
1

An FPGA Approach for SNR Estimation Using Phase-Only
Data

 A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science in Computer Systems Engineering

By

Pramodini Arramreddy, B.S.E.E.
Andhra University, 1997

August 1999
University of Arkansas

2

An FPGA Approach for SNR Estimation Using Phase-Only
Data

3

This thesis is approved for
recommendation to the
Graduate Council

Thesis Director:

 Dr. Mitch Thornton

Thesis Committee:

 Dr. David L. Andrews

 Dr. Jonathan Simonson

4

Thesis Duplication Release

I hereby authorize the University of Arkansas Libraries to duplicate this thesis when

needed for research and/or scholarship.

Agreed

Refused

5

Table of Contents

1. Introduction ………………………………………………………………. 1
1.1. Motivation ……………………………………………………… 1
1.2. Thesis Description …………………………………………….. 2
1.3. Organization of Thesis …………………………………………. 3

2. SNR Estimation ………………………………………………………….. 4
2.1. SNR Estimation Techniques ……………………………………. 4
2.2. SNR Estimation using phase-only data ………………………… 5

3. CORDIC Theory …………………………………………………………. 6
3.1. Number Systems ………………………………………………. 6

3.1.1. Word Format ………………………………………… 7
 3.1.2. Decimal Numbers …………………………………… 7
 3.1.3. Angle Representation ……………………………….. 7

 3.2. CORDIC Algorithm …………………………………………… 11
 3.2.1 Vector Rotations …………………………………….. 11
 3.2.2. CORDIC Equations …………………………………. 13
 3.2.3. Scale Factor (K) ……………………………………… 13

 3.3. Modes of Rotation ……………………………………………… 13
 3.3.1. Coordinate Systems ………………………………….. 14
 3.3.2. Rotation Modes ………………………………………. 15

 3.4. Computed Functions ……………………………………………. 17
 3.4.1. Directly Computed Functions ………………………… 18
 3.4.2. Indirectly Computed Functions ………………………. 19

 3.5. Limitations, Accuracy and Error Analysis ………………………. 20
 3.5.1. Limitation Range ……………………………………… 20

 3.5.1.1. Correction Iteration ………………………….. 20
 3.5.1.2. Number System ……………………………… 21

 3.5.2. Accuracy ………………………………………………. 21
 3.5.3. Error Analysis …………………………………………. 23

 3.6. CORDIC Examples ……………………………………………… 23
 3.6.1. Rotation Mode …………………………………………. 23
 3.6.2. Vectoring Mode ………………………………………… 24
3.7. Review ……………………………………………………………. 25

4. Programmable Logic Devices ………………………………………………. 27
 4.1. Reason for FPGA Approach ……………………………………….. 27
 4.2. FPGA Background ………………………………………………… 28
 4.3. FPGA Technologies ………………………………………………. 30

6

 4.3.1. Xilinx XC4000 Family ………………………………….. 31
 4.3.2. Lucent ORCA Series 3 Family ………………………….. 33
 4.3.3. Actel 54SX Family ……………………………………… 35
 4.3.4. Altera FLEX 10KE Family ……………………………… 38
 4.3.5. Quicklogic PASIC 3 Family …………………………….. 41

 4.4. Hardware Partitioning ……………………………………………… 42
4.4.1. FPGA Partitioning Considerations ………………………. 42

5. SNR Estimation using Phase-Only Data …………………………………… 45
 5.1. Motivation …………………………………………………………. 45
 5.2. Digital Receiver …………………………………………………… 45
 5.3. Theory and Analysis of SNR Technique ………………………….. 46

 5.3.1. Calculating the Phase Margin …………………………… 46
 5.3.2. Estimating the Ambiguity Rate …………………………. 49

5.3.3. Signal to Noise Ratios and Phase Error …………………. 50
5.3.4. Conclusions ……………………………………………… 56

5.4. Review ……………………………………………………………. 56

6. Implementation and Results ………………………………………………… 57
 6.1. CORDIC Tradeoff …………………………………………………. 57

 6.1.1. Bit-Serial CORDIC Design ……………………………… 58
 6.1.2. Simulations ………………………………………………. 59
 6.1.3. Logic Synthesis for Field Programmable Gate Arrays ….. 59
 6.1.4. Speed versus Area Tradeoff ……………………………… 60

 6.2. Block Diagram …………………………………………………….. 62
6.3. SNR Estimation ……………………………………………………. 64

7. Conclusion …………………………………………………………………… 66
7.1. Thesis Results ……………………………………………………… 66
7.2. Future Directions …………………………………………………… 67

Bibliography …………………………………………………………………….. 68

Appendix A - Source Code ……………………………………………………… 71

7

1. Introduction

1.1. Motivation

In Digital Communications systems, Signal to Noise Ratio (SNR) is an

important input parameter for a variety of equalization and decoding algorithms. There

has been some work published on the problem of SNR estimation. An initial effort was

accomplished by Benedict and Soong in 1967 [19]. They “computed the SNR from

higher-order averages of the envelope of a modulated signal” [26]. Next, an article

about the “correlation properties of signal and noise in narrowband channels” [26] was

published by Shah and Hinedi [20]. Later, Pauluzzi and Beaulieu [21] analyzed several

SNR estimation techniques and studied the comparison between them.

The work presented here is unique since there are various SNR estimation

techniques where the parameter is estimated using the amplitude of a signal [19], [22].

This thesis presents the idea of developing an SNR estimation circuit using phase-only

data. This is achieved by using the CORDIC [1], [6] (COordinate Rotation DIgital

Computer) algorithm which calculates the phase of a complex vector. This technique is

useful in applications such as transmission over fading channels, where both current

signal and current noise powers are unknown.

1.2. Thesis Description

8

The objective of this thesis is to develop a prototype SNR estimation circuit to

show the feasibility and performance of the SNR estimation algorithm by implementing

in an FPGA. This serves as an extended application for CORDIC rotator. An

algorithm that uses minimum operations such as shifting and adding to compute

arithmetic operations such as trigonometric, linear and hyperbolic functions is known

as CORDIC algorithm. This was the result of work done by Jack Volder [1] in 1950’s.

Later, CORDIC was extended to cover many directly and indirectly computed

functions which are discussed later in this report.

“CORDIC is a class of iterative solutions for trigonometric and other

transcendental functions” [5]. All the trigonometric functions are computed using

vector rotations. These vector rotations can be used for polar to rectangular and

rectangular to polar transformations which in turn can be used in real-time navigation

problems like radar signal processing in which the complex data is used during

processing in Cartesian form and the target computer requires the output to be in polar

form. In this case, a vector magnitude processor is used to convert from Cartesian

space to polar form. In this work, the SNR estimator uses the CORDIC rotator to find

the phase of the incoming signal which is represented in rectangular form (separate

“in-phase” and “quadrature” channels, I and Q).

The reason this design is implemented in an FPGA based circuit is to study the

performance of the SNR estimation circuit. Field Programmable Gate Arrays (FPGAs)

have emerged as a matured technology and are changing the way electronic systems

are designed and implemented. The components of this user-programmable hardware

9

device lie uncommitted on an already fabricated chip and can be programmed by the

designer to implement any kind of digital circuit [8]. The most popular FPGA

architectures use either a look-up table (LUT) or a multiplexer-configuration as a basic

building block.

1.3. Organization of Thesis

This thesis is roughly divided into two parts. The first part addresses the

implementation of CORDIC algorithm. The CORDIC processor is designed and

implemented using VHDL, a hardware description language used to describe digital

electronic systems. This VHDL design is mapped into different FPGA architectures

using a software synthesis tool called Synplify to analyze speed and area tradeoff

between architectures. The second section concerns the estimation of the SNR using

Phase-Only data. The technique is described and implementation details are given. The

thesis concludes by giving observations of the results and outlining areas of future

investigation.

10

2. SNR Estimation

In analog and digital communications, signal-to-noise ratio is defined as a

measure of signal strength relative to background noise. The ratio is written as S/N or

SNR and is usually measured in decibels (dB). “The purpose of signal-to-noise ratio

(SNR) estimation is to estimate the ratio of signal power to noise power at the

receiver” [26]. A significant research has been done on the problem of SNR estimation

over the past decades. This chapter discusses some of the SNR estimation techniques

developed by several research groups.

2.1. SNR Estimation Techniques

SNR estimation has been the topic of many research papers, some of which are

listed in this section. Benedict and Soong “computed the SNR from higher-order

averages of the envelope of a modulated signal” [26] by calculating carrier strength

and narrowband additive noise strength seperately from N envelope samples [19].

“This estimation is useful in the radar analysis of targets containing both specular and

distributed components” [19].

“Symbol signal-to-noise ratio is an important parameter in system evaluation,

and more specifically in digital communications since the performance of telemetry

systems can be expressed in terms of the symbol SNR” [20]. Shah and Hinedi

developed “split symbol moments estimator (SSME) which is an algorithm used to

estimate symbol signal-to-noise ratio (SNR) in presence of additive white guassian

11

noise (AWGN)” [20]. A real-time SNR estimator can be used in monitoring algorithm

which helps to detect problems and fix them as they occur.

A symbol SNR estimator was introduced and studied by Gilchriest [24] that

works efficiently only for the strong signal cases. This algorithm provides an SNR

estimate by using the absolute value of the matched filters. The performance of the

same estimator is again studied by Layland [25] for the weak signal case.

