACH

The following notation is used in the description of the digit-
serial fixed-point squaring algorithm.
• represents the radix or base of a number system. We re-
strict to the set of integers such that . For compat-
ibility with conventional binary digital logic, and

; however, this restriction is not theoretically re-
quired and the technique is applicable to multiple-valued
logic circuits.

• The “radix polynomial” form of a value is written as an
-term polynomial of the form [14]

• A value can also be represented in the radix- number
system in the form of a positional string of characters
denoted by . For clarity, the
character strings denoting the positional digit representa-
tions of a value are enclosed by square brackets with
leading zeros omitted. The digits are the coefficients
of the radix-polynomial form and their position within the
string inherently denotes the exponent of the radix .

• Each character in a positional string representing a value
is referred to as a “digit” regardless of the radix of the
number system. Binary digits may alternatively be referred
to as “bits.”

• Digits are restricted to the integral numbers and are mem-
bers of the set .

• Where necessary for clarity, digit strings are subscripted by
the radix of the particular number system being used,

.
• and are operators that yield least
significant or most significant digits in a digit string repre-
senting the value . represents the least signifi-
cant digit of . Likewise the most signif-
icant digit is given as .

• denotes concatenation of the content of registers
A, B, and C which can be of any size and whose individual
sizes may differ.

• denotes the operation of shifting the content
of register A to the left by bits and setting the least sig-
nificant bits to the content of register B. A can be of any
size greater than or equal to the size of B and B must be of
size .

• denotes the operation of shifting the content
of register A to the right by bits and setting the most
significant bits of A to the content of register B. A can
be of any size greater than or equal to the size of B and B
must be of size .

• denotes the operation of setting the content of
register A with that of register B. A and B must be of the
same size and the original content of A is destroyed.

The initial motivation for the theory of the method developed
here arises from the Vedic technique whose Sanskrit name is
“Ekādhikena Pūrvena.” Loosely translated “Ekādhikena Pūr-
vena” is “[by] one more than the previous one.” This technique
describes how the square of a decimal integer may be easily
obtained, when is of the special form where .
Using the notation previously defined, the square of a two-digit
radix-10 value with can be formed as

. To illustrate
“Ekādhikena Pūrvena,” consider the following example.
Example 1: Determine the square of decimal squarand

using the technique of “Ekādhikena Pūrvena.” It is noted that
and . Thus, the two least significant digits

of are the string . Since , the two most
significant digits are formed by multiplying
with yielding the string . is
then obtained by the concatenation .

While the method is interesting, it is limited to cases where
the squarand is a radix-10 value with the least significant digit
happening to be exactly one-half of the radix value,

. Lemma 1 generalizes “Ekādhikena Pūrvena” to ac-
count for the case where the squarand is represented in an arbi-
trary radix- number system. For convenience in the derivation
of the result of Lemma 1 we first define the radix- value .
Definition 1: The radix- value is defined as
. Expressed as a radix- positional -digit string,

. Thus, can be easily formed by
replacing with the zero digit .
Lemma 1: Consider a value expressed as a digit string

where . The square may
be expressed as shown in

(1)

Proof: Expressing in radix polynomial form

(2)
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Since , we express and
becomes

(3)

The result of Lemma 1 can be used as the basis of a squaring
algorithm where the second two terms of the right-hand side of
(1) are calculated in each iterative step, the first term is used for
subsequent iterations, and the results are accumulated at each
step. The algorithm clearly converges since subsequent iterative
steps use an operandwith one less digit in the operand digit string
representation. The factor in the first term is accounted for by
implementing a shifting operation during the accumulation step.
Unfortunately, (1) only holds for the special case where the

squarand and subsequent intermediate arguments happen to ex-
hibit the property . Lemma 2 generalizes
(1) for the case where in the original squarand
and for subsequent iterative operands.
For convenience in the derivation of the result of Lemma 2,

we define a signed single recoded digit value in the radix-
number system referred to as the “residual.”
Definition 2: The residual value is the difference between
and given by . In terms of a digit string rep-

resentation, is in the form of a recoded signed radix- value in
general. Restricting the radix to even values of two or greater
causes to be of the form of a single signed radix- digit and
may be desirable for the purposes of implementation; however
this restriction is not theoretically required

Lemma 2: Consider a value expressed as a digit string
. may be expressed as

(4)

Proof: Expressing in radix polynomial form

(5)

Since , we can express and
becomes

(6)

Equation (4) expresses the square when is represented
as any arbitrary digit string in the radix- number system. It is

noted that the form of (4) is the same as that of the special case
where as given in (1) and augmented with a correction
term defined as

