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Detecting and suppressing malicious attacks continues to challenge designers and users of

embedded and edge processing systems. Embedded systems and IoT devices are becoming

more prevalent and they are evolving to accommodate the increased complexity requirements

of edge computing by incorporating increasing levels of advanced security, energy efficiency,

connectivity, performance, and increased computational power to support, for example, ma-

chine learning intelligence. These capabilities can be used in a collaborative way to provide

a means for detecting a family of side channel malware attacks based upon the exploitation

of timing side channels arising from cache and branch prediction circuitry. The SPECTRE

exploit serves as the exemplary attack based on data cache timing side channels; however,

many variants of this attack have emerged and continue to emerge. Due to the increasing

proliferation of this class of devices and the continuing emergence of new variants of timing

side channel attacks, there is motivation to develop a malware detection approach that is

suitable for embedded and edge processing-based systems that requires minimal computa-

tional resources, is robust under varying load conditions, and that is capable of detecting

any of a number of different variants of this attack, including zero-day versions. The detec-

tion approach is demonstrated to be applicable to variants of the classic SPECTRE attack

including the micro-ops cache attack that exploits X86 architectures. The method monitors

concurrent processes running on a Linux-based system operating in an edge-computing de-
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vice to detect if one or more of the processes implements a timing-based side channel attack

. Furthermore, the malware detection approach is designed to be lightweight in the sense

that it requires minimal computing resources and offers rapid detection times since it uses

existing on-chip hardware, pre-programmed event or performance counters, as a data source

combined with a simple but effective SVM to detect variants of malicious exploits that may

be present within a standard application process. Upon detection of a malicious process,

the edge device could automatically suspend or kill the detected and offending process. A

feature selection technique is used to select the most appropriate CPU events that indicate

the presence of the targeted malware family and to improve performance results and sys-

tem efficiency. Analysis results are included that evaluated a number of different detection

approaches to justify the selection of an SVM due to the tradeoff of accuracy versus compu-

tational resource requirements. This approach is demonstrated through implementations on

both ARM and X86 instruction set architectures and provide experimental results regard-

ing its accuracy and performance. Detection performance is characterized by a number of

metrics including ROC curves. Experimental results assess the robustness of the malware

detection approach. The detection of one variant of the cache timing attack is evaluated

when the SVM is trained using a different variant. The detection accuracy over a variety

of different and varying load conditions is evaluated. Finally, an evaluation of robustness is

evaluated by injecting noise into the event counter data at increasing levels until significant

detection failures are observed.
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Chapter 1

Acronyms

ADC Analog to Digital Converter

AUC Area Under the Curve

AI Artificial Intelligence

ARM Advanced RISC Machines

ASIC Application Specific Integrated Circuit

BLE Bluetooth Low Energy

BSP Board Support Package

CFI Control Flow Integrity

CART Classification and Regression Tree

CHIP Connected Home Over IP

CNA CVE Numbering Authority

CV Cross Validation

CVE Common Vulnerabilities and Exposures

DAC Digital to Analog Converter

DES Data Encryption Standard

DPA Differential Power Analysis

DT Decision Tree

FIB Focused Ion Beam

FP False Positive

FPR False Positive Rate

FPGA Field Programmable Gate Array

FN False Negative

GaussNB Gaussian Naive Bayes

GHz Gigahertz
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GBDT Gradient Boost Decision Tree

GPU Graphics Processing Unit

HPC Hardware Performance Counter

IoT Internet of Things

ISA Instruction Set Architecture

JTAG Joint Test Action Group

KB Kilobyte

KNN K Nearest Neighbor

L1 Layer 1

L2 Layer 2

LBR Last Branch Record

LASSO Least Absolute Shrinkage and Selection Operator

MB Megabyte

MCU Microcontroller

ML Machine Learning

MLP Multi Layer Perceptron

MSR Model Specific Register

MPU Microprocessor

NFC Near Field Communication

NN Neural Network

PCA Principal Component Analysis

PMU Performance Management Unit

PMC Performance Monitor Configuration

PMD Performance Monitor Data

RBF Radial Basis Function

RF Random Forest

ROC Receiver Operating Characteristic

RMSE Root Men Square Error

RTOS Real-Time Operating System

RTT Round Trip Time

2



SCA Side Channel Attack

SIMD Single Instruction Multiple Data

SME Subject Matter Expert

SoC System on a Chip

SPA Simple Power Analysis

SRAM Static Random Access Memory

SVC Support Vector Classifier

SVM Support Vector Machine

TCM Tightly Coupled Memory

TLB Translation Lookaside Buffer

TN True Negative

TOPS Trillion Operations Per Second

TP True Positive

TPR True Positive Rate

TXE Transactional Synchronization Extensions

UWB Ultra-Wide Band
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Chapter 2

INTRODUCTION

Edge computing has multiple benefits including lower latency, high availability, and real

time monitoring. Embedded and edge computing devices are evolving to accommodate the

increased complexity of edge computing, including more advanced security, energy efficiency,

connectivity, performance, and machine learning intelligence. These capabilities must often

times collaborate to achieve desired goals. For example, protecting an IoT system from

malicious attack may require a combination of security, system performance, and machine

learning. Detecting and suppressing malicious attacks in IoT and Edge processing will

continue to challenge the industry.

A well-known timing side channel attack is SPECTRE, a security vulnerability that ex-

ploits speculative execution and indirect branch prediction circuitry which is present in most

modern CPU cores. The SPECTRE exploit allows access to unauthorized information by

implementing side channel analysis of timing information in the system data cache [1] [2].

The general idea behind the attack is that the attacker exploits performance enhancement

features of the processor, namely the cache and the branch predictor with speculative exe-

cution circuitry, to read higher privileged data. The SPECTRE vulnerability is documented

in the Common Vulnerabilities and Exposures CVE database as CVE-2017-5717 and CVE-

2017-5753.

Additional variants of SPECTRE continue to be discovered. These variants use methods

such as bounds check bypass store (CVE-2018-3693), branch target injection (CVE-2017-

5715), speculative store bypass (CVE-2018-3639), and same exception level training (CVE-

2022-23960). Other side channel variants exploit the micro-op cache on X86 machines [3]. A

micro-op cache speeds up computing by storing simple commands that enable the processor

to fetch these commands quickly and earlier by way of the speculative execution process.
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Hackers can steal data when a processor fetches commands from the micro-op cache using

the micro-op variant.

The goal of my research is to design and demonstrate a generic detection system to

reliably detect and suppress multiple variants of timing side channel attacks in the presence

of other applications executing in parallel. While rapid malware detection is generally a

goal for any malware detection approach, it is of special importance for embedded systems

and edge computing devices since they typically operate in constrained environments under

real-time deadlines.

The detection system is designed to require as few resources as possible so that the

concurrent detection process is lightweight and thus consumes few computational resources.

The detection system is based upon the use of processor event or performance counters

that are viewed as supplying time series data that contain side channels indicating the

presence of malware. A variety of different machine learning technologies were evaluated

for the purpose of processing the event/performance counter data to predict the presence

of an attack. Based upon the criteria of detection accuracy and speed with respect to a

family of different timing side channel variants, and additionally, the desire to implement a

lightweight detection process appropriate for deployment in an embedded system, a SVM

was selected as the preferred detection approach and performed optimizations such as fine-

tuning parameters and hyperparameters of the detector. ARM and X86 microarchitectures

offer the ability to monitor any of a number of events, therefore feature selection methods

were used to choose a set of events for monitoring that are minimal in number and that

provide mutually independent data regarding the presence, or not, of processes infected with

side channel variant malware.

This approach was implemented on both an ARM- and X86-based systems and it was

demonstrated that the approach is viable and not dependent upon a single instruction set

architecture. The efficacy of the detection system was evaluated using the standard metrics

of precision, recall, F1, ROC, AUC, and others. To evaluate the robustness of the ap-

proach, the experiments included variations in the type and number of concurrent processes
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to deterministically evaluate detection behavior under varying load conditions. Addition-

ally, to further evaluate the robustness of the malware detection behavior, varying levels of

Gaussian-distributed “noise” was injected and the noise levels were increased to observe the

threshold at which detection scheme began to fail in a significant manner.

2.1 Motivation

Detecting and suppressing malicious attacks continues to challenge designers and users of

embedded and edge processing systems. Embedded systems and IoT devices are becoming

more prevalent and they are evolving to accommodate the increased complexity requirements

of edge computing by incorporating increasing levels of advanced security, energy efficiency,

connectivity, performance, and increased computational power to support, for example, ma-

chine learning intelligence. These capabilities can be used in a collaborative way to provide

a means for detecting a family of side channel malware attacks based upon the exploitation

of timing side channels arising from cache and branch prediction circuitry.

The SPECTRE exploit serves as the exemplary attack based on data cache timing side

channels; however, many variants of this attack have emerged and continue to emerge. Due

to the increasing proliferation of this class of devices and the continuing emergence of new

variants of timing side channel attacks, I was motivated to develop a malware detection

approach that is suitable for embedded and edge processing-based systems that requires

minimal computational resources, is robust under varying load conditions, and that is capable

of detecting any of a number of different variants of this attack, including zero-day versions.

The detection approach is demonstrated to be applicable to variants of the classic SPEC-

TRE attack including the micro-ops cache attack that exploits X86 architectures. The

method monitors concurrent processes running on a Linux-based system operating in an edge-

computing device to detect if one or more of the processes implements a timing-based side

channel attack . Furthermore, the malware detection approach is designed to be lightweight

in the sense that it requires minimal computing resources and offers rapid detection times

since it uses existing on-chip hardware, pre-programmed event or performance counters, as

a data source combined with a simple but effective SVM to detect variants of malicious

exploits that may be present within a standard application process. Upon detection of a
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malicious process, the edge device will automatically suspend or kill the detected and of-

fending process. Feature selection techniques were used to select the most appropriate CPU

events that indicate the presence of the targeted malware family and to improve performance

results and system efficiency. Analysis results are included that evaluated a number of differ-

ent detection approaches to justify the selection of an SVM due to the tradeoff of accuracy

versus computational resource requirements.

This approach is demonstrated through implementations on both ARM and X86 instruc-

tion set architectures and provide experimental results regarding its accuracy and perfor-

mance. Detection performance is characterized by a number of metrics including ROC

curves. I also include experimental results to assess the robustness of the malware detection

approach in several ways. First, I evaluate the detection of one variant of the cache timing

attack when the SVM is trained using a different variant. Second, I evaluate detection

accuracy over a variety of different and varying load conditions. Third, I evaluate robustness

by injecting noise into the event counter data at increasing levels until significant detection

failures are observed.

2.2 Focus Areas and Advantages of Research

In this research, two popular embedded MPU processors are used, one Arm based MPU

and one x86 based MPU. The Arm based SoC is called iMX8QM which is a multimedia em-

bedded SoC used in automotive infotainment systems, surveillance systems, robotics systems

and other functional safety systems requiring advanced operating systems such as Linux/An-

droid and a rich set of application enablement software optimized for embedded execution.

Some of the key features of a multimedia SoC like the iMX include;

1. Quad symmetric Cortex-A72 processors with 32 KB L1 Instruction Cache and 32 KB

Layer 1 Data Cache

2. 64-bit Armv8-A architecture with 1 MB unified L2 cache and frequency of 1.5 GHz

3. Arm Cortex-M4 core platform with 16 KB L1 Instruction Cache, 16 KB L1 Data

Cache and 256 KB TCM

4. PCI Express Gen2 interfaces
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5. USB controllers with integrated PHY interfaces

6. Two Ultra Secure Digital Host Controller interfaces

7. One Gigabit Ethernet controller

8. Universal Asynchronous Receiver/Transmitter modules

9. I2C and SPI modules

10. GPIO modules with interrupt capability

11. Boot ROM and On-chip RAM

12. Temperature sensor

13. Video Processing Unit

14. Graphic Processing Units

15. HDMI Display Interface

16. Audio interfaces

17. Audio with S/PDIF input and output

18. Camera inputs

19. Resource Domain Controller

20. Arm TrustZone architecture

The x86 based MPU has similar capability. Common security vulnerabilities and attacks

are simulated to demonstrate how these attacks can be detected using machine learning

concepts in real time in the presence of many additional software tasks performing other

functions. The prototype system simulates an edge processor.
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Chapter 3

BACKGROUND INFORMATION

This chapter provides an introduction to the focus areas and technologies motivating this

research.

3.1 Embedded Systems

An embedded system is a specialized computer system that is usually integrated as part

of a larger system. An embedded system consists of a combination of hardware and software

components to form a computational engine that will perform a specific function. Unlike

desktop systems which are designed to perform a general function, embedded systems are

constrained in their application.

Embedded systems often perform in reactive and time-constrained environments. A

partitioning of an embedded system consists of the hardware which provides the performance

necessary for the application (and other system properties like security) and the software

which provides a majority of the features and flexibility in the system. A typical embedded

system is shown in Figure 3.1.
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Figure 3.1: Typical Embedded System Components

The key components of an embedded system are;

1. Processor core: At the heart of the embedded system is the processor core(s). This

can be a simple inexpensive 8 bit microcontroller or a more complex 32 or 64 bit

microprocessor or even multiple processors. An embedded engineer must select the

most cost sensitive device for the application that can meet all of the functional and

non-functional (timing) requirements.

2. Analog I/O: DAC and ADC converters are used to get data from the environment

and back out to the environment. The external environment drives the reactive nature

of the embedded system. Embedded systems have to be at least fast enough to keep

up with the environment.

3. Sensors and Actuators: Sensors are used to sense analog information from the envi-

ronment. Actuators are used to control the environment.

