
PERFORMANCE ENHANCEMENT TECHNIQUES FOR

PHASED LOGIC CIRCUITS

Approved by:

Dr. Mitchell A. Thornton

Dr. V. S. S. Nair

Dr. David W. Matula

PERFORMANCE ENHANCEMENT TECHNIQUES FOR

PHASED LOGIC CIRCUITS

A Thesis Presented to the Graduate Faculty of the

School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Master of Science

with a

Major in Computer Engineering

by

Kenneth B. Fazel

(B.S., Mississippi State University, 2002)

May 15, 2004

Fazel, Kenneth B. B.S., Mississippi State University, 2002

Performance Enhancement Techniques for

Phased Logic Circuits

Advisor: Associate Professor Mitchell A. Thornton

Master of Science degree conferred May 15, 2004

Thesis completed March 15, 2004

In this thesis, a presentation of automated techniques for speed up mechanisms

in the asynchronous design methodology known as Phased Logic is given. In previ-

ous work, these mechanims have been added to Phased Logic circuits by ad-hoc and

manual means that require a designers intimate knowledge of the circuitry. One of

the benefits of Phased Logic is that it allows conventional synchronous designers to

implement self-timed designs without a major shift to other design strategies, thus

such automatic techniques are needed. Various methods for inserting Early Evalua-

tion and slack matching buffers are presented, along with experimental results. Most

notably, automatic Early Evaluation insertion results in up to 40% decrease of delay

in some microprocessor designs. The slack matching buffer insertion results indicate

that throughput performance may increase by 20% to 40% for certain architectures.

Moreover, a more formal treatment of Early Evaluation is presented. A tool for

visualizing token flow through a PL netlist is also presented.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTER

1. INTRODUCTION. 1

1.1. Synchronous Design Methodology . 1

1.1.1. Global Clock Signal . 2

1.1.2. Synchronous Design Issues. 2

1.2. Asynchronous Design Methodology . 4

1.2.1. Survey of Asynchronous Design Models 4

1.2.1.1. Bounded-Delay Models . 4

1.2.1.2. Delay Insensitive Models . 5

1.2.1.3. Hybrid Models . 6

1.2.2. Asynchronous Design Characteristics . 6

1.3. Phased Logic . 7

1.4. Impact and Contributions of this Research . 8

1.5. Organization . 9

2. PHASED LOGIC OVERVIEW . 10

2.1. Marked Graph Theory. 10

2.2. Transition Signaling . 11

2.3. Two-Phase Bundled Data Convention . 12

2.4. Level Encoded Dual Rail Signaling . 13

iv

2.5. Even/Odd Phases and Firing Convention . 14

2.6. Micropipelines. 16

2.7. Fine-Grained and Coarse-Grained Approaches 17

2.8. PL Mapping Process . 18

2.8.1. Fine-Grained Component Transformation 18

2.8.2. Coarse-Grained Component Transformation. 18

2.8.3. Feedback Insertion Rules . 19

2.9. PL Design Flow . 20

2.10. Summary . 20

3. EARLY EVALUATION THEORY . 22

3.1. EE Derivation . 22

3.1.1. Basic Terminology . 23

3.1.2. Inessential Variables Property . 23

3.1.3. Available Variables Property . 24

3.1.4. Early Evaluation Property . 24

3.1.5. Existence of Early Evaluation Property 25

3.2. Trigger Functions . 25

3.2.1. Definition . 26

3.2.2. Coverage . 26

3.3. Trigger Function Identification Schemes . 26

3.3.1. Truth Table Approach. 27

3.3.2. BDD Approach . 28

3.3.2.1. Binary Decision Diagrams . 28

3.3.2.2. BDD based Trigger Function Extraction 29

3.3.3. Multi-valued Logic Approach . 33

v

4. EARLY EVALUATION - IMPLEMENTATION . 38

4.1. Fine-Grained Based Implementation . 38

4.1.1. Pseudo Code . 39

4.1.2. Score Function . 40

4.1.3. Experimental Results . 43

4.2. Trigger Functions via BDD Implementation . 45

4.2.1. BDD Method for Trigger Functions . 45

4.2.2. Experimental Results . 46

4.3. MVL Trigger Implementation . 48

4.3.1. MVL Experimental Results . 51

4.4. Summary . 52

5. SLACK MATCHING BUFFERING . 54

5.1. Slack Matching Buffering . 55

5.2. PL Token Flow Simulator . 55

5.3. Results . 57

6. PLFIRE: PHASED LOGIC VISUALIZATION TOOL 63

6.1. Visualization Tool . 63

6.2. Implementation . 64

6.2.1. Graphical User Interface. 65

6.2.2. Firing Information Data Structure . 66

6.2.3. PL Display Code . 66

7. CONCLUSION. 68

REFERENCES . 70

vi

LIST OF FIGURES

Figure Page

2.1. Marked Graph Example . 11

2.2. Safety and Liveness in Marked Graphs . 12

2.3. Sender and Receiver in a Two-Phase Bundled Data Configuration 13

2.4. LEDR characteristics . 14

2.5. Phase and Token Relationship . 15

2.6. Phase and Token Firing Rule Relationship . 16

2.7. Basic Micropipeline Configuration . 17

2.8. PL Design Flow . 21

3.1. Truth Table Example . 27

3.2. BDD Trigger Transformation Algorithm . 30

3.3. BDD Transformation Example . 32

3.4. Single Trigger PL . 34

3.5. Naive Implementation of Multi-trigger EE PL Gate 34

3.6. Incorrect Multi-trigger EE PL Gate . 35

3.7. PL EE Gate with MVL-based Multi-trigger Function Support 36

4.1. Pseudo Code of Fine-Grained Trigger Identification Function 39

4.2. Psedocode of trigger() function . 40

4.3. Example of Variable Reordering . 41

4.4. Example of Arrival Time Determination . 42

4.5. Pseudo code for Large Function Trigger Identification 45

vii

4.6. Pseudo Code of BDD ConstructTrigger() . 47

4.7. Transformations of a BDD to a Multiplexer Network 50

4.8. Transformation of a Ternary MDD to a Ternary Multiplexer Network . . 51

4.9. (a) Single MVL Trigger and (B) Super MVL Trigger 52

5.1. Example Topology with L = 4 and T = 4 . 59

5.2. Example Topology with Slack Matching Buffer . 59

5.3. Second Example with L = 8 and T = 2.5 . 61

5.4. Second Example with Slack Matching Buffer . 61

5.5. Single Pipeline Topology . 62

6.1. PLFire Screen Shot . 64

6.2. Pseudocode of Animate() . 67

viii

LIST OF TABLES

Table Page

3.1. Ternary Encoded PL Signals . 37

4.1. Fine-Grained Experimental Results . 44

4.2. BDD Implementation Experimental Results . 48

4.3. MVL EE Trigger Experimental Results . 53

5.1. Slack Matching Buffer Experimental Results . 62

ix

ACKNOWLEDGMENTS

I am indebted to Prof. M.A. Thornton for his patience and guidance. His gen-

erosity has enabled me to pursue great oppurtunities. I would also like to thank

Prof. R.B. Reese for his support in my academic endeavors. I appreciate the efforts

of my thesis committee members for ensuring the quality of my thesis, however, any

mistakes that may have escaped observation are of course my own.

Of course, I am most appreciative to my family, Mom, Dad, and Robert, for their

continued support throughout life...

x

Chapter 1

INTRODUCTION

Over the past half-century, the use of digital systems to perform tasks has allowed

many people to increase their efficiency and productivity in various endeavors. In

fact, the use of digital devices has become prevalent in almost all avenues of everyday

life, from the workplace to the home. As such, much investment has been placed in

the techniques and methodologies used in the design and production of these systems.

Many processes have been developed to allow designers to quickly produce systems

that not only perform a task correctly, but efficiently and cost effectively as well.

One technique is to divide a task to be implemented in a digital system into

various subtasks that as a whole complete a job. Indeed, a digital system frequently

consists of subsystems that transmit data with one another to perform a task. This

interdependency of data between subsystems must be coordinated in such a way that

the functionality of the system conforms to specifications.

1.1. Synchronous Design Methodology

One method to coordinate data transmission between subsystems is to use a

synchronous design methodology. A digital system developed with a synchronous

methodology is one that allows data movement between components only at specified

instances of time. The usual way of accomplishing this is to have a common timing

reference between all components that dictates when data may be transmitted. Such

a timing reference can be implemented as a clock signal. In essence, a component will

assume valid data is present at its’ inputs during a time specified by a clock signal

and will use the input data based on this assumption.

1

1.1.1. Global Clock Signal

Suppose we have a system in a state where all components have valid inputs, but

have not started computation. If all components start computation at the same time,

one may say that all components will be done by the time the slowest component is

done; let this slowest time be called t. We can safely assume that the next cycle of

computation may start at time t+4 , where 4 is some positive time, if this t does not

change through the entire execution of the system. This is known as a bounded delay

or worst case delay assumption. Now, rather than having each component be aware of

such a t and keeping track of time internally, a global clock signal can be connected to

all components that can tell the components when they may assume valid input data

have arrived. This is a simple solution to what could be a hard problem using other

techniques. To further simplify matters, positive-edge triggered elements are used to

specify how a clock may dictate when computation may proceed. The global clock is

the predominant technique for creating synchronous digital designs, so much so that

synchronous systems and edge triggered, globally clocked systems are synonymous.

1.1.2. Synchronous Design Issues

As technology allows for more complex systems to be implemented, setbacks have

been encountered when designing systems using global clocks. One assumption needed

for a global clock signal to be feasible is a uniform delay clock distribution (i.e. all

components receive the global clock signal at essentially the same time). As clock

speeds increase, the physical properties of the wires that this signal propagates over

must be taken into account. However, in current synthesis techniques, especially at

higher levels of abstraction, wire delay is typically not a primary concern. It is only

during the later stages of the design cycle that the physical topology of wires, and

the associated delay, may be truly assessed. The overall effect of this neglect of wire

delay is a potential cause for clock skew that can adversely effect correct operation of

the circuit.

2

Clock skew occurs when all components connected to the clock signal do not

receive transitions of the clock signal at the same time. An adverse consequence of

clock skew is that all the memory elements connected to the clock signal do not latch

data at the same time. This may lead to incorrect computation. Design time needed

to correct such cases has become a large part of the design cycle, and is commonly

referred to as timing closure or timing convergence. Various factors have made clock

skew prevalent, not limited to increased component count, decreasing feature sizes,

and faster clock requirements.

To compensate for clock skew, there are various techniques to account for clock

skew. Downgrading the clock speed may solve clock skew, but does not allow for

optimal performance. Increasing the drive strength of the clock generator of increasing

the conductance of the distribution network in the chip to make the signal propagate

faster is another option, but the circuitry used to generate the signal uses more power

and chip area and generates more heat. Often times, the network is over designed

to account for clock skew to meet time-to-market constraints. There are additional

consequences that arise when the clock distribution network is made more powerful.

There may be times when certain circuits in a design will not perform any meaningful

computation. However, these components are still connected to the clock, which

must always run. This leads to increased power consumption and heat generation.

Although not a primary concern in the past, managing power dissipation has become

very important in the emerging portable, hand-held device market.

Another method is to use different memory elements, rather than traditional edge

triggered devices, which can allow designs to better handle clock skew. Domino logic

techniques have been used to speed up the combinational logic portion of circuit,

which may be 1.5 to 2.0 times faster than a static CMOS counterpart [12]. Domino

logic based designs may be skew-tolerant given that certain rules are followed, but

these types of circuits tend to be more complex than standard synchronous designs.

3

1.2. Asynchronous Design Methodology

Another design methodology is the asynchronous methodology. Commonly, any

design that does not have an explicit clock signal is referred to as an asynchronous

design [22, 34]. This methodology has not been widely embraced by designers mainly

because implementing a design using the methodology has traditionally been difficult.

However, as the problems of clocked designs grow and the techniques for implementing

asynchronous designs mature, the asynchronous methodology has garnered renewed

interest.

1.2.1. Survey of Asynchronous Design Models

Over the years many approaches for designing asynchronous devices have been

developed. In the early days of asynchronous design, the main contributions were due

to Huffman [14] for his work involving bounded-delay models that are named after

him. These Huffman circuits have been used in practical settings; however, in more

recent endeavors, the concept of an unbounded delay model has taken precedence.