Another SNR estimator was introduced by Edbauer in which inphase and

quadrature components of a demodulator are used to generate analog signals. “These

voltages are proportional to total power and to noise power, respectively, and provide

a symbol SNR estimate after further processing” [20].

“It is difficult to calculate the SNR if only the noisy signal is known and neither

the transmitted nor the noise are known” [26]. Therefore, an SNR estimation

algorithm is developed by using second and fourth-order moments. “The SNR is

estimated by observing the noisy signal if only the shapes of signal and noise pdf’s are

known” [26].

2.2. SNR Estimation using phase-only data

Several SNR estimation techniques are discussed in the previous section. This

technique which is discussed in this thesis estimates the SNR by calculating the phase

error in presence of additive white guassian noise (AWGN). This phase error is

calculated using the vectoring mode of CORDIC algorithm which is explained in detail

in the next chapter. This technique is discussed in detail later in this report.

12

3. CORDIC Theory

In 1956, J. E. Volder [1] introduced a set of algorithms to calculate

trigonometric and hyperbolic functions. Later in 1959, he developed a COordinate

Rotation DIgital Computer (CORDIC) for the computation of arithmetic operations

and trigonometric functions. In 1971, Walther [2] extended these results to a single

unified algorithm with improved functionality. Since then, CORDIC has been

researched and improved by a number of groups [3] - [5] and has been used in a wide

number of applications such as the Intel 8087 Math Coprocessor [23], the Hewlett-

Packard HP-35 calculator and various robotics applications [6]. Most commonly, the

CORDIC algorithm has been used in DSP applications such as Radar Signal

Processors.

CORDIC computes elementary trigonometric functions, multiplication and

division using only simple addition and binary shifting. It provides an efficient way of

handling calculations that are most easily described in terms of rotations or angles.

This has a great influence on the hardware organization, especially in terms of circuit

complexity.

3.1. Number Systems

Before going into the details of CORDIC algorithm, it is essential to

understand the number system that it uses. CORDIC uses a binary number system to

13

represent decimal values and the angle (in degrees) of rotation. This section describes

the representation of binary number system.

3.1.1. Word Format

In the following, it is assumed that all words are represented in a fixed point

form. The input and output values are composed of 17 bits with 13 fractional bits, 3

integer bits and 1 sign bit (1 for -ve values and 0 for +ve values). All negative values

are represented in 2’s compliment form.

3.1.2. Decimal Numbers

CORDIC calculates in terms of decimal numbers, but uses binary numbers to

represent them. This is possible through the use of fixed-point numbers. In this system,

the left most bit is a sign bit, 1 for negative number and 0 for positive number. Each

digit is half the value of the bit to its left. Figure 3.1(a) illustrates the fixed-point

representation of a decimal number of word length 17. The number after the decimal

point designates the fractional part. The number before the decimal point represents

the integer part. In the case of 1.17, the 17 means that there are 17 binary digits in the

number including one sign bit and one of them is the integer number. A 1.17 number

can range between [-1 and 1]. Figure 3.1(b) illustrates 4.17 numbers. The range of

4.17 numbers is [-8 and 8].

3.1.3. Angle Representation

The same process as described above is used for Binary Angle Measurement

(BAM). Usually, 1.9 numbers are used to represent angles in CORDIC. Figure 3.2(a)

illustrates how these angles are represented. In a 1.9 binary angle, bit ‘1’ represents

14

positive angle and ‘0’ represents negative angle. The most significant digit is 900 (‘1‘

for +900 and ‘0’ for -900). Each digit afterward represents an angle (positive or

negative) which is measured based on arctangents.

1 . 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 -1 10 .001953125
2 .5 11 .0009765625
3 .25 12 .00048828125
4 .125 13 .000244140625
5 .0625 14 .0001220703125
6 .03125 15 .00006103515625
7 .015625 16 .000030517578125
8 .0078125 17 1.52587890625e-5
9 .00390625

Ex : 0.0001101101010001 .0625 + .03125 + .0078125 + .00390625
 + .00097656 + .000244141 + .0000015258

= 0.106690979003

Ex : 1. 0001101101010001 - .0625 + .03125 + .0078125 + .00390625
 + .00097656 + .000244141 + .0000015258

 = - 0.106690979003

 3.1(a)

Since CORDIC deals with angular rotations, each time a new value is

computed, a different angle is used. This poses a problem because it is not feasible to

modify the processor each time a different angle is to be used. This problem can be

solved by using a sequence of directions for the elementary rotations [6]. This

sequence can be represented by a decision vector and these decision vectors are in turn

used to represent the angle based on binary arctangents. In Figure 3.2(b), an angle

series of 450, 26.560, 14.040, 7.1250 and so on is being used to rotate a vector in

15

1 2 3 4 . 5 6 7 8 9 10 11 12 13 14 15 16 17

1 -8 10 .015625
2 4 11 .0078125
3 2 12 .00390625
4 1 13 .001953125
5 .5 14 .0009765625
6 .25 15 .00048828125
7 .125 16 .000244140625
8 .0625 17 .0001220703125
9 .03125

Ex : 0001.0010010010001 1 + .125 + .015625 + .001953125 +
 .0001220703125 = 1.142700195312

Ex : 1001.0010010010001 -1 + .125 + .015625 + .001953125 +
.0001220703125 = -1.142700195312

3.1(b)

Figure 3.1 Fixed Point Representation of Decimal Numbers

1 . 2 3 4 5 6 7 8 9

 1 900

 2 450

 3 26.560

 4 14.040

 5 7.1250

 6 3.5760

 7 1.7890

 8 0.8950

 9 0.44760

Ex : X.11010001 45 + 26.56 - 14.04 + 7.125 - 3.576 - 1.789 - .895
 + .4476 = 58.83060

Ex : X.00110101 -45 - 26.56 + 14.04 + 7.125 - 3.576 + 1.789 - .895
 + .4476 = -52.62940

Ex : 1.11010001 90 + 45 + 26.56 - 14.04 + 7.125 - 3.576 - 1.789
 - .895 + .4476 = 148.83060

Ex : 0.00110101 -90 - 45 - 26.56 + 14.04 + 7.125 - 3.576 + 1.789
 - .895 + .4476 = 142.62940

Figure 3.2(a) Binary Angle Measurement (BAM)

16

the first quadrant to the x-axis. First, the vector is rotated towards the x-axis by 450.

The next rotation moves 26.560 in the other direction. The third rotation moves 14.040

again in the other direction and the rotation moves 7.1250 closer. This process will

continue using more and more smaller angles for more precise over all rotation. Each

cycle is called an iteration. As seen from the figure, the last rotation is almost aligned

to the x-axis.

58.83060 (start)

13.83060 (iter #1)

-12.72940 (iter #2)

1.31060 (iter #3)

-5.81440 (iter #4)

• -2.23840 (iter #5)

• -0.44940 (iter #6)

• 0.44560 (iter #7)

• 0.0020 (iter #8)

Figure 3.2(b) Angle Sequences

This method allows for the addition or subtraction of a particular angle to be

made at run time. This means that only the sequence of angles has to be

17

predetermined. The value of the previous angle total can be used to determine whether

the current angle is added or subtracted. As a result, the total number of angles that

can be represented by a particular sequence of angles is equal to the number of

combinations of adding and/or subtracting the sequence.

3.2. CORDIC Algorithm

This section derives CORDIC equations from the general rotation transform

and also explains the scale factor.

3.2.1. Vector Rotations

Now that it has been established that different angles can be represented, the

next topic to is how the new vector is to be computed. The CORDIC Algorithm is

derived from the general rotation transform [6].

x’ = xcos� - ysin�

y’ = ycos� + xsin�

which rotates a vector [x, y] in cartesian plane by an angle � resulting in the new

vector [x’, y’]. The above equations can be rewritten as:

x’ = cos� [x - ytan�]

y’ = cos� [y + xtan�]

“If the rotation angles are restricted so that tan� = � 2-I (i.e., we use BAM),

then the multiplication by the tangent term is reduced to a simple shift operation” [6].

The cos� term is considered to be a constant, if the decision at each iteration, i,

depends on the direction of vector rotation. The above equations can be now reduced

to:

18

xi+1 = Ki[xi - yi .di .2
-i]

yi+1 = Ki[yi + xi .di .2
-i]

where

Ki = cos� = cos (tan-12-i) = 1/�1 + 2-2i

di = �1

The above iterative equations results in a simple “shift-add algorithm for vector

rotation” [6] by neglecting the scale constant. An angle accumulator that uses an

additional adder-subtractor that accumulates the elementary rotation angles at each

iteration can be used. The elementary angles can be expressed in any angular units.

This results in the third difference equation for the CORDIC algorithm.

zi+1 = zi - di . tan-1(2-i)

Figure 3.3 Basic Vector Rotation

zi

 zi+1

Tan-1(2-i)

yi

yi+1

xi+1 xi

yi.di.2
-i

xi.di.2
-i

19

3.2.2. CORDIC Equations

Now that the rotation technique has been established, it is necessary to tie the

three difference equations together. The final CORDIC equations used for

implementation of several trigonometric functions are given by :

xi+1 = xi - yidi2
-i

yi+1 = yi + xidi2
-i

Zi+1 = zi - ditan-1(2-i)

3.2.3. Scale Factor (Ki)

The scale factor Ki is given by

Ki = 1/� 1 + 2-2i

“The product of Ki’s can be treated as a part of system processing gain. As the

number of iterations approaches infinity, the gain approaches 0.6073” [6]. Therefore

Lim

The system gain is calculated from the expression

An = � n� 1 + 2-2i

which depends on the number of iterations.