4. User interfaces: These interfaces may be as simple as a flashing LED to a sophisticated

cell phone or digital still camera interface.

5. Application specific gates: Hardware acceleration like ASIC or FPGA is used for

accelerating specific functions in the application that have high performance require-

ments.
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6. Software: Software is a significant part of an embedded system. The amount of em-

bedded software is growing faster than Moore’s law. Embedded software is usually

optimized in some way (performance, memory, or power). More and more embed-

ded software is written in a high level language like C/C++ with some of the more

performance critical pieces of code still written in assembly language.

7. Memory: an important part of an embedded system and embedded applications can

either run out of RAM or ROM depending on the application.

8. Emulation and diagnostics: many embedded systems are hard to see or get to. There

needs to be a way to interface to embedded systems to debug them. Diagnostic ports

such as a JTAG are used to debug embedded systems. On chip circuitry is used to

provide visibility into the behavior of the application. This circuitry provides sophis-

ticated visibility into the runtime behavior and performance.

3.1.1 Key Characteristics of Embedded Systems

There are several key characteristics of embedded systems;

1. Monitoring and reacting to the environment; embedded systems typically receive input

by reading data from input sensors. This data is processed using embedded system

algorithms. The results may be displayed in some format to a user or simply used to

control actuators (like deploying the airbags and calling the police)

2. Control the environment; embedded systems may generate and transmit commands

that control actuators such as airbags, motors, etc.

3. Processing of information; embedded systems process the data collected from the sen-

sors in some meaningful way, such as data compression/decompression, side impact

detection, etc

4. Application specific, Embedded systems are often designed for very specific applications

such as airbag deployment, vacuum cleaners or cell phones. Embedded systems may

also be designed for processing control laws, finite state machines, and signal processing

algorithms.
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5. Optimized for the application; Embedded systems are all about performing the desired

computations with as little resources as possible in order to reduce cost, power, size,

etc. This means that embedded systems need to be optimized for the application.

This requires software as well as hardware optimization. Hardware needs to be able

to perform operations in as few gates as possible, and software must be optimized to

perform operations in as few cycles, memory, or power as possible depending on the

application

6. Resource constrained; Embedded systems are optimized for the application which

means that many of the precious resources of an embedded system, processor cycles,

memory, power, is in scarce supply in a relative sense in order to reduce cost, size,

weight, etc.

7. Real-time; Embedded systems must react to the real time changing nature of the

environment in which they operate. More on real time systems below.

8. Multi-Rate; Embedded systems must be able to handle multiple rates of processing

requirements simultaneously, for example video processing at 30 frames per second (30

hz) and audio processing at 20Khz rates.

3.1.2 Embedded System Software

Figure 3.2 shows a software "stack" for an embedded system. This is the software stack

used for the iMX SoC used in my experiments. This stack consists of;

1. Secure and system boot software

2. Loadable firmware

3. Linux operating system

4. Multimedia software components and drivers including GPU, VPU, Audio, Machine

Learning, and Virtual I/O

5. Middleware plugins including Gstreamer, Parsers, Codecs and Muxers

12



6. Android system

7. Trusted execution environment

8. Sample applications

Figure 3.2: Embedded Software Components for Linux Based SoC

Figure 3.3 shows the key hardware components for the iMX SoC. This is one of the

embedded SoCs used in the experiments in my studies. The software described in Figure 3.2

runs on this iMX SoC. This embedded SoC contains the following hardware blocks;

1. CPU cores

2. Connectivity and I/O

3. Security functionality

4. System control
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5. Audio hardware blocks

6. Display hardware support

7. Video hardware support

8. Multimedia graphics support

Figure 3.3: Embedded Hardware SoC

3.1.3 Embedded Software Design of Detection System

This research focuses on embedded software and hardware. The embedded software

design takes into consideration the unique embedded system requirements for application
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specific low resource utilization reactive systems. The prototype software system contains

the following embedded software components that meet this criteria;

1. Embedded Yocto BSP [4]; the software platform used for my experiments is based on

the embedded software architecture show in Figure 3.2. Yocto is an embedded Linux

distribution that provides customization and optimization for embedded systems in

terms of speed, memory footprint, and memory utilization. A build file called a recipe

is used to create custom embedded distributions for multi platform support.

2. perf tool for embedded systems [5] [6]; perf is the Linux performance event counter

subsystem that provides a unified way to access registers of the PMU. perf is built

with a Yocto recipe for the embedded cores used in the experiments. perf can be

configured to capture data from the entire system or just parts of the system (e.g. one

core or multiple cores), which makes this tool useful for embedded systems.

3. SVM machine learning algorithms; SVM has shown promise in embedded systems

where performance and memory utilization are important [7]. In my experiments

I focus on SVM as a classification technique due to its applicability in embedded

systems.

4. Embedded system application software; each of the selected applications running in

the embedded prototype system were selected to emulate common embedded system

application use cases such as GPU, embedded I/O, cryptographic operations, and

embedded networking applications.

3.2 Edge Processing

Edge computing essentially offloads computation and storage from a centralized cloud

to the network’s logical extremes (Figure 3.4). More computationally capable edge devices

enable a fundamental change in terms of data manipulation and storage by storing “meta

data” instead of “raw data” in the cloud. An example would be to store detected object types

and service relevant data in the cloud, instead of video flow/images. By pushing application,

data, and computing power to the edge of the network, its closer to mobile devices, sensors,
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and end users. Any computing and network resources along the path between data sources

and cloud data centers can be considered “the edge” [8].

With an increasing amount of data, there is an increased focus on data privacy regulations

as well. New technologies are emerging to take advantage of all of this data such as machine

learning and data mining. Training a large machine learning data set in the cloud is feasible

given the large compute power but ultimately those machine learning decisions need to be

made closer to the devices that are collecting data from sensors in real time.

This “everything connected” approach requires increased demand for low latency. Many

applications cannot tolerate round trip transport time to a cloud based system. A network

http request has a latency of about one second but in one second an industrial robot can

rotate over 20 times. It’s a speed of light problem. Given a RTT of one millisecond, the

distance between a mobile device and the cloud must be no more than roughly 100km.

Figure 3.4: Conceptual Representation of Edge Computing

In addition to the obvious benefit of latency where we can perform data processing closer

to where it originates and avoiding round-trip time to the cloud, there are other benefits to
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edge computing;

1. Bandwidth; it’s possible to pre-process data at the end nodes and filter unnecessary

data before sending to the cloud. This can work both going and coming from the cloud.

2. Privacy and security; with edge computing sensitive data can stay local but this data

must be protected from security attacks.

3. Connectivity; it can be possible to continue processing if connectivity to the cloud is

impacted.

4. Local dependencies; data processing like machine learning can be done closer to the

points of interaction with users and other system components.

There are three primary operating tenets of an edge device;

1. Energy efficient computation

2. Intelligent processing

3. Data security and privacy

3.2.1 Power, Processing Cost, and Latency

Figure 3.5 shows that as the location where data is processed and analyzed is further

away from the source of data data generation the cost, power and delay incurred increases.

As we move away from the edge, sending the data, storing the data, and processing the data,

all in the cloud, requires more energy.
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Figure 3.5: Computation, storage, and data movement at the Edge

3.2.2 Intelligent Productivity

Intelligence and the capability for an edge device to make decisions locally implies the

use of emerging technologies such as machine learning inference. This approach is at the

very heart of an empowered edge device. A growing number of machine inference edge nodes

will make decisions locally rather than in the cloud. The number of potential inference

applications that can be conducted at the edge continues to increase.

3.2.3 Data Security and Privacy

Keeping data secure and private is a number one priority for any application, not just at

the edge. With more data collected and processed locally, any intelligent edge application

needs to remain vigilant. Security applies to securing the edge application code, the data

being processed, and any data communication to the cloud. Embedded security, isolated

secure subsystems, and secure software enablement need to be at the heart of any intelligent

edge processor (Figure 3.6). Only by taking a holistic approach to application security and

data privacy, embracing collective security knowledge, and best practices can the internet of

things become the internet of trust.
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Figure 3.6: Data Security and Privacy Factors for an Edge Processor

3.3 Common Threat and Attack vectors in Embedded and Edge Systems

Attack vectors are ways through which an attacker attempts to gain access to a system

and exploit vulnerabilities in order to achieve their objective. To understand how to attack

the system it is important to understand the objective of these attacks. These attacks can

broadly be classified into three categories based on their functional objective

1. Privacy attacks where the objective is to extract the secret information stored on the

embedded system

2. Integrity attacks where the objective is to change how the embedded system behaves

by changing the data or the applications executing on it

3. Availability attacks where the objective is to make the system unavailable to its users.

These are typically Denial of service attacks.

These attacks can be invasive or non-invasive as shown in Figure 3.7.
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Figure 3.7: Taxonomy of security attacks

3.3.1 Side Channel Attacks

SCA are non-invasive attacks where information such as timing information, power con-

sumption or electromagnetic radiation from the system are used to extract secret information.

In this form of attack, the attacker does not physically tamper with the device. Instead the

attacker uses side channels as the attack mechanism. Common side channel attacks include

architectural/cache, timing, and power dissipation attacks.

The approach of SCA is to understand the implementation approach of the algorithms as

opposed to the algorithm itself. With SCA it’s possible to determine a correlation between

the physical measurements taken during computations and the internal state of the embedded

device containing the secret key. SCA attempts to determine this correlation.

3.3.2 Timing Attacks

Timing attacks are attacks where the time taken by algorithmic operations can be used to

derive the secret. The algorithmic implementations can be done via hardware or via software

libraries and both implementations are vulnerable to these kinds of attacks.

One form of timing attack is called a "Flush and Reload" attack. In this attack, the

attacker and victim have a portion of shared memory mapped into their own virtual space.

The attacker will flush the lines of interested, wait for a number of clock cycles and then
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calculate the time it takes to read those lines again. If the read is fast, it indicates that

the victim process would have access to these lines. This line can be either code area of the

victim or data the attacker is interested in. This form of cache attack has been used in the

Meltdown and SPECTRE attacks and will be the focus of this research.

3.3.3 Security Vulnerabilities Database

During the development of embedded software, like any software, bugs are created. From

a security perspective, some of these bugs are not a threat while others can be exploited

and lead to security issues. These weaknesses are referred to as "vulnerabilities". A vul-

nerability may allow an attacker to perform malicious acts on the system including running

unauthorized code, steal secrets, and modify or steal data.

An "exposure" is another form of weakness in the software code or system configuration

that allows an attacker to access the system which can lead to data breaches and other

information gathering in violation to established security policies.

Vulnerability exposures are both documented in a public database called CVE [9]. CVE

is a database of publicly disclosed computer security flaws maintained by Mitre Corporation

and supported by the Department of Homeland Security. A security flaw caused by a vul-

nerability or exposure that is accepted into the CVE system is assigned a CVE ID number.

Many security advisories today reference one or more CVE ID numbers.

A CVE entry is a brief overview of the vulnerability or exposure and do not describe

possible fixes or other technical details. The CVE ID is just meant to give users a reliable

way to tell one unique security flaw from another. CVE ID’s are assigned by CNA. A CVE

ID uses the format; "CVE-2021-1234567" plus a brief description of the security vulnerability

or exposure, and various references to additional information. For example, the CVE for

the SPECTRE attack, which is a form of timing side channel attack is;

CVE-2017-5753; Systems with microprocessors utilizing speculative execution and branch

prediction may allow unauthorized disclosure of information to an attacker with local user

access via a side-channel analysis.
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CVE IDs must meet the following criteria;

1. Independently fixable. The flaw can be fixed independently of any other bugs.

2. Acknowledged by the affected vendor or documented. The vendor must acknowledge

the bug has a negative impact on security. Alternatively, the submitter must share a

vulnerability report that demonstrates the negative impact of the bug and show that

it violates the security policy of the affected system.

3. Affecting one code base. Flaws that impact more than one product must be issued a

separate CVE.

3.4 Exploits Based on Timing Side Channel Attack

A side channel attack is an attack which takes advantage of computer implementation

flaws in order to retrieve sensitive information from the computer system such as passwords.

SCA are based on the fact that when computer systems operate they create physical effects

such as power consumption, the amount of time a process takes to execute, and electro-

magnetic radiation emitted during computer operations. A SCA attack is a form of reverse

engineering which exploits information exhaust from the computer. A SCA attack can ob-

tain this information through various techniques including timing, response times, and power

consumption measurements while the system is performing certain operations.

A timing attack is a form of SCA where the attacker observes the response time to

various inputs in order to extract sensitive information. When computer systems operate,

the instruction take time to execute and this time varies based on the input. These variations

can be caused by conditional execution, branching conditions, and cache hits and misses.

The usefulness of the data obtained from a timing SCA is dependent on the application

implementation (Figure 3.8). Timing SCA are made more practical when its possible to

monitor the processing of the sensitive data, there is a way to record the processing times

and there is some knowledge of the implementation of the software [10].
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Figure 3.8: The structure of a timing side channel attack

3.4.1 Timing Side Channel Exploitation in Embedded Systems

In this section, I will provide details regarding how timing side channel exploits are imple-

mented within the environment of an embedded system. I use these concepts to motivate the

selection of processor core events that are useful in revealing the presence of the timing side

channel exploit when a machine learning algorithm is implemented as the exploit detection

classifier.

In embedded platforms, the exploit success rate is dependent on the victim function

implementation. In many embedded systems the caches are relatively small. In my experi-

ments, for example, the cache size is 16KB for Arm/iMX and 32KB for x86 i6950. Because

of the small cache size, the evict rate is important and it has been proven to be preferable

to avoid the load instruction in the speculative secret leak path. In this research an exploit

was designed to take advantage of the architectures of both the x86 and the iMX8 SoC. A

key goal is to avoid memory accesses in the speculated path.