Such circuits are usually termed as self-timed, delay-insensitive, or other various

names.

1.2.1.1. Bounded-Delay Models

One of the first asynchronous models, called bounded-delay or Huffman models,

uses a similar assumption as synchronous designs. Namely, the delay through gates

and wires are assumed to be known and finite. If one thinks of a digital system as a

finite state machine (FSM), one can see how a system goes from state to state based on

the current state and possible inputs. A clocked system uses the clock signal to dictate

when a next state may be entered based on the current state, whereas an asynchronous

bounded-delay circuit uses explicit delay circuitry to achieve a similar result. The

discrete nature of a clocked system hides unwanted transient signal behavior on the

current state and input signals and only uses stable signals to compute the next

4

state. However, in an asynchronous bounded-delay circuit, unstable behavior may

cause unwanted states to be entered. Unstable signals that cause such behavior are

called hazards. Therefore, an attempt must be made to ensure that hazards do not

appear.

There are various methods in Huffman circuit design that do this. One method

dictates that only one input signal at a time may change. This is known as the

fundamental mode of operation. There are extensions to the methodology that allow

for non-fundamental modes and burst modes that allow for certain sets of inputs to

toggle at the same time. However, the constraint of only changing certain inputs at

a time implies that going from state to state may take longer than a synchronous

circuit. Additionally, buses are impractical in such methods because bus lines all

frequently toggle at the same time. Another factor is a phenomenon called additive

skew [13]. This skew comes about when bounded-delay circuits are placed in series

and the overall affect is that the throughput of the system goes detrimentally down.

1.2.1.2. Delay Insensitive Models

Unbounded-delay models, also called delay insensitive (DI) models, assume that

the delays on gates or wires are unbounded. Meaning that a component may take

any amount of time to complete a computation and wires may take any amount of

time to propagate a signal. Due to the unbounded nature of timing, this approach

implies a mechanism is needed to indicate when inputs are available. The predomi-

nate method is to setup a handshaking protocol between communicating components.

Other methods include forms of completion sensing, such as Current-Sensing Com-

pletion Detection (CSCD) [6]. Handshaking protocols with a direct relationship with

the work presented in this thesis will be discussed in the next chapter.

Other similar models are the speed-independent (SI) and quasi-delay-insensitive

(QSI) models. SI makes the assumption of unbounded gates but has wires with

negligible wire delay. QSI has both unbounded gate and wire delays but includes a

5

concept called isochronic forks. An isochronic fork is a forking of wires where the

delay in each path is essentially identical. It is known that isochronic forks are not

easily implemented as the assumption of equal delay down each branch necessarily

dictates that the devices the individual branches connect to also have roughly the same

threshold voltage [19, 1]. This characteristic is not easily controllable in arbitrary

circuits.

1.2.1.3. Hybrid Models

Models that use components with both synchronous and asynchronous character-

istics are being investigated as well. System-on-Chip (SOC) devices may use syn-

chronous IP blocks and asynchronous inter-block communication protocols. Mixed

Asynchronous Synchronous Systems (MASS) have been investigated in [35]. Addi-

tionally, Globally Asynchronous, Locally Synchronous (GALS) methods have been

shown to have promise [20].

1.2.2. Asynchronous Design Characteristics

In the literature [13], potential benefits of some asynchronous designs include:

• No Clock Skew - by definition, since there is no clock, there can not be clock

skew. However, other issues arise when the simplifying mechanism of a clock is

removed.

• Lower Power - as described before, in a synchronous circuit, portions may be

activated that do not perform meaningful work. Asynchronous circuitry tends

to limit circuit activation to portions involved in the current computation. Ad-

ditionally, the behavior of self-timed designs may make idle modes easier to

implement [24].

• Reduced Electro-Magnetic Interference (EMI) - Without a clock, it has been

shown that the overall EMI characteristics of a system are lowered in self-timed

devices. Additionally, in emerging technologies where security is a concern such

6

as smartcards, lower EMI makes it harder for devices to ”eavesdrop” on the

operation of such a device [21].

• Average-case instead of worst-case performance - Cells in an asynchronous de-

sign can allow components to process data as soon as it is ready, rather than

having to wait for the slowest component to finish.

• Automatic adaptation to environmental/physical properties - physical factors

such as fabrication variations and the physical environment may affect the per-

formance of circuitry. Synchronous circuitry must assume the worst of these

factors and change the clock accordingly. Delay insensitive circuitry may avoid

this problem because of data completion mechanisms, and will run as fast as

the environmental/physical factors will allow.

Even with the problems associated with clocked circuitry and the benefits of asyn-

chronous design, many designers have little desire to change methodologies. Although

many have expressed concern over theoretical physical limitations of synchronous

designs, innovation has allowed such designs to work properly using cutting edge

processes and higher specification requirements. Although there has been much in-

vestigation into asynchronous design, and some fairly large circuitry implemented,

the gains due to asynchronous design are often considered to be not worth the effort

required by the designer. Moreover, the design flow for synchronous designs is known

and time tested. CAD tools for synchronous designs are mature and robust, while

CAD tools for asynchronous methodologies are typically in prototype form and may

be hard to use. Conventional circuit designers are reluctant to attempt to implement

asynchronous designs if the learning curve and usability of the CAD tools is high.

1.3. Phased Logic

As stated above, a major factor for the dismissal of asynchronous design method-

ologies is that they are hard to use. Additionally, automation tools for implementing

such designs require extensive knowledge of the underlying processes. These facts are

7

a motivating factor for Phased Logic (PL). In [16], Linder devised an asynchronous

design methodology intended to aid the traditional synchronous circuit designer in

formulating self-timed designs. Phased Logic allows a designer to use existing syn-

chronous design tools such as hardware description languages at the RTL level to

create a system with a global clock and then to convert this design from a clocked

design to a clock-less, self-timed design. This methodology allows a designer to more

readily build on conventional tools and knowledge rather than having to abandon

conventional approaches.

1.4. Impact and Contributions of this Research

In this work, mechanisms for increasing the overall performance of PL circuitry

[26], namely Early Evaluation (EE) and slack matching buffering, are discussed. The

main contribution of this thesis is the derivation of automatic techniques for the

implementation of these performance enhancement mechanisms.

EE allows a PL cell to produce an output based on only a subset of available

input signals. This allows a gate to evaluate earlier than it normally would since it

does not have to wait for all input signals to arrive. Since a key motivation for using

asynchronous designs is that it operates using average case timing, being able to lower

the average case time is beneficial.

Slack matching buffering, previously called Bit-Level Dataflow [26], is the process

of inserting buffers in certain data paths to improve the throughput of a system.

This is due to the ability of such buffers to balance interconnected pipelines, which

minimizes stall situations when pipelines are waiting on one another.

Finally, optimization techniques such as EE and slack matching change the flow

of data tokens within a PL circuit. Being able to visualize these changes allows

a researcher to better understand how these techniques affect a circuit on a global

level. A visualization tool that allows this, called PLFire, is developed as part of this

research and is discussed.

8

1.5. Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a review of

the major topics regarding Phased Logic. Chapter 3 gives information relating to the

formulation of a speed-up mechanism called Early Evaluation. Additionally, methods

for determining a trigger function, which is a major component of Early Evaluation,

will be discussed. Chapter 4 presents implementations of the methods described in

Chapter 3 as well as experimental results. Chapter 5 details another optimization

technique called slack buffer matching and provides experimental results. Chapter 6

presents a visualization tool that can be used to view the token flow of a PL system.

Lastly, Chapter 7 concludes the thesis and includes final observations and ideas for

further research.

9

Chapter 2

PHASED LOGIC OVERVIEW

Phased Logic (PL) is a self-timed design methodology that eliminates the need for

a global clock and allows for automated mapping of a clocked netlist to a self-timed

netlist. The technique is first proposed by Linder in [16], and subsequent work has

been documented in [17, 26]. The basic difference between conventional clocked de-

signs and Phased Logic is the use of two-phase data conventions [31, 7], micropipelines

[33], and marked graph theory [5]. Additionally, two types of PL architectures have

been studied that are better suited to FPGA and ASIC implementations respectively.

To aid the designer, a design flow has been established that closely follows traditional

approaches.

2.1. Marked Graph Theory

Marked graphs [5], a specific type of Petri Net [23], is used as a basis for the

automated synchronous to PL-style asynchronous mapping technique. Such graphs

are known to model resources flowing through a network and one may naturally

describe a digital system in the same way.

Let G be a directed graph composed of two types of nodes: transitions, T, and

places, P. Places must have a degreein and degreeout of 1 and transitions must also

have degreein, degreeout > 0. Nodes adjacent to transitions must only be places, and

nodes adjacent to places must be only transitions, in other words a closed, strongly

connected 2-chromatic graph with T’s of one color and P’s the other.

Let M be a token mapping of G. A token mapping is a set of pairs 〈P, t = {0, 1}〉.

If t = 0, then P does not have a token, else P has a token. Let MI denote an initial

10

���������
	��
	����

���������

���������

Figure 2.1. Marked Graph Example

token mapping of G. Places are allowed only to have 0 or 1 tokens. This set {G, MI}

is potentially a marked graph. Other constraints needed for this structure to be a

marked graph will be discussed shortly.

A marked graph also has a notion of transition firings. A transition fires when all

place inputs have a token. Upon firing, the transition will remove the tokens from the

input places, and insert tokens on the output places. One may imagine how tokens

may flow through a graph based on this firing rule.

To ensure a firing does not cause a place to have more than 1 token, two conditions

must be met: liveness and safety. Liveness occurs when all directed circuits within

the graph have at least one token. Safety is met when all places are part of at least

one directed circuit with exactly one token. So a {G, MI} that is both live and safe

is a marked graph. Note that in Figure 2.2 that cycle a is unsafe and cycle b is not

live. In a similar graph shown in Figure 2.2, cycles a′ and b′ are both live and safe.

To create a circuit that has the same behavior of a marked graph, various concepts

and circuits need to be introduced. Concepts that lead to how a circuit may represent

tokens and the firing behavior of a marked graph will be discussed next.

11

��� �"! #%$

��� �"! #�&

��� �"! #�$('

�)� �"! #%&"'

Figure 2.2. Safety and Liveness in Marked Graphs

2.2. Transition Signaling

In a traditional synchronous design, it is usual for one clock edge type to indicate

an event. Transition signaling merely refers to the concept that either edge, rising

of falling, may indicate an event. This concept is needed in various types of commu-

nication protocols used in PL (i.e. the way tokens are propagated) . Additionally,

a benefit of such a scheme is that there is no return to a neutral state in the clock

before another event may occur. This may save on time and energy costs associated

with a neutral state transition [33].

2.3. Two-Phase Bundled Data Convention

The two-phase bundled data convention [31] is a local communication mechanism

for a sender and receiver to communicate with one another. Figure 2.3 shows the

basic structure of a sender and receiver using the convention.

12

*,+.-(/0+21 13+04,+25 6"+21
/0798:7

704<;,-9=,>@? +0/0A9+
1:+0B2C(+9*D8

Figure 2.3. Sender and Receiver in a Two-Phase Bundled Data Configuration

The communication protocol works as following:

1. Sender places data on the data bus

2. Sender produces an event on the request line to indicate valid data is available

3. Receiver takes the data

4. Receiver produces an event on the acknowledge line to indicate data has been

accepted and new data may be applied to the data bus

Note that the data and request line are usually treated as one entity, or bundle,

however the request signal must reach the receiver after the data does in order for

the protocol to work. The acknowledge and request signals use transition signaling

to indicate events on those lines. This type of protocol is used in coarse-grained PL,

which will be discussed shortly.

2.4. Level Encoded Dual Rail Signaling

Level encoded dual rail signaling (LEDR) [7] is a two-wire data signaling scheme

whose characteristics are shown in Figure 2.4. Note only one bit in the dual rail will

change between any valid code word. Moreover, for a particular computation, a signal

changes phase and can also change in value; the concept of even/odd phase will be

13

EGF0HJI
KMLONQP9H

RSNUT�VOHXW:Y"Z

[@\Q\
KMLONQP9H

]U]

^"]

^U^

]_^

`9a(a9b cedOcgf�h `9a9a�h cedOcgf.b `9a(aUhcgd.cgfOb

F
i

cedOcgf)h

j
j

k
j

k
k

j
k

j
j

j
k

k
k

RSNUT�VOHlWnmQZ

Figure 2.4. LEDR characteristics

discussed in the next section. This type of protocol is used in fine-grained PL, which

will be discussed shortly.

