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Higher Dimension !antum Entanglement Generators

KAITLIN N. SMITH and MITCHELL A. THORNTON, Southern Methodist University, USA

Quantum information processing and communication techniques rely heavily upon entangled quantum
states, and this dependence motivates the development of methods and systems to generate entanglement.
Much research has been dedicated to state preparation for radix-2 qubits, and due to the pursuit of entan-
gled states, the Bell state generator and its generalized forms where the number of entangled qubits is greater
than two have been de!ned. In this work, we move beyond radix-2 and propose techniques for quantum state
entanglement in high-dimensional systems through the generalization of the binary bipartite entanglement
states. These higher-radix quantum informatic systems are composed of n quantum digits, or qudits, that
are each mathematically characterized as elements of an r -dimensioned Hilbert vector space where r > 2.
Consequently, the wave function is a time-dependent state vector of dimension rn . The generalization of the
binary controlled-NOT to the controlled-modulo-addition gate, the concept of partial versus maximal entan-
glement, and architectures for generating higher-radix entangled states for the partial and maximal case are
all presented.
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1 INTRODUCTION
The concept of representing, processing, and transmitting information through the use of quan-
tum electrodynamic theory has been considered for several decades. However, the emergence of
generalized quantum communication and computing systems as a mainstream technology, while
seemingly closer than ever, has continued to remain elusive [7]. In addition to generalized quan-
tum computing, systems and methods have been devised that are of a more specialized nature
such as quantum cryptography and key distribution (QKD) [3, 22], sublinear complexity search-
ing [13], true random number generators (TRNG) based upon quantum sources [4], quantum radar
[16], quantum tomography [6, 21], quantum linear equation solvers [14], and others. In most of
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these applications, one phenomenon that is necessarily exploited is that of entanglement. From a
qualitative and non-rigorous perspective, entanglement is the characteristic of two or more quan-
tum information carriers coupled together into a single subsystem such that operations performed
on one of the carriers also a#ects the other(s). Entanglement is one of the unique characteristics
resulting from the theory of quantum mechanics that is both non-intuitive and heavily exploited
in quantum information processing (QIP) algorithms.

Conventional information processing technology is overwhelmingly based upon radix-2, or bi-
nary, switching algebras, and the most commonly used measure of information is the “bit.” It is
well-known, however, that higher-radix systems o#er more information content per fundamen-
tal representational unit, or “digit” [17]. More precisely, an information processing system based
upon a radix-r system allows for loд2 (r ) bits of information to be represented per digit. Despite
this higher-radix advantage, the rapid size decrease in transistors has caused the binary radix to
continue to prevail, since transistor-based information processing circuits are predominantly in
the form of voltage-mode devices. The increasingly smaller feature sizes and the corresponding
and necessarily smaller rail voltage levels result in noise margins that cause higher-valued radices
to be impractical in modern electronic information processing circuits. This happens because the
bene!ts a#orded by increasing the overall number of small transistors per unit of area in con-
ventional electronic CPUs outweighs those that could potentially be realized through the use of
larger transistors that are enabled to switch among multiple voltage levels in a higher-radix im-
plementation. As a consequence, radix-2 or binary logic dominates in modern electronic devices
under the classical computational models due to voltage level switching and small noise margins.

The use of higher-radix systems for the representation and processing of information in quan-
tum information science (QIS) is potentially viable and o#ers advantages in terms of the amount
of information that can be represented per system element. This observation provides motiva-
tion for the development of QIS systems that utilize quantum digits, or “qudits,” rather than the
more commonly considered quantum bits, or “qubits.” This motivation includes a consideration
of higher-radix QIS applications that depend on qudit entanglement. The remainder of this article
focuses on the generation of entangled qudits and describes theoretical results and methods for the
generation of higher-radix entangled states. Higher-radix entanglement [11] as well as methods
for qudit quantum state generation have been considered in the past [25], but this work di#ers by
presenting the single- and multi-qudit operators required to entangle quantum states, using the
structure of bipartite binary entanglement generators as inspiration. The end result of this work
is a generalized circuit structure that can be implemented in QIP algorithms to create varying
degrees of higher-radix entanglement.

Quantum entanglement is an enabling property in many algorithms and communications
schemes. For example, quantum key distribution (QKD) is dependent on the ability to generate
entangled states. Furthermore, entanglement is a key phenomenon that is present inside many
well-known binary quantum algorithms such as Shor’s algorithm. Thus, for higher-radix QIP to
become viable, it is important to determine methods to generate entanglement for higher-radix
systems such as those described here. We focus on generalizations of the binary bipartite entan-
glement generators such as Bell generators and the multi-qubit GHZ generators for the higher-
radix case. Our results provide a description of how higher-radix entanglement generators can
be constructed from realizable physical components including the Chrestenson and controlled-
modulo-addition operators.

This article will proceed as follows: Key concepts about QIP needed to understand the
motivation of this work can be found in Section 2. In Section 3, the important operators used to
create entanglement are presented and de!ned. This section includes the characterization of the
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single- and multi-input entanglement gates for the radix-2 case and their generalization into a
higher-radix form. Novel theoretical methods for generating partial and full entanglement for
higher-dimension quantum systems are found in Section 4. Radix-3 example systems are imple-
mented in Section 4 to demonstrate how entangled quantum states are produced by the generator
circuits that are disclosed. Finally, Section 5 provides a summary of the work as well as conclusions.

2 QUANTUM THEORY CONCEPTS
2.1 !antum Information
The most commonly used physical systems for quantum information are elements that have two
distinct basis states. Due to the fact that the carriers have two distinct basis states, they carry
information that is mathematically represented as a quantum bit, or qubit, by assigning each of
the basis states to one of two orthonormal vectors. Quantum information can also be represented
with carriers that exhibit quantum mechanical behavior over a non-binary basis set [8]. Mathe-
matically, a higher-radix system can be characterized with a set of basis vectors that span a Hilbert
vector space of dimension r > 2 in terms of qudits rather than the binary (r = 2) case of qubits. An
example application for higher-radix QIP is QKD [1, 15, 20].

Qubits are the most commonly implemented units of information in QIP. As a result, methods
for automatically generating arbitrary radix-2 quantum state have been considered, yet the general
problem of logic synthesis to produce a cascade of known operators remains a research problem.
In terms of generating arbitrary quantum states, a recent method for the binary case is given
in Reference [19], yet the result is in terms of controlled rotation gates with arbitrary angles of
rotation and not in terms of actual operators that are known to be fabricated in some technology.