The implementation of a timing side channel attack based on SPECTRE is shown in

Figure 3.9. In order to leak a user space secret to both the attacker and the victim, there must

be processes in user space. The approach is to leak a kernel secret through a kernel victim.

The attacker runs in unprivileged mode, interacting with the kernel through legal mechanisms
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such as syscalls. The victim runs in kernel space. A dedicated and vulnerable kernel module

named “SPECTRE_victim’ was developed for the proof-of-concept implementation. The

“victim’ function implementation follows the original SPECTRE publication [2], reproduced

here in pseudocode form as:

void victim_function(size_t x) {

if (x < *array1_size)

{

temp & =

array2[array1[x] * ARRAY2_CHAR_SIZE];

}

}

In this implementation, as long as the variable x is smaller than array1_size, nothing out

of the ordinary happens. The code checks to make sure that x does not go beyond the end

of array1, which is generally good defensive programming.

However, this type of check does not take into consideration the behavior of branch

prediction and speculative execution. Many embedded processors monitor and record how

often a branch is taken and use this information to predict future behavior. In this example,

if the prediction is that x is smaller than array1_size, then the embedded processor will

speculatively execute the instruction before the condition has been evaluated.

If array1_size is not in the cache, the time to evaluate the condition will be relatively

high compared to the time it takes to speculatively execute the next instruction. It is also

possible to “train” the branch predictor with many valid examples of the test and array access

values.
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Figure 3.9: Diagram of the SPECTRE attack

When the condition that “is x is actually greater than array1_size” is evaluated, the

processor will determine that it made a mistake and attempt to throw away the pre-computed

computation. At this point, the content of array1[x] is located in memory beyond the end

of the array and must be used to look up an element of array2 which is now located in the

cache. The contents of array1[x] are not in the cache. However by finding which element

of array2 is in the cache its easy to deduce array1[x]. To perform this deduction, all that

is needed is to access each element of array2 and record the corresponding access times. In

this manner, observing a faster access allows one to deduce that the current element is the

one that is present in the cache.

3.4.2 SPECTRE as an Example of Timing Side Channel Attack

SPECTRE is a form of timing SCA where an attacker exploits the difference between

fast access directly to cache and the slow access to main memory that is measurable by users

(programmers). A general example in step-by-step form is:

1. Attacker creates a buffer of the same size as the target under attack.

2. Attacker fills in the cache memory by accessing all entries of the buffer that was created.

3. Then the attacker can wait until another (target) program accesses the target buffer.
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4. The entry in cache that was accessed will be replaced.

5. The attacker can read back all of their entries from the buffer while measuring the

time.

6. The entry that was replaced needs more time due to a cache miss.

7. As the result, the attacker knows which entry of the target buffer was accessed by

another process.

Several methods have been proposed to combat this form of timing side channel attack.

Multiple patches have been created to prevent these exploits referred to as variants 1, 2,

and 4. Variant 1 is a bounds check bypass documented as CVE-2017-5753 and bounds

check bypass store documented as CVE-2018-3693. Variant 2 is the branch target injection

documented as CVE-2017-5715. Variant 4 is speculative bypassing of stores by younger loads

despite the presence of a dependency documented as CVE-2018-3639.

These patches in the Linux kernel introduce new cross-architectural ‘nospec’ accessors.

These accessors implement suitable ARM ‘CSDB’ sequences and ensure that the compiler

generates speculation-safe code sequences for bounds checks. The software developer is re-

quired to identify the vulnerable code sequences and the user code implementing software

privilege boundaries must be re-implemented, using the new compiler support functions.

In the latest community code base, there are 49 patches marked as SPECTRE related, for

all the different supported platforms. Among these 49 patches, 12 are marked as ARM

specific. Performance impacts of these patches vary depending on the application but per-

formance penalties as much as 20-30% have been reported [11]. Software containers and

virtual machines have been proposed as a defense mechanism to SPECTRE attacks [12],

but their use depends on which security practices are used in the creation of the applica-

tion. These approaches do not offer total defense since the vulnerability is hardware-based

to begin with [13].

The goal of my approach is to provide an alternative defense to this class of timing side

channel attack that may be present in a malicious process running on a real time embedded
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system. Performance limiting patches, such as those previously described, may be avoided

since my methodology allows for real time detection and shutdown or suspension of processes

that are running the timing side channel exploit. Another advantage is my use of existing

hardware inside the processor core. Event counters are built into most modern processor

cores and counter register data can be extracted in real time as the system runs. Thus, no

specialized additional hardware is required. Since the event counters are typically intended

for other purposes such as performance monitoring, debugging, and system tuning, the use

of this data can be interpreted as a defensive side channel approach for the detection of this

class of timing side channel attack.

3.5 Machine Learning for Embedded Edge Computing

ML is a subset of AI that enables computer algorithms to improve automatically through

experience. Machine learning algorithms are “trained” using large sets of data collected from

one or more sensors. Machine learning is predominantly done in the cloud with huge compute

power. However, as machine learning models and algorithms mature, ML inferencing has

been moved from cloud to edge devices. There are billions of IoT devices performing control

and data gathering operations. As machine learning algorithms mature and compute power

of edge devices increases, more and more complex control and operational decisions are moved

to secure and self-reliant and yet memory and power constrained edge devices, performing

real-time machine learning inferencing tasks locally with occasional connections to the cloud.

There are advantages to running ML at the edge. This is where machine learning in-

ference runs locally on an edge processor. Running the ML inference at the edge means

that the application will continue to run even if access to the network is disrupted, which is

critical for applications such as surveillance or a smart home alarm hub, or when operating

in remote areas without network access. It also provides much lower latency in making a

decision than would be the case if the data had to be sent to a server, processed, and the

result sent back. Low Latency is important for example when performing industrial factory

floor visual inspection and needing to decide whether to accept or reject products whizzing

by.
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3.5.1 Machine Learning Concepts

There are three fundamental approaches to machine learning; supervised learning, unsu-

pervised learning, and reinforced learning as shown in Figure 3.10. Supervised learning is

an approach that uses labeled datasets. Labelled datasets are used to train or “supervise”

machine learning algorithms to classify data or predict outcomes. Once trained, these algo-

rithms can discover hidden patterns in the data without human intervention. There are two

types of supervised machine learning;

1. Classification; this approach uses algorithms to classify data into specific categories

2. Regression; this approach uses algorithms to understand the relationship between de-

pendent and independent variables which can be used to predict values based on dif-

ferent data points.

Unsupervised learning is a machine learning technique where the data is unlabeled. Each

data point contains data features but not a corresponding label. Unsupervised learning is

used to discover patterns and structural properties of the data. Clustering and Association

are algorithm approaches used in unsupervised machine learning. Reinforced learning is an

approach that rewards desired behaviors and penalizing undesired behaviors. Generally this

approach is a way of directing unsupervised machine learning using rewards and penalties

Figure 3.10: Three main approaches to machine learning
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3.5.2 Machine Learning Development Flow

A high level ML development work flow is shown in Figure 3.11. Developing machine

learning technology to deploy to an edge node requires both operation and data flow. The

steps include;

1. Collecting raw data; the process of identifying and collecting data that will be used to

train a ML model

2. Data augmentation; artificially expanding labelled training datasets to improve per-

formance of a ML model

3. Feature extraction; reducing the number of features in the data set by creating new

features that summarize the original features with less information

4. Creating training and validation sets; separating the raw, augmented data into two

data sets; one for training the ML model and one for validating the model. For bias

purposes these should be separate data sets

5. Training the model; using an ML algorithm and the raw data to create a model used

to predict new data

6. Validating the model; running a separate set of data through the trained ML model

to test for accuracy and correctness

7. Converting and quantizing the model; the process of approximating a floating point

based ML network with a low fixed point model that reduced memory bandwidth and

computational cost. In neural networks, quantization is a process of converting data

floating point to fixed point number.

8. Inferencing; the process of running new data (from a sensor or other data collection

mechanism) through the ML algorithm (or model) to determine an output (e.g. clas-

sification of an object).
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Figure 3.11: A High Level ML Development Workflow

3.5.3 Machine Learning Methods for Model Training

There are many different types of ML algorithms. They can be grouped based on two

basic grouping styles;

1. Grouping based on learning style

2. Grouping based on similarity

Learning style includes the following ML approaches;

1. Supervised Learning; Example algorithms include: Logistic Regression and the Back

Propagation NN

2. Unsupervised Learning; Example algorithms include: the Apriori algorithm and K-

Means.

3. Semi-Supervised Learning; Example algorithms are extensions to other flexible meth-

ods that make assumptions about how to model the unlabeled data.

Algorithms are often grouped by similarity in terms of their function. Examples include;
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1. Regression algorithms; This approach is an iterative refinement using a measure of

error in the model predictions. Example of regression algorithms are linear and logistic

regression.

2. Instance-Based algorithms; this approach uses a collection of samples and compares

new samples to this existing samples using a similarity measure. One example instance

based algorithm is SVM which determines a hyperplane in an n-dimensional space that

classifies data points where n is the number of features in the data.

3. Regularization algorithms; this is a regression method that penalizes models for in-

creased complexity. An example of a regularization algorithm is Ridge Regression

which addresses the problem of over-fitting.

4. Decision Tree algorithms; DT algorithms construct models of decision based on data

attributes in the sample data. CART is a common binary based DT algorithm.

5. Bayesian algorithms; this is a classification and regression algorithm that applies Bayes

principles which describe the probability of an event based on prior knowledge of con-

ditions that might be related to the event. An example of this is Gaussian Naive Bayes

which uses class and conditional probabilities using a Gaussian normal distribution.

6. Clustering algorithms; this is an unsupervised ML approach which uses inherent struc-

tures in the data to organize the data into groups. An example of this approach is

centroid based clustering which separates data into multiple centroids.

7. Artificial Neural Network algorithms; these algorithms perform pattern matching for

classification and regression. An example is a MLP which is a feed forward neural

network which calculates a non-linear mapping between an input vector and a corre-

sponding output vector.

8. Ensemble algorithms; this approach combines a number of weaker models that are

independently trained and then combined to make a stronger overall prediction. An

example is RF which uses a number of decision trees classifiers and averages them to

improve overall accuracy.
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The "best" machine learning algorithm can only be obtained through empirical study.

Different ML algorithms have different characteristics in terms of flexibility, adaptability,

self-tuning, etc. and there is always a trade off between implementation difficulty, data set

size, scalability, and other parameters.

A data driven approach is needed to determine the best approach for the specific problem

being solved. This involves data observations from the problem domain involving several ML

algorithms to determine the most appropriate given the parameters of interest for solving the

problem. This approach often requires less up-front knowledge and more back end iteration,

computation and experimentation using smaller samples of the data set to get results quickly.

The goal is to obtain objective confidence that the chosen approach is reliable. This can be

accomplished using cross validation techniques.

3.5.4 Cross Validation

CV refers to the techniques used to assess how the results of a particular statistical

analysis will generalize to a set of independent data. This approach is common in machine

learning model validation.

As mentioned earlier, machine learning models must be trained with data, and then tested

with "new" independent data. We do this because we can’t just assume that trained models

will achieve the desired accuracy and variance with data that it has not seen before. This

requires models to be validated. Validation in this sense is the process of determining if the

numerical results that quantify hypothesized relationships between variables are acceptable

as descriptions of the data.

Machine learning models are validated by testing on unseen data. The validation results

can be;

1. Model is under-fitting; this is a model that cannot model the training data well and

cannot generalize to new data

2. Model is over-fitting; this happens when the machine learning methods models the

training data too well
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3. Model is well generalized; a model that neither under-fits nor over-fits

CV is a statistical technique used to test the effectiveness of a machine learning model.

CV is performed by reserving a portion of the data which was not used to train the model.

This portion of data is used for testing and validation (Figure 3.12). CV is used to test

various machine learning methods in order to determine the best method to apply to a

particular machine learning problem.

A key question is how to split this data up into training data and testing data. There are

exhaustive and non-exhaustive techniques for doing this. A simple non-exhaustive approach

is called the "hold out" method which simply divides the data into training and testing data

like what is shown in Figure 3.12.

Figure 3.12: Cross validation for machine learning

One way to improve on the "Hold out" method is to use an approach called "K-Fold"

cross validation. This approach ensures that every observation from the original data set

appears in both the training as well as the testing data set (Figure 3.13). This results in

a less biased model compared to other methods. This approach is effective when there is a
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limited data set.

Figure 3.13: K Fold Cross validation for machine learning

With K-fold, the data set is divided into k subsets. The holdout method is then repeated

k times for each of the subsets. For each iteration, one of the k subsets is used as the test

data and the other k-1 subsets are combined to form the training set. Larger values of K lead

to less biased models and the variance of the resulting estimate is reduced as k is increased.

Lower values of K make the approach similar to the "Hold out" approach. The advantage of

K-fold is that every data point is used in a test set exactly once, and is used in a training set

k-1 times. The disadvantage of this method is that the training algorithm has to be rerun

from scratch k times which is computationally intensive.

3.5.5 Confusion Matrix

Machine learning classification accuracy is a simple ratio of correct predictions to total

predictions made;

ClassificationAccuracy =
CorrectPredictions

TotalPredictions
(3.1)

Classification accuracy can be converted easily to misclassification rate or error rate by

inversion:
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ErrorRate = (1− (
CorrectPredictions

TotalPredictions
) (3.2)

There are drawbacks with this approach. Classification accuracy can hide details needed

to diagnose model performance. For example, when there is an unequal number of observa-

tions in each class, using a metric like classification accuracy may not give the right visibility

into where the performance issues may lie. The same is true if there is more than two classes

in the data set.