2.5. Even/Odd Phases and Firing Convention

As we are implementing a marked graph in circuitry, the abstract notion of a

token must be implementable. A notion of even and odd phase, in conjunction with

transition signaling, may fully describe the behavior of a token without resorting to

request and acknowledge signals between all connected components.

First, a definition on how we treat phase to indicate a token on a particular gate

is presented. Allow a gate to have an associated phase, even or odd. A gate may

only modify its outputs, and an output signals’ phase is always the opposite of the

driving gate. A gate is not capable of changing the phase of its inputs but is able to

determine its’ input signals’ individual phases. If an input signal phase and the gate

phase are the same, then there is a token associated with that input present.

14

o
p qgrts uvxw

rtyzux{o
p

o
o qgrts uvxw

rtyzux{o
p

p
o qgrzs|uvxw

r}yzu~{p
o

p
p qgrzs|uvxw

r}yzu~{p
o

���x���

���x���

�O�x���

�O�x����

�

�

�

�Q�����g�����9� � �:� �,� ���"� � � �,�
�<�����,���"� � �

Figure 2.5. Phase and Token Relationship

To extend the notion, suppose we have a marked graph G. Recall that a transition

may represent a gate and places may represent signals, and this notion will be used

interchangeably in this section. Now, instead of tokens, we will use phase to indicate

a marked graphs’ initial token mapping. Suppose all gates have odd phase. This

means all places must have even phase as well. Now suppose, we toggle one of the

gates to even phase. This necessarily means that all output signals of this gate have

odd phase. This will then indicate a token is on the inputs that this gate drives.

Note that if the initial token mapping does not indicate a token is needed, we may

invert the input of a gate being driven. It can be seen that this process uses a phase

convention to fully specify tokens in a marked graph.

A notion of token firing is also present in a marked graph. By definition, there is

at least one transition that is ready to fire giving a particular token mapping since

we are considering line graphs only. Now consider such a marked graph with the

concept of phase used to denote tokens. This graph contains some gate with the

proper gate/input phase relationships indicating it is ready to fire. When a gate fires,

it will change its internal phase and the phase of its’ output signals. This happens

throughout the system and allows tokens to flow through the indeced marked graph.

15

�

�
���� ¢¡
£�¤ ��¥e¡O¦
�

� ���D �¡¨§ ¥�©DªD
« ¡(� ¬ ­� ®ªS¯z§ « ¡

�

�
���D �¡
£�¤ � ¥°¡O¦
�

�
���� ¢¡ « ¡(� ¬ ­� ®ªS¯z§ « ¡

�

�
���D �¡
£�¤ �,¥°¡.¦
�

�
± ¯� �¡ «O² § « §³©�´

µ·¶2¸º¹9»�¼0½n¾J¶O¿�À
¸�ÁO¿�¼9Â�¼�Ã2Ä
¶.Ä.»�ÅÆ¿O»tÇ0Á
È ¿.»tÂlÉÊÁ.¿Q¼(Â

Figure 2.6. Phase and Token Firing Rule Relationship

2.6. Micropipelines

Micropipelines, introduced by Sutherland in [33], are a simple form of an event-

driven elastic pipeline which can serve as a framework for pipelined processors. Mi-

cropipelines use transition signaling, the bundled data convention, and event driven

logic elements as the basis of the approach. Event driven logic computes an output

only when a particular event on the inputs occur. In particular, a C-Muller gate is the

AND operation with respect to events [30]. When all inputs transition to the same

value then the output transitions to this value, else the output retains its current

value. This means that it will only start computation when all inputs have had a

transition event occur. A benefit of such an approach is that it is a modular approach,

where one can easily plug in components and have a functional circuit without having

to worry about delay between components. Figure 2.7 presents an illustration of a

micropipeline structure as shown in [33].

16

ËeÌ~Í ÎÐÏÑÍÓÒ Ô

Õ

Ö
ÌØ× Ù~Ú

Õ ÛÓÜ

Õ°Ü Û
ËeÌ~Í Î}Ï~ÍÓÒ Ô

Õ

Ö
ÌØ× Ù~Ú

Õ ÛØÜ

Õ�Ü Û
ËeÌ~Í Î}Ï~ÍØÒ Ô

Õ

ÖeÌÓ× ÙÑÚ

Õ ÛØÜ

Õ°Ü Û

ÝMÞ~ß|à0á ÝâÞ®ã2ä<å3á

Figure 2.7. Basic Micropipeline Configuration

2.7. Fine-Grained and Coarse-Grained Approaches

There are two approaches considered in applying PL techniques: the fined-grained

[28] and coarse grained [27] approaches. The fine-grained approach assumes that

programmable PL cells are the basic block of the system and is thus suited for FPGA-

type architectures. A a fine-grained PL cell has a look-up table programmed to

perform a function and phase control circuitry to handle data flow. The process of

transforming a clocked netlist to a PL netlist occurs at the gate level. Each gate in

the clocked netlist is replaced with a PL cell and additional feedbacks are added to

ensure liveness and safety. Additionally, LEDR signaling is used to enable token flow.

The coarse-grained approach is better suited for ASIC designs. Where the fine-

grained mapping process works at the gate level, the coarse-grained approach allows

for mapping to occur at the module level. Modules are collections of standard cells,

such as an adder, with PL control logic inserted around the module. This approach

allows for already developed standard cell libraries to be used in a PL design. In

the coarse-grained approach, the two-phase data bundle convention is used to enable

token flow.

17

2.8. PL Mapping Process

Now that the components of a PL system have been described, we may discuss

how a clocked design is converted to a self-timed design. Note that although the

basic blocks presented are important to PL, the designer does not need to know

anything about them. The PL mapping process is automated and can transform a

netlist of a clocked system into a PL system composed of the various building blocks

described previously. The basic steps for converting a clocked netlist to a PL netlist

include transforming gates or collection of gates (partitions) into PL equivalents.

This is merely wrapping PL control logic around these components. Additionally,

the interconnecting wires are converted to two-phase versions so that tokens may be

represented. Note that fine-grained uses LEDR and coarse-grained uses two-phase

bundled data. Finally, single rail feedback signals and tokens are added to the netlist

to ensure liveness and safety.

2.8.1. Fine-Grained Component Transformation

In the fine-grained approach, we implement a clocked netlist in an FPGA type

architecture. As such, the netlist we are provided is composed of look-up tables

(LUT) and flip-flops (DFF). The process used to transform the clocked netlist into

a PL netlist is to replace each component with a PL equivalent. An equivalent

PL component is merely the component with PL control wrapper circuitry. To ease

implementation in a FPGA, such an FPGA would need to provide such PL structures.

We refer to PL compute gates (the transformed LUTs) as through gates and PL

sequential elements (the transformed DFFs) as barrier gates. This approach is not

limited to LUTs and may be used to transform other types of gates in similar manner.

2.8.2. Coarse-Grained Component Transformation

In the coarse-grained approach, we can deal with collections of components and

treat them as single modules; for instance, in [27], a netlist of LUTs and DFFs are

18

partitioned into various modules. One may wrap PL control logic around such a

partition and treat it as a single entity in a PL netlist. Additionally, in clocked ASIC

designs, standard cells are used. This may be thought of as a partition, and we may

wrap PL control logic around such a cell in a similar manner. If an output of a

standard cell or a partition is registered in the clocked netlist, then the output is also

connected to a barrier gate in the PL netlist.

2.8.3. Feedback Insertion Rules

The last step in the mapping process is the addition of feedback signals to ensure

liveness and safety. These feedbacks signals may be single rail since they only prop-

agate timing information, no data. The feedback generator assumes all barrier gate

outputs have initial tokens. Rules to ensure that safety is met given this assumption

include the following:

• Loops used to ensure safety are not allowed to pass through more than one

barrier region as this would place two tokens on the loop. If necessary, a buffer

function splitter gate may be inserted in between barrier gates to provide a

source and sink for feedback.

• Feedbacks that originate from barrier regions have tokens.

• Feedbacks that originate and terminate between through gates must have a

token in order for the loop to be live.

• Feedbacks are not allowed to originate from a barrier gate and terminate on a

barrier gate as that would compromise safety.

A clocked circuit has a concept of storage and combinational subcircuits. In

PL, a storage subcircuits are referred to as barrier gates and combinational gates as

through gates. Sequential regions are usually just a collection of flip-flops (DFF) and

combinational regions a collection of combinational gates; barrier regions and through

regions have a similar definition with respect to the PL regions.

19

The first stage in a PL mapper is to identify sequential regions and combinational

regions. One approach is to merely identify all DFFs as barrier regions and all

combinational gates with through regions. This is done for fine-grained designs.

The next stage is to warp each region in appropriate PL control circuitry. This

wrapping of PL control logic is where one starts referring to sequential regions as

barrier regions and similarly combinational regions as through regions. This is done

using a standard template which allows the regions to be plugged into the template

with minimal effort. In the fine-grained approach, since we a converting individual

gates, we say barrier and through gates instead of region. All signals are also converted

to two-phased bundles or LEDR depending on the approach used.

2.9. PL Design Flow

A generic PL design flow is shown in Figure 2.8; flows geared towards fine- and

coarse-grained approaches may be found in [27, 28]. As input, a clocked netlist is

given to the structure analyzer. In this block, techniques may be used to optimize

a clock design to utilize methods available in PL. This block outputs a restructured

netlist that is optimized for PL and has the PLMapper convert this netlist into a PL

system. Note that the design flow is only for converting a clocked design to a PL

design, and may easily fit into the traditional design cycle for sequential systems.

2.10. Summary

In this chapter a presentation of the PL design flow was described. Details of

the basic blocks needed for a PL circuit as well as the methods used for converting

a sequential design into a PL design were described. In particular, the structure

analysis block of the PL design flow applies directly to this thesis. In the following

chapters we discuss methods for analyzing portions of circuitry to determine whether

early evaluation and slack matching may occur.

20

æ<ç
èUé°êgê
ë�ì

í9ë
î·ï ð ñòî�ó�ô°é
õ ï ó õ÷ö ëgøñòù÷ñòîúë�û

ü îýì�þ õ îýþgì�ë�ÿ��
é�ï ù÷ñ
ð ñ
ü ï é õ÷ö èUé�î õ�� ð ����� �
ñØë�ìúîýð ó��

	�égì¢ï ù
	��÷éDï þ�é
î·ð ó
��� ��ñØë�ìúî·ð ó��

�9ëgñòîýì�þ õ îýþ
ìýëeø�
ë�î·ï ð ñòîí9ë
î·ï ð ñòî�ó�ôDæ ç
ü ù÷ñòîúë�û

Figure 2.8. PL Design Flow

21

Chapter 3

EARLY EVALUATION THEORY

Self-timed designs perform using an average case timing characteristic rather than

worst case timing based on the slowest component. Although, theoretically, self-timed

designs should operate at increased speeds as compared to synchronous designs, this

may not be observed in a practical implementation. One reason for this is that the

overhead needed for local communication between components can be greater than

any benefit gained from an average time gate firing. A method called Early Eval-

uation (EE) can allow an asynchronous circuit to outperform a synchronous circuit

by allowing its components to perform computation only on a subset of available

data inputs. Depending on the incoming data, EE allows for a systems’ average case

timing to be lowered, potentially overcoming the communication overhead.

3.1. EE Derivation

As opposed to synchronous designs, the concept of input signal arrival time and

input availability is present in PL designs. In synchronous designs, a combinational

circuit is separated from new inputs by memory elements, which act as a barrier

differentiating ”current” and ”next” input values. However, in a self-timed system this

sort of barrier is unnecessary. A combinational circuit may have access to input values

even when all inputs values are not yet available. It will be shown that with respect

to such an available set, the other variables may be determined to be inessential and

it may be possible to proceed with computation.

22

3.1.1. Basic Terminology

Let B = {0, 1} . An n-input Boolean function f is defined as f : Bn → B . An

n-input vector B = 〈bn−1, bn−2, ..., b0〉 of f is an ordered set of Boolean variables; were

|B| = n denotes the size of B . An assignment to B is denoted as [B]; B has a total

of 2n such assignments. A given [B] such that f ([B]) = 1 is denoted as minterm of f .

