Parallel Processing Letters
© World Scientific Publishing Company

Performance Evaluation of a Parallel Decoupled Data Driven
Multiprocessor

MITCHELL THORNTON

Department of Computer Science and Engineering, Southern Methodist University
P. O. Box 750122, Dallas, Texas 75275, U. S. A.

Received (received date)
Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

The Decoupled Data-Driven (D?) architecture has shown promising results
from performance evaluations based upon deterministic simulations. This
paper provides performance evaluations of the D?® architecture through the
formulation and analysis of a stochastic model. The D? architecture is a hy-
brid control/dataflow approach that takes advantage of inherent parallelism
present in a program by dynamically scheduling program threads based on
data availability and it also takes advantage of locality through the use of con-
ventional processing elements that execute the program threads. The model is
validated by comparing the deterministic and stochastic model responses. Af-
ter model validation, various input parameters are varied such as the number
of available processing elements and average threadlength, then the perfor-
mance of the architecture is evaluated. The stochastic model is based upon a
closed queueing network and utilizes the concepts of available parallelism and
virtual queues in order to be reduced to a Markovian system. Experiments
with varying computation engine threadlengths and communication latencies
indicate a high degree of tolerance with respect to exploited parallelism.

Keywords: Performance Modeling, Data-Driven Execution, Markov Chain,
Deterministic Model

1 Introduction

The dataflow model of computation promises to exploit parallelism through asyn-
chronous instruction execution on the basis of operand availability. Several dif-
ferent architectural approaches have been proposed and evaluated [1] [2]. The
dataflow model of execution has been criticized for unequal load balancing and com-
plicated resource management issues in general. In addition, scheduling issues have
prompted some criticism of this computation model. Furthermore, the dataflow
model of execution is unable to benefit from the many advancements in the design
of contemporary control-flow based machines that are based upon the exploitation
of locality such as pipelining, caching, and delayed accesses and branching.

In order to benefit from both the exploitation of locality that many control-flow
machines utilize and the use of inherent parallelism found in dataflow machines,
there has been some interest in hybrid control-flow/dataflow architectures recently
[3] [4]. Behavioral simulations have been performed and promising results have
been obtained for the Decoupled Data-Driven (D?)architecture [5]. This paper will
address the development and results obtained of a queuing network model of the
D3 architecture. This model is verified by comparing its results to those obtained
using the behavioral architectural model. After verification, various aspects of the
architecture may be easily varied by changing certain parameters of the queuing
network allowing the system designer to experiment with architectural modifications
without resorting to changing the behavioral model.

The use of analytical models for estimating the performance of various computer
architectures and their resource requirements has been studied by other researchers.
In [6] FORTRAN industrial applications were were compiled using the Polaris com-
piler and key parameters were extracted. These parameters were used to construct
symbolic functions that described function complexity with respect to data and run-
time resources and to extrapolate on how these resource scale. A stochastic mod-
eling approach was used to characterize dataflow graphs for the reliability analysis
of interconnection and computer networks is described in [7]. A hybrid computer
architecture that is extremely similar to the D3 approach described here is de-
scribed in [8] and both deterministic and analytic models are used to characterize
its’ performance.

First, a brief description of the architecture is presented so that the appropri-
ateness of the model may be described and the limitations can be pointed out.
Next, assumptions are presented in order to simplify the model so that it can be
analyzed in a practical manner. The notions of ‘available parallelism’ and ‘virtual
acknowledgment queue’ are presented and incorporated into the stochastic model.
After the model is formulated, it is verified by comparing modeling results with
those obtained by computer simulation. Performance analysis measures are then
obtained by varying parameters such as available parallelism, processor communi-
cation latencies, and average lengths of the control-flow code templates (hereafter
referred to as ‘threadlength’).