3.3. Modes of Rotation

There are other factors that play a part in this process. The main factors are the

choice of the coordinate system and the modes of rotation. The coordinate system

designates the equation that is used to determine the angle for a particular rotation.

The sequence of angles are chosen correctly so that it sets the rotation of a vector in

i -> �
An = Ki = 1.647

20

the selected coordinate system. The selected mode of rotation helps to determine

whether every angle is added to or subtracted from the total.

3.3.1. Coordinate Systems

The CORDIC algorithm is capable of rotating in three coordinate systems:

Circular, Linear, and Hyperbolic. The vector rotation depends on the type of

coordinate system which in turn changes the results of the overall rotation. Figure 3.4

illustrates the three different coordinate systems.

The Circular coordinate system, Figure 3.4(a), means that the top edge of the

original vector lies on a circuar arc. As the vector is rotated, the top edge of the vector

moves on the circular arc. Similarly, the Linear system, Figure 3.4(b) describes a

vector whose top edge lies on a line. The top edge of the vector remains on the line as

it is rotated. In the case of Hyperbolic coordinate system, Figure 3.4(c), the top edge

of the rotated vector always lies on a hyperbolic curve.

Figure 3.4 Coordinate Systems

y

x x x

y y
m = 1 m = 0 m = -1

(a) Circular (b) Linear (c) Hyperbolic

21

As shown in Figure 3.4, each coordinate system will give different final vector

for an initial vector rotated by the same angle. For example, if the vector located at 450

in every case is rotated to the x-axis, then for each coordinate system, a very different

vector is calculated.

3.3.2. Rotation Modes

CORDIC calculates three values during a rotation: X, Y and Z. The X value is

the x component of the vector. The Y value is the y component of the vector and the Z

value is the accumulation of the sequence of angles. Thus, this algorithm operates in

two types of rotation modes, rotation and vectoring.

In the rotation mode, the coordinate components of a vector (X and Y) and the

angle of rotation, Z are given and the coordinate components of the original vector are

calculated. The X register is always loaded with a unit vector and the Y register with

the zero vector, which means that the magnitude of the given vector is always

normalized with the given desired angle.

Figure 3.5 Rotation Mode

x x

y y

Cos(z)

Sin(z)

z z

22

In the Figure 3.5, the X and Y components are given with normalized values with

desired rotation angle, Z. At the end of the iterations, the values in X, Y ends up with

the new values and a zero in Z. The value of di depends on the desired angle at each

iteration. This is sometimes referred to as “forcing to zero”.

The CORDIC equations for Rotation Mode are :

xi+1 = xi - yi .di .2
-i

yi+1 = yi + xi .di .2
-i

Zi+1 = zi - di . tan-1(2-i)

where
di = -1 if zi < 0, +1 otherwise

which provides the following result :

xn = An[x0cosz0 - y0sinz0]

yn = An[y0cosz0 + x0sinz0]

zn = 0

In the vectoring mode, the coordinate components of a vector are given and

the magnitude and angular argument of the original vector are calculated. Figure 3.6

shows the basic idea of vectoring mode. This mode starts with the component values

of the initial vector in X and Y just as in the previous case. The difference is that the Z

register starts out with a value of zero. This time instead of “forcing to zero” the idea

is to “force Y to zero”. The vectoring function works by minimizing the Y component

of the residual vector at each rotation. The value of di is decided based on the value of

Y vector after each iteration. As a result, at the end of the iterations, the Z register

23

contains the value of the angle by which the original vector was rotated and Y is equal

to zero.

Figure 3.6 Vectoring Mode

The CORDIC equations for Vectoring Mode are :

xi+1 = xi - yi .di .2
-i

yi+1 = yi + xi .di .2
-i

Zi+1 = zi - di . tan-1(2-i)

where
di = +1 if yi < 0, -1 otherwise

which provides the following result :

xn = An�x0
2 + y0

2

yn = 0

zn = z0 + tan-1(y0/x0)

3.4. Computed Functions

As stated earlier, the CORDIC algorithm is capable of calculating many

different trigonometric functions. Some are calculated directly, while others are

computed indirectly by using directly computed functions.

3.4.1. Directly Computed Functions

y

x x

y

z

z

24

Figure 3.7 illustrates the functions that can be directly computed by a CORDIC

processor. By choosing a particular coordinate system and rotation mode, the different

results can be selected. These functions can be further refined by selectively loading

the registers. For example, if the desired function is 2*cos(450), then the “2” is loaded

into the X register, the “45” is loaded into the Z register, and “0” is loaded in the Y

register. This cancels out the Y*sin(Z) part of the equation. When the process is

finished, then the result can be found in X register.

One of the strengths of this system is the fact that each of the directly

calculated functions requires the same amount of time to calculate. This can be very

useful in pipelined applications or in highly parallel applications. These two

architectures depends on a rigidly sequenced flow of data.

Many other functions can be calculated with a CORDIC processor than are

shown in Figure 3.4., which means that other functions can be computed indirectly. As

a result, any function that can be represented in terms of the directly computed

functions can also be calculated with this processor. Some of the examples are shown

below : [2]

tan(z) = sin(z) / cos(z)

tanh(z) = sinh(z) / cosh(z)

exp(z) = sinh(z) + cosh(z

ln w = 2tanh-1(y/x) where x = w+1 and y = w-1

�w = (x2 - y2)1/2 where x = w + ¼ and y = w - ¼

3.4.2. Indirectly Computed Functions

25

Figure 3.7 Directly Computed Functions

26

These are certainly not the only possibilities. These functions may be computed by

calculating part of the answer during the first pass through the processor and then by

using these results to calculate the next part of the function. This process is continued

until the desired function is computed. Very complicated algorithms can be completely

implemented using CORDIC by connecting the output of one processor to the input of

the other.

3.5. Limitations, Accuracy and Error Analysis

The functionality of a processor that is based upon this concept will suffer from

some limitations. The major factors that contribute to this be discussed here. Each of

these factors will directly affect the size, speed and complexity of the processor.

3.5.1. Limitation Range

The range of limitations means that the processor is only capable of operating

within confined regions, namely quadrants I and IV. In this case, the processor’s

limitations are set by correction iteration and the chosen number system. Correction

iteration allows to operate in all the four quadrants by additional rotation and the

normalized data is used in this application to improve the precision.

3.5.1.1. Correction Iteration

“The CORDIC rotation and vectoring algorithm, as mentioned earlier, are

limited to rotation angles between -�/2 and �/2. This limitation is due to the use of 20

for the tangent in the first iteration” [6]. An additional rotation is required to improve

the rotation angles larger than �/2. This additional rotation is described by Volder[1]

with an initial rotation of ��/2. This gives the correction iteration [6] :

27

x’ = -dy

y’ = dx

z’ = z + d�/2

where d = +1 if y < 0, -1 otherwise

This reduction form assumes a modulo 2� representation of the input angle.

3.5.1.2. Number System

The chosen number system can be a form of limitation for a CORDIC

processor. Figure 3.1 illustrates how a 17-bit binary number can represent two

different ranges of values. A 1.17 number represents numbers between -1 and 1 while

a 4.17 number represents numbers between -8 and 8. The tradeoff in this situation is

precision. A 4.17 number represents a wider range of values but has 3 (numbers from

1-4 should be symbols) less bits of precision as a result. To settle this tradeoff, the data

to be run through the processor should be examined and a number system that is

application to the application should be chosen. Many previous applications have

required the use of normalized data.[7,8]

3.5.2. Accuracy

There are two major factors that can have an affect upon the accuracy of a

CORDIC processor. The number of rotations is another way of specifying the number

of angles in the rotation sequence. In most cases, the number of rotations should be

about the same as the number of bits. This is because the number of rotations can be

considered to be linked indirectly to the number of shifts performed during a rotation.

A large number of rotations will help to increase the precision of the overall rotation

28

The number of rotations should be established such that the last rotation has as

many shifts as there are significant bits in the data. However, it has been observed that

the precision is almost constant after eight rotations. Therefore, this implementation

considers eight number of rotations eventhough it uses 16-bit data, which in turn

reduces the complexity of the overall circuit.

As a preceding component is shifted and added to another number, there is a

certain amount of error produced. Consider a 16 bit number that is shifted by three

places to the right. The lower three bits are truncated from the number in order to

keep the correct size of the number. When this new value is added to another number,

a rounding error can occur due to that truncation. The error is compounded, because

the error from the previous rotation is passed to the next which adds in its own error.

However, this error “can be rendered harmless by using L + log2L bits for the storage

of intermediate results” [2 p. 383], where L is the number of significant bits in the

number. For example, if a 16 bit number is given as an input to the system, then the

number of bits used in the intermediate steps should be 16 + log216 = 20 bits. When

the answer is computed, the lower four bits can be truncated from the answer.