A confusion matrix is an approach for assessing the performance of a classification al-

gorithm that alleviates these concerns. Its essentially a summary of prediction results for a

classification problem. As the name implies a confusion matrix show how the classification

model gets confused when making predictions.

A confusion matrix will provide better visibility into what the classification model is

getting correct and what types of errors it is making. This technique can be used to assess

the performance of a machine learning classification model using test data where the true

values are known. 3.1 shows the structure of a confusion matrix where;

1. TP (True Positive); correctly predicted event values.

2. TN (True Negative); correctly predicted no-event values.

3. FN (False Negative); incorrectly predicted no-event value.

4. FP (False Positive); incorrectly predicted event values.

Table 3.1: Structure of a Confusion Matrix

P(Predicted) N(Predicted)

P(Actual) TP FN

N(Actual) FP TN
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3.5.6 Recall, Precision, and F1

Machine learning models can be evaluated with metrics. Two important metrics are

referred to as "Precision" and "Recall".

Precision calculates the percentage of the results which are relevant. More specifically,

Precision indicates how many of the correctly predicted cases actually turned out to be

positive. In order for Precision to be high, what the model predicts must be true. The

higher the number of False Positives the model predicts, the lower the Precision. Precision

is useful metric where False Positives are a larger concern than False Negatives.

Precision =
TP

(TP + FP )
(3.3)

Recall calculates the percentage of total relevant results correctly classified by the machine

learning algorithm. More specifically, Recall indicates how many of the actual positive cases

were predicted correctly with the model. For Recall to be high, the model must not miss

any positives in the data set. The more the model misses, the more Recall decreases. Recall

is useful metric when False Negatives are a larger concern that False Positives.

Recall =
TP

(TP + FN)
(3.4)

It is difficult to maximize Precision and Recall at the same time. For example, in practice,

if we attempt to increase the Precision of the model, Recall decreases, and vice-versa. In

some cases it is known whether to maximize Precision or Recall. In some cases it is harder

to known which one to maximize. In these cases, another metric called F-1 can be used.

The F-1 metric attempts to capture both of these trends in a single value. F1 computes

the harmonic mean of Precision and Recall. Compared to Arithmetic Mean and Geometric

Mean, Harmonic Mean penalizes the model the most if either Precision or Recall is low.

The Harmonic Mean is used since it penalizes extreme values and gives a better measure

of incorrectly classified samples than the Accuracy score. In situations where precision and

recall are both important, a model can be selected which maximizes the F-1 score.
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F1 =
2(Precision ∗Recall)

(Precision+Recall)
(3.5)

In summary, Accuracy should be used when True Positives and True Negatives are more

important. F-1 should be used when the False Negatives and False Positives are more

important. Accuracy is a viable approach when the class distribution is similar but the F-1

metric is preferred when classes are imbalanced classes (true in many real-life problems).

3.5.6.1 True Positive Rate and False Positive Rate

We can also use TP, TN, FP, and FN to calculate the TPR and FPR. TPR defines

how many correct positive results occur among all positive samples available during the test.

In other words, TPR represents the proportion of correct predictions in the predictions of

the positive class (Equatio 3.6). This is also referred to as “sensitivity”. FPR, on the other

hand, defines how many incorrect positive results occur among all negative samples available

during the test. This represents the proportion of incorrect predictions in the positive class

(Equation 3.7).

TruePositiveRate = Sensitivity =
TruePositives

(TruePositives+ FalseNegatives)
=

ProbabilityofDetection (3.6)

FalsePositiveRate = (1− Sensitivity) =
FalsePositives

(FalsePositives+ TrueNegatives)
=

ProbabilityofFalseAlarm (3.7)

3.5.7 Dimensionality Reduction Techniques

Dimensionality reduction techniques can be used to reduce the number of features in

the dataset without losing accuracy/information so that we preserve or improve the model

performance. There are many performance counters that can be experimented with and
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we will look at larger datasets utilizing more performance counters and apply various di-

mensionality reduction techniques to determine the best approach for this problem domain.

Dimensionality reduction has a number of benefits;

1. The space required to store the data is reduced as the number of dimensions reduces

2. Less dimensions requires less computation and training time

3. Some algorithms do not perform well when there are a large number of dimensions

4. Redundant features are removed which eliminates multicollinearity.

5. Avoids the problem of overfitting. When there are many features in the data, some

models tend to overfit on the training data

6. Removes noise in the data, keeping only the most important features and removing the

redundant features, noise in the data is removed which improves the model accuracy.

7. Visualizing data is improved

There are two main ways to perform dimensionality reduction;

1. Keeping only the most relevant variables from the original dataset (feature selection)

2. Finding a smaller set of new variables, each being a combination of the input vari-

ables, containing basically the same information as the input variables (dimensionality

reduction)

These are show in Figure 3.14. In this research I will research feature selection and

principal component analysis.
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Figure 3.14: Dimensionality Reduction Methods

3.5.8 Linear Dimensionality Reduction Methods

Figure 3.14 shows several Linear dimensionality reduction methods including PCA, Fac-

tor Analysis,and Linear Discriminant Analysis. A deeper explanation of PCA will follow to

give a sense of the approach. Other techniques will also be explored.

PCA is a dimensionality reduction approach used to reduce the dimensionality of large

data sets. The method transforms a large set of variables into a smaller set of variables that

contains a majority of the information in the larger set.

Reducing the number of variables of a data set reduces the accuracy of the resultant

model. The goal of using PCA is to simplify the problem by giving up as little accuracy as

possible. The resultant smaller data set is easier to visualize and analyze and it increases

the performance of the machine learning algorithms by reducing the variables required for

computation.
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PCA is a multi-step process;

1. Standardization of the initial variables; PCA is sensitive to the variance of the initial

variables so performing this step can help alleviate this problem.

2. Covariance matrix computation; The goal of this step is to gain an understanding of

how the variables in the input data set vary from the mean. This can help determine

if there is a relationship between these variables with respect to each other.

Mean (3.8) is the average value of the x’s in the set X. This is found by dividing the

sum of all data points by the number of data points n.

Mean X̂ =

∑n
i=1Xi

n
(3.8)

Standard deviation (3.9) is the square root of the average square distance of data

points to the mean. In 3.9, the numerator is the sum of the differences between each

datapoint and the mean. The denominator is the number of data points (minus one)

that determines the average distance .

Standard Deviation s =

√∑n
i=1 (Xi − X̂)2

n− 1
(3.9)

Variance is the measure of the data spread. Variance is defined as the standard devi-

ation squared (3.10).

var(X) =

∑n
i=1 (Xi − X̂)(Xi − X̂)

n− 1
(3.10)

A covariance matrix defines the shape of the data. The covariance (3.10) represents the

diagonal spread in the data. The variance represents the x-and-y-axis-aligned spread.

Matrices are used for linear transformation. Multiplying a vector v by a matrix A

results in vector b. In this example the matrix is used to perform a linear transforma-
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tion on the input vector v (3.11).

Av = b (3.11)

An eigenvector is a vector that responds to a matrix as though that matrix were a

scalar coefficient. In 3.12, A is the matrix, x is the vector, and lambda is a scalar

coefficient.

Ax = λx (3.12)

Covariance is the measure of the joint probability for two random variables. It de-

scribes how the two variables change together. For example, the covariance between

two random variables X and Y can be calculated using the formula in 3.13.

cov(X, Y ) =

∑n
i=1 (Xi − X̂)(Yi − Ŷ )

n− 1
(3.13)

A covariance matrix is a dxd square and symmetric matrix (where d is the number of

features) that describes the covariance between two or more random variables. The di-

agonal of a covariance matrix represents the variances of each of the random variables.

An example covariance matrix is shown in 3.14.

Covariance =


Cov(x, x) Cov(x, y) Cov(x, z) ...

Cov(y, x) Cov(y, y) Cov(y, z) ...

Cov(z, x) Cov(z, y) Cov(z, z) ...

... ... ... ...

 (3.14)

The covariance matrix defines both the spread (variance) and the orientation (covari-

ance) of the data.
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3. Computation of Eigenvectors and Eigenvalues of the Covariance Matrix to Identify the

Principal Components

The eigenvectors are called principal axes or principal directions of the data. Projec-

tions of the data on the principal axes are called principal components. Eigenvectors

will be used to determine how the dimensions can be reduced in the dataset collected.

4. Determine how many features to keep versus how many to drop. One of three methods

can be used to determine this;

(a) Method 1: Arbitrarily select how many dimensions to keep (use-case dependent

and iterative)

(b) Method 2: Calculate the proportion of variance explained for each feature (perfor-

mance counter), determine a threshold goal, then add features until that threshold

is met. (e.g., if the goal is to explain 90% of the total variability, features (per-

formance counters) are added with the largest explained proportion of variance

until the proportion of variance explained meets or exceeds 90%.)

(c) Method 3: Calculate the proportion of variance explained for each feature, sort

features by proportion of variance explained and plot the cumulative proportion

of variance explained as you keep more features. This plot is called a scree plot

and an example is shown in Figure 3.15. One can pick how many features to

include by identifying the point where adding a new feature has a significant

drop in variance explained relative to the previous feature, and choosing features

up until that point. Because each eigenvalue is roughly the importance of its

corresponding eigenvector, the proportion of variance explained is the sum of the

eigenvalues of the features you kept divided by the sum of the eigenvalues of all

features.
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Figure 3.15: Example Scree Plot

3.5.8.1 Principal Component Analysis

Dimensionality reduction techniques can be used to reduce the number of features in a

dataset without losing accuracy. This preserves or improves the model performance. Di-

mensionality reduction has a number of benefits including reduced space requirements for

storing data, less computation due to fewer dimensions, removal of redundant features which

eliminates multicollinearity, removal of noise, and better visualization of the data among oth-

ers [14].

PCA is a dimensionality reduction approach that focuses on feature extraction. PCA

can compress a dataset into a lower dimensional feature subspace with the principal goal of

maintaining most of the relevant data [15]. In my experiments I will use PCA to determine

which features are important for best describing the variance in the data set.

3.5.8.2 Feature Selection

PCA is helpful in reducing dimensionality by exploring how one feature of the data is

expressed in terms of the other features (linear dependency). Feature selection, on the other

hand, is a search technique for proposing new feature subsets, along with an evaluation

measure which scores the different feature subsets. Optimal feature selection can reduce
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computational cost and potentially improve the performance of the model. In the design of

the detection system, optimal feature selection can also be used to adhere to the constraints

on the hardware available for extracting event counters from the processor. This is done by

selecting a subset of core events that are most effective in prediction accuracy. I will use

feature selection algorithms for creating this subset.

The feature selection technique that I used is based on ensemble learning. This approach

uses multiple predictors instead of a single predictor. The training of the data and the results

are then aggregated which gives a better overall score than using a single model. The specific

ensemble learning approach we use is referred to as Gradient Boost. With this approach,

each predictor improves upon its predecessor by reducing the errors from the previous stage.

3.5.9 Receiver Operating Characteristic and Area Under the Curve

A ROC curve plots TPR against FPR at various discrimination threshold settings

[16, 17]. A ROC is produced by re-combining and re-splitting the collected data randomly.

The Area Under the Curve (AUC) aggregates the performance of the model at all threshold

values and is a general measure of predictive accuracy [18].

3.5.10 Support Vector Machines

SVM is a classification approach to supervised machine learning. SVM algorithms

determine an optimal separation line between two classes of data.

The key concepts involved in SVM are (Figure 3.16);

1. Support Vectors; these are the data points closest to the hyperplane. The SVM

separating line will be determined based on these data points.

2. Hyperplane; the decision plane or space that separates a set of data points having

different classes.

3. Margin; this is the gap between the two lines with the closet data points for the two

different classes. It is calculated as the perpendicular distance from the line to the

support vectors.
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4. Kernels; a SVM algorithm is implemented with functions called "kernels" that trans-

forms an input data space from a low dimensional input space to a higher dimensional

space.

The dimension of the hyperplane is dependent on the number of features. Two input fea-

tures produces a hyperplane that is a line. Three input features produces a two dimensional

plane. n-dimensional hyperplanes are also possible. SVM creates a hyperplane that has the

largest distance to the nearest training data points. SVM algorithms have the benefit of

good accuracy and low computation power.

In my research I used a RBF kernel. RBF kernels are mostly used in SVM classification

and map the input space in an indefinite dimensional space. Mathematically, this can be

shown as;

K(x, xi) = exp[
(x−xi)2

2σ2 ] (3.15)

where;

1. sigma is the variance and our hyperparameter

2. x - xi is the euclidean distance between two points x and xi

Figure 3.16 shows an example of a SVM hyperplane and support vectors.

Figure 3.16: Example of SVM Hyperplane and Support Vectors

45

0.2 
0.0 

l'Cl -0.2 PC3 
-0.4 

0.04 

o.oz 
0.00 PCZ 

-0.02 

-0.04 

0.6 
0.4 



Figure 3.17 shows a plot of the results of a SVM algorithm on a multidimensional input

feature data set representing my timing side channel detector for some initial experiments

performed with 4 unique performance counters.