Let #min (f) denote the number of minterms of f . A cube is a set of minterms whose

intersection results in a single product that covers all minterms in the set. A cube

is said to be a cover of these minterms. A j-cube is cube with (n − j) literals, thus

a minterm is also a 0-cube. The j variables that have been removed in a particular

cube are called don’t cares.

3.1.2. Inessential Variables Property

For a given n-variable Boolean function, there are 2n possible input vectors. Yet,

there are only 2 possible results that this function can have for each input vector:

0 or 1. With such a small range, one may intuitively guess that for a particular

variable assignment, the output of a function may not greatly depend on all of the

variables. This is not to say that we are dealing with vacuous variables all of the

time, but that for some variable assignments, some variables may not be needed to

determine the result of the function. Variables that are not needed when a subset

of variables are given an assignment are termed the inessential variable set for the

assignment. An elementary example portraying the inessential property using the

real-valued functions f follows:

f (x, y, z) = z (x + y)

When z = 0, f (x, y, z) = 0, ∀ {x, y}

In this case, x and y are inessential when z equals 0. In a real-valued setting,

the opportunity for application of this property may be trivially small, but in binary

valued Boolean logic the only two variable values are 0 and 1. This inessential property

is prevalent since 0 is the additive identity and 1 the multiplicative identity in GF (2).

23

Being able to determine the value of a function without needing all of the input

variable assignments is the main property that EE exploits. Note that {x, y} is not

an inessential set when z = 1.

3.1.3. Available Variables Property

Normally, a gate can compute only when all of the inputs have been assigned with

respect to the current computation cycle. In terms of PL, computation may occur

when all inputs have the same phase as the PL gate. Yet, an n-input PL gate may

have [0, n − 1] inputs assigned. The set of inputs that have been assigned with respect

to the current cycle is known as the available set. This of course gives rise to another

set, the unavailable set.

If it could be determined whether the unavailable set is inessential with respect

to the available set, then the PL gate can compute and attain the same result as if

all the inputs were available. If we go back to the real-valued example, if z is known

to be 0 before x and y are available, we can automatically say that the output should

be 0. This can be advantageous if τ ([z] = 0) < τ ([x]) , τ ([y]) ⇒ f = 0, where τ (p)

indicates the time when proposition p is true.

3.1.4. Early Evaluation Property

For an arbitrary n-input PL gate at a time t that is between firings we may divide

the available and unavailable inputs at time t into two vectors, denoted as A and U

respectively, where |A| = k and |U | = n − k. Note there are 2k possible assignment

vectors for A; let [A]j denote the jth such assignment. If U is determined to be

inessential with respect to [A]j then the PL gate may fire, since the output is only

dependent on the assignment A. If U is inessential with respect to [A]
j
, then [A]

j

is said to give rise to an early evaluation opportunity. A function that has any [A]j

that gives rise to the early evaluation property is said to have an early evaluation

property.

24

3.1.5. Existence of Early Evaluation Property

The set of unavailable inputs, U , must be found to be inessential with respect to

[A]j in order for EE to occur. The domain of an n-input Boolean function f consists

of 2n input vectors. Each of these elements in conjunction with f maps uniquely to

either 0 or 1. Now, suppose we have a set of available inputs, A, where |A| = k,

with the assignment [A]
j
. We can then group the 2n−k elements of the domain of f

that correspond to [A]j. If all 2n−k elements map to the same value, then [A]j fully

determines the result of the function with respect to the partial assignment. One may

easily construct examples that show this property by assuming some assignment and

then appropriately setting the mapping. Note an n-input Boolean function that is a

tautology is a degenerate case of this property.

In terms of minterms and cubes, each [A]j that can early evaluate may be thought

of as a set (n−k) cubes with the same support set of the function or its complement.

Therefore, if a function or its complement has a cube that is not a minterm then the

function has the early evaluation property. Furthermore, this implies that the number

of prime implicants of a function with the EE property is less then 2n − 1. The only

functions that do not have less than 2n−1 prime implicants are the XOR and XNOR

functions. Therefore, the XOR and XNOR functions are the only functions that can

not be early evaluated.

3.2. Trigger Functions

Handling all possible As for a particular logic function would be cumbersome in

implementation. As such, one may “hard-wire” a unique A to be used to identify EE

opportunities. A Boolean function, known as a trigger function, uses an assignment

on a unique A to determine if U is inessential. To accommodate EE, the structure of

a PL cell must be modified to contain a master and trigger function. To accomplish

this two standard PL Cells are connected together with additional logic. One may

refer to [36] for further details on the implementation of EE in PL.

25

3.2.1. Definition

Let M be an n-input Boolean function, denoted as the master function. The role

of the t-input Boolean function, T , is to indicate whether EE is possible given the

assignment of a subset of inputs of M . If EE is possible then T evaluates to 1. We

call such a function a trigger function. Formally, we have the following:

Let X = 〈xn−1, xn−2, ..., x0〉 be an ordered set of Boolean variables and M (X) be

a Boolean function with support set X. Let X̃ =
〈

xtk−1
, xtk−2

, ..., xt0

〉

be an ordered

subset of X. A trigger function, T
(

X̃
)

of M (X) is defined as

T
([

X̃
])

=















1, M[X̃] (X) = 1 or M [X̃] (X) = 1

0, otherwise

where
[

X̃
]

indicates an assignment of the variables in X̃ and M[X̃] (X) is the

cofactor of M with respect to
[

X̃
]

. Note that we explicitly are making A = X̃ and

U = X − X̃. In terms of cubes, we may specify a particular trigger function as the

cubes of the onset of either M or M that have at the variables in U as don’t cares.

3.2.2. Coverage

An n-input Boolean function, M , has 2n different input vectors. We wish to have

a notion of how often a trigger allows for an EE opportunity of its master function.

From the definition, a minterm of T corresponds to a set of disjoint (n − t)-cube in

either M or M . The maximum number of minterms in M ∪ M = 2|n|. We define

coverage of a t-input trigger T with respect to n-input master M as

Coverage (T) = #min(T)·2n−t

2n = #min (T) · 2−t

3.3. Trigger Function Identification Schemes

In the definition of a trigger function, it is stated that A is explicitly forced to a

particular X̃ , which is then used to form T . This implies that a suitable X̃ must be

found. In the schemes to follow, we assume we have found a desirable X̃, and find

the associated trigger function.

26

 a b c M
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

a b c M T
0 0 0 0 1
0 0 1 0
0 1 0 0 0
0 1 1 1
1 0 0 0 0
1 0 1 1
1 1 0 1 1
1 1 1 1

 ����� �����

Figure 3.1. Truth Table Example

3.3.1. Truth Table Approach

A Boolean function may be represented using a truth table, which lists both the

domain and range of a function in a convenient way. One may use this structure to

determine whether a potential available set has a corresponding trigger function.

Suppose we have the function M = ab + ac + bc. A corresponding truth table is

shown in Figure 3.1a.

Now, suppose we wish to find a trigger function whose support set is {a, b}; in

other words, A = {a, b}, U = {c}. Therefore, we need to look at the cubes of f using

a subset of variables from {a, b}. We can do this via a truth table by just marking out

the c column, as shown in Figure 3.1b. There will be rows with the same a, b values,

which correspond to an assignment of A. The rows with the same value for a, b may

be grouped together and if they all resolve to the same output that assignment is

used to set T to 1, else it is a 0. This process gives T = ab + ab. One may intuitively

determine the general algorithm, and its description will be held off until the next

chapter.

27

In order for this to work, we must be able to hold a truth table in memory.

Since the size of a truth is exponential with respect to n, the space complexity of

the algorithm is exponential. Additionally, although we group the minterms, we still

must check them all. Therefore, the algorithm has an exponential time complexity

as well.

A less exact approach would be to minimize a M and M and then group cubes

that have similar don’t care sets. These sets by definition are trigger functions for M .

It is less exact because a function may be represented with more than one minimized

cube lists; however, such a trade-off is reasonable considering the computation time

and space saved.

3.3.2. BDD Approach

The truth table approach is suitable for finding trigger functions of small size.

However, for functions with large variable support sets, the space and time require-

ments of a truth table based algorithm are too large. One may notice that the

algorithm works closely with the representation of the logic function and fortunately

there are more compact ways of representing a function. This observation leads to

an algorithm based on a binary decision diagram (BDD) for trigger identification.

3.3.2.1. Binary Decision Diagrams

A binary decision diagram (BDD) is a method for representing Boolean logic

functions. A BDD may be visualized as a binary tree structure where each path

down the tree represents a cube of the logic function. If the cube evaluates to 1, then

the path terminates at a 1-node, else a 0-node. There are various types of BDDs

but the one to be focused on is the reduced ordered BDD (ROBDD). The ROBDD

is so often used that we will interpret the usage of the abbreviation BDD to denote

ROBDD unless otherwise specified. An ROBDD imposes the following rules on the

structure of the tree:

28

• Each level of the tree is associated with one unique variable in the support set

of the function

• The left and right subtrees of a node cannot be identical

• There cannot be identical subtrees in the ROBDD

ROBDDs are canonical representations for Boolean functions; further reference on

the subject may be found in [3].

Some notation used to refer to elements in a BDD are the following: Let N be a

BDD and n ∈ N be some node in the ROBDD. N.root is the root node of the BDD.

n.0 and n.1 refer to the left and right children of n. n0 and n1 refer to the edges

between a parent and the left/zero and right/one child nodes.

3.3.2.2. BDD based Trigger Function Extraction

An algorithm for transforming a ROBDD into a trigger function is shown in Figure

3.2. It is not desirable for the master to be transformed into a trigger, one would

rather construct a trigger without losing the master. This transformation is presented

as it gives a clearer idea on how one gets a trigger from a master function through the

use of a BDD. The implementation to be described in the next chapter will illustrate

an algorithm were the master function is not destroyed. Of course, one could merely

make a copy of the master and then perform the transformation, but this uses more

space and is not necessary.

29

 BDD_TransformTrigger(N , A ,U)
{
 Input: BDD N , A , and U
 Output: N

Algorithm: Transform N into a trigger function of
the master function it is representing. A
modified depth first search algorithm is
employed

 Order N so that A is on top
 RecurseBDD_TransformTrigger(N .root, U)
}

RecurseBDD_TransformTrigger(n, U)
{
 if(n left→ points to a u U∈)
 then make n left→ point to 0
 else if(n left→ points to 1 or n left→ points to 0)
 then make n left→ point to 1
 else
 RecurseBDD_TransformTrigger(n->left)

 if(n right→ points to a ∈ u U∈)
 then make n right→ point to 0
 else if(n right→ points to 1 or n right→ points to 0)
 then make n right→ point to 1
 else
 RecurseBDD_TransformTrigger(n right→)

 Enforce BDD rules
}

Figure 3.2. BDD Trigger Transformation Algorithm

30

Example: Suppose we had the function f = ab + abcd + abcd and wished to have

A = a, b, c. This steps to accomplish this are shown below. Note that the notation

a0b1 refers to a path traversed in the BDD. This path starts at a, takes the left/zero

path to b, and then takes the right/one path of the b node just reached.

• Step 1: Form a BDD, and reorder such that A forms the top variables.

• Step 2: Follow path a0b0. Points to 1. No change.

• Step 3: Follow path a0b1. Points to 0. Have b1 point to 1. Mark b as visited.

However, the BDD rules will force b to be removed and a0 point to 1.

• Step 4: Follow path a1b0c0. Points to 0. Have c0 point to 1.

• Step 5: Follow path a1b0c1. Points to d. Have c1 point to 0. Mark c as visited.

• Step 6: Follow path a1b1c0. Points to 0. Have c0 point to 1.

• Step 7: Follow path a1b1c1. Points to d. Have c1 point to 0. mark c as visited.

BDD rules will force the two c subtrees to merge as they are isomorphic. It is

now obvious that b had to isomorphic children and therefore will be replaced

by the subtree. No further changes are performed The trigger function of f is

T = a + ac.

We are essentially removing cubes that do not only involve members in A. Since

this is a modified depth first search, this algorithm run in linear time with respect

to replacements. It is known that BDDs have an exponential big-O space complexity

[4], but often times this size is not reached.