This process is not necessary if it is not critical that the answers be exact to the

last digit. The difference between 16 bits and 20 bits in a large system could mean a

substantial increase in the size of the processor in terms of required logic. A choice

must be made between accuracy and system size.

29

3.5.3. Error Analysis

Not only is truncation error due to the truncation of the LSBs as stated in the

above section responsible, but there is angular error caused by the rotation angle.

When the rotation angle lies exactly on the x-axis, there is no angular error. However,

in the practical sense, the rotation angle will not be exactly zero. Since this

implementation performs eight CORDIC iterations, the maximum error observed in

phase angle of the resultant value is �0.408�0.

3.6. CORDIC Examples

For better understanding of CORDIC algorithm, this section will present

examples of rotation mode and vectoring mode calculations performed in decimal

number system.

3.6.1. Rotation Mode

Table 3.6.1 contains an example of rotation in circular coordinate system using

rotation mode[6]. Notice that the Z register is forced to zero at the end of the

iterations. At each stage, the decision to add or subtract is based on the sign of the

residual rotation angle forcing the Z register closer to zero. The MSB of the Z vector

will not participate in the iteration process, since it is used to represent the angles

outside the range [-� /2, +� /2].

The CORDIC equations associated with the rotation mode are used to

compute X, Y, and Z components. In the first stage, the X and Y components are

determined based on the sign of the desired angle. The values added/subtracted to X

30

 Iteration, i 2-i X register Y register Z register

 1.0000000 0.0000000 600

0 1.0000000 1.0000000 1.0000000 150

1 0.5000000 0.5000000 1.5000000 -11.5650

2 0.2500000 0.8750000 1.3750000 2.47120

3 0.1250000 0.7031250 1.4843750 -4.653820

4 0.0625000 0.7958988 1.4404296 -1.0774850

5 0.0312500 0.8409114 1.4155572 0.7124250

6 0.0156250 0.8187933 1.4286964 -0.1827480

7 0.0078125 0.8299549 1.4229957 0.2648660

Table 3.6.1 Rotation Mode Example

and Y are the shifted values of the previous components. In this stage, the shift values

have been shifted by a value of 0. In the second stage, the components are shifted by a

value of 1. This process continues with the sequence of 2, 3, 4, 5, 6, and 7.

After the last stage, correction iteration is used if the angle lies outside the

range [-� /2, +� /2]. It is a perfect rotation because it is rotated by 900. If rotating

+900, then X = -Y and Y = X. If rotating by -900, then X = Y and Y = -X. The

resultant X and Y components contain the components of the newly rotated vector.

The resultant components are multiplied by the scale factor to produce desired X and

Y vectors.

3.6.2. Vectoring Mode

Table 3.6.2 contains an example of rotation in circular coordinate system using

vectoring mode[6]. Vectoring mode operates in the similar manner that the rotation

31

mode does. However, the difference is that instead of forcing the Z register to zero,

the Y

Iteration, i 2-i X register Y register Z register

0.5000000 0.8660000 00

0 1.0000000 1.3660000 0.3660000 450

1 0.5000000 1.5490000 -0.3170000 71.5650

2 0.2500000 1.6282500 0.0702500 57.52870

3 0.1250000 1.6370312 -0.1332813 64.653720

4 0.0625000 1.6453612 -0.0309668 61.077380

5 0.0312500 1.6463289 0.0204507 59.287460

6 0.0156250 1.6466485 -0.0052781 60.182640

7 0.0078125 1.6466897 0.0075862 59.735030

Table 3.6.2 Vectoring Mode Example

register is forced to zero. In this case, the first rotation is used for correction iteration.

Each calculation after that uses the traditional shift sequence to calculate the shift

angle and the shifted value that is added/subtracted to X and Y.

3.7. Review

The CORDIC algorithm iteratively calculates the rotation of vectors. It uses a

precomputed sequence of angles that is added to or subtracted from the total to

represent the angle to be rotated. The chosen coordinate system determines the

equations used to calculate this sequence of angles.

32

The algorithm is capable of computing many functions, some directly and some

indirectly. The choice of coordinate system and the choice of rotation mode

determines which functions are computed. All of this is accomplished with very simple

hardware and with minimum operations such as shifts and adds.

33

4. Programmable Logic Devices

With the growing complexity of the digital circuits, designing a digital system

manually is cumbersome and slow and becomes critical to minimize the design

manufacturing test cycle time. Recently, user programmable gate arrays called Field-

Programmable Gate Arrays (FPGAs) have emerged as an efficient technology to

reduce the hardware and production cost and time. This chapter discusses the reason

to implement in an FPGA and also describes different FPGA technologies.

4.1. Reason for FPGA Approach

Software programmable components such as microprocessors and digital

signal processors have been used extensively in digital electronic systems, since they

provide for quick design revisions. However, the inherent performance limitations of

software-programmable systems make them inadequate for high-performance designs.

As a result, designers turned to a mask-programmable hardware solution, namely gate

arrays. Recently, user-programmable gate arrays, called field-programmable gate

arrays (FPGAs), have emerged and are changing the way electronic systems are

designed and implemented [9].

FPGAs have become one of the fastest growing devices in the field of digital

electronics [13]. There are many reasons for their growing popularity. They are

reaching speeds and densities comparable with Application Specific Integrated Circuits

34

(ASIC) without the associated development time and costs. They are reusable in much

the same way that discrete logic is reusable, but they are faster and less costly.

Simple inexpensive FPGAs are now widely used to replace discrete logic

circuits. More advanced chips are being used to verify designs while the equivalent

ASIC is being developed and produced. This procedure can be very cost effective

because finding design flaws before producing the ASIC can save months of delay. In

some cases, the cost of FPGAs is comparable enough with ASICs such that the

FPGAs are used instead.

4.2. FPGA Background

In the electronics industry, production time has become very essential since it is

important to reach the market with a new product in the shortest possible time.

Therefore, FPGAs have emerged as the ultimate solution to these high-risk problems.

An FPGA solution provides for less manufacturing time and low cost prototypes. A

field programmable device is a device in which the logic structure can be directly

configured by the end user without the use of an IC fabrication facility. FPGAs have

become one of the fastest growing devices in the field of digital electronics.

Before to the evolution of FPGAs, designers produced a technique called Mask

Programmable Gate Arrays (MPGAs) for high performance designs. MPGAs consist

of rows of transistors that can be interconnected to implement a desired logic circuit.

The main advantage of MPGAs is that they provide a general structure that allows for

the implementation of larger circuits because of their user specified

35

Figure 4.1 Conceptual Diagram of FPGA [14]

36

interconnection structure. However, at the same time, they require high manufacturing

time and incur high initial costs. A Field Programmable Gate Array (FPGA) combines

the programmability of a PLD and the scalable interconnection structure of an MPGA.

FPGAs were first introduced in 1985 by the Xilinx company. Since then, many

different FPGAs have been developed by a number of companies. FPGAs are user

programmable or field programmable hardware devices. They are prefabricated as

arrays of identical programmable logic blocks with routing resources and are

configured by the

user into the desired circuit functionality. They are now widely used to replace discrete

logic circuits with higher logic density. Figure 4.1 shows the conceptual diagram of a

typical FPGA. As shown in figure, it consists of a two dimensional array of logic

blocks

connected by interconnection resources. These interconnection resources contains

programmable switches that help to connect the logic blocks to wire segments, or, one

wire segment to another. Logic circuits are implemented in FPGAs by partitioning the

logic into individual logic blocks and then interconnecting the blocks accordingly via

the switches.

4.3. FPGA Technologies

Manufacturers use many different technologies to create a wide variety of

programmable logic devices (PLD) such as FPGAs. This wide variety of choices

allows the developer to find a programmable device that best suits the particular

37

design without any difficulty. This report will discuss different FPGA architectures like

Xilinx, Altera, Lucent, Actel, and Quicklogic to analyse the tradeoff between speed

performance and area efficiency of a bit serial CORDIC chip.

4.3.1. Xilinx XC4000 Family

The basic building block of the Xilinx XC4000 family is called a Configurable

Logic Block (CLB). Each CLB uses a two stage arrangement of lookup

 Logic
Function
 of
 G1-G4

 Logic
Function
 of
 F1-F4

 Logic
Function
 of
 G’, F’
 and H1

Multiplexer Controlled
by Configuration

K
(CLOCK)

F3

F2
F1

G4

G3

G2
G1

 G’

 F’

 H’
 F’

 G’
 H’

 DIN
 F’
 G’
 H’

 DIN
 F’
 G’
 H’

 H’

H1 DIN S/R EC

C1 C2 C3 C4

 S/R

 S/R

1

1

 D
 SD

 Q

>

 EC

YQ

XQ

 RD

 D
 SD

 EC
 RD

>

X

Y

38

Figure 4.2 Block Diagram of XC4000 Series CLB [15]

tables to implement the logic functions, as illustrated in Figure 4.2. Each CLB is

capable of implementing “any two independent functions of four variables, any single

function of five variables, any function of four variables together with some functions

of five variables, or some functions of up to nine variables” [13]. Dedicated arithmetic

logic is also included in each CLB to speed up the generation of carry and borrow

signals.

Each CLB has two outputs, each of which can be buffered. The buffers can be

clocked on the rising or falling clock edge. The high number of buffers offered in the

Xilinx chip makes it much easier top create synchronous designs. Synchronous designs

are much easier to debug than asynchronous designs. Also, the high number of buffers

makes it possible to create pipelined designs.