Figure 3.17: SVM plot of multidimensional feature set representing timing side channel
detection
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Chapter 4

RELATED RESEARCH

The use of hardware performance or, event counters for the detection of malware has

been investigated by other researchers. Surveys of the use of performance counters such as

the event counters we use are provided in [10, 19]. One of the first investigations of the use

of performance counters resulted in the Eunomia prototype where malware including code-

injection, return-to-libc, and return-oriented programming attacks were considered although

machine learning classifiers were not used [20]. Later research incorporated performance

counters and machine learning classifiers to detect Android ARM malware and Intel rootk-

its [21]. Research that utilizes performance counters in combination with the inclusion of

specialized hardware support for malware detection includes that of [22–24].

Research into the use of performance counters to detect the SPECTRE exploit [25] in

conjunction with performance management unit (PMU) generated interrupts are described

in [26–30].

In [26] HPC were used along with a MLP to detect a SPECTRE attack, as well as

different strategies to develop “evasive SPECTRE” models. In [27] TXE instructions on

the Intel processor architecture are used to detect SPECTRE and Meltdown attacks. TXE

instructions have their own exception handling which could make detection faster. This work

was also an initial attempt to detect classes of vulnerabilities as opposed to individual CVE.

This work is also focused on x86 processors and did not use machine learning for automatic

detection.

The work in [28] explored the challenges and pitfalls in the use of HPC and exposed

potential weaknesses in the use of HPC including non-determinism and overcounting, based

on several case studies. The work in [29] demonstrates the use of a PMU to maintain real
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time CFI while being resistant to bypass. The authors demonstrate how the use of a run-

time generated whitelist as well as the PMU can provide coarse grain CFI using special

Intel instructions such as LBR, and demonstrate this on specific CVE CFI based exploits.

In [30] a neural network and HPC’s are used to detect a SPECTRE attack. The neural

network was not trained on more diverse implementations of SPECTRE or other side channel

attacks as in my approach. My contributions are complementary to this work with the most

notable differences being that we target embedded systems with a lighter-weight detection

approach, I consider both ARM and x86 architectures for a family of attacks related to the

SPECTRE vulnerability, and I focus on malware detection through monitoring the PMU

side channel data rather than taking a CFI approach.

The use of performance counters for malware detection in terms of the required computa-

tional overhead is addressed in [31] where a “sample-locally-analyze-remotely” and “compres-

sive sensing” approach was proposed. This allowed counter performance data to be collected

on the target machine, compressed, and processed remotely resulting in decreased computa-

tional overhead for malware detection using counter data. My approach uses feature selection

methods to identify the most useful HPC taking into consideration the limited HPC reg-

isters available for extraction on ARM and x86 processors. Furthermore, my approach was

designed to be deployable either entirely at the edge for enhancing the ability to meet embed-

ded system real-time deadlines, or, it can alternatively be executed in a distributed cloud-like

environment.

A method for the detection of the Heartbleed vulnerability (CVE-2014-0160) [32] used

SVM to detect the Heartbleed vulnerability [33]. In that approach a SVM was used as

a binary classifier to detect between regular and abnormal behavior and reported a 92%

accuracy. This work also concluded that data-oriented attacks were more difficult to detect

than control-data exploits based on their focus on buffer over-reads. An SVM is also used

in [16] and a methodology is proposed for a generalized side-channel attack detection system

by correlating its execution trace with a secret encryption key. As described below, I also

use SVM in the prototype after considering a variety of candidate classifiers. In my ap-

proach, I use feature selection techniques to determine the key performance counter events
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to use for classification. I also measure the robustness of the detection system using receiver

operating characteristic (ROC) and area under the curve (AUC) measurements as well

as gaussian noise models to assess the efficacy of the detection system in the presence of

multiple simultaneous application profiles executing simultaneously.

As I am particularly concerned with low-resource edge devices, embedded systems, and

performance in the presence of CPU “load noise,” I consider a family of attacks similar to and

including the SPECTRE CVE and my design was concerned with some important properties

of low-resource edge devices and embedded systems by considering two different instruction

set architectures and performance in the presence of load noise. In my work, I develop a

general malware detection system based on a family of side channel attacks that can scale

across multiple ISA’s. I also focus on a memory and cycle efficiency implementation required

for embedded system applications.

I extend the previous work of using HPC and machine learning for SPECTRE detection

in several significant ways. First, I consider the constraints typically present in embedded

systems and edge-based processing by focusing on the development of a system that not

only performs well in terms of detection accuracy, but that also considers the limited com-

putational resources typically available in deployed embedded systems. By implementing

the detection process at the edge with no reliance on remote computations, the available

resources for malware detection become limited. Because many embedded systems operate

in real-time with timing deadlines, a lightweight detection process is warranted so that valu-

able computational resources at the edge do not interfere with normal processing deadlines

or consume to many assets at the edge. Furthermore, the tradeoff between CPU load and de-

tection capability is assessed experimentally in three ways; (i) my SVM is trained with data

from one variant of the timing attack and detection accuracy is evaluated with a different

variant of attack, (ii) a deterministic approach is taken wherein a suite of benchmarks rep-

resenting different load types is used to provide different combinations of concurrent process

loads and, (iii) a statistical approach is taken wherein random “noise” values are combined

with the performance counter data values and the noise levels are increased to the point

where observations of significant detection failure rates are observed.
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Finally, another very important contribution of the malware detection approach described

here is that it is designed to be operable over an entire group of different malicious exploits

that are related to the original SPECTRE attack in that they all exploit side channels due

to data cache or branch prediction with speculative execution implementations. This latter

set of analysis results are indicative of the ability of the method to combat unknown forms

of malware that exploit the cache or branch prediction with speculative execution timing

attacks.

Key aspects of my overall approach are detailed in my previous work [34–36]. I incre-

mentally develop a general side channel attack detection system that works across multiple

ISA’s. In [34] I demonstrate a proof of concept on an Arm based core using HPC’s and

a SVM to detect a SPECTRE attack in the presence of multiple benign applications and

suppress the attack while keeping the other applications running uninterrupted. In [35] I

extend my proof of concept to detect multiple classes of side channel attack on both Arm

and x86 ISA’s. I use PCA and feature selection techniques to improve the performance

of the detection system. In [36] I extended my analysis by assessing the effectiveness and

robustness of the detection system using ROC as well as the effect of Gaussian noise models

on system performance.

The results described here include lessons learned from my work with additional emphasis

placed upon operation in a dynamic environment in terms of varying levels of “noise” due to

loads or other sources, the use of a detector trained for one variant of SPECTRE as applied

to other variants, and various ways to lighten the detection process so that it is applicable

to low-resource systems.

I also extend my analyses to consider hyperparameter optimization to assess key param-

eters to optimally control the learning process and minimize the loss function. This can

lead to additional performance improvements for the detection system. I use a Grid Search

algorithm to spot check the data by defining a search space as a bounded domain of hy-

perparameter values and then randomly sampling points from within that domain. Next I

assess the detection system performance by computing the RMSE which is a risk metric
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corresponding to the expected value of the squared or quadratic error or loss in system per-

formance. I vary the Gaussian noise applied to the samples. I then use the mean squared

error and metrics accuracy score functions to measure performance for each Gaussian noise

selection.

In summary, my approach extends and improves the work previously accomplished in my

initial investigations and by others as outlined above by using a lightweight design appropri-

ate for embedded systems and my prototype suppresses the side channel attack once detected

by killing the offending task. I assess the robustness of my prototype using multiple tech-

niques including gaussian noise models, CPU utilization use cases, RMSE measurements,

and hyperparameter optimization. I use PCA and feature selection techniques to select

the optimal HPC for maximum performance. My approach supports multiple ISA’s and is

applicable to a “family” of attacks with the intention of having efficacy to detect zero-day

attacks based on timing side channels. Because the HPC are a CPU architectural capa-

bility, this makes this approach cross platform applicable, so I believe my architecture can

be modified easily to support Windows, RTOS, as well as embedded Linux with very low

performance overhead.
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Chapter 5

RESEARCH RESULTS

In this chapter, a method for the detection of the timing side channel attacks is evaluated

and implemented using machine learning and processor core events. Machine learning is

used to implement a system based on hardware event counters to detect timing side channel

attacks running in a process on a Linux based system. The approach is designed to use

existing on-chip hardware to detect timing side channel exploits in real time. Prototype

architectures in both x86 and ARM-based SoC’s representing an embedded system with a

corresponding real-time Edge-based classifier is designed and implemented to validate the

approach. This exploit detection architecture uses software agents and requires no additional

hardware.

In particular, a software agent periodically accesses the event counter register file during

runtime. At each observation time, a feature vector is formulated consisting of a particu-

lar subset of event counter data. The event counter data used in the detection technique

includes cache and branch prediction counts. Various different machine learning classifiers

are implemented with a goal of predicting either the presence of the malicious exploit or

something other than the malicious exploit. Thus, the classifier outputs binary states of

“malicious exploit present” versus “normal operation.” Many classifiers resulted in true pos-

itive rates in excess of 98% with corresponding false positive rates less than 1%. In many

cases, a 0% false positive rate is achieved. These predictive approaches are compared for

training complexity and performance.

5.1 Introduction

Timing side channel attacks are security vulnerabilities that exploit speculative execution

and indirect branch prediction circuitry that is common and present in most modern CPU

cores. This class of exploit allows access to unauthorized information by implementing side
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channel analysis of information in the data cache of the system [1].

In this research, I use machine learning to implement a system based on hardware event

counters to detect a class of timing side channel attack running in a process on Linux

system. My approach is designed to use existing on-chip hardware to detect timing side

channel exploitations in real time [2, 3]. I create the machine learning models and evaluate

performance by creating a dataset of 16,000 samples from an x86 as well as ARM-based

system running Linux. I investigate a number of machine learning algorithms, and find that

a support vector machine classifier achieves perfect performance on the collected dataset

(100% detection of the exploits without any false positives).

The motivation is to consider the timing side channel exploit detection problem for em-

bedded systems and thus devise an approach that is real-time, requires no new hardware,

and minimizes overall system performance degradation. For these reasons, my architecture

design utilizes a classifier that interacts with the embedded system via the use of software

agents that run on the embedded system.

A prototype real-time system was created and evaluated for detecting and killing pro-

cesses that deploy timing side channel exploits based on the hardware event counters. The

real time monitoring process uses event data collected from the embedded system event

counter register file to determine if an exploitation is occurring and shuts it down immedi-

ately. Alternatively, after detection of the exploit presence, a process could be suspended

and further analysis performed if desired.

A diagram representing the overall architecture of the prototype implementation is shown

in Figure 5.1. Event counter samples are collected from the system that represent the runtime

profiles of the active processes on the embedded system. In my prototype system, these

samples are communicated to a laptop that can represent a cloud or edge-resident processor

and referred to as the Edge Detector. The Edge Detector predicts whether or not a timing

side channel exploit, is present. If detected, the process representing the timing side channel

attack is killed in real time by another software agent running on the embedded system

referred to as the Edge Detector Agent.
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Figure 5.1: High Level Software Architecture for Detection System

The sequence diagram showing the interactions between the Edge Detector, Embedded

Detection Agent, and the embedded processes running in user space is shown in Figure 5.2.

The detection system continuously polls for top three CPU loaded processes for detection

analysis in this prototype.
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Figure 5.2: Sequence Diagram Representing the Software Design for the Detection System

I analyzed the sampled event counter data for its significance and effectiveness in the clas-

sification task. Likewise, I evaluated a variety of different machine learning-based classifiers

using the sampled event counter data. Comparisons of the performance of these classifiers

is performed. I include the results of this comparison that indicates the SVM classifier is

the most suitable choice for implementation in the prototype. The Edge Detector in the

prototype implements the SVM classifier although I also provide results of my comparison

of different classifiers.

I initially evaluated the performance of this prototype real-time system using a standard

SPECTRE exploit. Out of 267 total actual exploits I observed that the prototype system

missed only one instance of the SPECTRE exploit without any false positives. My conclu-

sion is that using machine learning for detection of the timing side channel exploits such

as SPECTRE exploit is a viable method in terms of performance for real time embedded

systems.
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5.2 Hardware Performance Counters and Core Events

A key part of my proof of concept is the use of CPU core events to collect information to

determine if an attack is in progress. A more general term for the core events that form the

basis of my methodology is “performance event”. A performance event is an occurrence of a

particular type of hardware condition during the time the CPU is performing a computation.

In its most basic form, a CPU clock tick is an example of a hardware performance event.

Another example is the occurrence of the processor predicting control flow and speculatively

executing instructions along the predicted program path. The number type of performance

events that are capable of being monitored is specific to the micro-architecture of the machine.

Arm, Intel, and AMD, for example, have different implementations of performance events

[37–39].