As an example of higher-radix QIP, a radix-3 system consists of qudits expressed mathemati-
cally as a linear combination of three orthonormal basis vectors, |03〉, |13〉, and |23〉. In this case,
the basis vectors span a three-dimensional Hilbert space. A general radix-3 qudit, |ϕ3〉 may be ex-
pressed mathematically as |ϕ3〉 = a0 |03〉 + a1 |13〉 + a2 |23〉. The set of radix-3 computational basis
vectors are explicitly denoted as |03〉 = [ 1 0 0 ]T, |13〉 = [ 0 1 0 ]T, and |23〉 = [ 0 0 1 ]T. A
quantum information system composed of two radix-3 qudits is formulated in the same manner
as that of a multi-qubit system through use of the tensor product.

In general, the form of a single qudit for an arbitrary radix, r , is given by

|ϕr 〉 =
r−1∑

i=0
ai |ir 〉. (1)

Additionally, it is also the case that the ai in Equation (2) are complex-valued quantities that satisfy

r−1∑

i=0
|ai |2 = 1. (2)

2.2 !antum Superposition
One advantage of QIP as compared to conventional information technology (IT) is that the state
of a qubit can express non-zero components of both |02〉 and |12〉 simultaneously. This is the char-
acteristic of “quantum superposition.” In general, a QIP system of radix-r qudits can also exhibit
superposition. Superposition enables the processing of multiple valuations of information in a sin-
gle quantum computation. Mathematically, superposition is expressed by the presence of two or
more basis vector coe$cients, ai , having non-zero values.
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Example 2.1 (Radix-3 Superposition). Consider a radix-3 qudit de!ned as a linear combination
of the three computational basis vectors, |03〉, |13〉, and |23〉. The radix-3 qudit is, in general, a
superposition of these three basis states in the form of

|ϕ3〉 = a0 |03〉 + a1 |13〉 + a2 |23〉 = [a0 a1 a2 ]T. (3)
The coe$cients a0, a1, and a2 are referred to as the “probability amplitudes” of the qudit |ϕ3〉
in accordance with the Born rule [5]. In Equation (3), a0, a1, and a2 are complex values c ∈ C,
such that c = x + iy where i is the imaginary number satisfying i2 = −1. Furthermore, 〈ϕ3 |ϕ3〉 =
a∗0a0 + a∗1a1 + a∗2a2 = 1.

De!nition 2.2 (Maximal Superposition). When the probability amplitudes are all non-zero and
the square of their magnitudes are the same value, the qubit or qudit is said to be maximally
superimposed or is in maximal superposition with respect to some basis set. Practically, this means
that the qudit is equally likely to be measured as being in a state that is equivalent to any of the
possible basis vectors. Multiple qubits or qudits may demonstrate states of maximal superposition.

Achieving maximal superposition is a very important operation and is one that is typically
achieved as one of the very !rst operations in many quantum computing algorithms or processing
%ows.

2.3 !antum Operations
Mathematically, a QIP task is modeled as |ϕr (tn )〉 = U|ϕr (t0)〉. This represents the quantum state
|ϕr 〉 evolving over a time period tn − t0 in accordance with the operations represented by U. In
general, U is a product of known operators with their own transformation matrices that can be re-
alized in some technology. We represent these operators as Ui . Thus, a QIP task that is synthesized
into a known set of k operators is modeled as |ϕr (tn )〉 = [UkUk−1 · · ·U1]|ϕr (t0)〉. Each particular
transformation matrix Ui is representative of a QIP “circuit” or “gate.”

When considering radix-r quantum operations, or gates, the transformation matrices will al-
ways be square matrices that are a power of r in dimension. Therefore, radix-3 qudit operations
will be of size 3n × 3n , where the power, n, indicates the number of qudits.

2.4 Entanglement
When a set of quantum particles or entities are entangled, their behavior is considered as a com-
posite system, since operations or observations performed on one element directly a#ect the other
entangled elements. A given element within an entangled group cannot be described or charac-
terized independently, since its properties are in%uenced by other elements within the entangled
group.

Example 2.3 (Entanglement of a Qubit Pair). Consider two qubits |α2〉 and |β2〉 that are entan-
gled in the form |αβ2〉 = a00 |002〉 + a11 |112〉. It is clear that |αβ2〉 cannot be expressed as a product
of |α2〉 and |β2〉. The inability to factor a quantum state into distinct subsets is characteristic of
entanglement. In this example, if the particle carrying the |α2〉 state is measured, the probability
that |02〉 is observed is |a00 |2. The amazing result is that such a measurement also causes the other
entangled particle, the carrier of |β2〉, to also collapse into |02〉.

The phenomenon described in Example 2.3 was accused of violating the special theory of rela-
tivity by Einstein et al. in their seminal paper [10], since the two entangled particles can be sepa-
rated by a large physical distance and still exhibit this behavior. Hence, such entangled pairs are
sometimes referred to as “EPR pairs” or “EPR states” and are the basis of techniques in QKD and
quantum teleportation [18].
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Fig. 1. Bell state generator.

De!nition 2.4 (Maximal Entanglement). A quantum state is entangled whenever the state, such
as the EPR pair |αβ2〉 from Example 2.3, cannot be decomposed into a product of its members,
|αβ2〉 ! |α2〉 ⊗ |β2〉. When the coe$cients of an entangled quantum state have equal and non-zero
values of squared magnitude for basis states, the quantum information is maximally entangled.
A quantum state composed of two or more qubits or qudits is maximally entangled when each
of the possible outcomes of an observation are equally likely, and the outcome quantum state
demonstrates the following:

(1) measurement of a single unit in the entangled pair causes the other entangled qubit(s) or
qudit(s) to collapse to a basis state without being directly measured or observed, and

(2) the basis state of the other entangled qubit(s) or qudit(s) is uniquely known by inference
due only to the knowledge gained by observation of the !rst measurement.

We summarize the Bell states of entanglement and their generation, since this concept is gener-
alized in the following section for the higher-radix case. In the case of maximally entangled qubit
pairs, there are four cases with respect to the computational basis states referred to as the “Bell
states” in honor of the the Bell inequalities [2]. The Bell states include

|B00〉 = |Φ+〉 = |002〉+ |112〉√
2 , |B01〉 = |Ψ+〉 = |012〉+ |102〉√

2 ,

|B10〉 = |Φ−〉 = |002〉− |112〉√
2 , |B11〉 = |Ψ−〉 = |012〉− |102〉√

2 .
(4)

The Bell states are inseparable in the sense that they cannot be expressed in terms of factors that
contain expressions with only a single qubit. A “Bell state generator” is a QIP operator sequence
that transforms two qubits in a basis state into one of the four maximally entangled Bell states.
Although a number of di#erent quantum circuits may be used to generate entangled qubits, a Bell
state generator is most commonly described in the literature as being composed of a Hadamard and
controlled-NOT (CN OT ) operator as depicted in Figure 1. There are many other quantum circuits
that can be used for Bell state generation with the same transfer matrix as that expressed by the
Hadamard and CN OT con!guration. It is also possible to generate other arbitrary entangled pairs
that are not maximally entangled. These non-maximally entangled states refer to the case where
the non-zero probability amplitudes for the basis states have magnitude values that di#er.