2 The D? Architecture

The D3 machine is based upon the hybrid combination of von Neumann style
(control-flow) processors and data-driven synchronization. The synchronization of a
von Neumann machine is based purely upon the program counter (PC) that points
to the next instruction to be executed in the control-flow of the program. The D3
architecture also uses a PC within a particular thread, but the threads themselves
are scheduled according to operand availability. This allows the benefits of locality
to be utilized within each thread and the exploitation of inherent parallelism in a
particular program due to data-driven scheduling of the threads. An overall view
of a single node in the D?® architecture is given in Figure 1.

Figure 1 shows how the scheduling of threads and the thread computation occur

Graph Computation
Memory Memory

DDGE PE

Fig. 1: Diagram of a Single Node in the D? Architecture

concurrently by using the data-driven graph engine (DDGE) to perform the syn-
chronization of thread execution and using the processor engine (PE) to perform the
control-flow execution of threads. This allows for increased tolerance to scheduling
overhead and communication latency. The DDGE and PE are connected by two
queues, the ready queue (RQ) and the acknowledgment queue (AQ). As soon as a
thread (or actor) has completed execution, the computational element (CE) within
the PE is freed and a pointer to the particular code template along with a context
value is entered into the AQ. The freed CE is then allocated a new thread and
execution begins.

The objects in the AQ are serviced by individual graph elements (GEs) within
the DDGE. The GE examines the pointer in the AQ and determines which actor
(or actors) require the operand just computed. These actors may be referred to as
”consumers” of the actor that was retrieved from the AQ and is currently being
processed by a particular GE. If the consumers only require one operand they are
called monadic actors and pointers to their respective code templates are placed
into the RQ indicating computation may begin. If the consumers require a second
operand, they are not scheduled for execution but must ”wait” for their remaining
operand. This ”waiting” is accomplished by using graph memory that contains a
”status” value for each actor in the program. Dyadic actors have a status value of
2 and monadic actors have a status value of 1. As soon as a producer arrives in
the AQ, the GE processes this actor by decrementing the status values of all its
consumers. Whenever a status value reaches 0, this actor is deemed executable and
is scheduled by placing a pointer to its code template into the RQ.

It is important to note that servicing by the DDGE is always constant. The

only way for non-constant service to occur is if the number of servers (GEs) is less
than the number of actors in the AQ. When this occurs, the actors must wait in
the queue.

In contrast, the service time of the PE is variable. In the model for the D3
architecture, it is assumed that all control-flow instructions execute in unity time,
hence the service time is equal to the threadlength.

The programs for the D? architecture are composed of two main entities; the
graph (synchronization) portion and the computational portion. The computation
portion consists of segments of code composed of conventional, control-flow instruc-
tions such as ADD, LOAD, STORE, etc. The graph portion contains the status
value and the consumers. Collectively, the graph portion and the computation por-
tion are called an actor. Thus a D? program (or D? graph) is a partially ordered
conventional program with a data-dependency graph superimposed on it.

3 Formulation of the Stochastic Model

In order to model the D? architecture both the hardware and the particular data-
driven graph to be executed must be accounted for. As discussed above the archi-
tecture is conveniently represented as a computation engine and a graph execution
engine connected by two queues. The two engines are modeled as multi-servers for
the two queues.

The RQ server model is very straight forward and obeys typical server con-
straints. The queue objects (i.e., the actors) in the RQ are pointers to conventional
control-flow code templates of varying threadlength. The service time of the RQ
objects is equal to the number of operations in each template since it is assumed
that all control-flow instructions require unity execution time. The threadlength is
modeled as being exponentially distributed with some mean value. Thus, the RQ is
modeled as a multi-server queue with an exponential service time. The particular
data-driven graph that is being modeled is used to compute sample statistics such
as average threadlength and the percent of dyadic actors. The average threadlength
is then used as the mean service time for the RQ.