Performance events can be strictly related to the processor core, such as clock ticks,

cache hits and misses, or speculative execution properties. There also exists events that

monitor functions outside the core, such as a condition wherein data is read as directed by

memory controllers or other data traffic statistics. These events are important for monitoring

functions closely connected to the core since specific actions can be taken to achieve higher

performance. Due to die constraints, there are a limited number of performance counters

implemented on most processor cores. Some types of performance monitors employ the use

of fixed counters (e.g. clock tick counter) and some are programmable, as they are selected

and configured through the use of a set of control registers, as shown in Figure 5.3.
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Figure 5.3: Performance Counter High Level Architecture

Examples of HPC event classes for Arm and Intel ISA’s are shown in Tables 5.1 and

5.2 respectively. I will explain the process we used to select the most important HPC events

to achieve optimal model performance.
Table 5.1: Example CPU Core Event Classes for ARM ISA

Event Counter Class Examples

Cache Based Events L1 data cache refill read, L1 data cache invalidate

Branch Based Events Predictive branch speculatively executed, Mis-predicted

or not predicted branch speculatively executed, Opera-

tion speculatively executed load/store

Arithmetic Based Events Operation speculatively executed -Advanced SIMD, Op-

eration speculatively executed crypto data processing,

Operation speculatively executed -Integer data process-

ing

Instruction Based Events Instruction architecturally executed, Instruction archi-

tecturally executed with exception return

Table 5.2: Example CPU Core Event Classes for x86 ISA

Event Counter Class Examples
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Cache Based Events Longest latency cache miss, Cycles L1D and L2 locked

Branch Based Events Taken speculative and retired macro-conditional

branches, Branch prediction unit missed call or return,

Un/conditional branch instructions executed

Arithmetic Based Events X87 Floating point assists, Computational floating-

point operations executed

Instruction Based Events Instructions written to instruction queue, Instructions

retired

SIMD Based Events 128 bit SIMD integer pack operations, 128 bit SIMD

integer multiply operations

5.2.1 Dedicated Hardware for Selecting and Monitoring CPU Core Events

The system that controls and manages the configuration and extraction of the CPU core

events is often referred to as the PMU. The PMU is implemented as a hardware function

inside the processor that is used to measure performance parameters. Its function is to

gather statistics characterizing the runtime profile and operation of the processor and mem-

ory system by counting or accumulating the number of times a particular type of pre-selected

internal system event has occurred. PMU events provide information concerning the be-

havior of the processor during runtime that can be used for purposes such as debugging and

profiling software [40]. PMU’s are common assets included in modern CPU architectures

such as Arm, Intel, and AMD (Figure 5.4). A PMU generally consists of two types of regis-

ters, 1) the performance monitoring configuration (PMC) registers that store configuration

data and, 2) the performance monitor data (PMD) registers that store the collected data.

Both the PMC and the PMD can be read; however, only the PMC is writable.
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Figure 5.4: Performance Management Unit for ARM and Intel Processors

The number of PMC and PMD registers are limited in most embedded system imple-

mentations due to limited gate count requirements which drive power, cost, and performance.

The PMU in the ARM A72 comprises six PMD registers as shown in Figure 5.4. These six

PMD registers can count any of 84 different programmable events within the processor core.

The Intel i6950 processor core also contains a PMU comprising three fixed function counters

and four general purpose counters, each present on a logical core (Figure 5.4). Intel uses

a MSR for performance counter implementation. A MSR is a control register in the x86

for performance monitoring as well as debugging, program execution tracing and toggling

certain CPU features. The i6960 PMU supports 96 different event types, each with multiple

configuration options. It should be noted that while the ARM and Intel both support event

or performance counters, the specific list of supported events is different, although some are

very similar among the two architectures.

The main reason the supported events differ for the ARM versus the i6950 cores is due

to the fact that they are designed with different microarchitectures. For example, Arm and

Intel implement different forms of cache architectures, snooping logic, and dedicated SIMD

operations and TLB implementations that require different performance counter visibility

due to details of the implementation of the corresponding functions.

For embedded processor cores such as Arm and Intel, the PMU and performance counters
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support three main usage modes;

1. Counting mode; Counts the number of occurrences of an event.

2. Event Based Sampling mode; A sample is recorded whenever a certain threshold num-

ber of events has occurred.

3. Time-Based Sampling mode; A sample is recorded at some specified frequency.

Both counting and sampling approaches are useful for real-time embedded systems. An

advantage of the counting mode use type is its low overhead since the dedicated hardware

counters do not result in additional load on the CPU. The disadvantage of a counting mode

is that it is only possible to measure events for an entire application. The sampling mode

use type imposes modest additional overhead, with the advantage that it is possible to

isolate performance events to specific regions of an application resulting in better flexibility

as compared to a counting mode use type.

The purpose of the PMU is to gather various statistics characterizing the runtime profile

or operation of the processor and memory system. These PMU events provide information

about the behavior of the processor during runtime that can be used for purposes such as

debugging and profiling software. The event counter register values are accessible through

system calls since it is anticipated that some system and application software may use these

data for other purposes such as dynamic performance tuning.

My malware detection approach uses a time-based sampling method that is favorable for

analyses of longer periods of time. The time-based approach provides a good compromise

between low intrusiveness versus characterization accuracy. In my implementation, event

measurements occur at a rate of approximately 2.5 seconds per measurement. This rate is

long enough to eliminate effects due to internal pipelining during data collection. Each of the

event counter measurements are normalized per active CPU cycle by computing the ratio of

the number of events per number of active cycles.

I use an open-source sample-based Linux tool called “perf”. This tool is capable of

monitoring events that are related to the CPU, the chipset, or some software.. perf consists
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of two portions; 1) software that is integrated into the Linux kernel that interacts with the

hardware and, 2) a user-space utility that interfaces to the kernel and gathers data (Figure

5.5).

Figure 5.5: perf Architecture

Selecting the most effective combination of events that can be monitored using HPC’s

from from those available in each ISA is a key concern. Initially, the events are chosen

based on their ability to yield appropriate side channel information that is indicative of the

presence of a malware exploit, or the presence of something other than a malware exploit

through basic experience and intuition in computer architecture [8]. In a later study, I relied

upon an automated method where feature selection is performed using PCA to determine

a set of highly correlated events that are relatively independent [35]. Because the number

of available PMU registers is limited, we used PCA to determine the highest contributing

events that correlate to the behavior of the malware that we intend to predict. PCA allows

the best set of events to be chosen that also provide different aspects of the behavior we wish

to detect. The results of the PCA [35] allowed us to choose the the "best" events that are

most relevant and that provide independent data sources. PCA results for Arm and Intel

are given in Tables 5.3 and 5.4 respectively.
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Table 5.3: Best Six Event Counters for ARM ISA based on Principal Component Analysis

Event Counter Type Description

Event 0x11 CPU cycles. We collect this event data in order to normalize other

events by the number of active CPU cycles

Event 0x12 Predictive branch speculatively executed. This event yields infor-

mation regarding when branch predictions are occurring and thus,

when the system is vulnerable.

Event 0x10 Mis-predicted or not predicted branch speculatively executed. Like

the previous event, we hypothesize this event could indicate when

the system is vulnerable.

Event 0x42 L1 data cache refill read. Monitoring this event may reveal when

the data cache is being traversed by the timing side channel exploit

Event 0x48 L1 data cache invalidate. Similar to the previous event, this event

may indicate cache checking by the SPECTRE exploit

Event 0x72 Operation speculatively executed: load/store. This event may in-

dicate vulnerability of the system because of speculatively executed

operations involved in branch prediction

Table 5.4: Best Six Event Counters for x86 ISA based on Principal Component Analysis

Event Counter Type Description

Event 0x41 Not taken speculative and retired mis predicted macro conditional

branches

Event 0x81 Taken speculative and retired macro-conditional branches

Event 0x82 Taken speculative and retired macro-conditional branch instruc-

tions excluding calls and indirects

Event 0x84 Taken speculative and retired indirect branches excluding calls and

returns

Event 0x88 Taken speculative and retired indirect branches with return

mnemonic
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Event 0x90 Taken speculative and retired direct near calls

5.3 Implementation of the Malware Detection System

In this section I will explain the hardware and software implementation used in the

detection system proof of concept. I will also explain the attack simulation approach and

how the specific machine learning algorithm was selected. I then analyze the results of the

detection system, and then describe how I extended the system to simultaneously detect

multiple variants of timing side channel attack.

5.3.1 Hardware Details

Arm and X86 are two commonly-used ISA’s in embedded systems and as edge processors.

Due to their popularity, I focused on these two ISAs for the implementation of the malware

detection system. Figure 5.6 show the block diagrams for the Arm and x86-based SoC’s. The

Arm-based SoC is a iMX8QM embedded multimedia processor from NXP Semiconductors

[41]. This heterogeneous SoC is a dual Arm/A72 core-based SoC with additional Arm A53

cores, graphics, and video acceleration processors. This device contains a total of two A72

cores and four A53 cores. In terms of the Arm-based implementation and corresponding

experiments, the malware detection method was implemented on the two A72 cores only.

The two A72 cores have a 16KB data cache and share a common a 1MByte instruction cache.

The x86 implementation is a 10 core i6950 multicore SoC with local 32 KB L1 instruction

and data cache and shared L2 and L3 cache.
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Figure 5.6: iMX8QM Embedded SoC and Intel i6950 Processor

5.3.2 Software Architecture

There are two main system components of the malware detection system. The Embedded

Detection Agent is responsible for configuring and collecting processor event counter samples

while the system is running. These samples are chosen to represent the runtime profile of

the active processes on the embedded device. These samples are then sent to Edge Detector.

The Edge Detector represents an edge-resident processor which uses the samples to predict

whether or not a malicious event is active. If so, the Edge Detector instructs the Embedded

Detection Agent to suspend or kill the malicious process.

The initial prototype system implements nine different application profiles used for both

the Arm and x86 based implementations. These application profiles executed as separate

processes in user space in a Linux environment. The profiles were chosen to represent com-

mon embedded tasks in an edge processing environment. These included;

1. the system idle task

2. I/O operations on the networking file system using iozone which is a common filesystem

benchmarking tool that creates and measures various forms of file operations

3. I/O operations on a SD card using iozone
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4. graphics operations using glmark2 which is a OpenGL function maintained by the

Linaro Graphics Working Group

5. TCP/IP communication function using iperf which is a tool for monitoring and mea-

suring bandwidth on IP networks

6. I/O operations on the networking file system using fio which is a tool that spawns

threads that then perform specified user I/O operations

7. Crypto operations using openssl which is a function that secures communications using

the SSL and TLS protocols

8. Linux benchmarking application using lmbench

9. the malware proof of concept application process

The eight application profiles as well as the SPECTRE proof of concept process were all

run in the user space in a Linux environment on both the Arm A72 cores of the iMX8QM as

well as the i6950 cores of the X86. Data from the event counters was collected for all nine of

the application types mentioned above. A random delay is used to start the measurements

to ensure that each measurement sampling is different. The Linux “perf” tool is used to

collect the event counter samples during run time. This tool uses a polling approach to

collect the event counter data. Interrupt driven approaches using a background process are

also possible.

Each of the application profiles is randomly selected for execution on the prototype

and logs are created allowing identification and labeling such that the supervised machine

learning model can be trained properly. The system is allowed to run for approximately 12

hours. This produces 16,000 labeled measurements. A script is then used to post process the

labeled samples in order to build the data set that we will use to create a machine learning

model.

The software architecture for the prototype detection system is shown in Figure 5.7. The

Embedded Detection Agent executes in user space on the embedded device. This system
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uses perf to collect the hardware based event samples from each of the application profiles

executing in user space of the target device. These samples are then sent to the Edge

Detector. The Edge Detector is responsible for classification of the information as either

an attack in progress or normal operation (no attack). The sample are collected using

a detection server and then classified using an attack classification process and a trained

machine learning model. If the Edge Detector predicts an attack, it will send a notification

of the process ID for the malicious attach to the Embedded Detection Agent which will then

kill the offending process.

The lab setup for this detection system is shown in Figure 5.8.

Figure 5.7: Software Architecture for the Detection System
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Figure 5.8: Lab Setup for the Detection System

A malware victim kernel module, designed to have a vulnerable driver, is implemented in

the kernel and is used to demonstrate the malware attack against the kernel space. Additional

kernel modifications were made to grant access to the PMU counters from user space since

the malware proof of concept uses the PMU counters as a timing measurement method.

The detection system continuously polls for the top three CPU loaded processes for detection

analysis in this prototype.

5.3.3 Initial Selection of Performance Counters

A principal approach of my method is the selection of features for inferencing and de-

tection. This includes the identification of the relevant event counters to extract from the

system. The selected events should contain counters that provide relevant information to

indicate side-channel attack operations based on their side effects. In phase one of the ex-

periments, the event counter selection was based on the recommendation of SME’s. These
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selections were made to also accommodate hardware capabilities for extracting these event

counters. More advanced techniques are available for selecting the most effective and effi-

cient event counters as well as architectural approaches for alleviating the limited hardware

extraction capabilities. From Table 5.1, the initial 5 ARM HPC events selected by my SMEs

were r10, r12, r42, r48, and r72. From Table 5.2, the initial six x86 HPC events selected by

my SME were r8188, r8288, r8488, r8888 and r9088.

5.3.4 Attack Simulation

The embedded SoC (Arm and x86) is infected with the malware exploitation code along

with instantiating the other application types described earlier. The approach to leak a

user-space secret to the attacker is to put processes in user space. The attacker runs in

unprivileged mode and interacts with the kernel through legal mechanisms such as syscalls.

The victim runs in kernel space. SoC event data is collected and used to train the model in

the Edge Detector. As the system is executing, prediction queries from the cores (iMX8 Arm

based SoC and x86 i6960) are collected. Data are collected from the most demanding CPU

processes running on the cores. Samples are collected from each of the individual processes

running on the cores of the SoC.

Testing was conducted on two machines. For the Arm experiments, one of the machines is

a laptop running Linux 4.14 and an iMX8QM SoC running Linux 4.14 built as an embedded

Yocto distribution. The Linux laptop is a Dell Latitude with a 1.3GHz Intel® i5 processor

and 4GB of main memory. The iMX8 SoC is a dual Arm A72 processor running at 1.6 GHz

with 1Mbyte of shared I2 memory. For the x86 experiments, the iMX8QM SoC was replaced

with a i6950 multicore x86 machine.

The same application use cases were also run in the same use scenarios on the x86 i6950

core. Data from the event counters is collected for the nine application types mentioned

above. The measurements are all started with a random delay so that each measurement

sampling is different. The Linux perf tool is used to collect the event counter samples during

runtime.