De!nition 2.5 (Non-maximal Entanglement). When the coe$cients of an entangled quantum
state have non-equal values of squared magnitude for basis states, i.e., one of the basis states is
more likely than another, the quantum state demonstrates non-maximal entanglement.

Entanglement is not limited to radix-2. Higher-ordered qudits of radix-3 and beyond can become
entangled through initializing them into a basis state and then evolving them with an appropriate
higher-radix entanglement generator. To generate qudits that are maximally entangled through a
generalization of the Bell state generator of Figure 1, we use an operator that produces a maximally
superimposed qudit analogous to the function of the Hadamard gate and operators with two-qudit
interaction analogous to the CN OT .
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Fig. 2. Radix-3 Chrestenson gate, C3 evolving |ϕ3〉.

3 ENTANGLEMENT GENERATOR OPERATIONS
3.1 The Hadamard Gate
The Hadamard operator causes a qubit originally in a basis state to evolve into a maximally super-
imposed state and is denoted by the unitary transformation matrix H. Each column, or row, vector
composing H is a discretized Walsh function with a scalar normalization factor of 1√

2n where n is
the order of the matrix that corresponds to the number of qubits composing the quantum system.
Since the Walsh functions are orthogonal and the Hadamard transform matrix includes a scalar
normalization factor, the overall H matrix is composed of an orthonormal column, or row, space.
The !rst-order Hadamard matrix, H, is expressed as

H =
1√
2

[
1 1
1 −1

]
. (5)

H evolves a qubit, |ϕ2〉, initially in a basis state, into a state of maximal superposition so it has
equal probability of being observed, or measured, as either |02〉 or |12〉. As an example, consider
the qubit |ϕ2〉 = |02〉 that is evolved in time through application of a Hadamard operation, |ϕ2〉 =
H|02〉 = (1/

√
2) ( |0〉 + |1〉).

3.2 The Chrestenson Gate
In preparation for presenting our result that describes how entanglement states for higher-radix
qudits can be generated, we present one of the crucial operators, the Chrestenson gate. Quantum
operators exist for other computational bases, such as radix-3 and above, that achieve equal super-
position among the corresponding basis states. These operators are referred to as “Chrestenson”
gates. Since the Chrestenson operators can be formed for any radix r > 2, we denote them as Cr
to indicate the radix, and alternatively, that Cr is a square matrix of dimension r × r . Chrestenson
gates are characterized by transformation matrices that may be derived using the discrete Fourier
transform over Abelian groups. The general theory of the discrete Fourier transform over Abelian
groups, referred to as the Chrestenson transform, can be found in References [9, 27]. Many useful
applications of Chrestenson transforms in QIS have been demonstrated [28].

The graphical representation of the application of a Chrestenson gate, C3, on a radix-3 qudit
at time t0 is in Figure 2 and illustrates the operation |ϕ3 (t1)〉 = C3 |ϕ3 (t0)〉. Because the Chresten-
son operator is a generalized version of the Hadamard operator wherein the radix, r , is an integer
greater than two, the resulting transformation matrix for a single qudit is square with dimension
r × r . The Chrestenson transform can likewise be applied to a collection of n qudits with a result-
ing transformation matrix of dimension rn × rn . The corresponding transformation matrix can be
formed using the tensor product of n Chrestenson transformation matrices of dimension r × r and
is denoted as

Cn
r =

n⊗

i=1
Cr = Cr ⊗ Cr ⊗ · · · ⊗ Cr . (6)

The structure of the Chrestenson transform matrix is in the form of a Vandermonde matrix where
each row vector consists of component,wk , raised to an integral power j. The components within
a Chrestenson transform matrix,wk , are one of the r th roots of unity raised to some integral power
[9, 29]. The r th roots of unity may be geometrically envisioned as r points that lie upon the unit
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circle in the complex plane that are equiangular and that always include the (1, 0) point denoted as
w0 along the positive real axis. In general, for radix-r , the roots of unity of interest are denoted as
wk wherek = 0, 1, . . . , (r − 1) and satisfy (wk )r = 1 as roots of one. The closed form representation
of the r th roots of unity is wk = ei 2π

r ×k .
Regarding notation, each element of the matrix is some form of w j

k where j is determined by
the column index and k is determined by the row index. In this indexing scheme, the indices j and
k begin with j = k = 0 and increase to j = k = (r − 1). It is observed that, for the case r = 2, the
Hadamard matrix results. Thus, the Chrestenson transform matrices can be considered as general-
izations of the Hadamard transform for higher-dimensioned systems. The generalized Chrestenson
transform matrix, Cr , is

Cr =
1√
r



w0
0 w1

0 . . . w (r−1)
0

w0
1 w1

1 . . . w (r−1)
1

...
...

. . .
...

w0
(r−1) w1

(r−1) . . . w (r−1)
(r−1)


. (7)

The transformation matrix of Equation (7) is composed of a set of normalized orthogonal Chresten-
son functions as the column or row vectors [9]. The Chrestenson gate has been physically imple-
mented and an example implementation of the radix-4 Chrestenson gate can be found in Refer-
ences [23, 24]. As is similar to the Hadamard gate acting on a qubit, the radix-r Chrestenson gate
evolves a radix-r qudit into a state of maximal superposition when the qudit is initialized to a basis
state.

Example 3.1 (Radix-3 Chrestenson Transform). The C3 operator uses the third roots of unity,w0 =
exp[i (2π/3) × 0] = 1,w1 = exp[i (2π/3) × 1] = 1

2 (−1 + i
√

3), and w2 = exp[i (2π/3) × 2] = 1
2 (−1 −

i
√

3), in the general form in Equation (7). Speci!cally, the radix-3 Chrestenson gate transformation
matrix is

C3 =
1√
3


w0

0 w1
0 w2

0
w0

1 w1
1 w2

1
w0

2 w1
2 w2

2


=

1√
3


1 1 1
1 e

i2π
3 ×1 e

i2π
3 ×2

1 e
i2π

3 ×2 e
i2π

3 ×4


. (8)

As an example, consider a radix-3 qudit represented by the quantum state, |ϕ3 (t0)〉 = a0 |03〉 +
a1 |13〉 + a2 |23〉, at time t0. When this qudit is evolved via the application of a Chrestenson operator,
the resulting quantum state vector, denoted as |ϕ3 (t1)〉, is calculated as

|ϕ3 (t1)〉 = C3 |ϕ3 (t0)〉 = 1√
3


1 1 1
1 e

i2π
3 ×1 e

i2π
3 ×2

1 e
i2π

3 ×2 e
i2π

3 ×4



a0
a1
a2


=

1√
3


(a0 + a1 + a2)

(a0 +w1a1 +w2a2)
(a0 +w2a1 +w1a2)


.