31

�
� �

� �
�

� �

�
�

� �
�

� �

�
�

� �
�

� �

�
�

� �
�

� �

�
�

� �
�

� �

�
�

� �

� �

�
�

�

� �

�

�

� �

�
� �

� �
�

� �

���� "!$#&%$')(�*�+ "!-, ���.
!0/

�*�. 1!32 �*�+ "!04 �*�. 1!05

Figure 3.3. BDD Transformation Example

32

3.3.3. Multi-valued Logic Approach

In the above approaches, we assumed a particular A. However, there are poten-

tially many A’s that also form trigger functions. These other trigger functions may

cover EE opportunities that are not recognized by the originally chosen trigger func-

tion. Therefore, the use of more trigger functions will cover more early evaluation

opportunities for a given master function.

A PL EE gate consists of the original master function PL cell augmented with

another PL cell [36] (along with a small amount of control circuitry between the two).

Figure 3.4 contains a diagram of the organization of a PL EE gate with a single trigger

function.

In order to effectively utilize multiple trigger functions, the control mechanism

between the master function and the multiple trigger functions must be augmented

resulting in a new organization of a PL EE gate. A näıve implementation of such a

gate would be to replicate trigger function cells for each candidate trigger function

and then use a large fan-in OR gate to concentrate their outputs into a single signal

causing the master function to early evaluate as shown in Figure 3.5. While this

resulting circuit is functionally correct, this approach is too costly in terms of area

since a considerable amount of circuitry in the trigger functions could potentially be

shared.

It is desired to use a single super trigger function by forming a function that is

the union of the on-sets of each individual trigger function allowing for term sharing

to be exploited. If the outputs of the corresponding C-Muller elements are also ORed

together, as shown in Figure 3.6, ”false” EE can occur.

A ”false” trigger can occur since the trigger function should evaluate only when

all dependent variables are present. However, an individual C-Muller element may

evaluate when only a subset of variables of the super trigger function are present.

To illustrate this problem, consider a master function f(a, b, c, d) with individual

trigger functions t1(a, b, c) = ab+bc and t2(a, b, d) = abd. If the organization in Figure

33

6

798�:<;>=
?

@BA�CED�FHG I1DEFBCJD�FKML�N�O�P)Q

RSQ.T UVUVP)Q

Figure 3.4. Single Trigger PL

WXBY[ZJ\[]H^ _1\J]BZE\�]

`bacaBa`d`0aBaBa

eMf�g�h�i)j

kSjml n�nEi)j

Figure 3.5. Naive Implementation of Multi-trigger EE PL Gate

34

oprqts+u.vxw yEu+vrstu+v

z{z�z

Figure 3.6. Incorrect Multi-trigger EE PL Gate

3.6 were used, the super trigger function is formed as tsup = t1 + t2 = ab + bc + abd

and the two C-Muller elements (supporting t1 and t2) evaluate when variables {a, b, c}

are all present (corresponding to t1) while the second C-Muller element will evaluate

when variables {a, b, d} are present.

Suppose that the signals corresponding to variables {a, b, d} have arrived with

values {1, 1, 0} respectively and that variable c has not yet arrived. In this case,

the C-Muller element corresponding to trigger t2 will evaluate although the trigger

function t2 has value 0. However, tsup has a value of 1 causing the master function f

to incorrectly evaluate early although the signal corresponding to variable c has not

arrived. In such a case, a false trigger occurs causing the master function to evaluate

before it should have.

To solve this problem, a notion of ”which” variables in the support of tsup have

arrived is needed. With a single trigger function, this notion is not needed since

the single C-Muller element will evaluate only when all inputs corresponding to the

trigger function are valid. Our approach is to formulate the super trigger function

such that the individual C-Muller elements are combined into a single binary valued-

function that depends on ternary-valued variables resulting in tmvl. The organization

of this form of the EE PL gate is then depicted as shown in Figure 3.7.

35

|}�~t�+�+�x� � �+�r�t�+�

���)��� ���x��� �

Figure 3.7. PL EE Gate with MVL-based Multi-trigger Function Support

The notion of signal availability is incorporated into the PL EE Gate depicted in

Figure 3.7 by using the dependent ternary-valued variable encoding shown in Table

3.1.

The multi-valued logic (MVL) super trigger function tmvl is formed as the disjunc-

tion of terms that represent each individual trigger function and the availability of

their respective inputs. Each such term is the conjunction of the individual trigger

functions and a corresponding expression indicating input signal availability. The

expressions representing input availability effectively take the place of the C-Muller

elements and are represented as MVL functions Ci.

Using the example shown above that precludes the organization as shown in Figure

3.7, the individual trigger functions and their corresponding Ci functions become:

t1 (a, b, c) = a{1}b{1} + b{1}c{1}

C1 (a, b, c) = a{2} b{2} c{2} = a{0,1}b{0,1}c{0,1}

t2 (a, b, d) = a{1}b{1}d{1}

C2 (a, b, d) = a{2} b{2} d{2} = a{0,1}b{0,1}d{0,1}

Using these formulations, the super trigger function tmvl is expressed as:

tmvl = t1C1 + t2C2

tmvl = a{1}b{1}c{0,1} + a{0,1}b{1}c{1} + a{1}b{1}d{1}

It is now easy to see that the cube a{1}b{1}c{2}d{0} corresponding to the scenario

described previously will result in tmvl evaluating to 0.

36

Table 3.1. Ternary Encoded PL Signals

Logic Value Interpretation

0 Signal arrived with binary value 0

1 Signal arrived with binary value 1

2 Signal has not yet arrived

The actual implementation could be accomplished using MVL circuitry, or, by

mapping back to a binary circuit where dual-rail lines are used for each variable.

Although the binary-mapped version may appear to double the amount of required

wiring, we note that signals are already present in dual-rail form in order to support

the LEDR encoding used in PL circuits. This increase in wiring for the inputs of the

super trigger portion of the EE PL gate is less overhead overall than would be present

in the näıve approach of ORing all individual single trigger function blocks as shown

in Figure 3.5.

37

Chapter 4

EARLY EVALUATION - IMPLEMENTATION

There is a need for EE identification to be done automatically, which should

require minimal effort by the designer to determine trigger functions for insertion

in a PL design. As EE is a local transformation on combinational portions of a

netlist, we may perform EE identification on either a clocked or PL netlist. We have

chosen to perform such identification on a clocked netlist as it makes the PL mapper

implementation less cumbersome. The implementations to follow are the tools needed

to find such candidates in an automatic fashion.

4.1. Fine-Grained Based Implementation

The fine-grained PL tool suite creates circuitry consisting of 4×1 look−up tables

(LUT4s) and 1 − bit f lip flops (DFFs). In this framework, an n-bit logic function

will be decomposed into various 4-input functions. As such, the logic functions that

an automatic, fine-grained EE inserter must be able to handle are 4-input functions.

Since available sets of size zero or four would be trivial, non-trivial trigger functions

of a given LUT4 are either three, two, or one variables in size. So, the total number

of non trivial trigger functions is







4

3





 +







4

2





 +







4

1





 = 14. One can easily

compute all 14 trigger functions and then compare the merits of each to determine

the best choice. In the results for a fined-grained EE inserter, the trigger function is

determined using the truth table approach. As described previously, this approach is

asymptotically exponential in time and space, however, is adequate for functions of

size 4.

38

 For each LUT4 in the netlist
best=NULL
M=LUT4 output bit vector
For each nontrivial { }, , ,a b c dp P∈

current=trigger(M,p)
if(score(current)>score(best)

best = current

Figure 4.1. Pseudo Code of Fine-Grained Trigger Identification Function

To determine master/trigger functions pairs, the netlist of the clocked design must

be processed. This netlist is composed of DFFs and LUT4s, where the components

of interest are the LUT4s. Each LUT4 is specified by various identifier information,

netlist connections, and logic behavior. The logic behavior is specified by an output

bit vector. This bit vector is the main input into the EE identifier code trigger(),

which returns a trigger based on the output vector and a variable set. As a LUT4 may

have various trigger functions to choose from, a score function is utilized to determine

which trigger function is the most appropriate.

4.1.1. Pseudo Code

Suppose for an arbitrary LUT4, the inputs are a, b, c, d. The basic algorithm for

determining master/trigger pairs is shown in Figure 4.1. The trigger() function de-

termines what a trigger function with respect to p is, if it exists at all. The trigger()

function attempts to find a trigger function by looking at the logic input combinations

and corresponding output behavior. It will group logic input combinations that have

similar assignments after the U variables are treated as don’t cares. If the output

behavior i of the set of similar assignments are the same that assignment is given a 1

in the T [i], else it is assigned a 0.

39

 trigger(M,p)
{

M' = Reorder(M,p)
For(0i = , 0j = ; i p< ; 2 M pi i −= + , 1j j= +)

if(M'[... 2M pi i −+] == [1...1] or M'[... 2M pi i −+] == [0...0])
T[j] = 1

else
T[j] = 0

return T
}

Figure 4.2. Psedocode of trigger() function

To aid in searching for input combinations with the described similar assignments,

the inputs are ordered with the A variables as the higher bits, and U the lower bits,

as shown in Figure 4.3. This ensures that the similar input combinations are grouped

next to each other. Additionally, each group will be of size 2|M |−|p|. Since there are

only 16 input combinations, we do not need to look very far to determine a trigger

function.

4.1.2. Score Function

In determining the goodness of one trigger function as compared to another, pro-

vided by the score() function, two criteria are used: coverage and input arrival

times. Coverage refers to the number of minterms the trigger function covers in both

the on- and off-set of the master function. The higher the coverage, the more likely

an assignment to the trigger variables will result in an early evaluation. Input arrival

times indicate whether a particular input should be part of the input set of the trig-

ger function. Namely, one would rather have fast arriving inputs than slow arriving

inputs. However, a fast input may not offer much coverage. A score function is used

to try and balance the constraints. If two scores happen to be the same one may em-

40

 a b c d M
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

b c d a M
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

Figure 4.3. Example of Variable Reordering

41

�

Figure 4.4. Example of Arrival Time Determination

ploy a greedy approach or use further heuristics to determine the better candidate.

A greedy approach was used in the implementation presented in this work.

Arrival times in a PL system are dependent on the topology of the associated

graph as well as the initial token marking. However, the netlist file that is processed

is of the clocked system. So a heuristic method for arrival time estimation is used.

The basic computation used in determining arrival times is merely the summation of

gate delays between the primary circuit input to the farthest “input” DFF. Namely,

one does a breadth-first traversal from the primary circuit input going towards its’

driver gate, and continues doing this using DFFs or external inputs as a stopping

condition. The longest path found is the path used to determine the inputs’ arrival

time. Figure 4.4 illustrates how the arrival time for input a is determined.

We find such a time for all function inputs. We denote the max of all the input

times as Mmax time. For a potential A, we denote the max input times of the A as

Tmax time. It is desirable to have a Tmax time that is smaller than Mmax time, and the

term Mmax time · T−1
max time embodies this notion. Additionally, we wish to have as

high a coverage as possible. A score function that displays these characteristics is

score = Coverage · Mmax time · T
−1
max time.