The performance of a system can be greatly improved by pipelining. This is

because a design can be broken into smaller parts that can be executed in parallel. The

results of each stage can be passed through the pipeline buffers to the next stage.

Xilinx uses Static Ram technology to control the multiplexers and transmission

gates that are used to create the connections within the chip. The CLBs are placed in a

two-dimensional array with routing connections made along the rows and columns of

blocks. The different chips in the XC4000 family use varying sizes of CLB grids. The

XC4052 uses 44x44 CLBs to connect together 1936 CLBs. The XC4052 has an

equivalent gate count of 52,000 gates. The actual maximum number of gates that can

39

be implemented in a chip will vary from design to design, depending upon how well

the design was mapped into the chip and how well the routing resources were utilized

to make maximum use of the chip.

A Xilinx FPGA must be reprogrammed from an external source every time the

chip is powered up. The data stream that is used to program the chip is created by a

compiler program that receives the user’s design. The program is responsible for

deciding how to place the design within the chip and how to route the interconnection

between the CLBs and within each CLB. How efficiently the resources of the chip are

utilized are dependent upon how efficient the compile program is.

4.3.2. Lucent ORCA Series 3 Family

ORCA Series 3 FPGA consists of three basic elements called Programmable

Logic Cells (PLCs), Programmable Input/Output Cells (PICs) and system level

features. Each PLC contains a Programmable Function Unit (PFU), a Supplemental

Logic and Interconnect Cell (SLIC), local routing resources and configuration RAM.

Figure4.3 shows an array of PLCs surrounded by PICs. InterQuad routing blocks

(hlQ, vlQ) present in series 3, are also shown. System level functions (located in the

corners of the array) and the routing resources and the configuration are not shown in

Figure4.3.

Most of the FPGA logic is performed in the Programmable Function

Unit (PFU). Each PFU within a PLC contains eight 4-Input (16-bit) LUTs, eight

latches/flipflops and one additional flip-flop that may be used independently or with

40

arithmetic functions. The PFU is organized in a twin-quad fashion: two sets of four

LUTs and FFs that can be controlled independently. LUTs may also be combined for

Figure 4.3 OR3C/T55 Array [16]

41

use in arithmetic functions using fast-carry chain logic in either 4-bit or 8-bit modes.

The carry-out of either mode can be registered in the ninth FF for pipelining.

The LUTs twin-quad architecture provides a configurable medium/large grain

architecture that can be used to implement from one to eight independent

combinatorial logic functions using multiple LUTs. The flexibility of the LUT to

handle wide input functions, as well as multiple smaller input functions, maximizes the

gate count per PFUwhile increasing system speed. There are different chips in ORCA

series 3 family of different sizes of PLCs. The OR3T125 chip uses an array size of

28x28 PLCs put together 784 PLCs. The OR3T125 has an equivalent gate capacity of

92k - 186k gates. The number of PLCs or gates implemented in a chip varies from

design to design. ORCA Series 3 devices contain many new patented architectural

enhancements and are offered in a variety of packages, speed grades, and temperature

ranges.

4.3.3. Actel 54SX Family

The basic architecture of Actel FPGAs consists of rows of programmable

blocks called Logic Modules (LMs) with horizontal routing channels between the

rows. SX family architecture has been called a “sea-of-modules” architecture because

the entire floor of the devices is covered with a grid of LMs with virtuallu no chip area

42

lost to interconnect elements or routing. Each routing switch in these FPGAs is

implemented by Anti-fuse programming technology.

Actel provides two types of Logic Modules, the Combinatorial Cell (C-cell)

and the Register Cell (R-cell), each optimized for fast and efficient mapping of

synthesized logic functions. The R-cell registers, as shown in Figure 4.4, feature

programmable clock polarity, selectable on a register-by-register basis. This provides

the designer with additional flexibility while allowing mapping of synthesized functions

into SX FPGA. The clock source for the R-cell can be chosen from the hard-wired

clock or the routed clock. The C-cell, as shown in Figure 4.5, implements a range of

combinatorial functions

Figure 4.4 Logic Diagram for R-Cell [17]

43

up to 5-inputs. Inclusion of the DB input and its associated inverter function

dramatically increases the number of combinatorial functions which can be

implemented in a single module to more than 4,000 options in the SX architecture.

Actel has arranged all C-cell and R-cell logic modules into horizontal banks

called Clusters. Actel has further organized these modules into SuperClusters to

increase design efficiency and device performance. These clusters can be connected

through new routing resources called FastConnect and DirectConnect which reduces

the number of antifuses required to complete a circuit, ensuring the highest possible

performance. The different chips in Actel uses varying sizes of gate capacity. The

A54SX32 has a gate capacity of 32,000 gates and has maximum flipflops of 1980.

Figure 4.5 Logic Diagram for C-Cell [17]

D0

D1

D2

D3

DB
 A0 B0 A1 B1

Y

Sa Sb

44

4.3.4. Altera FLEX 10KE Family

Altera FPGAs are considerably different from the others discussed so far

because they represent a hierarchical grouping of programmable logic devices.

Nonetheless, they are FPGAs since they employ a two-dimensional array of

programmable blocks and a programmable routing structure and are user-

programmable.

Altera FLEX 10KE devices are an enhancement of FLEX 10K device family.

The Flexible Logic Element Matrix (FLEX) architecture is based on reconfigurable

SRAM elements. It incorporates all features necessary to implement common gate

array mega functions. Each FLEX 10KE device contains an enhanced embedded array

to implement memory and specialized logic functions, and a logic array to implement

general logic. The embedded array consists of a series of Embedded Array Blocks

(EABs) and the logic array consists of Logic Array Blocks (LABs). Each LAB

contains eight Logic Elements (LEs) and a local interconnect.

Figure 4.6 shows a block diagram of the FLEX 10KE architecture. Each group

of LEs is combined into an LAB and these LABs are arranged into rows and columns.

Each row also contains a single EAB. The LABs and EABs are interconnected by the

FastTrack Interconnect routing structure.I/O Elements (IOEs) are located at the end

of each row and column of the FastTrack Interconnect routing structure. The FLEX

10KE family provides the density of upto 2,00,000 gates, speed and features to

integrate entire systems, including multiple 32-bit buses onto a single device. The

EPF10K100E device has 9 EABs and 624 LABs with Logic Elements of upto 4,992.

45

Figure 4.6 FLEX 10KE Device Block Diagram [18]

46

Figure 4.7 QuickLogic Logic Block [14]

QS

A1

A3

A2

A5
A4

AZ

A6

B2

QZ

C1

NZ

C2
MP

OZ

MS

D1
D2
E1
E2
NP
NS

F1
F2

F3
F4

F5
F6

QC
QR

FZ

OP
OS

>

0

1

0

1

0

1

D

R
Q

S

47

The EPF10K100E device has an equivalent gate capacity of 1.00.000gates. The gate

capacity of the chip will vary from design to design.

4.3.5. QuickLogic pASIC 3 Family

The pASIC 3 family uses QuickLogic’s patented ViaLink technology to

provide unique combination of high performance, high density, low cost, and complete

flexibility. These devices are based on an array of highly flexible logic cells which have

been optimized to efficiently implement a wide range of logic functions at high speed.

Each logic cell includes one pre-configured register, plus the logic to implement an

additional independent latch. Logic cells and RAM modules are configured and

interconnected by rows and columns of routing metal and Vialink metal-to-metal

antifuses.

The pASIC 3 logic cell shown in Figure 4.7 is a general purpose building block

that can implement most TTL and gate array macro library functions. The cell has been

optimized to maintain the inherent speed advantage of the Vialink technology while

ensuring maximum logic flexibility. The function of a logic cell is determined by the

logic levels applied to the inputs of the AND gates and multiplexers. Vialink sites

located on signal wires to the gate inputs perform the dual role of configuring the logic

function of a cell and establishing connections between cells.

 The QL3040 is a 40,000 usable PLD gate member of the pASIC 3 family

of FPGAs. The QL3040 contains 1,008 logic cells with a maximum of 252 I/Os.

Software support for the complete pASIC 3 family is available through three basic

packages, the turnkey QuickWorks, QuickChip and QuickTools which provides

48

complete FPGA software solution from design entry to logic synthesis, to place and

route, to simulation.

4.4. Hardware Partitioning

When developing an algorithm for hardware implementation, there are

considerations to keep in mind that depend upon the type of hardware that will be

used. An efficient design for discrete logic may be very different than a design for a

custom fabricated chip even though the two designs perform the same task. This is

especially true when using FPGAs.

For this reason it is important to give careful consideration to the approach

that will be used to implement the design. A well chosen approach will minimize the

effects of the limitations imposed by the FPGA while still meeting the project’s

specifications.

4.4.1. FPGA Partitioning Considerations

An FPGA puts limitations on a design because of its physical construction. A

particular chip has only so many available “gates” and I/O pins. It also has a maximum

finite speed at which it can operate. Specific limitations will vary depending upon the

chip to be used. The cost of the chip must also be kept in mind.

An FPGA has a maximum number of “logic gates” that it can represent at one

time. The actual number will vary depending upon the design and how efficiently the

compiler software maps the design into the FPGA. Manufacturers provide estimates of

gate usage for different types of logic hat might be used in a design. These estimates

cab be used to make rough estimates about the size of a preliminary design.