Next, consider the cases where the qudit |ϕ3 (t0)〉 is initially in one of the three computational
basis states of |03〉, |13〉, or |23〉 at time t0. The case where |ϕ3〉 is initialized to basis vector |ϕ3 (t0)〉 =
|03〉 will be examined. Application of the Chrestenson operator, C3, causes the evolved quantum
state, |ϕ3 (t1)〉 to become maximally superimposed as shown in the following calculations

|ϕ3 (t1)〉 = C3 |ϕ3 (t0)〉 = 1√
3


1 1 1
1 e

i2π
3 ×1 e

i2π
3 ×2

1 e
i2π

3 ×2 e
i2π

3 ×4




1
0
0


=

1√
3


1
1
1


=
|03〉 + |13〉 + |23〉√

3
.
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Applying Born’s rule, it is observed that the probability of observing |ϕ3 (t1)〉 as being in any of
the three basis states is equal,

Prob[|ϕ3 (t1)〉 = |03〉] = Prob[|ϕ3 (t1)〉 = |13〉] = Prob[|ϕ3 (t1)〉 = |23〉] =
)))))
(

1√
3

) )))))
2
=

1
3 .

To summarize and for completeness, the well-known formal result is that the application of a
radix-r Chrestenson operator to a radix-r qudit in a basis state results in a maximally superimposed
qudit in Lemma 3.2.

Lemma 3.2 (Maximal Superposition Generation). When a qudit is initialized to a basis state,
it can be evolved to a state of maximal superposition via the application of the radix-r Chrestenson
transform.

Proof. When a qudit is initialized to a basis state, it can be expressed as the r -dimensional
column vector |i〉 where i is an integer value in the set {0, 1, . . . , (r − 1)} and furthermore where
all components of |i〉 are zero except the singular ith component that has unity value.

The evolution of |i〉 due to the Chrestenson operator Cr is Cr |i〉 = |ci 〉. The evolved quantum
state, |ci 〉, is identical to the ith column vector of the Chrestenson transformation matrix Cr . By
inspection of the structure of Cr as given in Equation (7), and due to the fact that each element of
|ci 〉 is the ith power of each of the r di#erent and unique r th roots of unity divided by the constant
1√
r , it is observed that the evolved quantum state |ci 〉 is maximally superimposed, since the evolved

state is a linear combination of all basis vectors with a magnitude of 1√
r . !

3.3 Controlled Modulo-add Operations
In preparation for presenting our result that describes how entangled states for higher-radix qudits
can be generated, we present one of the crucial operators, the family of controlled-modulo-addition
gates. The radix-2 X operation, or NOT operation, performs a Pauli-X rotation on a qubit. Math-
ematically, the Pauli-X operation can be considered a modulo-2 addition-by-one operation as it
evolves a qubit |02〉 to be |((0 + 1)mod 2)2〉 = |12〉 and |12〉 to |((1 + 1)mod 2)2〉 = |02〉. In the case
where |ϕ2〉 is in a state of superposition, |ϕ2 (t0)〉 = a0 |02〉 + a1 |12〉, the X operation exchanges the
probability amplitude coe$cients of the quantum state yielding the qubit |ϕ2 (t1)〉 = a1 |02〉 + a0 |12〉.
The quantum gate or operator for the Pauli-X is represented with the transformation matrix

X =
[
0 1
1 0

]
. (9)

The controlled version of the X gate is the “controlled-X” or “controlled-NOT” gate denoted as
CN OT . For consistency with the remainder of this article, the controlled-NOT gate may also be
referred to by the somewhat unconventional name of “controlled-modulo-add by one” gate for
reasons that will become apparent in following sections. The CN OT gate is de!ned as

CN OT =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


. (10)

The CN OT gate causes a Pauli-X operation on a target qubit if the control has a probability ampli-
tude for |12〉.

In the case of radix-2 systems, only two di#erent modulo-2 additions are possible, since there
are two computational basis vectors, |02〉 and |12〉. Furthermore, one of these is the trivial case
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of modulo-2 addition-by-zero that results in the identity transformation matrix and is not of in-
terest. Thus, there is only one single-qubit modulo-2 addition operation of interest, the Pauli-X
operation. Likewise, there is only one two-qubit controlled-modulo-addition operation of interest,
the controlled-X or CN OT . In the context of maximal entanglement generators, the subject of this
work, a “permissible controlled modulo-addition operator,” must be de!ned.

De!nition 3.3 (Permissible Controlled Mod-add Operator). A controlled modulo-addition operator
is permissible when the control value that activates the target modulo-addition operator is any basis
state |h〉 where h ∈ {0, . . . , (r − 1)} and the target modulo-addition-by-k operation is restricted to
non-zero values of k where k ∈ {1, . . . , (r − 1)}. Since the modulo-r addition-by-zero operation
results in the radix-r identity transformation matrix, Ir , controlled modulo-r addition-by-zero gates
are considered trivial.

For the sake of completeness, it is noted that the single r = 2 controlled modulo-addition opera-
tion of interest, CN OT could be considered to represent two di#erent operations, since the “control”
qubit may cause the target Pauli-X operation to occur when the control qubit is either |12〉 or |02〉.
Most past work in binary QIS consider only the single CN OT operator wherein the target is acti-
vated when the control is |12〉. If the other case is of interest, then it is represented as the CN OT
with the control qubit passing through a pair of Pauli-X operations, one before and one after the
CN OT , to cause the target to activate when the control has value |02〉. However, for consistency,
these two cases for r = 2 are considered, since the generalized controlled modulo-additions oper-
ations for qudits where r > 2 that are discussed later do consider di#erent values of the control
qudits that activate the target operation.

The single qudit modulo-addition operations are denoted as Mk for operators that cause a
modulo-k addition with respect to modulus r as was used in Reference [26]. As is the case with
qubits (i.e., r = 2), the modulo-0 operation is equal to the identity function, or M0 = Ir where Ir is
the r × r identity matrix. Later in this article, M0 may be used within equations rather than Ir to
show patterns within quantum entanglement generator transformation functions. Using the Mk
notation, the Pauli-X operator for qubits is M1.