Each application is chosen at random for running on the test system and the selected
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application is logged along with its runtime on the system. The log enables each process to

be labeled so that the supervised learning model can be trained. The system is allowed to

run for approximately 12 hours in duration, resulting in 16,000 labeled measurements. A

script is used to post process the 16,000 labeled samples of raw data to build the dataset for

later processing.

The event measurements were taken continuously with measurements lasting about 2.5

seconds per measurement. This is long enough to eliminate any pipeline effects when col-

lecting the data. Each of these event counter measurements are normalized per active CPU

cycle by computing the ratio of the number of events per number of active cycles.

An environment was created that consisted of a total of 4,105 trials running for about

2.5 hours. During the 2.5 hour run time, the malware exploit was randomly activated 227

times. Other applications were also run during the 2.5 hour runtime. Other applications

were running when the malware exploit was activated in an attempt to provide a realistic

environment.

5.3.5 Selection of Most Optimal Machine Learning Algorithm for the Detection System

Prediction models were created using a number of different machine learning techniques.

The models are trained using a large amount of data gathered and processed from the

experimental environment. It was hypothesized that the processor event data, such as that

provided in Tables 5.1 and 5.2, could be used to form a feature vector that differentiates

between the binary machine states of “normal operation” versus “malware exploitation.”

The event counter data is preprocessed by applying normalization to the dataset by en-

suring each feature has zero mean and unit standard deviation. This approach is common for

machine learning algorithms that employ linear models. Benefits include speed convergence

and the prevention of one feature from dominating the decision boundary [42].

The data collected in the experiments was used to create a function that maps an input to

an output based on example input-output pairings. This is a classic approach for supervised

learning algorithms, since it is possible to annotate the collected dataset with responses. The

supervised machine learning approach is attempting to determine a classification of “attack
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present” or “something other than attack present,” so a “classification” approach is used in

this experiment. Each classifier assigns new examples (core events) to one category or the

other (attack or no attack).

In order to determine which type of classification model performs the best, several ma-

chine learning models were analyzed using a process called “forward chaining” cross valida-

tion. This is a statistical technique for estimating the robustness of machine learning model

performance with training and testing that are appropriately selected for time series data.

This approach is shown graphically in Figure 5.9 with four splits of the data set. Data is

selected for training from a contiguous time block of samples in the data set. A smaller

testing set is chosen from a contiguous block of data occurring after the training data. This

process is repeated multiple times using a longer block of contiguous training data and a

test set that occurs even further in time. This cross validation ensures that the analysis

does not violate any time boundaries. For example, it would not be proper to evaluate the

algorithm on test data when training data was sampled both before and after the testing

data blocks. Likewise, it would not be proper to select testing data and training data that

occur temporally close in time.
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Figure 5.9: Forward chaining cross validation example showing training and test data sepa-
ration for four splits

A number of different machine learning algorithms were considered. Figure 5.10 shows

the cross-validation results of several machine learning classifiers including;

1. DT’s using gini index and no pruning applied

2. GaussNB

3. RF’s with 100 trees

4. KNN with K=3 and Euclidean distance

5. SVM with radial basis function kernel, C=1, and gamma=0.001

6. MLP, with one hidden layer of ten neurons (MLP-10) and sigmoid activation functions

All classifiers were implemented using the open-source python machine learning toolkit,

scikit-learn [43]. The SVC was trained using LIBSVM, an open-source library for SVC.

The other hyper-parameters of the machine learning algorithms were chosen to be default

parameters.
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The bar chart in Figure 5.10 shows the mean recall, precision and F1-score averaged

across all testing folds. Error bars are also shown that indicate the “95% prediction interval”

of all the folds in the dataset. The prediction interval is defined as Mu ± 1.96 sigma for

each metric, calculated from the four train/test separations. All machine learning methods

perform well, ranging from 0.98 up to a perfect score of 1.00. Both KNN and SVM

performed perfectly on the training and test sets.

SVM is preferable over KNN due to the time it takes to predict which is very beneficial

in deployed models. KNN involves an exhaustive search over the training data for every

prediction, which can be time consuming for a deployed machine learning algorithm with

real time constraints. SVM was selected as the machine learning model to use for further

analysis. A SVM trained with a radial basis function is optimized by maximizing a decision

boundary margin in a large dimensional space [43–45] Since I am using a radial basis function

kernel, the theoretical dimensional space is infinite. This means the SVM can achieve

arbitrary decision boundaries based on the feature data.

Figure 5.10: Time series validated performance of machine learning models based on K-fold
cross validation
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I used contiguous train and test separation options and performed an analysis on the

amount of training examples required to achieve perfect true positive rate without any false

positives. Figure 5.11 shows a split vertical axis with the percentage of positive malware

exploits found on the left axis and the total number of false positives on the right axis. The

horizontal axis shows the amount of data points in the training set, ranging from 2,000 up

to 10,000 instances. As shown, using about 6000 data points for training achieves excellent

true positive rate, without any false positives.

Figure 5.11: False positives and true positives versus test sample size for SVM classifier

5.3.6 Feature Analysis of the SVM

While a SVM provides superior performance using cross validation, I wanted to under-

stand the performance of the SVM as a function of the amount of training data provided. I

analyzed the event counter data using SVM with increasing amounts of training data from

the 16,000 instance dataset.

Figure 5.12 shows the results of the analysis on test data for the SVM when the model
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is trained with 6,000 data points. The output of the classifier is shown over approximately

7.5 hours, along with ground truth for when the malware exploit was active. As shown in

Figure 5.12, the predictions correlate perfectly with ground truth. Each of the seven times

that the malware exploit is active, the SVM almost immediately detects it.

Figure 5.12: Ground truth versus predicted test data comparison

A confusion matrix was created in Table 5.5 and analyzed to determine the performance

of the classification model. In this set of experiments, FN occurred only once out of the 227

malware exploits experimented for the Arm based SoC. In the x86 experiments, FN occurred

6 out of 5099 malware exploits.

Table 5.5: Confusion Matrix Results for Timing Side Channel Attack experiment

P (Predicted) N (Predicted)

Arm x86 Arm x86

P (Actual) 94.47% (3878) 86.16% (31784) 0.024% (1) 0.01% (6)
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P (Actual) 0 0.01% (6) 5.51% (226) 13.80% (5093)

The confusion matrix is a fundamental measure of the performance of a binary predic-

tion or classification implementation in an experimental environment. But as mentioned

previously its also important to assess the key metrics of recall, precision, and F1 score for

the real time experiment. The results are shown in Table 5.6. These results are a strong

indication that the detection system is performing well.

Table 5.6: Confusion Matrix for Malware experiment

Metric Value Value

Arm x86

Recall 99.97% 99.98%

Precision 100% 99.98%

F1 99.98% 99.97%

Because the experiments were conducted under the framework of a supervised machine

learning model, the choice of the training data is a crucial aspect of the method. It is

important to craft a learning phase that is capable of characterizing the attack payload

behavior even when the actual exploit may be in the form of a zero-day exploit.

5.3.7 Analysis of Performance Counter Selection

An analysis of the feature importance was performed in the training data. I analyzed the

feature importance using a random forest classifier. This approach was chosen because it

has been shown to be highly consistent and has less bias than other methods. To investigate

importance, I used the feature permutation method as described in [46]. This approach mea-

sures importance by randomly permuting each feature into the random forest and observing

the degradation in performance from the permutation. Highly relevant features result in

large performance degradations.

Figure 5.13 shows the relative importance of the five ARM HPC features using this

method (higher indicates more importance). The features are the normalized event counter
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data that were selected using SME analysis. As observed in Figure 5.13, the “data cache

invalidate” (r48) event counter is a dominant feature in this experiment, as well as “data

cache refill read “(r12) and “Predictive branch speculatively executed “ (r42). None of the

features have an importance near zero. This indicates that all features contribute to the

performance of the classifier.

Figure 5.13: Feature Importance from the Random Forest Classifier

5.3.8 Extending the Detection System to Detect Multiple Attack Variants

Successful detection of the original timing side channel attack by the detection system

was encouraging, and motivated me to experiment with the detection of other variants of

timing side channel attacks. Several additional variants were considered [35];

1. Micro-op cache attack detection on x86 [3]; The x86 ISA contains a micro-op cache that

speeds up computing by storing simple commands which allows the processor to fetch

these commands quickly and earlier in the speculative execution process. However,

its possible for a hacker to steal data when the processor fetches commands from the

76

Feature Importances from Random Forest Classifier 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 
rl0 rl2 r42 r48 r72 



micro-op cache [3]. Attacks can exploit the micro-op cache to leak secrets across the

user-kernel boundary, across co-located SMT threads running on the same physical

core but different logical cores, and by using two transient execution attack variants

that exploit the micro-op cache timing channel.

2. Google SPECTRE browser proof of concept attack [2, 47]; Google has shared the re-

sults of their security team’s research on the exploitability of a SPECTRE-like attack

against web users. The Google Security Team has developed a fast versatile proof-of-

concept written in JavaScript which is designed to leak information from the browser’s

memory. The team also confirmed that the proof-of-concept, and its variants, func-

tion across a variety of processor architectures, hardware generations, and operating

systems. The Google proof of concept is publicly available in the community github.

This attack was reproduced using Chrome browser version 90.0.4430.85. It was tested

using the detection system, performing a similar process as what was done for the

micro-ops attack. Performance counter data was collected for the new attack variant

and integrated into the previous model. The new model was able to successfully detect

this variant as well as the original attack variant.

3. Spook.js attack [48]; Spook.js is yet another form of transient execution side chan-

nel attack which targets the Chrome web browser. This attack variant exploits the

SPECTRE vulnerability by taking advantage of the fact that web pages contain large

amounts of program code that get executed on a user’s computer each time it is loaded.

When an infected page loads the code, the code gets executed by the browser which

enables the hacker to steal confidential data. This has been demonstrated against ap-

plications such as Tumblr, Lastpass, and a Google server. Using the Spook.js proof

of concept implementation, a similar environment was created to reproduce the attack

using the detection system.

For each of these timing side channel attack variants, a prototype software application

was created that simulated the attack and integrated that proof of concept code into the

detection system as a process running in Linux user space. The same approach was used to

collect HPC data and train a model used to detect these variants [35].
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Figure 5.14 summarizes detector performance for these additional malware attack vari-

ants. The results indicate effective detector performance for the micro-op attack variant.

Detection performance shows no false negative or false positive conditions. The Support col-

umn in the table indicates the number of occurrences in each class. For the Google malware

attack variant the results indicate effective detection performance. For the Spook.js attack

variant experiment a larger number of false positives were reported. This is primarily due to

the fact that Spook.js is implemented as a single process executing inside a browser which

contains both attack and “normal” application code. This makes it more difficult to label

the counters for the normal code properly. Nevertheless, the attack variant is still detected

with a F1 score of .995.

Figure 5.14: Detection Performance for Malware Attack Variants

5.3.9 Simultaneous Detection of Attacks

I was able to confirm detection the new attack variants in isolation. The next step was

to extend the detection system to detect multiple types of attacks simultaneously using one

SVM model that was trained with the combined recorded samples from the original, Micro

op cache and Google SPECTRE PoC attack variants. Table 14 summarizes SVM perfor-
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mance for the initial malware prediction and the multiple malware attack model configura-

tions. The results for the combined attack scenario shows a slight degradation compared the

single malware attack variant.

5.3.10 Enhancing the Performance Counter Selection

The initial selection of performance counters delivered good results for original attacks,

with a slight degradation for the combined attack. These results encouraged me to further

assess counter selection to improve performance.

The HPC extraction registers are limited resources. For example, i7-6950X x86 Broad-

well processor used in this investigation has a capacity of 5 counters in its Performance

Monitoring Unit. The ARM Cortex-A72 cores present in i.MX8 processors has a capacity

of 6 counters. This limits how much information can be extracted in each cycle from the

processor using the perf tool to extract this information.

Recent improvements to kernel technology and the perf tool now provide software mech-

anisms for counter multiplexing and cycle scaling. This approach of cycle normalization

affords a larger number of events to be captured with high precision. The perf tool provides

a grouping mechanism for these events which further improves the precision by sampling the

cycle counters for each sub-group.

The approach focused on selecting features from a larger set of counters which capture

side channel attack operations and associated side-effects. The focused categories for the

experiments include speculative execution, branch prediction and related cache-based oper-

ations. Specifically, 35 counters types were identified for the x86 i7-6950X processor, and 38

counters types for the Arm A72 core that match these criteria.
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PCA was applied to the large set of counters and selected a subset of component for the

SVM algorithm. This allowed validation of the performance results with a reduced set of

information. Feature selection algorithms were then applied to identify and select the most

relevant features from the large set of counters. The goal was to match the HPC resource

limits for better data accuracy.

5.3.10.1 PCA Dimensionality Reduction

Given the highly dimensional multivariate event data, PCA was used to assess possi-

bilities of improving the performance of the model by eliminating correlated variables that

contribute little or no additional information to decision making.

Table 5.7 shows a summary of the results of PCA for the x86 and Arm based systems.

Thirty five x86 counters were collected for the malware based attacks. The top twelve

principal components provide 90% variance on the data. Thirty eight Cortex-A72 counters

were collected for the malware based attacks. The top ten principal components provide

90% variance on the data. 90% cumulative variance was the target. Figure 5.15 shows the

Scree plot for these variances.