49

The interconnects used to move data from one logic block to another can also

affect the size of a design. It is possible to fit a design into a chip, but not be able to

connect all of the parts because there are not enough routing resources in a chip. For

this reason, it is important to allow extra room in the chip. The fuller a chip is packed

with logic gates, the more likely it is that the compiler will not be able to create a

program that can connect everything together.

As early in the design as possible, a rough estimate of the size of the design

should be calculated. As more details are decided, the design size should be

recalculated. The purpose of this type of strategy is to avoid wasting time and effort

developing a design that has no hope of ever fitting into a particular chip. On the other

hand, it is also not expedient to spend time making a design very small only to find out

that a large portion of the chip is unused.

When developing a preliminary design, keep in mind the amount of data that

will have to enter and leave the chip. An FPGA has only so many I/O pins, some of

which are used for power and ground connections.

Selecting a chip that does not have enough I/O pins could disallow a design or

could severely limit the speed and performance of a design. On the other hand a chip

with many unused pins will probably cost more than a chip that has only a few unused

pins. In the initial stages of a design, the developer should select a chip that is a little

lager than the estimated size of the design. This will allow extra I/O pins and “logic

gates” for underestimated or forgotten sections of a design.

50

When developing a design, a developer should also keep in mind the speed

requirements of the project. This is important for two reasons: FPGAs have speed

limitations, and speed requirements partially determine the type of system architecture

that should be used for the design.

FPGAs have maximum speeds at which they can be operated. The speeds will

vary depending upon the type of chip that is used. The speed can also vary depending

upon the complexity of design that is put into the chip. These factors must be

considered when developing a design because they will partially determine how fast

the design can run.

Different system architectures or system configurations can greatly affect the

speed or performance of a design. Often the selection of an architecture is a tradeoff of

speed and design size which is analyzed in this thesis.

Another topic to consider early in the design cycle is if the design is to be

developed using a single chip or multiple chips. The major consideration here is cost.

Using a single chip design, if possible, is usually much simpler to incorporate into a

larger system. However, sometimes it is cheaper to use multiple smaller FPGAs to

implement the same design. The decision can be made by comparing the cost of the

system to how well it will meet the project specifications.

51

5. SNR Estimation Using Phase - Only Data

5.1. Motivation

“In communication systems, the received signal is usually a superposition of

the transmitted signal and additive noise” [26]. Consider a digital receiver that receives

a signal from two different receiving antennas separated apart at a certain distance.

However, by the time the signal is received, noise and interference creates a phase

margin between two signals leading to phase noise. This phase noise is calculated

using the vectoring mode of CORDIC algorithm. As mentioned earlier in section

3.3.2, the vectoring mode is used to compute a rotation angle between the real and

imaginary components of the vector.

The technique described in this chapter is used to develop a SNR estimation

circuit which is designed and implemented in FPGA and is discussed later in this

report. This chapter discusses a technique for calculating phase error and signal to

noise ratio.

5.2. Digital Receiver

For a digital communication system, performance is generally measured in

terms of probability of bit error (Pe) or equivalently, bit error rate (BER). Pe can be

translated into SNR (section 4.3) when it is desirable to do so [10]. “Information is

generally conveyed by means of a band pass signal, resulting from modulating a

sinusoidal carrier”[11]. This signal can be represented as a sinusoid whose amplitude

52

and phase varies with time. The band pass signal x(t), represented in complex form, is

given by

x(t) = �2 Re [xL(t) exp(jw0t)]

This is called the complex baseband representation of a baseband signal, where

�xL(t)� and arg(xL(t)) denotes the instantaneous amplitude and phase respectively, of

the signal x(t). Expressing xL(t) in rectangular form yields

xL(t) = xc(t) + jxs(t)

where xc(t) and xs(t) are the real and imaginary part of xL(t). They are also called as in-

phase and quadrature components respectively with respect to an unmodulated carrier

�2cosw0t.

5.3. Theory and Analysis of SNR technique

This section discusses a technique to calculate the SNR of the probability

distribution of the phase of a sinusoid in the presence of narrow band additive white

Gaussian noise. It is assumed that the distribution for the phase error is Guassian

distribution.

5.3.1. Calculating the Phase Margin

The actual phase, �, across any baseline of an interferometer is a linear function

of the sine of the angle, �, off the boresight. The slope, m, of the line is given by

m = 2�d/�

where d is the length of the baseline and � is the wavelength of the incoming signal.

Let

t = sin�

53

then

� = m * t.

The measured phase, � , across the baseline is related to the actual phase by

� = � - 2�k + �

where � is the error in the measurement and

k = [� / 2�]

where [x] is the nearest integer to x.

Ambiguities are defined as erroneous estimates of � due to erroneous estimates of k.

For a linear array, the phases measured across each baseline can be plotted as

an n dimensional function of t. This function will consist of a set of parallel lines in n-

space. The lines are parallel because the slopes remain the same. The end points of the

lines will all contain at least one element with a value of either � or -�. The end point

of one line will corresponds to the end point of some other line by having the same

value for ordinates except those which have value � or -�. This ‘wrap around’ effect

results in an n-dimensional torus containing all the lines. The ambiguity rate is

determined by the minimum distance between any lines on the torus.

Consider a three element array as an example. The distance between the

baselines is easily calculated for most lines, however, the distance between lines A and

B must be calculated by ‘shifting’ B from the corner (-�, �) to beyond the corner (�, -

�). This distance is the actual distance between A and B. The points of boundary

crossings (the points having at least one ordinate with value � or -�) are found using

54

the linear equation in t. The values of t associated with a boundary crossing are given

by

tij = (2*I+1) * �/mj

where mj is the slope associated with the jth baseline. The point, xij, associated with the

crossing is then given by

xk
ij = tij * mk.

The distance between lines can be calculated by rotating each line until they are

parallel to one of the two axes. The lines can be thought of as points in n-1 space by

considering only the intercept points of the line with any ‘plane’ perpendicular to the

axis. Then, the distance between the lines is equal to the distance between the points.

Another method for calculating distances is to take any point on each line,

calculate the length of the vector between points on different lines, and subtract off the

length of the projection of that vector onto either line. The distance, dijkl, is given by

dijkl = {��xij - xkl��2 - [(xij - xkl) . m]2 / ��m��2 }1/2

where m is the vector containing the slopes. To account for the distance on a torus,

phantom line segments are added to the set of line segments by adding or subtracting

2� from each element of each crossing point, yielding phantom crossing points. The

phase margin is given by the minimum distance (greater than 0) between two lines,

phantom or real.

This technique can easily be adjusted to account for correlation between the

measurements. Let C be the variance-covariance matrix associated with the phase

difference measurements. Then,

55

dijkl = { (xij - xkl)’ c-1 (xij - xkl) - (xij - xkl)’ c-1 m/m’ c - 1m }1/2.

5.3.2. Estimating the Ambiguity Rate

Given the minimum distance between lines, called the phase margin, for an

antenna configuration, the ambiguity rate is found by assuming a distribution for the

phase error and calculating the probability of the error in the phase difference across

each baseline exceeding half the phase margin. Usually, the distribution assumed for

the phase is the normal or gaussian distribution. By assuming that the error on each

phase difference between elements is identically and independently distributed normal

with mean, 0, and standard deviation, �2, the ambiguity rate, R, is given by

R = 2 - 2 * P [�� / � < z]

where �� is the phase margin. If the errors are biased with a random, non removable

bias, the standard deviation of the bias is added to the standard deviation of the

random error by taking the square root of the sum of squares of the standard

deviations.

If the errors in the phase are not independent, as is often the case with

baselines which share elements, the distance between lines must be adjusted to account

for the covariance terms. Typically, this dependence will result in larger ambiguity

rates. However, for arrays larger than 3 elements, the correlation could be used to

improve the ambiguity rate by forcing the axes between the nearest lines to be

perpendicular to the direction of the semi-major axes of the ellipsoid defined by the

variance-covariance matrix. However, this technique will result in the lines becoming

56

parallel to the semi-major axis, resulting in larger AOA errors when no ambiguities are

present.

5.3.3. Signal to Noise Ratios and Phase Error

The major source of phase error is usually the phase detectors. Since each

baseline has its own phase detector, the errors introduced by the phase detectors are

independent. When the phase detector errors dominate the total error, the errors in the

phase differences can be considered as independent. The standard deviation of the

phase difference is dependent only on the signal to noise ratio.

Given gaussian errors on the amplitudes of the sine and cosine of the incoming

wave, then for a single channel, the error in the phase error is distributed by

f� (�) = e-snr �snr * cos (�) * exp (-snr * sin2(�))

where snr is the signal to noise ratio, and erf is the error function defined by

The density function is defined from -� to �.