The AQ is modeled as two parallel queues referred to as ”AQ” and "VAQ”. The
VAQ (virtual AQ) is not present in the architecture. Its purpose is to simulate
the action of dyadic actors. Dyadic actors require two operands before they can
execute. This means that when an RQ server is finished, the consumer of that actor
may require another operand before it can be scheduled for execution, hence the
consumer is not immediately scheduled for execution. The consumer must ” wait”
for its other operand before it can be executed. In the architecture, this ”waiting”
is accomplished by decrementing the status variable of an actor for its respective
context. In order to comply with a closed queuing network model for the D3
architecture, the VAQ is used to service the dyadic actors. By observing simulation
results for various D> graphs, it seemed appropriate to model the VAQ service time
as being exponentially distributed with a mean service time determined from the
particular program being executed. The other queue, AQ, is a multi-server queue
with a constant service period. This directly represents the current state of the

architecture. Communication latencies among the GEs may be varied by changing
the service time of the AQ. When an actor has been served by the RQ, it is placed
in either the AQ or VAQ depending upon the outcome of a uniform random number
generator and the input parameter that states the percentage of dyadic actors. This
input parameter is essentially a routing probability in the network for arrival at the
VAQ.

It should be noted that in reality all actors are not either monadic or dyadic.
It is possible for actor to require an arbitrary number of operands before it can be
scheduled for execution. However, such actors can always be transformed into a set
of smaller actors that are all monadic or dyadic in nature.

In order to formulate the model as a Markovian system, the notion of available
parallelism is used. In other performance analysis studies, this parameter has been
computed in a variety of ways [9] [10]. In this paper a very simple representation
for available parallelism is used. Encouraging results are obtained by setting the
available parallelism input equal to the total number of actors in a given context for
the particular D graph under consideration. The available parallelism parameter
is used during initialization of the model to determine the total number of actors
present in the network.

Since the total number of actors is fixed, the network is conveniently modeled
as a Markov chain with the states determined by the number of actors being served
in each queue. These states are denoted by:

(n1,m2,n3)
Where
1. n; is the number of actors being served in the RQ
2. ng is the number of actors being served in the AQ
3. ng is the number of actors being served in the VAQ

4. Ny is the total number of actors in the system, or alternatively, the input
parameter, available parallelism

5. Paya is the percentage of dyadic actors for a particular D* graph

Clearly,
Ntot =ny1 + N2+ ns3

Using this relationship and the definitions above, the following equation can be
written that represents the relationship for the Markov chain state transitions:

Niot =1y + 1z + paya(nz — nz)

Figure 2 shows a schematic representation of the stochastic model. The number
of states in the Markov chain depend upon the value of N;,. A general state of
the Markov chain is shown in figure 3. The values of m, k, and j are in general

greater than one. This is especially true since an infinite number of servers are
assumed to be present in the model. In reality any physical realization of the D?
architecture will necessarily contain a finite number of servers, however when the
available parallelism is less than the number of servers at each queue, the behavior of
the queues is identical to queues with infinite servers. Allowing infinite servers in a
model of the D3 architecture allows the inherent parallelism present in the D3 graph
to fully exploited and thus a convenient measure of this performance characteristic
is obtained. For this reason, both the stochastic model and the simulation model
offer this capability.

>
O

1-p

<
>
O

o

p)
O

Fig. 2: Diagram of the Closed Queuing Network Model for the D3 Architecture

Fig. 3: General State for the Markov Chain model

Table 1: Comparison of Simulation and Stochastic Model Results
D? Simulator Stochastic
Graph Results Model Results
Avg. | Avg. | Avg. | Avg.
CE GE CE GE

DOT 2.7 0.54 2.7 0.72
TRAP 5.7 0.21 7.5 0.68
FIBONACCI | 2.0 0.27 1.6 0.16
JACOBI 24 0.39 2.4 0.29

Since the RQ has an exponential service rate, the arrival rates of the AQ and
VAQ are approximately Poisson and the queues are of the following type:

1. RQ - M/M/c
2. AQ - M/D/c
3. VAQ - M/M/c

4 Model Results

The results of the model were obtained by using the simulation language, SIM-
SCRIPT [11]. After the model was developed, it was verified by comparing the
results obtained to those obtained by the simulator. There are several different
D3 graphs executing on the simulator and 4 of these were chosen to validate the
stochastic model with. Table 1 compares results obtained from the simulator and
the stochastic model as implemented with SIMSCRIPT.