Table 5.7: PCA Results for x86 and Arm Cortex A72 Performance Counter Data; Principle
Components Variance and Feature Contribution

Principal Component Variance x86 Variance Arm A72

1 .33 .35

2 .16 .15

3 .11 .11

4 .07 .10

5 .05 .05

6 .04 .05

7 .03 .04

8 .03 .03

9 .03 .02

10 .02 .02
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11 .02

12 .02

Total 0.903 0.92

Figure 5.15: Scree Plot for 90% Variance for Arm and x86

Figure 5.16 shows the plot of the transformed counter data in the planar space of the

top two principal components for x86 and Cortex-A72. The counter contribution to these

principal components are highlighted with the arrows representing the eigen vectors. Figure

5.16 also shows the transformed counters data into the 3D space of the top three principal

components and highlights the variance and separation of the data in the new sub-space.
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Figure 5.16: 2D and 3D representation of the top two principal components with the con-
tribution of each performance counter data for malware attack variant for a. x86 and b.
Cortex-A72

5.3.10.2 Feature Selection

Whereas PCA can reduce dimensionality using forms of linear dependency, feature selec-

tion algorithms take into consideration the target involved. In this case, a feature selection

algorithm will rank the input variables (in this case the event counters) in terms of usefulness

in detecting the target value, attack or no attack.

For feature selection I used a Gradient Boosting Classification algorithm [49]. Gradient

Boosted Decision Trees (GBDT) combine a stagewise additive model with the steepest-

descent minimization to optimize a loss function. The implementation from sci-kit learn was
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used with the default log loss function and 100 boosting stages. The feature importance is

computed based on impurity. A drawback of this approach is that the statistics are computed

only from the training dataset. This is obvious by running the algorithm with multi-fold

datasets an comparing the results. To address this short coming, a 10-fold dataset was used

and the results of the feature importance were averaged. The results for x86 and Arm are

listed in and Table 5.8 and Table 5.9. An alternative technique considered was Permutation

Feature Importance. This approach estimates and ranks feature importance based on the

impact each feature has on the trained machine learning model predictions. The results were

similar to the Gradient Boosting Classification approach.

I also assessed regression analysis for variable selection, where the variables are the pro-

cessor event counters. The technique used was the Least Absolute Shrinkage and Selection

Operator (LASSO). In the detector, the features (input variables to the model) are the core

events. Choosing the right input variables improves the accuracy of the model and reduces

noise. The features selection phase of LASSO helps in the proper selection of these variables.

My approach uses the Cross Validation option of LASSO which uses a linear model with

iterative fitting along the regularization path. Alpha was set automatically and we used

the default 1000 iterations and 5 fold cross validation. Though the accuracy obtained with

this selection was less performant, it confirmed the main key events determined with the

Gradient Boosting algorithm.

Table 5.8: Key x86 Core Events Selected from Gradient Boosting Feature Selection

Event Count Event Description

r0248 Number of times a request needed a FB entry but there was no

entry available for it

r0480 Cycles where a code fetch is stalled due to L1 instruction cache

miss.

r0CA3 Execution stalls while L1 cache miss demand load is outstanding
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r40D1 Retired load instructions which data sources were load missed L1

but hit FB due to preceding miss to the same cache line with data

not ready

r8889 Taken speculative and retired mis-predicted indirect branches with

return mnemonic

r0283 Instruction fetch tag lookups that miss in the instruction cache

(L1I)

r3824 Requests from the L1/L2/L3 hardware prefetchers or Load software

prefetches that miss L2 cache

r010D Core cycles the allocator was stalled due to recovery from earlier

clear event

r01C5 Mis-predicted conditional branch instructions retired

r8189 Taken speculative and retired mis-predicted macro conditional

branches

rF824 Requests from L2 hardware prefetchers

Table 5.9: Key Arm Core Events Selected from Gradient Boosting Feature Selection

Event Count Event Description

r7C Barrier speculatively executed - ISB

r7D Barrier speculatively executed - DSB

r7E Barrier speculatively executed - DMB

r1B Operation speculatively executed

r12 Predictable branch speculatively executed

r4C Level 1 data TLB refill - Read

r75 Operation speculatively executed - VFP

5.3.10.3 Performance Comparison

I integrated the large list of counters in the detection system and performed a comparison

of various configurations:
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1. “initial features” - the initial selection baseline

2. “features” - all relevant features used in detection, prior to feature selection

3. “principal components” - the key principal components accounting for 90

4. “feature selection” – reduced set of features listed in Table 5.8 and Table 5.9

Table 5.10 and Table 5.11 show SVM comparative performance for negative (normal

applications) and positive (attacks) results on x86. Table 5.12 and Table 5.13 show SVM

comparative performance for negative (normal applications) and positive (attacks) results

on ARM.

A comparison of results shows that the enhanced feature selection, summarized in Ta-

ble 5.8 and Table 5.9, provides significantly better results than initial selection [34] even

when reduced to match the HPC resources limit, and provides comparable results with the

performance of the large set of counters.

Table 5.10: SVM Performance Comparison on x86 – Negative (no attack)

Features/Negative Results Precision Recall F1 Score Support

6 initial features 0.980 0.984 0.982 7402

35 features 1.000 1.000 1.000 7402

12 principal components 1.000 1.000 1.000 7402

11 features selection 1.000 0.999 0.999 7402

6 features selection 0.999 0.999 0.999 7402

Table 5.11: SVM Performance Comparison on x86 – Positive (attack)

Features/Negative Results Precision Recall F1 Score Support

6 initial features 0.980 0.975 0.977 5934

35 features 1.000 1.000 1.000 5934

12 principal components 1.000 1.000 1.000 5934

11 features selection 0.999 0.999 0.999 5934
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6 features selection 0.999 0.999 0.999 5934

Table 5.12: SVM Performance Comparison on Arm – Negative (no attack)

Features/Negative Results Precision Recall F1 Score Support

6 initial features 1.000 0.922 0.959 2236

35 features 1.000 1.000 1.000 2236

12 principal components 1.000 1.000 1.000 2236

11 features selection 1.000 1.000 1.000 2236

6 features selection 1.000 0.999 1.000 2236

Table 5.13: SVM Performance Comparison on Arm – Positive (attack)

Features/Negative Results Precision Recall F1 Score Support

6 initial features 0.830 1.000 0.907 857

35 features 1.000 1.000 1.000 857

12 principal components 1.000 1.000 1.000 857

11 features selection 1.000 1.000 1.000 857

6 features selection 0.998 1.000 0.999 857

5.4 Performance Results

In this section we summarize the results from the experiments conducted using the timing

side channel attack detection system and the performance of the machine learning models.

5.4.1 Detection system robustness and performance

In this section I assess detection system robustness and performance by evaluating several

key performance metrics;

1. Receiver Operating Characteristic and Area Under the Curve; this measures the rate of

true positives with respect to the rate of false positives, which will assess the sensitivity

of the detection system.
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2. Gaussian noise models; this approach can reduce overfitting, improve robustness and

generalization and can lead to faster learning.

3. CPU load analysis ; this approach will assess the sensitivity of the detection system to

higher CPU loads for different application scenarios

4. Hyperparameter optimization; this approach is used to reduce the loss function and

increase accuracy on independent data

5. Root Mean Square Error and Accuracy; this will help determine how concentrated the

data is around the line of best fit. The lower the RMSE is, the better the model is to

fit a dataset.

5.4.1.1 Receiver Operating Characteristic and Area Under Curve

The effectiveness of the detection system was assessed using ROC and AUC. The ROC

was produced by re-combining and re-splitting the collected event counter data randomly.

Figure 5.17 plots the ROC for the malware detection system. Classifiers that produce curves

closer to the top-left corner indicate better system performance. By comparison, a random

classifier is expected to give points lying along the diagonal where FPR = TPR. The ROC

and AUC results in Figure 5.17 indicate that the detection system is performing well.

AUC aggregates the performance of the model at all threshold values and is a general

measure of predictive accuracy. The best possible value of AUC is 1 which indicates a

perfect classifier. The AUC for the detection system is 0.99.
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Figure 5.17: ROC for Detection System

5.4.1.2 Guassian Noise Experiments

The robustness of the detection system was assessed using several experiments using

different levels of application “noise”. I used the normal distribution function from the

mathematical library NumPy to obtain the median and mean of the data [50] and then

analyzed the impact on the confusion matrix results. The experiments involved repeatedly

re-running the trained classifier using test data with offsets generated from the standard

deviation. The experiments used increased values of standard deviation with a mean of zero.

The standard deviation values that modeled the noisy applications ranged from 1% to 70%

of the test data.

Figure 5.18 shows the plots of false negative (FN), false positive (FP), true positive

(TP), and true negative (TN) over the standard deviation percentage of the noise. These

results indicate good performance of the detection system in the presence of application noise

up to about 35% standard deviation of the original testing data.
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Figure 5.18: Confusion Matrix results for gaussian noise with different standard deviations

5.4.1.3 CPU Load Analysis

Additional experiments were performed to assess the robustness of the detection system

involved CPU load experiments. Two experiments were performed, one focusing on CPU

stress applications a second focusing on CPU utilization limits. The Linux tool “taskset” was
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used to set the CPU affinity for the running attack process using the task process ID (pid).

The stress applications were also affined to specific cores to simulate a jamming environment.

The first experiment focused on process fairness. The Linux scheduler assures CPU

fairness by dividing the available CPU cycles between the processes (33% available cycles

assigned to the attack process and 33% available cycles assigned to each of the two CPU stress

applications). Common applications such as YouTube were used as the stress applications.

I also used a subset of the stress applications discussed earlier and other custom developed

applications. In the second experiment the CPU cycles were limited when the attack process

was executing without the stress applications, using the “cpulimit” Linux tool. This tool can

be used to limit the CPU usage of a process.

In each of these two experiments, the performance results of the detection system were

similar to the scenarios without the CPU load adjustments.

5.4.2 Hyperparameter Optimization

Hyperparameter optimization was used to assess parameters to optimally control the

learning process and minimize the loss function [5, 51]. This can lead to additional perfor-

mance improvements for the detection system. I used a Grid Search algorithm to spot check

the data by defining a search space as a bounded domain of hyperparameter values and then

randomly sampling points from within that domain.

The grid search results performed extremely well as compared to the default on the testing

dataset. Table 5.14 shows a summary of the grid search results. The "mean test score" and

"std test score" are the subset of the training dataset that was used during cross-validation.

In this experiment, 180 models were tested. The "mean" and "std" rows represent the mean

and standard deviation of all 180 model performances. The min and max rows represent the

minimum and maximum values found from the models. The percentages rows are the values

of models found at the respective quartiles.

Table 5.14: Grid Search Mean Results
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Count 180 180

Mean 0.949039 0.001029

Std 0.113166 0.001531

Min 0.551556 0.000000

25% .970107 0.000066

50% 0.987477 0.000337

75% 0.999081 0.001228

Max 0.999963 0.006937

Figure 5.19 shows the confusion matrix for the hyper-tuned SVM model. This has more

false-negative predictions than the default SVM. As the amount of training data is increased,

the hyper-tuned SVM produces fewer false negatives. In addition, as the amount of training

data is increased, there are more false negatives the default-SVM records. This difference is

small, just 1-2 false negative values in total, since there were already very few false negatives

to begin with. The hyper-tuned SVM is less prone to overfitting as the size of input data

increases, which I believe is related to the lower standard deviation of the training validation

scores. Also, the hyper-tuned model parameters were found to have lower standard deviation

on their testing scores than the default parameters.
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Figure 5.19: Hyper-Tuned SVM Confusion Matrix

5.4.2.1 Root Mean Square Error and Accuracy

My next assessment of detection system performance was to compute the Root Mean

Square Error which is a risk metric corresponding to the expected value of the squared or

quadratic error or loss in system performance. I first varied the Gaussian noise applied to

the samples. I then used the "mean squared error" and "metrics accuracy score" functions

from skikit for each Gaussian noise selection. Measurements were done for the 11 selected

features and number of samples discussed in Section 5.5.4. Figure 5.20 shows the detection

system remains robust up until approximately 35% of the standard deviation of noise. The

accuracy score represents the ratio of the sum of the true positives and the true negative for

all of the predictions ((TP+TN)/(TP+FN+TN+FP)).
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Figure 5.20: RMS Error versus Accuracy
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5.5 Conclusions

A method was developed for the detection of branch prediction and speculative side chan-

nel attacks using hardware performance counters and machine learning detection methods.

The technique expands upon previous work in this area by developing robust detection tech-

niques using a support vector machine. The technique is based upon monitoring on-board,

hardware event counters rather than characteristics of the targeted data. The technique

requires a minimal amount of modification to an embedded or edge-based computer sys-

tem since it uses pre-existing event counters and supporting circuitry and associated sys-

tem software assets with no additional hardware required. Multiple variants of the attack

were reproduced and detected concurrently including a standard SPECTRE variant, as well

as timing based side channel attack variants including a micro-ops cache based variant, a

Chrome browser variant and a Spook.js malware variant.

I was able to demonstrate this approach working on both Arm and x86 instruction set

architectures.

Forward chaining cross validation was used to determine the most optimal machine learn-

ing method for this detection scenario and determined that a SVM was the most optimal for

this approach. Confusion matrices were created as well as key performance metrics of recall,

precision, and F1 to determine that the SVM approach was performing well.

Feature selection algorithms were used to determine the optimum event counters to

achieve maximum performance. The performance of these counter selections was compared

against an original selection based on subject matter expert analysis and showed significantly

better results. I measured the effectiveness of the detection system using ROC and AUC

and determined that the detection system performs robustly.

I assessed speed and quality of the detection system learning process using hyperparam-

eter optimization and concluded that the detection system was optimized.

I assessed the robustness of the detection system by developing experiments with increas-

ing amounts of application noise using a gaussian model with a scalable selection of random
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noise as well as experiments in varying the CPU loading of the stress applications and attack

processes.
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