Example 3.4 (Modulo-addition Operators for Radix-3). To demonstrate the non-trivial single qudit
modulo-addition operations in the ternary, r = 3, case, consider the transformation matrices

M1 =


0 0 1
1 0 0
0 1 0


, M2 =


0 1 0
0 0 1
1 0 0


. (11)

The M1 operator causes the evolutions |03〉 → |13〉, |13〉 → |23〉, and |23〉 → |03〉 to occur. Likewise,
M2 results in |03〉 → |23〉, |13〉 → |03〉, and |23〉 → |13〉.

For higher-dimensional systems with radix-r , r > 2, there are r − 1 di#erent single non-trivial
qudit modulo-r additions and, thus, r − 1 controlled-modulo-addition operations of interest with
respect to modulus r for a single basis control value. Considering all combinations of control
values, r , as well as the di#erent moduli, r − 1, there are a total of r 2 − r di#erent and non-
trivial controlled-modulo-addition operators with all possible control values. Since the controlled-
modulo-addition transformation matrices, Ah,k , operate over two qudits of arbitrary radix r , they
are of dimension r 2 × r 2.

De!nition 3.5 (Controlled Modulo-addition-by-k Operator). A controlled modulo-addition-by-k
gate is a two-qudit gate speci!ed as Ah,k . The target modulo-addition-by-k operation occurs on
the target qudit when, and only when, the control qudit has the appropriate value as speci!ed by
the gate as h. The k value de!nes the modulo-addition operator to occur on the target. Controlled
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Table 1. Outputs of Radix-3 Partial Entanglement Generator Circuit with |03〉 as Control Level

Two-Qudit Gate in Generator
Input A0,1 A0,2

|003〉 1√
3 ( |013〉 + |103〉 + |203〉) 1√

3 ( |023〉 + |103〉 + |203〉)
|013〉 1√

3 ( |023〉 + |113〉 + |213〉) 1√
3 ( |003〉 + |113〉 + |213〉)

|023〉 1√
3 ( |003〉 + |123〉 + |223〉) 1√

3 ( |013〉 + |123〉 + |223〉)
|103〉 1√

3

(
|013〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |203〉

) 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |203〉

)

|113〉 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |213〉

) 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |213〉

)

|123〉 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |223〉

) 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |223〉

)

|203〉 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |203〉

) 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |203〉

)

|213〉 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |213〉

) 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |213〉

)

|223〉 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |223〉

) 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |223〉

)

entanglement generators with a single controlled gate, as any non-trivial Ah,k operator can be
used.

Example 4.1 (Radix-3 Partial Entanglement of Two Qudits). To illustrate the concept of partial
entanglement, consider the case where r = 3 and a controlled-modulo add operator of the form
A0,1 is utilized. Furthermore, assume that the initial quantum state of the radix-3 qudit pair is
|αβ3〉 = |003〉. The speci!c partial entanglement generator is shown in Figure 4(b). The resulting
partially entangled quantum state arising from the evolution of |003〉 through the radix-3 circuit
of Figure 4(b) is calculated as |αβ3〉 = Tpar |003〉 where Tpar is the transfer matrix of the partial
entanglement generator. The partially entangled state is calculated as

Tpar |003〉 = A0,1 (C3 ⊗ I3) |003〉 =
1√
3

( |013〉 + |103〉 + |203〉) =
1√
3

[|013〉 + ( |13〉 + |23〉) ⊗ |03〉].
(13)

Since the value |03〉 can be factored out of two of the three basis components in the evolved quan-
tum state, the state is not fully entangled. However, this state is referenced as “partially entangled,”
since the state |013〉 is present. |013〉 can be considered an entangled basis state within the partially
entangled output state in Equation (13), because measurement of either |α3〉 or |β3〉 gives insight
to the state of the other qudit. Thus, there is a probability of 1

3 that an observation or measure-
ment of the evolved state will be this entangled state. However, if the evolved form of qudit |β3〉
is observed to be |03〉, then the evolved qudit |α3〉 may be either |13〉 or |23〉 with equal likelihood,
thus violating the de!nition of maximal entanglement. Mathematically, partial entanglement is
present due to the fact that |03〉 can be factored out of two of the components of the evolved state.
In contrast, a maximally entangled state is one that has the characteristic where no such factoring
is possible.

Because the radix-3 quantum logic has three basis states that can act as active control values for
the controlled-mod-add operators and there are two non-trivial Modulo-add gates (i.e., Ah,1 and
Ah,2 for h ∈ {0, 1, 2}), there are six di#erent circuits that could potentially be used to create partial
entanglement. The evolved states resulting from the radix-3 partial entanglement circuit can be
seen in Table 1 where |03〉 is the control basis value, Table 2 where |13〉 is the control basis value,
and Table 3 where |23〉 is the control basis value. In these tables, the control level allows either
the modulo-add by one or Modulo-add by two function to act upon the target qudit. All of the
states provided in these tables are only partially entangled, because a qudit can be factored out of
a subset of the !nal quantum state’s basis states, violating De!nition 2.4.
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Table 2. Outputs of Radix-3 Partial Entanglement Generator Circuit with |13〉 as Control Level

Two-Qudit Gate in Generator
Input A1,1 A1,2

|003〉 1√
3 ( |003〉 + |113〉 + |203〉) 1√

3 ( |003〉 + |123〉 + |203〉)
|013〉 1√

3 ( |013〉 + |123〉 + |213〉) 1√
3 ( |013〉 + |103〉 + |213〉)

|023〉 1√
3 ( |023〉 + |103〉 + |223〉) 1√

3 ( |023〉 + |113〉 + |223〉)
|103〉 1√

3

(
|003〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |203〉

) 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |203〉

)

|113〉 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |213〉

) 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |213〉

)

|123〉 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |223〉

) 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |223〉

)

|203〉 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |203〉

) 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |203〉

)

|213〉 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |213〉

) 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |213〉

)

|223〉 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |223〉

) 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |223〉

)

Table 3. Outputs of Radix-3 Partial Entanglement Generator Circuit with |23〉 as Control Level

Two-Qudit Gate in Generator
Input A2,1 A2,2

|003〉 1√
3 ( |003〉 + |103〉 + |213〉) 1√

3 ( |003〉 + |103〉 + |223〉)
|013〉 1√

3 ( |013〉 + |113〉 + |223〉) 1√
3 ( |013〉 + |113〉 + |203〉)

|023〉 1√
3 ( |023〉 + |123〉 + |203〉) 1√

3 ( |023〉 + |123〉 + |213〉)
|103〉 1√

3

(
|003〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |213〉

) 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |223〉

)

|113〉 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |223〉

) 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |203〉

)

|123〉 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |203〉

) 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |213〉

)

|203〉 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |213〉

) 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |223〉

)

|213〉 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |223〉

) 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |203〉

)

|223〉 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |203〉

) 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |213〉

)