The probability density function, f� (�), can be derived by integrating out the

signal envelope term from the joint probability density function for the envelope and

57

phase of a sinusoid in the presence of narrow band additive gaussian white noise given

by

Where the signal to noise ratio, snr, is expressed by

The expression to evaluate to obtain the phase error pdf is

The first step in evaluating this integral is to complete the square of the exponent in

the exponential term

r2 - 2 Ac r cos (�) = [r - Ac cos (�)]2 - Ac
2 cos2 (�)

Substituting this term into the integral yields

After some manipulation, this integral becomes

At this point the following substitution is made in the integral :

58

Using this substitution and performing some simplification, the integral becomes

This in turn may be manipulated to obtain

The integral

59

By making the substitution of w = -y in the remaining integral term, f� (�), is

rewritten as

Let x = �snr * sin (�), then

with x going from -�snr to �snr. The first term is found by realizing that

The second term is found by realizing that

�snr * cos (�) * exp (-snr * sin2 (�) = - �snr * cos (� - �) * exp (-snr * sin2 (� -

�)

and

�snr * cos (�) * exp (-snr * sin2 (�) * erf { �snr * cos (�) }

= �snr * cos (� - �) * exp (-snr * sin2 (� - �) * erf { �snr * cos (� - �) }.

For large signal to noise ratios, the integral of the first term becomes very small (4.5 *

10-5 at 10 dB). The value for erf (z) is greater than 0.9 for z greater than 1.17. Let

w = � (snr - x2).

60

Then, for a signal to noise ratio of 10dB,

erf (w) � 1

for ��� < 1.19 (680) or ��� > 1.95 (1120). Further, x is large whenever erf (w) is

not near 1. Thus, the value of f� (�) is small for the region where value of erf (w) is

not close to 1. If we approximate erf (w) by 1, and approximate the first term by 0,

then

The limits on x are -�snr to �snr, which are large compared to range of values where f

(x) is significant. That is,

Thus x is approximately distributed normal with mean, 0, and variance (standard

deviation squared), 1/2.

Since f� (�) is small for � not near 0,

x = �snr * � .

Thus, � is approximately distributed normal with mean, 0, and variance, 1/ (2*snr).

61

Figure 5.1 Phase Error Standard Deviation True compared to Approximate

Signal to Noise Ratio (dB)

62

5.3.4. Conclusions

Some conclusions are drawn from the above derivation. The phase error for

large signal to noise ratio can be approximated by the reciprocal of the square root of

the signal to noise ratio. Figure 5.1 on the next page shows the phase standard

deviation in relationship with signal to noise ratio. It is observed from the graph that

the true value is almost equal to the approximated value for large signal to noise ratios

and there is a significant variation in small signal to noise ratios.

5.4. Review

An SNR estimation technique used to calculate signal to noise ratio using

phase -only data is derived and discussed in this chapter. True value of phase error is

considered in this thesis to calculate small and large signal to noise ratios.

63

6. Implementation and Results

One way to deal with the problem of the increasing time-to-market pressures is

to design at high levels of abstraction. Traditional capture-and-simulate methods have

largely been given away to the describe-and-synthesize approach for these reasons.

Hardware Description Languages (HDLs) have played an important role in the design

synthesis methodology. They provide a means of specifying a digital system at a wide

range of levels of abstraction. They are used for specification, simulation and synthesis

of an electronic system. Among several different hardware description languages,

VHSIC Hardware Description Language (VHDL) is one that is in widespread use

today. It supports behavior specification at the early stages of a design process and

structural specification at the later implementation stages. This chapter gives the

detailed description of speed versus area tradeoffs in CORDIC processor and FPGA

implementation for estimating Signal to Noise Ratio using CORDIC processor.

6.1. CORDIC Tradeoff

There are several ways that CORDIC processor can be implemented. An ideal

way is to analyze speed versus area tradeoffs by mapping into different FPGA

architectures. CORDIC processor can be designed using bit-serial or bit-parallel

arithmetic. However, bit-serial arithmetic provides relatively compact design and

works faster than bit-parallel design because of its simplified interconnect and logic

64

[6]. “The bit-parallel variable shift registers do not map well to FPGA architectures

because of the high fan-in required” [6].

6.1.1. Bit-Serial CORDIC design

The bit serial CORDIC processor is shown in figure 6.1. In this design, p clocks are

required for each of the n iterations, where p is precision of the adders. The precision

used in this project is upto 17bits and the iterations are limited to 8. “At the beginning

of each iteration, the control state machine reads the sign of the y (or z) register and

Figure 6.1. Bit Serial iterative CORDIC [6]

 _ _ _ _ _

 _ _ _ _ _

 _ _ _ _ _

X register

Y register

Z register

 Serial ROM

 Serial
 Adder-

 Serial
 Adder-

 Serial
 Adder- xn

 yn

 zn

Sign to
controller

x0

y0

z0

65

sets the add/subtract controls accordingly. The appropriate cross terms are also

selected at the beginning of each iteration” [6]. During the 8th iteration, the results can

be read from the output pins of the serial adder/subtractors.

6.1.2. Simulations

As a first step to understand this algorithm, it is often desirable to simulate the

process in software. Such is the case with the CORDIC algorithm. Simulation at this

level can be done early in the design process. This is desirable because it allows the

designer to try different methods of implementing a design without having to design

and debug actual hardware. VHDL is designed to fill a number of needs in the design

process. It allows the design of a system to be simulated before being manufactured so

that designers can quickly find errors and correct them.

The simulation for this project is accomplished in two stages. The first stage is

the implementation of the design of bit-serial CORDIC processor. The second stage

involves the estimation of the Signal to Noise Ratio (SNR) using phase-only data

where the CORDIC processor is used to find the angle made by the incoming complex

signal that is received by a digital receiver. The source code for the entire design is

included in this report in Appendix A. A VHDL simulator tool called QuickVHDL

Mentor Graphics is used in this project to implement the design.

6.1.3. Logic synthesis for Field Programmable Gate Arrays

Logic synthesis takes the circuit description at the Boolean level and generates

an implementation in terms if an interconnection of logic gates. Typically, synthesis is

done for an objective function, such as minimizing the cost of the design satisfying the

66

performance constraints, minimizing the power consumed, or making the

implementation more testable. The cost of the design may be measured by the area

occupied by the logic gates and the interconnect.

Since synthesis is a difficult process, it is seperated into two phases. The first

phase is techology-independent optimization phase, which generates an optimum

abstract representation of the circuit. The second phase is technology mapping phase

in which the optimized representation is mapped onto a pre-defined library of gates.

Various synthesis software tools are in use today. Synplify is one of the logic

synthesis engine that utilizes proprietary Behavior Extracting Synthesis Technology

(B.E.S.T.) is designed to deliver fast, highly efficient FPGA and CPLD designs.

Synplify takes Verilog and VHDL Hardware Description Languages as input and

outputs an optimized netlist in most popular FPGA vendor formats. This software tool

was used to map VHDL design to different FPGA architectures.

6.1.4. Speed versus Area Tradeoff

The total chip area needed for an FPGA consists of the logic block area plus

the routing area. Since routing area takes around 70 to 90 percent of the total area, the

effect of logic block functionality on the routing area can be very important. Also,

routing area depends on the type of programming technology used for programming

resources and routing switches.

Currently, some of the highest density FPGAs are built using Static Memory

(SRAM) technology. The other common process technology is called Antifuse which

has benefits for more plentiful programmable interconnect. SRAM based FPGAs are

67

in-system programmable (ISP) which means that the device can be programmed while

it is mounted on the board with other components, where as Antifuse based FPGAs

are one-time programmable (OTP) which means that once programmed, they cannot

be modified. But, they also retain their program when the power is off.

On the other hand, the performance of the system depends on the size of the

lookup tables (LUTs). Larger LUTs cover more gates but usually have longer delay.

Also, “the performance diminishes with the increase in word width because of the

carry propagation delay across the adders” [6].

Table 6.1 Tradeoff Results

 Device Type
 Estimated
 Frequency

 (MHz)
 % chip Area Required

 Xilinx
 XC4052XL

 20.5 78%

 Altera
 FLEX10K100E

 13.1 82%

 60%

 165%

 11.8

 16.6

 Lucent
 ORCA3T125

 Actel
 A54SX32

68

After developing the design of Bit-Serial CORDIC, it is very easy and

convenient to map the VHDL design to different FPGA architectures such as Xilinx,

Altera, Actel, and Lucent to analyze speed versus area tradeoff. Table 6.1 illustrates

the results of speed and area of various device families. Current investigations show

that Xilinx, Altera and Lucent require some part of the total FPGA chip, whereas,

Actel needs more than one chip which is not a very appreciable result. Xilinx FPGA

requires larger area than Lucent FPGA, but lesser than Altera. On the other hand,

Xilinx runs at higher frequency than other FPGA families. So, there is a tradeoff.

6.2. Block Diagram

As discussed before, the CORDIC processor is used in various applications.

One such application that is discussed in this project is estimating Signal to Noise

Ratio (SNR) using phase-only data. The vectoring mode of CORDIC rotator is used in

calculating the phase of the incoming signal from digital receiver.

Figure 6.2 shows the block diagram of SNR estimator. The angles made by the

corresponding complex signals that are received by a digital receiver are calculated by

the CORDIC rotator. Since the angles from CORDIC are represented in BAMs, they

are converted to Radians in Binary representation by ROM. Then, the phase subtractor

outputs the phase margin leading to phase noise. The variance is calculated for an

average of 128 samples and finally the ROM outputs the SNR for the corresponding

variance.

69

F
ig

ur
e

6.
2.