42

4.1.3. Experimental Results

Several benchmark circuits were synthesized both with and without the use of

the EE algorithm. The benchmarks used were the International Test Conference

1999 (ITC99) suite [8]. These are available in RTL level VHDL format and were

synthesized using the Synopsys Design Compiler tool. The resulting EDIF netlist

was then mapped to PL technology using the tool described in [29] and then post-

processed for the inclusion of EE circuitry. The delay value for each component in

the PL netlist is 7 ns. For the 15 benchmarks presented in Table 4.1, an average

speedup of over 13% was achieved with an average increase in the amount of circuitry

for the EE gates resulting in 33%. In these results, EE circuitry was added to all

PL gates where a speedup was possible. It is also possible to reduce the increase

in area by requiring a candidate trigger function to have a score value that exceeds

some threshold. Thresholding the score function allows for a tradeoff in area versus

delay of a PL circuit. Table 4.1 contains columns representing the description of the

benchmark circuit, the number of PL gates required without EE, the number of EE

gates when the circuit is synthesized using EE, the average delay with no EE, the

average delay with EE, the difference between the average delay with and without

EE, the percent of area increase in terms of additional gates when the EE algorithm

is applied and the percent decrease of delay when EE is used in the synthesis of the

benchmark circuits. Note that the area values do not include increased area due

to LEDR signaling. The delay results are based upon the average statistics of 100

simulations where the input vectors were randomly generated. For each PL circuit,

we determined the average delay time between the presence of a stable input vector

and a stable output word. In a PL circuit, new values cannot be presented to the

inputs until a stable output is generated for the current input values. Furthermore as

is discussed in [26], delays are statistically distributed based on the value of an input

vector and are not constant in PL circuits. To determine the delay values between the

PL circuits with and without EE, we computed the average of the difference between

43

Table 4.1. Fine-Grained Experimental Results

Name PL Gates

(no EE)

EE

Gates

Avg. Delay

w/o EE (ns)

Avg. Delay

w/ EE (ns)

Delay

Diff (ns)

%Area

Increase

%Delay

Decrease

B01 25 9 49 43 6 36.00 12.24

B02 4 0 18 18 0 0.00 0.00

B03 78 25 49 50 -1 32.05 -2.04

B04 274 102 84 85 -1 37.23 -1.19

B05 322 136 98 88 10 42.24 10.20

B06 10 1 26 27 -1 10.00 -3.85

B07 240 95 87 67 20 39.58 22.99

B08 82 24 66 52 14 29.27 21.21

B09 74 23 46 45 1 31.08 2.17

B10 126 49 63 59 4 38.89 6.35

B11 275 112 132 93 39 40.73 29.55

B12 635 263 80 73 7 41.42 8.75

B13 141 44 56 51 5 31.21 8.93

B14 3360 1565 332 207 125 46.58 37.65

B15 5648 2611 336 184 152 46.23 45.24

the cycles for both circuits. Mentor Graphic’s qhsim was used to simulate the PL

VHDL we generated for each test bench. Because a master/trigger pair of PL gates

requires the use of an additional Muller-C element, some benchmarks suffered a slight

degradation in overall delay values when the EE algorithm was applied. Overall, the

EE algorithm resulted in a speedup for most of the benchmarks. Not surprisingly,

those benchmarks with significant amounts of arithmetic circuitry tended to take

more advantage of the EE algorithm since arithmetic circuits tend to be composed of

addition circuits where EE techniques are known to perform well.

44

 triggerBDD(f , A)
{

For each A∈ A
FBDD = ROBDD(f , A)
best = NULL
B = BDD_ConstructTrigger(FBDD)
if(score(FBDD)>score(best))

best = FBDD
}

Figure 4.5. Pseudo code for Large Function Trigger Identification

4.2. Trigger Functions via BDD Implementation

As discussed in Chapter 3, the BDD algorithm is used to handle master func-

tions of large size. Since the procedure for determining a trigger function works on

a functions representation, a compact and efficient means of interacting with the

representation is essential. The Colorado University Decision Diagram (CUDD) [32]

package is a widely known BDD library that has both characteristics and is used in

this implementation.

4.2.1. BDD Method for Trigger Functions

The implementation is much like the truth table implementation except that the

method of trigger detection is replaced by the BDD approach. Pseudo-code for an

implementation is shown in Figure 4.5.

Note that A is a set of interesting A. In the truth table approach, trigger functions

for all non-trivial As is done. However, as n grows large, this becomes impractical

due to the large number of non-trivial A’s. Therefore, a heuristic for determining As

to look at must be formulated. Using timing information for the inputs may suggest

which variables to place in A.

45

Because the trigger function must depend upon a proper subset of dependent

variables of the master function, all cubes in a candidate trigger function correspond

directly to the 1-paths and 0-paths in the master function BDD. Such paths are

easily extracted from the master function BDD through a single traversal. In order

to incorporate the timing constraint, we reorder the variables in the BDD such that

those variables corresponding to minimum arrival time signals are first in the ordering.

This approach effectively translates the process of extracting trigger functions to

variable reordering of a BDD although we are not using the typical constraint of

BDD minimization to perform reordering. In the event that the BDD representing

the master function exceeds some preset size limitation, the master function can be

partitioned into two new master functions and the process repeated.

This algorithm is similar to the transformation algorithm presented in the previous

chapter however, the master function is not modified, but a separate trigger BDD

is constructed. This is convenient as the master function may be reused to find

other possible trigger functions. A relationship is created between the trigger nodes

n′ and the master nodes n that correspond to that portion of the trigger. This

correspondence takes the place of a visit flag used in the transformation algorithm.

4.2.2. Experimental Results

The BDD-based trigger function extraction experiment was carried out by con-

structing a BDD using the CUDD software and by using the MCNC benchmark

circuits in .pla format. No variable reordering is applied to the BDDs as it was

assumed that those variables higher in the assumed order correspond to earlier arriv-

ing inputs. Each output was considered to represent a single-output master function

and trigger functions were extracted that depend upon the first bj/2c variables in

the BDD ordering where j represents the total number of variables in the BDD. The

choice of bj/2c variables in the trigger functions support set is arbitrary.

46

 BDD_ConstructTrigger(N , A , U)
{

INPUT: BDD N , A , U
OUTPUT: BDD 'N
Algorithm: Perform a modified depth-first search on N to

construct a trigger function 'N

Order N with the A at the top
Let n N∀ ∈ , . 'n n NULL= // 'n is the node in trigger that
 // correspond to n
RETURN 'N = Recurse_FindTrigger(N .root,U)

}

RecurseBDD_ConstructTrigger(n , U)
{

IF(n ≡ 1-node or n ≡ 0-node)
THEN RETURN 1-node

IF(. 'n n)
THEN RETURN . 'n n

 . 'n n = copy(n)
IF(n U∈)

THEN RETURN . 'n n = 0-node
L = BDD_FindTrigger(.0n , U)
R = BDD_FindTrigger(.1n , U)
IF(L ≡ R)

THEN RETURN . 'n n = L
. '.0n n = L
. '.1n n = R

RETURN . 'n n
}

Figure 4.6. Pseudo Code of BDD ConstructTrigger()

47

Table 4.2. BDD Implementation Experimental Results

Name in/out k Coverage

addm4 9/8 5 0.781

majority 5/1 3 0.125

cordic 23/2 10 0.758

sao2 10/4 6 0.828

squar5 5/8 3 0.875

dist 8/5 4 0.625

Table 4.2 contains the experimental results. The computer runtime required to

compute the trigger functions in Table 4.2 all required less than 1 ms. This is not

surprising since the algorithm is merely a modified depth-first traversal, which is

known to be O(N), with N being the number of vertices in the BDD. Column one

contains the name of the benchmark circuit. Column two shows the total number of

inputs/outputs. Columns three and four pertain to the first circuit output in each

netlist. The third column contains the number of dependent variables in support of

the trigger function (k) (maximum possible value of k is bj/2c and the minimum is 0).

The fourth column contains the percentage of minterms in the on-set of the trigger

function divided by the number of all those possible (i.e. on-set minterms divided

by 2j). This latter value is a measure of the coverage value that the trigger function

provides.

4.3. MVL Trigger Implementation

In the above approaches only one trigger function of potentially many is selected.

An MVL trigger may utilize several trigger functions to increase coverage. The process

for creating MVL triggers is divided into two stages based on the tools used.

48

1. Find individual trigger function and create an MVL trigger.

• Custom tool using CUDD (CT)

2. Minimize the MVL trigger.

• MVSIS [11]

Since CUDD does not operate on MVL functions, another means must be used

to transform the Boolean trigger functions into MVL trigger functions. The OR

operation then needs to be applied to the MVL triggers to form one super MVL

trigger. Minimization is then applied to decrease the potential cost of an implemented

MVL super trigger.

A description of the CT tool is given below:

1. Find triggers for a particular master function

2. Collected the best triggers

3. Turn the triggers into MVL versions

4. Create a super trigger, which is the OR of MVL triggers

The first step is to collect various trigger functions from the master function. This

may be done by repeated application of the BDD approach using various variable

subsets. Aside from the possible heuristics used in the BDD approach, different

constraints may be added in the MVL approach. For instance, if a trigger is found

to be good for a particular variable subset, one may not want other trigger functions

that depend mainly on those same variables. Using different triggers with different

variable subset may create MVL triggers with higher coverage. Additionally, certain

inputs may be slow or fast depending on the state of the system. In these cases, it

may be desirable to have triggers that account for this difference. Another method

may be to merely select the triggers with the highest scores. However, these triggers

may overlap in coverage if they use a lot of the same variables in the support set.

49

�
� �

�
��

� �
�m�t�

��
�����
� �
�����

� �
������

�

�
�

�

�
��

��� �¡ �¢�£� �¡ �¢

Figure 4.7. Transformations of a BDD to a Multiplexer Network

Considering this, it is best to find trigger functions with high scores, but that also

have a large amount of disjointness in coverage.

After BDD triggers are found, they are output in blif netlist format [37] by CUDD;

however, this format is not adequate to generate MVL trigger functions. The blifmv

format [15] is capable of specifying MVL circuitry, but is not a format that CUDD is

able to produce. Therefore, a parser is used to turn the functions represented in blif

into MVL triggers formatted in blifmv. We then generate another MVL function

that represents the OR of all the individual MVL triggers.

CUDD uses a simple transformation of a BDD to a network of binary multiplexers

when it outputs a function in blif format, where each node is a multiplexer and the

associated variable is a select line. To turn this multiplexer network into an MVL

network, we must consider that each variable now has three possible values: 0, 1, or 2.

With respect to the tree-structure of the BDD, we must give each node an additional

2-branch that points to the 0 terminal node. This structure is no longer a BDD; it is

a ternary multi-decision diagram (MDD). Note, the implementation never processes

an MDD, it is only presented to show the correlation between a binary multiplexer

network and a ternary multiplexer network.

50

¤
¥ ¥

¦
§¨

©{ª «¬ ­m®t¯

©{ª «¬ ­�®�¯

©{ª «¬ ­�®�¯

©{ª «¬ ­�®�¯
¦

¥

¥
¤

¨

§
§¨

¨�°¡±¡²�³§£°¡±¡²�³´µ°¡±¡²�³

Figure 4.8. Transformation of a Ternary MDD to a Ternary Multiplexer Network

The procedure takes a netlist of multiplexers and transforms them into multi-

valued multiplexers. Additionally, in order for the proposed MVL structure to work,

all variables must have arrived for a particular single trigger. This constraint is added

to a MVL trigger function circuit. To create the super trigger, we take all MVL single

triggers and OR them together to form the super MVL trigger.

One may observe that the super trigger structure so far described is similar in

appearance to the proposed naive approach. However, since the structure is in MVL

form, it is possible that logic minimization may occur. MVSIS is used to minimize the

MVL trigger function.

4.3.1. MVL Experimental Results

In this set of experimental results, super trigger functions are found and compared

to single trigger functions using the BDD method. The experiments were carried out

by using the MCNC benchmarks to represent master functions with the first output

being used to represent the master function output. Multiple trigger functions were

generated using random subsets of variables. These trigger functions were then used

to form an MVL trigger function. The results of these MVL trigger functions were

then compared to the best single trigger function within the set of possible trigger

51

¶¸·.¹�º¼»½�¾�¿�ÀÂÁ
Ã�Ä�¾�Å

{ }2
c T

c
∀ ∈Æ

Ç ¿�È Ç�É È

Figure 4.9. (a) Single MVL Trigger and (B) Super MVL Trigger

functions. Table 4.3 contains these experimental results. The first column contains

the name of the benchmark (master) function, the second contains the inputs/cubes of

the master function, the third contains the inputs/cubes of the single trigger function

found using the BDD method the fourth contains the coverage achieved by the single

trigger function, the fifth contains the inputs/cubes of the multi-trigger function, and

the final (sixth) column contains the coverage provided by the multi-trigger function.

These results are given after espresso [2] was used to minimize all functions after

MVSIS [11] was used to map the tmvl function back to binary form.

4.4. Summary

An improvement in the formation of EE PL gates is described where a BDD-based

method allows for the extraction of trigger functions from large master functions is

demonstrated as effective as compared to the exhaustive truth table method. The

coverage provided by a trigger function was also enhanced by utilizing multiple trigger

functions for the same master function and then using MVL methods to combine them

into a super trigger function.