4.2 Maximal Entanglement Generators for !dit Pairs
Many radix-2 QIP algorithms begin with initializing the qubits in a ground or other basis state fol-
lowed by placing them into states of full and maximal entanglement. This is accomplished by using
a quantum circuit that includes the Hadamard gate and the CN OT , or radix-2 controlled-modulo-
one, operator. If a quantum computer is a higher-radix device, then the analogous operation would
be instantiated; that is, to !rst initialize all qudits into basis states and then to immediately perform
Chrestenson operations to evolve the control qudits into states of maximal superposition. Next,
speci!c controlled operations may be implemented to evolve the qudits into partial or maximal
entanglement. Augmentations must be made to the circuit in Figure 4(a) to produce maximally
entangled radix-r qudit pairs. A pair of radix-3 qudits can become maximally entangled when two
controlled modulo-add operations are utilized rather than a single operation.

Example 4.2 (Maximal Entanglement Generator for Two Radix-3 Qudits). Fully entangling a pair
of radix-3 qudits requires one additional controlled operation in the entanglement generator as
compared to what is required for partial entanglement. The two controlled gates needed for full
entanglement must have di#erent target activation values, h, and they must have two di#erent
modulo-add by k operations on the target.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 3. Pub. date: October 2019.
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Fig. 5. Radix-3 two-qudit maximal entanglement generator implemented with A1,1 and A2,2 that form the
composite gate A(1,2), (1,2) .

An example radix-3 full entanglement generator for two qudits can be seen in Figure 5. The
transformation matrix for the controlled operations in the generator is derived by combining the
single-control Modulo-add transformation functions, A1,1 in series with A2,2 using a matrix prod-
uct. For example,

A(1,2), (1,2) = A2,2 × A1,1 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0



=


M0 0 0
0 M1 0
0 0 M2


(14)

is created by combining A2,2 with A1,1, and it describes the evolution associated with the entire
controlled portion of Figure 5. Since combining the controlled-mod-add operations is commuta-
tive, the matrix products A2,2 × A1,1 = A(1,2), (1,2) , A2,1 × A1,2 = A(1,2), (2,1) , A2,2 × A0,1 = A(0,2), (1,2) ,
A2,1 × A0,2 = A(0,2), (2,1) , A1,2 × A0,1 = A(0,1), (1,2) , and A1,1 × A0,2 = A(0,1), (2,1) describe all of the
unique transformation functions that can be used as the multi-qudit gates of a radix-3 maximal
entanglement generator for two qudits. All of the outputs created by these six di#erent maximal
entanglement generators are provided in Tables 4, 5, and 6. Table 4 contains information when
|13〉 and |23〉 are the active control values, Table 5 contains information when |03〉 and |23〉 are
the active controls, and Table 6 contains information when |03〉 and |13〉 are the active controls. If
these tables are examined, then it is clear that they contain maximally entangled quantum states,
since each qudit cannot be described independently from the pair. For example, the evolved state
resulting from an initial state of |003〉 is provided in Table 4. The output qudit state corresponding
to the input |003〉 for this maximum entanglement generator would be calculated as

Tmax |003〉 = A(1,2), (1,2) (C3 ⊗ I3) |003〉 =
1√
3

( |003〉 + |113〉 + |223〉). (15)

This generated state cannot be mathematically factored and can only be described as a summation
of entangled basis states. Since the output of the two-qudit maximal entanglement generator agrees
with De!nition 2.4, the pair of radix-3 qudits are maximally entangled.

Figure 5 illustrates the maximal entanglement generator described in Example 4.2. In Figure 5,
the two controlled-mod-add gates are shown as a single symbol in addition to two separate sym-
bols. The composite and single transformation matrix in Equation (14) characterizes the controlled
portion, A(1,2), (1,2) , of Figure 5. As previously discussed for a radix-3 two-qudit maximal entan-
glement generator, there are six di#erent composite controlled-mod-add operators that can be
implemented. These are the A(0,1), (1,2) , A(0,1), (2,1) , A(1,2), (1,2) , A(1,2), (2,1) , A(0,2), (1,2) , and A(0,2), (1,2)

operators.
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Table 4. Outputs of Radix-3 Maximal Entanglement Generator Circuit with |13〉 and |23〉 as Control Levels

Two-Qudit Gate in Generator
Input A2,2 × A1,1 = A(1,2), (1,2) A2,1 × A1,2 = A(1,2), (2,1)

|003〉 1√
3 ( |003〉 + |113〉 + |223〉) 1√

3 ( |003〉 + |123〉 + |213〉)
|013〉 1√

3 ( |013〉 + |123〉 + |203〉) 1√
3 ( |013〉 + |103〉 + |223〉)

|023〉 1√
3 ( |023〉 + |103〉 + |213〉) 1√

3 ( |023〉 + |113〉 + |203〉)
|103〉 1√

3

(
|003〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |223〉

) 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |213〉

)

|113〉 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |203〉

) 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |223〉

)

|123〉 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |213〉

) 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |203〉

)

|203〉 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |223〉

) 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |213〉

)

|213〉 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |203〉

) 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |223〉

)

|223〉 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |213〉

) 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |203〉

)

Table 5. Outputs of Radix-3 Maximal Entanglement Generator Circuit with |03〉 and |23〉 as Control Levels

Two-Qudit Gate in Generator
Input A2,2 × A0,1 = A(0,2), (1,2) A2,1 × A0,2 = A(0,2), (2,1)

|003〉 1√
3 ( |013〉 + |103〉 + |223〉) 1√

3 ( |023〉 + |103〉 + |213〉)
|013〉 1√

3 ( |023〉 + |113〉 + |203〉) 1√
3 ( |003〉 + |113〉 + |223〉)

|023〉 1√
3 ( |003〉 + |123〉 + |213〉) 1√

3 ( |013〉 + |123〉 + |203〉)
|103〉 1√

3

(
|013〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |223〉

) 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |213〉

)

|113〉 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |203〉

) 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |223〉

)

|123〉 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |213〉

) 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |203〉

)

|203〉 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |223〉

) 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |213〉

)

|213〉 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |203〉

) 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |223〉

)

|223〉 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |213〉

) 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |203〉

)

Table 6. Outputs of Radix-3 Maximal Entanglement Generator Circuit with |03〉 and |13〉 as Control Levels