(7)

III. BASIS OF ALGORITHM

Equation (4) is used to formulate our digit-serial squaring al-
gorithm. The motivation for forming this algorithm is that the
choice of radix allows for a trade-off in logic circuit area
versus throughput performance in the computation of when
is represented as a binary bit string. Higher values of allow

more bits to be produced per iterative step in the resulting repre-
sentation of . A tradeoff occurs in that the amount of compu-
tation or logic required at each iterative step increases for higher
radix values. This tradeoff is very useful for arithmetic circuit
designers since it allows them to formulate a squaring circuit
architecture that meets timing requirements without greatly ex-
ceeding them and therefore incurring an area penalty.
In the basis of the algorithm as stated here, we assume that

the squarand is of the form of a binary bit string. Intermediate
computations can be efficiently implemented when we restrict
the radix to be of the form where is a positive integer

. Efficiency results since allows each higher radix
digit in the string representing to be equivalent to an -bit
substring within . , in terms of a higher-radix digit string, is
simply the concatenation of the disjoint -bit substrings of
in binary form where is the least significant bits,
the subsequent next significant higher-radix digit is represented
by the next group of bits to the left of , and so on.
We point out that the results of Lemma 1 and 2 hold for

any general radix value and the restriction that is only
used for convenience in formulating the squaring algorithm
when squarands are given as a binary bit string. This case is of
particular interest in our implementation since we are targeting
computer arithmetic circuits and algorithms implemented with
binary switching logic. However, future technologies may
employ non-binary, multiple-valued switching elements [15]
and this technique is equally applicable for such non-binary
technologies.
For compatibility with conventional binary digital circuitry,

we rewrite (4) with the restriction that and define some
of the individual terms on the right-hand side of the equation to
be denoted with , and

(8)

The terms and are explicitly defined in the fol-
lowing equations:
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The algorithm is implemented by iteratively computing
terms , and and accumulating them with previously
computed values. The particular partitions, , and were
chosen to allow for a pipelined hardware implementation of
the algorithm. Subsequent iterations use from the
term in (8) as next squarand. The operand for each iterative
step, , is a digit string containing one less digit than the
squarand in the previous step, thus the algorithm requires
iterations to complete. The shifting factor of the first term
in (8) indicates that two radix- digits (two -length bit
strings) in are produced after each iteration is completed.
The resulting digits in are produced in the order of the lesser
significant digits first (right-to-left fashion).
Before stating the algorithm in Register Transfer Level (RTL)

form, several observations are noted and used tomore efficiently
implement the computation of the three terms and .
Observation 1: The term is efficiently obtained by

shifting the digit string representing one position to the right
and discarding .
Observation 2: Values that are multiplied by a factor of

may be easily obtained by shifting the value to left by
km bit positions and inserting a radix- zero digit place holder

for the vacated least significant digits.
Observation 3: The term is always of the form of a

single radix- digit. Expressed as an -bit binary string
.

Observation 4: The term is always of the form
of two radix- digits, , with the most significant
digit of value and
the least significant digit of value

. Hence, expressed as a -bit binary string,
.

Term is computed in a single operation. Making
use of Observations 1 and 2, the value is ob-
tained by forming the digit string .
Furthermore by Observation 4, can always be ex-
pressed as two radix- digits ( bits) denoted as

. Thus, is obtained by forming the string
. From Observation 4, and

so that . Thus, the digit
string representation for is .
Term is computed by first forming a digit string rep-

resenting 2 and then multiplying this string with
the single radix- digit . Using Observations 1, 2, and 3,

and is always represented as a
single unsigned radix- digit ( -bit string), .
Therefore, . To ac-
count for the multiplicative factor of 2, the

digit string is then shifted by
one bit position to the left resulting in . We note
that the multiplicative factor 2 would in general need to
be implemented through the use of an addition operation,

, when a higher-valued
radix is used that is not an integral power of two since this
can be considered a “fractional digit shift.”
The final step in the formation of term involves the mul-

tiplication of by the
single radix- signed digit, . Because is a single
signed digit value, this multiplication can be accomplished with
a minimal amount of computation or circuitry as compared to
a general-purpose multiply operation or circuit. Clearly, as the
value is increased resulting in a higher valued radix, , both
computational complexity and overall algorithm throughput

increase. The actual implementation of the multiplication by
is dependent upon the value and based upon the desired

throughput and area constraints for a given realization of the
algorithm. Relatively small values of generally allow for
a simple logic circuit or lookup table to be used whereas
larger values of utilize any of a variety of -bit parallel or
accumulation tree multiplier subcircuits.
Term requires the computation of the square of the