52

Table 4.3. MVL EE Trigger Experimental Results

Name Master Single EE MVL EE

5xp1 7/7 3/3 0.75 6/3 0.75

addm4 9/9 2/2 0.75 14/6 0.83

majority 5/5 3/2 0.63 6/2 0.83

cordic 23/143 8/10 0.63 18/33 0.63

sao2 10/10 6/7 0.55 14/14 0.59

squar5 5/2 3/3 0.81 8/4 0.84

dist 8/12 5/3 0.88 12/5 0.94

53

Chapter 5

SLACK MATCHING BUFFERING

The work presented here describes a performance enhancement technique for PL,

the automatic insertion of slack matching buffers [9]. Slack matching buffers perform

no logical operation on the data signals, rather they serve as intermediate signal stor-

age locations in a circuit thus allowing other portions of the circuit to continue to

process available data signals and to decrease the number of localized “stall” situa-

tions. The idea of using slack matching buffers for asynchronous circuit performance

enhancement is not new and has been described in past work [18]. In terms of PL,

slack matching buffer insertion was identified as a viable performance enhancement

method in [26]; however, an automated process for buffer insertion was not devised. In

subsequent PL design efforts, slack matching buffer insertion was accomplished man-

ually via ad hoc methods based on the designer’s detailed knowledge of the circuit

functionality.

A technique for automatic insertion of slack matching buffers was devised through

the use of a custom PL circuit timing simulator. This simulator models the perfor-

mance characteristics of a PL circuit only and does not provide any functional in-

formation. Active portions of the circuit at any instant in time are represented as

the flow of “tokens” representing the data, request, and acknowledge signals. This

approach allows the simulator to have significantly faster run times as compared to

a traditional functional simulator.

Based on the analysis of PL circuits using the simulator, an automated method for

slack matching buffer insertion is formulated that allows buffers to be inserted based

solely on the topology of the PL circuit. Because the automatic buffer insertion

54

technique utilizes the token flow simulations, a crucial aspect of this work is the

efficiency of the custom simulator tool.

Note, as opposed to the generic PL design flow shown in Chapter 2, slack matching

buffer identification is not done on the clocked netlist. We must first have a PL

system, and then simulate to find buffer insertion locations. Ideally, identification

of slack matching buffers should occur before the mapping stage as we can directly

convert the clocked netlist to a PL netlist and reduce the number of checks for safety

in the induced marked graph.

5.1. Slack Matching Buffering

As defined in [18], the slack of an asynchronous pipeline is the number of tokens

that may be placed in the pipeline before it stalls. Additionally, the modification

of slack properties in asynchronous pipelines may change the performance of the

circuitry; this type of modification is a well-known optimization technique referred

to as slack matching. In terms of PL, we wish to be able to adjust the property of

slack in order to improve performance by maximizing available parallelism between

various paths. The goal of this work is to characterize where slack matching buffers

can improve performance and then to automatically insert them into the netlist.

5.2. PL Token Flow Simulator

In order to better understand the behavior of token movement with respect to

the topology of a marked graph, a simulator was developed. The simulator allows for

direct manipulation of token placement as well as nodes. This allows for the setup

of experiments to characterize the behavior of the placement of token buffers with a

given topology. Additionally, the simulator is able to accept various, custom netlist

formats of real designs and simulate them.

As there are numerous Petri net based simulators and asynchronous circuit design

tools [25], the contribution of this simulator is the ability to measure latency and

55

throughput of a PL graph. To do this, we have to add token sources and sinks to

the marked graph that represent overall token producers and consumers of the entire

circuit. Whenever a source fires, it provides a tag along with the token it places on

the output. The tag contains information such as firing time and source id. This

tag will propagate through the netlist and join with other tags from other sources, if

encountered, to form larger tags. Once the tag reaches a sink, information such as

latency may be computed using the tag.

The simulator uses an event-driven approach. A queue is maintained that keeps

track of nodes that are ready to fire. A node is ready to fire when all its inputs

have a token. Before the simulation starts, the queue is populated with nodes that

are ready to fire based on the initial token mapping. The nodes of a marked graph

may be either transitions or places as described in standard Petri net theory. These

correspond to gates and signals of a physical circuit.

Due to the nature of physical circuits, gates and signals may both have non-zero

delay. We allow the possibility for varying delay of these components in the simulator.

To allow for this we have a notion of place firings as well. When a transition fires, the

transition inserts its output places into a priority queue called delay fire. When

a place fires, we check if this firing would allow the connected transition to fire. If

so, we place the transition into the delay fire queue. After a node has fired, it is

removed from the queue.

Based on a nodes’ delay value, we assign the node to fire at current time +

delay. The simulator checks the delay queue at each time instant to see if a delay

firing needs to occur. If so, the node is fired and removed from the queue.

The approach for inserting slack matching buffers is reliant on throughput and

latency information provided by the simulator. To get this information, several sim-

ulation cycles must be computed. However, this computation is not too costly since

the data quickly converges to stable values that may be used for slack matching buffer

insertion.

56

To justify the use of a simulator in a synthesis tool, the simulator must be very

fast. Let us assume a marked graph with t transitions and p places. An upper bound

for nodes ready to fire is t + p. So the simulator must perform t + p firing operations.

A firing operation consists of checking whether to add the node driven needs to go

into the delay fire queue. We know that a place may only input into one transition,

so that is one check. If we suppose the transitions form a t-complete graph, we need

t − 1 checks for each transition. This means t(t − 1) = t2 − t checks. In total, there

are t2 − t + p checks, giving a O(t2) complexity for firing checks per iteration. If we

assume more realistic graphs, such as transitions with a maximum of a fanout of 4

we would get O(4t + p).

For realistic circuits, each simulation cycle has linear time complexity. However we

only need to run the simulator to get latency and throughput times, which converge

fairly quickly. Empirical results suggest as few as 10 iterations may provide good

results. Additionally, 10 iterations frequently take less than a second, even for large

graphs.

5.3. Results

A gate’s feedback wait time at cycle i, ωi, is the difference between the time

that all data tokens are available at the inputs of a PL gate and the time when all

feedbacks are available. If all feedbacks are available before the data, then we say

ωi = 0. During a simulation a gate may fire n times. We denote a gate’s average

feedback wait time as Σωi/n = δ. The rule to add token buffers depends on a gates

average feedback wait time.

A branch and bound procedure used to determine slack matching buffer placement

is the following:

1. Run the simulator on a topology to get δ for each gate

2. Collect the gates with high δ, call it set C

57

3. Determine a candidate for buffering from C

4. Add slack matching buffer and ensure the resulting topology is a marked graph

5. Re-run the simulator

(a) If the buffer does not improve performance, remove the buffer

(b) If the buffer improves performance, keep the buffer

6. Repeat steps until some threshold is met

In step 3, we need rules to determine a candidate from the set C. The priority for

selecting gates is based on:

• Feedback latency

• Fan-out

Feedback latency, fli,j, is the time for the jth feedback to become available after

all data inputs have arrived on a given gate at cycle i. If the j th feedback arrives

before all data inputs then fli,j = 0. This means that ωi = max(fli,j) for a given

gate. Fanout is a good indicator of slack matching buffer placement since a signal that

fans out will result in more feedbacks needing to return to the gate. This increases

the odds that the gate will have to wait on a feedback.

For the gates that have a high waiting time on feedbacks, a method for determining

if a slack-matching buffer would be beneficial is the following:

1. Find the cycle that shares the feedback and a data output of the gate

2. If the gate that the data output is driving is waiting for other data, then place

a slack-matching buffer on the data output. If the output fans out, place the

buffer on the path between the output and the next gate on the cycle

3. Re-run the simulator to make sure throughput and latency have improved

58

Ê)Ë Ì)Ë Ì¡Í Ì¡Î Ì¡Ï
Ð�Ñ�Ò Ð�Ñ�Ò Ð�Ñ�Ò Ð�Ñ�Ò Ð�Ñ�Ò Ð�Ñ�Ò

Ð�Ñ�Ó
Ê¡Í

Ê¡Î
Ô{ÕJÏÖ�ÕJÏ

Figure 5.1. Example Topology with L = 4 and T = 4

×)Ø Ù)Ø Ù¡Ú Ù¡Û Ù¡Ü
Ý�Þ�ß Ý�Þ�ß Ý�Þ�ß Ý�Þ�ß Ý�Þ�ß Ý�Þ�ß

ÝtÞJà
×¡Ú

×¡Û
á{âJÜã�âJÛ

ä
Ý�Þ¡å

Figure 5.2. Example Topology with Slack Matching Buffer

We will use the following examples to denote how these rules are applied. Let us

examine Figure 5.1 with latency L = 4 and throughput T = 4. Notice that D2 has a

wait time of δ = 2. In addition it is a fan-out point of two pipelines. However, D2

cannot evaluate until the acknowledge signal is received from G3 and is thus stalled.

This implies that the slack-matching buffer should be placed between D2 and G3. If

we add a slack-matching buffer at the output of D2, as shown in Figure 5.2, the delay

characteristics improve. One may notice that B is now waiting; however, insertion

of another buffer adds no performance improvement. Another example is shown in

Figure 5.3.

The latency is L = 8 and average throughput is T = 2.5 for the circuit represented

in Figure 5.3. If we apply our rules, candidates for application of slack matching

59

buffers at the outputs are G2, G5, and GD. It turns out that token buffers on G2

and G5 help performance, while a token buffer on GD does not. Figure 5.4 contains

the topology of the circuit depicted in Figure 5.3 with the slack matching buffers

included.

Topologies that do not benefit from slack matching buffer insertion are those that

are purely serial in nature, or simple pipeline structures. An example of such a

topology is shown in Figure 5.5. No matter where a buffer is placed, the throughput

and latency do not improve. This is because there is no parallelism to take advantage

of.

Table 5.1 provides results of the slack buffer insertion algorithm. Six benchmark

circuits topologies were chosen for these experiments. The circuits were initially

mapped into PL circuits without any performance enhancements and were later mod-

ified to contain slack matching buffers using the technique described above. The table

contains the name of the benchmark circuit, and, in columns two and three, the ini-

tial throughput T and latency L. After application of the buffer insertion technique,

columns three, four, and five contain the number of buffers inserted and the new

throughput and latency values. The overall percentage of throughput improvement

computed is given in the last column of Table 5.1. Over the set of benchmarks, an

average improvement in throughput of 21% was achieved.

60

æSç

èéç

è¸ê
è¸ë æ�ì æ¸í

æ¸î

æ¸ê

æ¸ï

æ¸ë æ¸ð

æ¸ñ
æ¸ò æóè

æõô æ$ö

÷�øõù�ú û ÷ýüÿþ�� öýö ÷�üÿþ ÷ýüÿþ

÷�øõù�ú �¡ù ÷Jøÿþ��röýö ÷ýüÿþ ÷�ü¡þ�� ö�ñ ÷Jøÿþ ÷�øÿþ

÷ýü�ç�� þ ÷�ü¡þ ÷JøEþ�� ö�î ÷�ø¡þ�� ö�ñ ÷ýüÿþ�� ö�ô

�Jüÿô
� ü*ê��rë	� ü ê
� î

÷Jø���ú

�

Figure 5.3. Second Example with L = 8 and T = 2.5

���

���

���

��� ��� ���

���

���

���

��� ���

���

��� ���

�! �#"

$�%!&(') $�*	+ $(*	+ $�*	+

$
%�&,' -�. $�%!&(' + $
%	+

$(*	+

$�*	+ $
%�+ $
%�+

$(*/��0 + $�*	+ $�%	+ $
%	+ $�*	+

�

�

$�%1+

$
%�+

2
*	�
34*5��67�	89*4�

Figure 5.4. Second Example with Slack Matching Buffer

61

: ; ; ; : ;

Figure 5.5. Single Pipeline Topology

Table 5.1. Slack Matching Buffer Experimental Results

Circuit Original

Latency L

Original

Throughput

T

Buffers added New Latency

L’

New

Throughput

T’

%Increased

Throughput

4pipe 4 3.5 6 4 2 43

Tb3 10 2.33 2 10 2 14

T336 6 2.67 2 7 2 25

Tb 4 4 1 4 3 25

C17 4.5 2.5 1 4 2 20

S27 11 6 1 13 5 17

Average 21

62

Chapter 6

PLFIRE: PHASED LOGIC VISUALIZATION TOOL

With regards to PL optimizations, as different optimization techniques are im-

plemented for PL, it becomes increasingly difficult to gauge the effectiveness of a

technique without the use of some visualization tool. Current optimization tech-

niques such as early evaluation and slack matching change the flow of data tokens

with a PL circuit. Being able to visualize token flow allows a researcher to better

understand how these techniques affect a circuit on a global level.