These results indicate an amount of agreement between the stochastic model
and the computer simulation of the architecture as quantified by an average agree-
ment of required computation CEs being 0.55 and an average agreement, of required
GEs being 0.23. Based on these results, experiments were performed with various
changes in the input parameters such as available parallelism and communication
latency to analyze the performance of the D3 architecture. The largest deviation in
results between the simulator and the stochastic model occurred for the graph that
executes the Trapezoid rule for an integrand that is a third degree polynomial. This
is most likely due to the model parameter of average thread length (i.e., mean RQ
server time). This particular graph has several actors with threadlengths around
40 and several with threadlengths less than ten, hence the average value is around
25, but in reality there are no actors with a thread length of this size. So, the ex-
ponential distribution of service time for the RQ is a very approximate assumption
for this particular example. A more accurate stochastic model could be formulated
for the Trapezoid rule experiment by using an empirically measured distribution
from the deterministic model; however, this would defeat the purpose of attempt-
ing to obtain a generalized model for all program examples. Furthermore, when
parameters such as available parallelism are extrapolated, it is not clear that the
empirically measured distributions would scale proportionally. For these reasons,

the results reported here are based on using exponential distributions with average
threadlengths.

To determine how well the architecture exploits the inherent parallelism in a
particular D3 graph, the parameters from one of the examples above was held
constant and the available parallelism parameter was varied. This is equivalent to
assuming the same communication latencies (queue arrival rates) and threadlengths
(RQ mean service times) as in the original example, but assuming that more or
less parallelism is available in the D? graph being executed. The plot in figure 4
illustrates how the resource utilization versus the available parallelism varies for
the DOT example. The results indicate that resource utilization grows linearly
with respect to available parallelism with a nearly unity slope for the maximum
number of CE’s used. The ideal case would be a slope of 1.0 for this curve indicating
100% exploitation of available parallelism. The stochastic model seemed to be more
optimistic with this parameter than the simulator did. Typically, the simulator
would indicate a slope of approximately 0.6 to 0.7 while the stochastic model would
predict results from 0.7 to 0.9. This is most likely due to the absence of actors
requiring more than two operands before being scheduled for execution and the
exponential service time distributions.

Resource Utilization versus Available Paralellism
16 T T T T T T T T T

"dot.dat"

14 b

Max. CEs

Resource Utilization
0o
T
1

Avg. GEs

0 1 | | | | | | |

0 2 4 6 8 10 12 14 16 18 20
Available Paralellism

Fig. 4: Available Parallelism versus Resource Utilization for the DOT example

Another interesting result was obtained by varying the average thread length
(the mean RQ service time) and observing the effect on resource utilization. These
results are displayed in the plot shown in figure 5. This experiment represents
trading off the two virtues of increased performance due to locality in the PE
and increased performance due to inherent parallelism in the data-driven graph.
The results for the FIBONACCI generator example indicated that increasing the

threadlength by 100% degraded parallelism by only 33%. This result is encouraging
because it means that greater performance can be achieved by exploiting locality
with a minimal resulting degradation due to decreased parallelism. In the limit,
the average threadlength would approach the time required to compute the entire
program as an unrolled loop. The data in this portion of the graph could give in-
teresting information about the amount of locality being exploited and the amount
of inherent parallelism that could be utilized.