residual value . The implementation of this computation is also
dependent upon the size of , which dictates the number of bits
required to represent a radix- digit. For smaller values of ,
the direct calculation of can be very efficiently implemented
as a small combinational logic circuit or through a lookup table.
As increases, the computation of becomes more complex
and any other methods such as the bit-parallel methods cited
previously may be employed. We note that even for large values
of , the computation of can be accomplished in parallel
with the computation of the other two terms and since the
accumulation of with the overall result can occur at
the end of each iterative step. For this reason, it is not necessary
to choose the absolute highest speed parallel squaring circuit
to compute and corresponding area penalties are not overly
severe.
After terms , and are formulated, they are summed

together and accumulated with the previous result. The accu-
mulation takes into account the process of multiplying subse-
quent iterative operands by and the fact that two indepen-
dent radix- digits (or, bits) of the final result are produced
at each iterative step. This can be implemented in a variety of
ways. We choose to initialize a final result register to zero with
size 2 nm bits where is the number of radix- digits repre-
senting and implicitly denotes the radix. The final operation
of each iterative step of the algorithm is to shift the result reg-
ister bits to the right and insert the least significant bits
of into the most significant positions of the shifted
result register. Insertion of the two radix- digits in the most
significant portion of the result register instead of performing a
multi-bit left shift before adding them to the previously accumu-
lated result allows the algorithm to be implemented without the
need for a inclusion of a multi-bit left shift operation or the use
of a barrel shifting circuit in a hardware realization. This is an
important aspect of the accumulation process since a multi-bit
left-shift operation is considerably more complex as compared
to a fixed length ( bit) right-shift operation.
The algorithm uses an iteration index to determine if all

digits of the squarand have been produced. For an -digit
radix- squarand, the squared result consists of digits.
Since two digits are produced per iterative step, the index
ranges from zero to . Initially, when serves
as the squarand. During intermediate computations, when

, the algorithm iterates and sets the intermediate
squarand to . In the final iterative step, the squarand
argument becomes 0; however, this step is required since the
residual may not be zero-valued and must be included in the
resultant value.
Conceptually, the residual is a recoded signed value and

bits are needed to account for the sign if is expressed
explicitly. Depending upon the definition of the residual, can
take on integer values in either of the ranges

(as is the case in this formulation) or .
However, since there is a one-to-one relationship between
and (since ), we use the -bit string representing

to represent the corresponding value thus allowing to be
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TABLE I
REGISTERS USED IN SQUARING ALGORITHM

encoded as an -bit string. This is in essence an encoding of
the recoded residual, .

IV. ALGORITHM IMPLEMENTATION

We use the results of the previous sections to specify the
method as an RTL algorithm that is suitable for implementation
in hardware, software, or a combination of the two target tech-
nologies. The RTL implementation makes use of several regis-
ters. For succinctness, we define the registers used within the
algorithm statement in Table I.
A statement of the algorithm is provided in Fig. 1 using

the RTL operations previously defined. Intermediate locations
within the algorithm are denoted by labels in the form “STEP
.” The labels are included for convenience in referring to

certain portions of the algorithm and they also indicate clock
boundaries in a hardware implementation since the results of
STEP are registered before computation can occur in
STEP . As an example, the operation of
STEP 3 must complete before the
operation of STEP 4 can proceed. Partitioning the computation
of term into multiple intermediate registered operations
is an instance of circuit pipelining and allows for the overall
circuit clock speed to be increased in a hardware realization of
the algorithm.
In terms of required computational resources, the algorithm

requires circuitry or memory to perform shifting, bit-string con-
catenation, -bit and -bit operand addi-
tion, nm-bit multiplication, and -bit operand squaring.
While -bit and -bit operand addition
operations are required in STEPs 4 and 6, it is noted that a
single -bit addition circuit can be used since these
sums may be formed sequentially allowing for reuse of a single

-bit adder. The multiplication and single-digit
squaring operations can be implemented in a variety of forms
although it is noted that for relatively small sizes of the digit
operands ( bits) very compact and fast circuits such as lookup
tables are a practical choice. With respect to throughput, the al-
gorithm requires iterations producing bits of during
each iterative step. Therefore, the algorithm has temporal com-
plexity equivalent to as expected since it is a digit-serial
method over a squarand composed of digits. The performance
increase occurs for higher radix values allowing each of
the sequentially produced digits to comprise bits.

Fig. 1. Iterative squaring algorithm.