6.1. Visualization Tool

As the size of circuits that are being investigated in PL research grows, mentally

keeping track of a designs PL structure and behavior becomes increasingly difficult.

The purpose of the visualization tool, known as PLFire [10], is to help a designer

visualize the behavior of a PL circuit. Figure 6.1 is a screen shot of the program.

Moreover, the use of PLFire aids in the development of optimization techniques

and tools. As different optimization techniques are implemented for PL, a way of

determining whether this optimization truly has an impact on the overall circuit

must be achieved. Current techniques center on the ability to maximize throughput

of token flow and performing global and local transformations of the netlist. Being

able to see these optimizations gives the researcher some understanding of their overall

affects. Furthermore, this tool will allow us to investigate the interoperability of these

techniques.

In order to use the tool, two previously generated files are needed: a viznet file

and a viztiming file. The viznet file contains the netlist information of the PL

63

Figure 6.1. PLFire Screen Shot

design. The viznet file is generated by the mapper that takes a synchronous circuit

in EDIF format and converts it to a PL circuit in VHDL format. The viztiming file

contains the firing information of a PL design. The viztiming file is generated when

the VHDL file is simulated.

6.2. Implementation

PLFire is written in C/C++ and uses the QT GUI libraries and OpenGL. QT is a

free set of libraries that allows a programmer to create graphical user interface (GUI)

programs for the UNIX/Windows/Macintosh platforms. OpenGL is a free, standardized

set of graphics libraries that many platforms support.

The current design environments are Sun Solaris using Qt 3.0.1 and OpenGL li-

braries. Also, Microsoft VC++ 6.0 is used for additional testing under the Windows

environment.

The tool can be broken into four categories:

1. Graphical User Interface

64

2. PL data structures

3. Firing data structure

4. PL Display Code

6.2.1. Graphical User Interface

The GUI consists of a main window that contains menus for loading data other

function and a display for the PL circuit. The QT libraries handle the internals of the

main window. Programming consists of mainly declaring buttons and other interface

structures and defining their functions. PL Data Structures

A set of classes to represent the various aspects of a PL circuit was implemented.

Using object oriented design techniques, data structures were implemented with the

mindset that components should be easily modified and replaceable, and that future

components and enhancements could be easily implemented. To store the netlist

information three classes are used.

1. PL System stores high level information about the PL circuit including lists of

gates, signals, and firing information

2. PL Gate stores general information about PL gate instances and provides

functions for PL Gates

3. PL Signal stores the state PL signal instances and provides functions for a PL

Signal

Note, a PL Signal represents each fanout from an output terminal. This is true

about input terminal fan-ins as well. There is also a PL Element parent class (PL

Gate and PL Signal inherit this class). This is so that future PL components can be

easily implemented. The PL netlist data is loaded from a viznet file generated by

the mapper tool and placed into a PL System instance.

65

For each gate and signal read, PLFire will construct a PL Gate or Signal class

instance. Each instance is then pointed to by an array of their respective type. This

array of pointer structure for PL Gate and PL Signal lists allows for quick retrieval

of the instance by the program.

6.2.2. Firing Information Data Structure

Firing information is loaded into a PLFire Element structure. The main compo-

nents of the structure hold the following information:

1. Time of firing

2. Gate to be fired

Each firing is loaded into a doubly linked list of other firings that occur at the

same time. This list of common firings is then loaded into a master list of firings,

which is also a doubly linked list. This master list is referred to as the To Be Fired

(2BF) List. The order of the master list is in chronological order. In addition, the

CFL maintains dummy head and tail elements (which contain firing times of “never”)

to allow for animation in forward and reverse time. Also, this allows for better data

access for the display algorithm, which will be discussed next.

6.2.3. PL Display Code

There are 2 main aspects of the display code.

1. Show the components and tokens

2. Animate the components

Displaying the components consists of passing a pointer of the component to a

DisplayComponent Function, which in turn places the component depending on its

type. OpenGL is then used to draw the components to the screen.

To animate the netlist, the 2BF is processed. Also, a list of signals that have

fired is maintained. The contents of the list are initially signals with initial tokens,

66

 SList = signals that have previously fired
2BF = list of current firings

Animate()
{

Signals_2BF = list of signals to be fired

If(2BF.firing_time = now)
Consume_Tokens(SList)
For each 2BF.gate

handleFiring() //toggle phace of gate and
//its output signals

Signals_2BF = Signals_2BF ∪ outputSignals
 sList = (sList - inputSignals) ∪ Signals_2BF
Animate_Tokens(Signals_2BF)
2BF = 2BF.next

Else
 Do Nothing

}

Figure 6.2. Pseudocode of Animate()

since no signal can fire before hand. This information is inherent in the PL Firing

List through its gate elements, but having this separate list makes the animation of

tokens more efficient, i.e.: bypasses the gate element reference.

This algorithm works as follows. Animate() will check if the current time is when

the next set of firings needs to happen. If yes, then change the state of the PL system

and animate token flow. This algorithm shows how forward animation is handled for

a forward flow of time. A similar algorithm is used for “rewinding” the token flow.

67

Chapter 7

CONCLUSION

In this thesis, a presentation of automation techniques for speed up mechanisms

in Phased Logic was given. We have seen that the truth table approach is a viable

option for fine-grained PL, as the functions involved are of minimal size. The ex-

perimentation results show that EE can improve circuits, particularly circuits such

as processors, by as much as 40%. Furthermore, implementations for automatically

inserting EE for larger circuits, were investigated and can be readily implemented for

coarse-grained PL. A description of an automatic slack matching buffer insertion al-

gorithm was given as well. Although the implementation has the undesirable property

of using a simulator, it is adequate to give hints as to where buffers may be inserted

to improve performance. Additionally, a visualization tool for token flow through a

PL netlist is presented.

Ideas for future research for improving the topics presented are shown below:

• Early Evaluation

– Better Heuristics for selection of A

– Better analysis tools for determining timing characteristics of master func-

tion inputs

– Application of EE in other areas of asynchronous or synchronous design

• Slack Matching Buffering

– Techniques for slack matching buffering that does not rely on simulation

68

• Phased Logic

– Verification of PL design with and without the optimization techniques

described

– Testing of PL circuitry

69

REFERENCES

[1] Berkel, K. v. Beware of isochronic fork. Integration: the VLSI journal 13
(June 1992), 103–128.

[2] Brayton, R., Hatchel, C., and Sangiovanni-Vincentelli, A. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[3] Bryant, R. Graph-based algorithms for boolean function manipulation. IEEE
Transations on Computers 35, 8 (1986), 677–691.

[4] Bryant, R. On the complexity of vlsi implementations and graph represen-
tations of boolean functions with application to integer multiplication. IEEE
Transactions on Computers 40, 2 (February 1991), 205–213.

[5] Commoner, F., Hol, A., and Pneuli, A. Marked directed graphs. J.
Computer and System Sciences 5 (1971), 511–523.

[6] Dean, M., Dill, D., and Horowitz, M. Self-timed logic using current-
sensing completion detection (cscd). Journal of VLSI Processing (July 1994).

[7] Dean, M., Williams, T., and Dill, D. Efficient self-timing with level-
encoded 2-phase dual-rail (ledr). Advanced Research in VLSI (1991), 55–70.

[8] Itc99 benchmark set - politecnio di torino.
http://www.cad.polito.it/tools/itc99.html, 1999.

[9] Fazel, K., Li, L., Thornton, M., Reese, R., and Traver, C. Through-
put enhancement in phased logic circuits using automatic slack matching buffer
insertion. In ACM/IEEE Great Lakes Symposium on VLSI (GLSVLSI (April
2004).

[10] Fazel, K., Thornton, M., and Reese, R. Plfire: A visualization tool
for asynchronous phased logic designs. In IEEE/ACM Conference on Design,
Automation, and Test in Europe (DATE) (Munich, Germany, March 2003),
pp. 1096–1097.

[11] Gao, M., Jiang, J.-H., Jiang, Y., Y., L., S., S., and R., B. Mvsis. In
the Notes of the International Workshop on Logic Synthesis, June 2001.

[12] Harris, D. Skew-Tolerant Circuit Design, 1st ed. Morgan KAufmann Publish-
ers, San Francisco, CA, 2001.

[13] Hauck, S. Asynchronous design methodologies: An overview. Proceedings of
the IEEE 83, 1 (January 1995), 69–93.

70

[14] Huffman, D. Design of hazard-free switching circuits. Journal of the ACM 4
(January 1957), 47–62.

[15] Kukimoto, Y. BLIF-MV. The VIS Group, University of California, Berkeley,
May 1996.

[16] Linder, D. Phased Logic: A Design Methodology for Delay Insensitive Syn-
chronous Circuitry. PhD thesis, Mississippi State University, 1994.

[17] Linder, D., and Harden, J. Phased logic: Supporting the synchronous design
paradigm with delay-insensitive circuitry. IEEE Transactions on Computers 45,
9 (September 1996), 1031–1044.

[18] Lines, A. Pipelined asynchronous circuits. Master’s thesis, California Institute
of Technology, 1995.

[19] Martin, A. The limitations to delay-insensitivity in asynchronous circuits. In
Proceedings of the 1990 MIT Conference on Advanced Research in VLSI (1990),
pp. 263–278.

[20] Meinke, T., Hemani, A., Ellervee, P., Öberg, J., Kumar, S.,

Lindqvist, D., Tenhunen, H., and Postula, A. Evaluating benefits of
globally asynchronous locally synchronous vlsi architecture. In Proceedings of
the 16th IEEE NORCHIP Conference (Lund, Sweden, November 1998), pp. 50–
57.

[21] Moore, S., Anderson, R., Cunningham, P., Mullins, R., and Taylor,

G. Improving smart card security using self-timed circuits. In Eighth Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and Systems
(2002).

[22] Muller, D., and Banrtky, W. A theory of asynchronous circuits. In Proc.
Int. Symp. of Theory of Switching (1959), vol. 29, pp. 204–243.

[23] Murata, T. Petri nets: properties, analysis, and applications. Proceedings of
the IEEE 77, 4 (Apr. 1989), 541–580.

[24] Paver, N., and Edwards, D. Is asynchronous logic good for low-power? In
IEE Colloquim on Low Power Analogue and Digital VLSI: ASICS, Techniques
and Application (June 1995).

[25] Petri net tools database quick overview. http://www.daimi.au.dk/PetriNets/tools
/quick.html, 2004.

[26] Reese, R., Thornton, M., and Traver, C. Arithmetic logic circuits using
self-timed bit-level dataflow and early evaluation. In Proc. ICCCD (Austin,
September 2001), pp. 18–23.

71

[27] Reese, R., Thornton, M., and Traver, C. A coarse-grain phased logic
cpu. In IEEE International Symposium on Asynchronous Circuits & Systems
(May 2003), pp. 2–13.

[28] Reese, R., Thornton, M., and Traver, C. A fine-grain phased logic cpu.
In IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (February
2003), pp. 70–79.

[29] Reese, R., and Traver, C. Synthesis and simulation of phased logic systems.
In International Workshop on Logic Synthesis (Dana Point, California, 2000),
pp. 255–259.

[30] Rodriguez-Villegas, E., Huertas, G., Avedillo, M., Quintana, J.,

and Rueda, A. A practical floating-gate muller-c element using vmos threshold
gates. Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on 48, 1 (January 2001), 102–106.

[31] Seitz, C. System timing. In Introduction to VLSI Systems, C. Mead and
L. Conway, Eds. Addison-Wesley, 1980.

[32] Somenzi, F. Colorado university decision diagram (cudd) package.
http://vlsi.colorado.edu/ fabio/CUDD, March 2004.

[33] Sutherland, I. Micropipelines. Communications of the ACM 32, 6 (June
1989), 720–738.

[34] Sutherland, I. Computers without clocks. Scientific American (August 2002),
62–69.

[35] Teich, J., Sriram, S., Thiele, L., and Martin, M. Performance analysis
of mixed asynchronous synchronous systems. In IEEE Workshop on VLSI Signal
Processing (1994).

[36] Thornton, M., Fazel, K., Reese, R., and Traver, C. Generalized early
evaluation in self-timed circuits. In Proc. Design, Automation, and Test in Eu-
rope (Paris, France, March 2002), pp. 255–259.

[37] University of California, Berkeley. Berkeley Logic Interchange Format
BLIF, December 1998.

72