 S
N

R
 E

st
im

at
o

r

D

ig
it

al

R

ec
ei

ve
r

C
O

R
D

IC

C
O

R
D

IC

 P

ha
se

 S

ub
tr

ac
to

r

P
ha

se

 M

ul
ti

pl
ie

r
 A

cc
um

ul
at

o
r

 V

ar
 /

 S
N

R

 R

O
M

 B
A

M
/r

ad
ia

ns

 R

O
M

S
N

R

V
ar

ia
nc

e
R

ad
ia

ns
B

A
M

s

 I

Q

Q I

� 1 � 2

�
�

V
ar

ia
nc

e
C

al
cu

la
ti

o
n

70

6.3. SNR Estimation

Basically there are two approaches to SNR estimation at the receiver of a

communication system: decision-aided estimation and blind estimation. Decision-aided

estimators use estimated data to obtain an estimation of the SNR. While this approach

works fine at low data error rates, it shows high estimation variance when the

reliability of the decoded data is low.

The blind estimator investigated here uses purely statistical knowledge about

the (undisturbed) signal and the expected noise (e.g. Gaussian distribution is assumed).

The SNR is estimated by a simple algorithm that calculates the variance of the

probability distribution of the phase of a sinusoid in the presence of narrow band

additive white Gaussian noise.

The block diagram showed in Figure 6.2 is implemented in VHDL. This design

accepts 256 vectors and each time the receiver receives two vectors, calculates the

phase difference and the resulting sample is stored in the accumulator. This process is

repeated for 256 vectors and the variance is calculated for an average of 128 samples.

This whole process is pipelined and is implemented in VHDL. Table 6.2 illustrates the

results of True SNR and Circuit SNR calculations. Theoretically, True SNR should be

equal to Circuit SNR. However, in the practical sense, the SNR will not be exactly

equal. The maximum error observed in SNR from the results is 0.31db.

71

True Variance (rad) Circuit Variance (rad) True SNR (db) Circuit SNR (db)

 0.7447214 0.075 0.7447253 0.0751

 0.0823103 8.255 0.0823792 8.261

 0.00347123 21.6 0.00348175 21.66

0.02105528 13.85 0.02110275 13.88

0.000505058 29.93 0.00051033 30.24

0.2349831 4.565 0.23529195 4.571

0.007163211 18.47 0.00717484 18.5

0.005190848 19.86 0.00519895 19.892

Table 6.2 SNR Estimation Results

After implementing the SNR design in VHDL, the entire design is mapped into

Xilinx FPGA technology to develop a prototype SNR estimation circuit. The device

type used here is Xilinx XC4052XL. The total packed CLB’s available in this device

type are 1936. It is observed from the synthesis results that the total packed CLB’s

required for this circuit are 3152. These results shows that the SNR estimation circuit

requires an area of 163% (i.e., more than one chip). The Throughput of this circuit is

estimated to be around 9765 SNR’s/sec.

72

7. Conclusion

7.1. Thesis Results

This thesis presents the background , design and simulation of a SNR

estimation algorithm as an extended application of CORDIC processor. The CORDIC

processor is a 17 bit, fixed-point representation of the CORDIC algorithm in a FPGA.

The design analyses speed and area tradeoff between FPGA architectures. CORDIC

processor calculates trigonometric, linear and hyperbolic functions and also computes

polar to rectangular and rectangular to polar transformations.

The purpose of this project is to develop a FPGA based circuit which directly

estimates the SNR of signals received by two different antennas at the reception of a

digital receiver. This thesis calculates the signal to noise ratio using only phase data

which is provided by CORDIC processor. This report discusses a technique for

calculating phase error and signal to noise ratio.

The background information is intended to give the reader an understanding of

the CORDIC algorithm and SNR estimation technique. Included in this background is

a discussion of how the algorithm works, how it is applied to calculate signal to noise

ratio and how the area and performance differs in different technologies and the

tradeoff. Also included in the background is a discussion of the architectures of current

73

FPGA technologies and why FPGAs are becoming a powerful force in the field of

digital hardware.

This project begins with the design and implementation of CORDIC algorithm

in FPGA and investigating the speed and area in different FPGA technologies and

analyzing the tradeoff. This design is used in estimating the signal to noise ratio using

phase only data. SNR estimation is simulated in VHDL which makes very convenient

to develop the hardware design. This process is completed when the design is

successfully implemented in one of the FPGA technology.

7.2. Future Directions

Future work on the ideas presented in this thesis is predominantly in the area of

redesigning the system. This thesis calculates SNR for an average of 128 samples. It is

possible that the SNR estimation circuit cane be redesigned using 256 samples.

Additional work could be done analyzing the area and performance tradeoff between

iterative method and pipelined method of implementing the design.

74

Bibliography

[1] J. E. Volder, “The CORDIC Trigonometric Computing Technique,”
IRE Trans. Electron. Comput., vol. EC-8, pp. 330-334, Sept. 1959.

[2] J. S. Walther, “A unified algorithm for elementary functions,” 1971
Spring Joint Comput. Conf., AFIPS Proc., vol. 38, pp. 379-385.

[3] H. M. Ahmed, “Signal Processing Algorithms and Architectures,”
Ph.D. dissertation, Univ. of Stanford, June 1982.

[4] Yu Hen Hu, “The Quantization Effects of the CORDIC Algorithm”,
IEEE Trans. Sig. Proc., vol. 40, no. 4, pp. 834-844, April 1992.

[5] Xiaobo Hu, Ronald G. Harber, and Steve C. Bass, “Expanding the
Range of Convergence of the CORDIC Algorithm,” IEEE Trans.
Comput., vol. 40, no. 1, pp. 13-21, January 1991.

[6] Ray Andraka, “A Survey of CORDIC Algorithms for FPGA based
computers,” FPGA ’98. Proceedings of the 1998 ACM/SIGDA sixth
international symposium on field programmable gate arrays, Feb. 22-
24,1998, Monterey, CA, pp. 191-200.

[7] Raymond E. Fowkes, “Hardware Efficient Algorithms for
Trigonometric Functions,” IEEE Trans. Comput., vol. 42, no. 2, pp.
235, February 1993.

[8] R. J. Andraka, “Building a High Performance Bit-Serial Processor in
an FPGA,” Proceedings of Design Supercon ’96, pp. 5.1 - 5.21,
January 1996.

[9] Rajeev Murgai, Robert K. Brayton, Alberto Sangovanni-vincentelli,
Logic Synthesis for Field-Programmable Gate Arrays, Kluwer
Academic Publishers, 1995.

[10] Jerry D. Gibson, Principles of Digital and Analog Communications,
2nd Edition, Newyork Macmillan, 1993.

[11] Heinrich Meyr, Digital Communication Receivers, Newyork Wiley,
1998.

75

[12] Andrew Wheeler, “Rapid Prototype of an SIMD Processor Array
(using FPGAs)”, Master’s Thesis, University of Arkansas, 1993.

[13] Stephen D. Brown, Robert J. Francis, Jonathon Rose, Zvonko G.
Vranesic, Field-Programmable Gate Arrays, Kluwer Academic
Publishers, 1992.

[14] Ian Hickman, “Understanding Phase Noise,” Electronics World, vol.
103, pp. 642-646, August 1997.

[15] The Programmable Logic Data Book, Xilinx, 1994.

[16] “ORCA Series 3 FPGAs Data Book,” Lucent Technologies,
http://www.lucent.com/micro/fpga/3ctxx.html (current Apr. 20, 1999).

[17] “Actel SX Data Sheet,” Actel,
http://www.actel.com/products/devices/SX/sxp.html (current Apr. 20,
1999).

[18] “Altera FLEX10KE Embedded Programmable Logic Family Data
Sheet,” Altera, http://www.altera.com/html/literature/lf10k.html
(current Apr. 20, 1999).

[19] T.R. Benedict, T.T. Soong, “The joint estimation of signal and noise
from the sum envelope,” IEEE Trans. Inform. Theory, vol. IT-13, no.
3, pp. 447-454, 1967.

[20] B. Shah, S. Hinedi, “The split symbol moments SNR estimator in
narrow-band channels,” IEEE Trans. Aerospace and Electronic
Systems, vol. 26, no. 5, pp. 737-747, 1990.

[21] D.R. Pauluzzi, N.C. Beaulieu, “A comparison of SNR estimation
techniques in the AWGN channel,” IEEE Symposium, Victoria,
Canada, May 1995.

[22] Rolf Matzner, “An SNR estimation algorithm for complex baseband
signals using higher order statistics,” Facta Universitatis (Nis), no. 6,
pp. 41-52, 1993.

[23] Jean Duprat, Jean-Michel Muller, “The CORDIC Algorithm: New
results for fast VLSI implementation,” IEEE Transactions on
Computers, vol. 42, pp. 168-178, 1993.

[24] C. E. Gilchriest, “Signal-to-noise monitoring,” Spacing Programs

76

Summary 37-27, IV, Jet Propulsion Laboratory, Pasadena, CA, june
1967, pp. 169-184.

[25] J. W. Layland, “On S/N estimation,” Space Programs Summary 37-48
III, Jet Propulsion Laboratory, Pasadena, CA, Dec. 1967, pp. 209-212.

[26] “SNR estimation”, Institute of communications Engineering,
http://speedy.et.unibw-muenchen.de/forsch/ut/moment/snr/index.html
(current june 30, 1997).

77