Two-Qudit Gate in Generator
Input A1,2 × A0,1 = A(0,1), (1,2) A1,1 × A0,2 = A(0,1), (2,1)

|003〉 1√
3 ( |013〉 + |123〉 + |203〉) 1√

3 ( |023〉 + |113〉 + |203〉)
|013〉 1√

3 ( |023〉 + |103〉 + |213〉) 1√
3 ( |003〉 + |123〉 + |213〉)

|023〉 1√
3 ( |003〉 + |113〉 + |223〉) 1√

3 ( |013〉 + |103〉 + |223〉)
|103〉 1√

3

(
|013〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |203〉

) 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |203〉

)

|113〉 1√
3

(
|023〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |213〉

) 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |123〉 + 1
2 (−1 − i

√
3) |213〉

)

|123〉 1√
3

(
|003〉 + 1

2 (−1 + i
√

3) |113〉 + 1
2 (−1 − i

√
3) |223〉

) 1√
3

(
|013〉 + 1

2 (−1 + i
√

3) |103〉 + 1
2 (−1 − i

√
3) |223〉

)

|203〉 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |203〉

) 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |203〉

)

|213〉 1√
3

(
|023〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |213〉

) 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |123〉 + 1
2 (−1 + i

√
3) |213〉

)

|223〉 1√
3

(
|003〉 + 1

2 (−1 − i
√

3) |113〉 + 1
2 (−1 + i

√
3) |223〉

) 1√
3

(
|013〉 + 1

2 (−1 − i
√

3) |103〉 + 1
2 (−1 + i

√
3) |223〉

)
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Lemma 4.4 (Number of Mod-add Operators). It is required that r − 1 unique and permissible
controlled-mod-add operators be utilized in a general maximal entanglement generator for two qudits
wherein the controlling qudit is provided with a maximally superimposed state.

Proof. It is well-known that a Bell state generator can be formed with a single Hadamard
gate and a single CN OT gate that can be considered to be a controlled modulo-addition-1 gate.
This result indicates that maximal entanglement can be achieved for a system where r = 2 and the
initial quantum state is a basis state when applied to the Bell state generator with r − 1 = 2 − 1 = 1
controlled modulo-addition operators.

Also, the result of Lemma 4.3 proved that for a radix-3 system, r − 1 = 3 − 1 = 2 controlled-
modulo-add operators are required to achieve a state of maximal entanglement in an entanglement
generator of the form wherein the control qudit |θ3〉 is in a state of maximal superposition and the
target qudit |ϕ3〉 is initialized to a basis state.

By induction, it is the case that a maximal state generator for qudits of radix-r require the
use of r − 1 controlled modulo-addition operators wherein the r − 1 controlled modulo-addition
operators utilize control values that are mutually exclusive from the set {0, 1, 2, . . . , (r − 1)}. Con-
ditions for the the target modulo-addition operators, Mj are described as a result of the following
Lemma 4.5. !

Lemma 4.5 (Uniqe Mod-add Operators). A given radix-r two-qudit maximal entanglement
generator is composed in part of r − 1 controlled modulo-addition operators wherein the operators
are all non-trivial and permissible as de!ned in De!nition 3.3 and furthermore wherein none of the
operators are identical.

Proof. Consider the group G where the group elements are all r × r permutation matrices Mi
for i ∈ {0, 1, . . . , (r − 1)} and the group operator is direct matrix multiplication. Because G is a
group, closure holds, thus Mi ×Mi = M(i+i )(mod r ) = Mj , where, j = (i + i ) (mod r ).

Consider an attempted maximal entanglement generator composing in part r − 1 controlled
modulo-addition operators wherein two of the r − 1 operators are identical and of the form Ah,k .

Since the Mi permutation matrices in group G are identical to the modulo-addition-by-i trans-
formation matrices in a controlled modulo-addition operator, this result indicates that the presence
of two of the same Ah,k operators in a set of r − 1 operators composing an attempted maximal en-
tanglement generator are equivalent to a set of r − 2 operators wherein the two identical Ah,k
operators are equivalent to a single Ah,2k (mod r ) operator.

From Lemma 4.4, it is proven that r − 1 unique and permissible controlled-mod-add operators
be utilized. This requirement is violated when two identical controlled modulo-addition operators
are present in the set of size r − 1, since two identical operators of the form Ah,k are equivalent to
a single operator of the form Ah,2k (mod r ) . !

Generalizing Lemmas 4.3 and 4.4 leads to Theorem 4.6, which describes the requirements for the
radix-r composite controlled-mod-add operators in a two-qudit maximal entanglement generator.

Theorem 4.6 (Entanglement Generator Control Operators). The composite controlled
mod-add operators in a radix-r maximal entanglement generator are a cascade of r − 1 permis-
sible and unique controlled-mod-add operators of the form Ah,k where h ∈ {0, . . . , (r − 1)} and
k ∈ {1, . . . , (r − 1)}.

Proof. From Lemma 4.4, r − 1 permissible controlled modulo-addition operators are required
in a maximal entanglement generator for a pair of radix-r qudits. From Lemma 4.5, each of the r − 1
controlled modulo-addition operators must also be unique. Therefore, the theorem is proven. !
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Fig. 6. Generalized maximal entanglement circuit for a radix-r qudit pair.

Fig. 7. Radix-3 three-qudit maximal entanglement generator implemented with two instances of A1,1 ×
A2,2 = A(1,2), (1,2) .

These results lead to the main theoretical result of this article, the structure of a radix-r two-
qudit maximal entanglement generator as provided in Corollary 4.7.

Corollary 4.7 (Entanglement Generator Structure). The structure of a radix-r maximal
entanglement generator for a radix-r qudit pair can be formed as a series of qudit evolutions in time
wherein the !rst evolution is that resulting from the application of a radix-r Chrestenson gate to
the !rst qudit. Then, the resulting evolved qudit controls the r − 1 control inputs of the r − 1 permissible
and unique controlled modulo-addition gates where the second qudit acts as the target qudit on the
r − 1 controlled modulo-addition gates.

Proof. From Lemma 3.2, a radix-r qudit initialized to a basis state is evolved to a state of max-
imal superposition when a radix-r Chrestenson transform is applied. Thus, a qudit in a basis state
is maximally superimposed after it is evolved via a Cr Chrestenson gate. From Theorem 4.6, r − 1
permissible and unique controlled modulo-addition operators are required in a radix-r maximal
entanglement generator. Therefore, the corollary is proven. !

A generalized diagram of a radix-r maximal entanglement generator for two qudits is given in
Figure 6.