Fig. 2. Quaternary squaring circuit datapath.
Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 07:00:23 UTC from IEEE Xplore.  Restrictions apply. 



40 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, MARCH 2016

V. QUATERNARY RADIX SQUARING CIRCUIT

To demonstrate and evaluate the digit-serial squaring algo-
rithm, we designed and implemented a synchronous digital logic
circuit using a quaternary radix, . This choice of
radix allows for comparison to other squaring circuits based on
radix-4 Booth recoding and provides an intermediate solution
between bit-serial and bit-parallel realizations. The circuit ar-
chitecture is of the form of a clocked synchronous controller
with a corresponding datapath subcircuit that implements the
operations specified in the algorithm. A block diagram of the
datapath is shown in Fig. 2.
The datapath element labeled “Combinational Logic” is im-

plemented based on simplifications in the formation of the in-
termediate terms , and and their various sums. These
simplifications exploit the choice of using as an implicit
operand radix and allow for the computation of the interme-
diate terms , and to be implemented with a reduced
and simplified set of RTL operations. The terms , and
are chosen based on implementation decisions and other inter-
mediate terms are possible and should be considered based on
desired pipeline depth and the target technology characteristics.
As an aid in explaining the quaternary radix specific opti-

mizations, the notation in Definition 3 is used to represent bit
strings.
Definition 3: A single quaternary digit can, in general,

be written as a two-bit binary string where
and .
Using Definition 3, we evaluate the various intermediate

terms and their sums for different cases of the least significant
digit of the squarand, . Term is independent
of the value of and is always a bit string of length
expressed as

Case 1: resulting in the residual , thus
. Term can be expressed as

Combining the terms

Case 2: resulting in the residual , thus
. Term can be expressed as

TABLE II
RADIX-4 OPTIMIZATIONS

Combining the terms

Case 3: resulting in the residual , thus
. Term can be expressed as

Combining the terms

Case 4: resulting in the residual , thus
. Term can be expressed as

For this case, the sum can be formed directly and it
is subsequently combined with term using the addition
circuit. is formed as

Table II contains a summary of the results of the intermediate
terms and their various sums in terms of values of the least
significant digit of the operand at each iterative step.
The datapath element labeled “Combinational Logic” in

Fig. 2 makes use of the results in Table III and outputs the
two values that are summed in the adder array resulting
in . For the cases is
formed directly in the combinational logic block and is input
to the adder array on the leftmost input bus with the rightmost
input set to the bit string . The adder array
is only required for the case , where the leftmost input
is the bit string and the rightmost
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Fig. 3. Combinational logic block detail.

TABLE III
KEY PARAMETERS OF CITED SQUARING CIRCUITS

input is . Fig. 3 is a logic diagram
of the combinational logic block.

TABLE IV
AREA AND TIMING USING MAX 10 DEVICE

TABLE V
AREA AND TIMING USING STRATIX V DEVICE

VI. IMPLEMENTATION AND EVALUATION

Our methodology utilized the Verilog HDL to capture the
quaternary squaring algorithm at the register transfer level for
a variety of operand wordsizes. Separate modules were created
for the datapath and the controller and these were instantiated
in the top-level design through a third Verilog module. The Ver-
ilog specifications were then synthesized using the Altera Quar-
tusII design tool suite for programmable logic and the Synopsys
Design Compiler for a standard cell ASIC. After synthesis and
technology mapping, timing and area analysis tools were used
to report on required resources and timing values.
Although our technique allows for to vary and be speci-

fied as a value greater than 2, we chose for the experi-
ments so that we could compare our results to other published
approaches. Larger values of result in higher-performance
squaring circuits with proportionally increasing circuit area. The
extreme case of setting to the entire wordsize of the squarand
results in a fully parallel squaring circuit since the residual
becomes equivalent to the overall operand. Alternatively, re-
stricting results in a fully bit-serial architecture. Since
[12], [13] utilize quaternary recoding, they provide an example
equivalent to our case of which is not at one of the two
extreme values and can thus be used as a basis of comparison.
Table III is provided to summarize past results in squaring

methods in order to compare them to the approach described
here. The key difference in our approach versus those in
Table III is that it allows a designer to choose any desired radix,
and this choice allows a designer to optimize the resulting
latency-area product to better adhere to their specific appli-
cation. If the squaring circuit is implemented in conventional
binary electronic circuitry, the possible radices are restricted to
powers of two; however, our approach is general in that it can
be applied to future technologies that may utilize any arbitrary
radix including those that are not powers of two. Most of the
past results utilize binary radices; however, some also employ
Booth recoding which can be considered as a special case of
radix-4. Only two references use general radix-4 approaches
[12], [13] whereas our method allows for arbitrarily large
radices to be employed. The use of an arbitrary radix is identical
to considering our approach as a digit-serial MVL method.
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TABLE VI
AREA AND TIMING USING CYCLONE V DEVICE