Resource Utilization versus Threadlength

3.5 T T T T T T T T
"fig5.dat"

Average Number of GEs and CEs

Average Threadlength

Fig. 5: Average parallelism versus Average Threadlength for the FIBONACCI Example

To study the effects of communication latency on the D3 architecture, the con-
stant service time of the AQ is varied for a constant available parallelism and mean
RQ service time. The results of this experiment are given in figure 6. It is desirable
for this curve to be as flat as possible indicating a high degree of tolerance to in-
creased communication latencies. It should be noted that another way of combating
the effects of increased communication latencies is to increase the threadlength of
the computation code templates thereby gaining more computation per schedul-
ing activity. For the purposes of the stochastic model, the threadlength remained
constant for this experiment.

The results in figure 6 the best obtained so far over our suite of example pro-
grams. The average number of CEs remained nearly constant when the communi-
cation latency was increased by a factor of 10. The communication latency resulted
in an increased average number of executing GEs. This is precisely why the ar-
chitecture is designed in a ”decoupled” manner. This result clearly shows how the
D? architecture tolerates communication latencies by letting the DDGE handle the
degradation and allowing for practically no computational degradation.

Resource Utilization

Resource Utilization versus Communication Latency
8 T T T T T T T T T

"fig6.dat"

Avg. CEs

0 | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10
Communication Latency

Fig. 6: Communication Latency versus Resource Utilization TRAPEZOID Rule Example

5 Conclusion

This paper has described the formulation and implementation of a stochastic model
for the D? architecture. The model was constructed as a closed network of queues.
Currently, the network model is very simple but encouraging results have been
obtained nevertheless. Results were obtained from this model and were shown
to have a close agreement with results obtained from a computer simulation of
the architecture. Various performance analysis measures were generated using the
stochastic model. The results indicated that the D3 architecture has a high degree
of tolerance to communication latency and is also able to achieve a good amount of
exploitation of available parallelism.

1.

Arvind and Gostelow, K.P., The U-Interpreter, IEEE Computer, pp. 42-49, Febru-
ary, 1882.

. Dennis, J.D., Data flow Supercomputers,IEEE Computer, C-29(11):48-56, Novem-

ber, 1980.

Tanucci, R.A., Toward a Dataflow/von Neumann hybrid architecture, Proceedings of
the 15" Annual International Symposium on Computer Architecture

Evripidou, P. and Gaudiot, J.L., A Decoupled Graph/Computation Data-Driven Ar-
chitecture with Variable-Resolution Actors, 1990 International Conference on Par-
allel Processing.

. Evripidou, P., Thornton,M., and Gaudiot, J.L., A Decoupled Data-Driven Machine

with Variable-length Thread Support, Tech. Rep. 93-CSE-29, SMU, 1993.

Armstrong, B. and Eigenmann, R., Performance Forecasting: A Methodology for
Characterizing Large Computational Applications, Proceedings of the International
Conference on Parallel Processing, pp. 518-525, August 1998.

Chen, D. J. and Kavi, K. M., Stochastic Dataflow Graph Models for the Reliability

10

10.

11.

Analysis of Interconnection and Computer Networks, Journal of Information Science
and Engineering, (Institute of Information Science), 7(2):253-278, June 1991.

Kavi, K. M., Giorgi, R. and Arul, J., Comparing Execution Performance of Sched-
uled Dataflow with RISC Processors, Proceedings of the 13" International Sym-
posium of Computer Architecture Parallel and Distributed Computing Conference,
August 2000.

Ghosal, D. and Bhuyan, L.N. Performance Evaluation of a Dataflow Architecture,
IEEE Trans. on Comp. vol. 39 no. 5, May 1990, pp.615-627.

Houghton, R.C., Jr., Performance Evaluation of Task Graphs on Parallel Architec-
tures Ph.D. Dissertation, Duke University, Department of Computer Science,
1991.

Russell, E.C., SIMSCRIPT II.5 Programming language, 4-th Edition, CACI
Products Company, LaJolla, CA, 1987.

11