4.3 Maximal Entanglement of !dit Groups
The structure proven to entangle qudit pairs in Figure 6 extends into an even higher dimensional
Hilbert space where the number of radix-r qudits is greater than two. The Bell state generator for
radix-2 quantum logic can be expanded with an additional operator and qubit to produce GHZ
states, which are states introduced in Reference [12] as examples of entanglement that involve
at least three qubits. Similarly, the higher-radix maximal entanglement generator of this work
is capable of entangling three qudits if minor modi!cations are made. An example of an r = 3,
three-qudit maximal entanglement generator is pictured in Figure 7. It should be noted that many
versions of the three-qudit generator can be created depending on the set of permissible controlled
modulo-addition operators combined in a composite form to act on each target qudit.

Example 4.8 (Maximal Entanglement Generator for Three Radix-3 Qudits). By applying an ad-
ditional set of Ah,k operators to an added qudit, the radix-3 two-qudit maximum entanglement
generator of Figure 5 becomes the radix-3 three-qudit maximum entanglement generator pictured
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Table 7. Outputs of radix-3 three-qudit maximal entanglement
generator circuit in Figure 7

Input Output
|0003〉 1√

3 ( |0003〉 + |1113〉 + |2223〉)
|0013〉 1√

3 ( |0013〉 + |1123〉 + |2203〉)
|0023〉 1√

3 ( |0023〉 + |1103〉 + |2211〉)
|0103〉 1√

3

(
|0003〉 + 1

2 (−1 + i
√

3) |1113〉 + 1
2 (−1 − i

√
3) |2223〉

)

|0113〉 1√
3

(
|0013〉 + 1

2 (−1 + i
√

3) |1123〉 + 1
2 (−1 − i

√
3) |2203〉

)

|0123〉 1√
3

(
|0023〉 + 1

2 (−1 + i
√

3) |1103〉 + 1
2 (−1 − i

√
3) |2213〉

)

|0203〉 1√
3

(
|0003〉 + 1

2 (−1 − i
√

3) |1113〉 + 1
2 (−1 + i

√
3) |2223〉

)

|0213〉 1√
3

(
|0013〉 + 1

2 (−1 − i
√

3) |1123〉 + 1
2 (−1 + i

√
3) |2203〉

)

|0223〉 1√
3

(
|0023〉 + 1

2 (−1 − i
√

3) |1103〉 + 1
2 (−1 + i

√
3) |2213〉

)

|1003〉 1√
3 ( |0223〉 + |1003〉 + |2113〉)

|1013〉 1√
3 ( |0203〉 + |1013〉 + |2123〉)

|1023〉 1√
3 ( |0213〉 + |1023〉 + |2103〉)

|1103〉 1√
3

(
1
2 (−1 − i

√
3) |0223〉 + |1003〉 + 1

2 (−1 + i
√

3) |2113〉
)

|1113〉 1√
3

(
1
2 (−1 − i

√
3) |0203〉 + |1013〉 + 1

2 (−1 + i
√

3) |2123〉
)

|1123〉 1√
3

(
1
2 (−1 − i

√
3) |0213〉 + |1023〉 + 1

2 (−1 + i
√

3) |2103〉
)

|1203〉 1√
3

(
1
2 (−1 + i

√
3) |0223〉 + |1003〉 + 1

2 (−1 − i
√

3) |2113〉
)

|1213〉 1√
3

(
1
2 (−1 + i

√
3) |0203〉 + |1013〉 + 1

2 (−1 − i
√

3) |2123〉
)

|1223〉 1√
3

(
1
2 (−1 + i

√
3) |0213〉 + |1023〉 + 1

2 (−1 − i
√

3) |2103〉
)

|2003〉 1√
3 ( |0113〉 + |1223〉 + |2003〉)

|2013〉 1√
3 ( |0123〉 + |1203〉 + |2013〉)

|2023〉 1√
3 ( |0103〉 + |1213〉 + |2023〉)

|2103〉 1√
3

(
1
2 (−1 + i

√
3) |0113〉 + 1

2 (−1 − i
√

3) |1223〉 + |2003〉
)

|2113〉 1√
3

(
1
2 (−1 + i

√
3) |0123〉 + 1

2 (−1 − i
√

3) |1203〉 + |2013〉
)

|2123〉 1√
3

(
1
2 (−1 + i

√
3) |0103〉 + 1

2 (−1 − i
√

3) |1213〉 + |2023〉
)

|2203〉 1√
3

(
1
2 (−1 − i

√
3) |0113〉 + 1

2 (−1 + i
√

3) |1223〉 + |2003〉
)

|2213〉 1√
3

(
1
2 (−1 − i

√
3) |0123〉 + 1

2 (−1 + i
√

3) |1203〉 + |2013〉
)

|2223〉 1√
3

(
1
2 (−1 − i

√
3) |0103〉 + 1

2 (−1 + i
√

3) |1213〉 + |2023〉
)

in Figure 7. In Figure 7 after the C3 gate acts on |α3〉, the Ah,k operators acting on |α3〉 and |β3〉
are the same with respect to controls and modulo-adds as the operators acting on |α3〉 and |γ3〉.
The second set of gates acting on |α3〉 and |γ3〉, however, are in a reversed orientation with the
target qudit on the top qudit, |γ3〉, and control qudit on the bottom qudit, |α3〉, and it should be
noted that reversing the orientation of an operator causes an interchange of columns in the trans-
formation matrix. A quantum operator U in its reversed orientation is indicated by rev (U). This
combination of gates causes |α3〉, |β3〉, and |γ3〉 to become entangled, as can be seen when the
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state |γαβ3〉 = |0003〉 passes through the three-qudit maximal entanglement generator to create
the output

Tmax |0003〉 = (rev (A(1,2), (1,2) ) ⊗ I3) (I3 ⊗ A(1,2), (1,2) ) (I3 ⊗ C3 ⊗ I3) |0003〉

=
1√
3

( |0003〉 + |1113〉 + |2223〉). (17)

All of the three-qudit maximal entanglement generator outputs for the circuit in Figure 7 can be
found in Table 7.

Within the scope of quantum entanglement of qudit groups, there are many additional topics
that can be investigated to build on the work described here. For instance, although we have con-
sidered maximal entanglement generator structures capable of outputting GHZ-inspired states,
we plan to generalize our methods in the future so they can output higher-radix quantum states
inspired by W states where the number of basis states in the entanglement is greater than the
system’s radix r .

5 CONCLUSION
This article considers a generalization of the concept of maximally entangled qubits or EPR pairs
for qudit pairs where the radix-r is a positive integer of the form r > 2. The concept of partial
and maximal entanglement is presented, and it is shown that partial entanglement only exists for
qudit pairs where r > 2. Entanglement generators are also devised for both partial and maximal
entanglement when qudit pairs and qudit groups are initialized to basis states. These theoretical
results should be of use to quantum computing algorithm designers when higher radix qudits are
used as information carriers, and it is desired to generate maximally entangled qudits.
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