TABLE VII
AREA AND TIMING USING 0.5 M STD CELLS

The squaring algorithm can be implemented in either hard-
ware or as low-level software. We chose to focus on a hard-
ware implementation and consider both FPGA and standard
cell ASIC target technologies. The purpose of the ASIC exper-
imental data is to provide a comparison between our approach
and a prior art approach [13] for a squaring circuit. We used an
older 0.5 m cell library for the experiments. [20] indicates that
a more modern 90 nm library would increase the frequency by
an approximate factor of six (6) and Moore's law indicates that
the area would reduce by a factor of assuming a 14-year
time span between the availability of 0.5 m versus 90 m
technology.
For FPGA technology, squaring circuits were synthesized and

mapped to three different example Altera FPGA architectures,
the 10M02DCU324A7G (MAX 10), the 5SGSMD4E1H29C1
(Stratix V), and 5CEBA2F17A7 (Cyclone V). These are chosen
so that the effects of different internal FPGA architectures can
be examined to determine how efficiently each can implement
the squaring algorithm. Tables IV, V, and VI contain a summary
of the experimental results for squarand wordsizes of 8, 16, 32,
and 64 bits.
We also synthesized the design using a standard cell library

available for academic use [16] based on AMI 0.5 m tech-
nology. Although 0.5 m technology is not the most modern
feature size available, the point of this experiment is to have a
basis for comparison between our algorithm and others when
implemented as an ASIC. These comparative results allow one
to observe the behavior for our approach versus a prior art fully
parallel approach and the area results approximately scale to
smaller feature sizes in relation to Moore's law. The clock speed
results should increase by approximately a factor of six (6) when
compared to a 90 nm standard cell library [20]. The results using
the standard cell design flow are provided in Table VII.
To allow for a comparison in throughput, we also imple-

mented a digit-serial squaring circuit with an architecture based
on that given in [17]. The embedded internal multiplication
circuit is a quaternary multiplier so that this reference design
would have the same characteristics as our test cases for the
new methodology. Thus, an equivalent number of iterations

TABLE VIII
AREA AND TIMING USING MAX 10 DEVICE IN [17]

TABLE IX
AREA AND TIMING USING STRATIX V DEVICE IN [17]

TABLE X
AREA AND TIMING USING CYCLONE V DEVICE IN [17]

TABLE XI
AREA AND TIMING USING 0.5 M STD CELLS FOR [17]

are required to produce the final squared result in the reference
case as for our approach. Tables VIII, IX, and X contain the
results of the implementation of the multiplier-based qua-
ternary digit-serial circuit. As in Tables IV, V, and VI, VII,
the devices used are the 10M02DCU324A7G (MAX 10), the
5SGSMD4E1H29C1 (Stratix V), and the 5CEBA2F17A7 (Cy-
clone V). Table XI contains the results of [17] when synthesized
using standard cells from [16].
Using a quaternary radix allows our design to gen-

erate the square of in iterations where nm is the
wordsize of in bits. The overall throughput of the circuit is
equivalent to in units of words/second where is the
period of the clock frequency, is the number of clock periods
required for computation of a single iteration, and each squared
result is in units of “words.” Since nm is constant, decreases
in proportion to and the tradeoff between radix value and
the number of required iterations becomes apparent. The other
important parameter in the throughput expression is the clock
period that is specified to slightly exceed the worst-case reg-
ister-to-register path delay through the datapath portion of the
circuit.
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VII. CONCLUSION
A digit-serial squaring algorithm based on squarands ex-

pressed in any arbitrary radix number system is formulated and
implemented in a prototype FPGA logic circuit. The algorithm
is motivated by a Vedic technique and is generalized for arbi-
trary radix values and to account for all possible cases of the
value of the squarand. Further motivation for the development
of this technique is to allow arithmetic logic circuit designers
the ability to trade-off resulting circuit logic resources with
throughput by varying the number of bits produced during each
iteration through an appropriate choice of the working radix
value.
The results of the prototype implementation are analyzed

and found to offer a desirable alternative as compared to past
squaring circuit approaches where either a bit-serial or fully
parallel type of circuit is used. The method is applicable for
implementation in software or in hardware. Hardware imple-
mentations can be realized in a variety of target technologies
including programmable devices, standard cell library ASICs,
full-custom ASICs, or any combination of these.
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