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Chapter 1 :  Introduction / Background

1.1 Introduction

The manipulation of Boolean equations has long been a necessary part of digital systems

design.  A number of common design problems including synthesis, verification, and test

vector generation can be modeled as a sequence of manipulations on Boolean equations.

In addition to these design problems, many traditional computer science problems from

domains such as artificial intelligence and combinatorics may be expressed in terms of

Boolean equations.  The growth in software systems which require Boolean equation

manipulation, specifically computer-aided design (CAD) systems which utilize Boolean

equations with large numbers of inputs, has created a need for an efficient data structure

to represent and manipulate Boolean equations.

Common methods for representing Boolean equations include truth tables and cube sets.

Truth tables represent Boolean equations by using one bit of memory to represent every

row or minterm in the table where a one indicates the inclusion of that minterm in the

cover of the function.  Thus any function, even very simple functions, of n input variables

requires 2n bits.  This exponential space requirement makes truth tables impractical for

Boolean equations with many inputs.  Cube sets, on the other hand, represent Boolean

equations as a sequence of product terms (e.g., product-of-sums form).  This

representation has the advantage of being able to represent many (but not all) Boolean

equations in less than an exponential number of terms.  However, cube sets may include

redundant terms and are, therefore, not canonical representations of the equations.  To

ensure uniqueness, a time consuming reduction process must be applied to the cube sets.
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Due to the failure of traditional methods to represent Boolean equations with large input

sets efficiently, researchers have developed a new graph-based data structure known as

the Binary Decision Diagram (BDD).  Introduced by Akers in 1978 [1] and popularized

by Bryant in 1986 [2], the BDD has proven to be an efficient representation of Boolean

equations in many modern applications [3].  While the BDD has proven to represent a

large class of Boolean equations well, it is no panacea for CAD applications.  In fact,

BDDs can also grow exponentially large if a poor variable ordering (defined later) is

chosen.  This work focuses on the use of heuristics defined in terms of circuit output

probabilities to determine efficient variable orderings so that BDDs might represent

complex Boolean equations using a reasonable amount of computer memory.

1.2 Definition of Binary Decision Diagrams

In this section, the basic structure of the BDD is defined.  It includes a brief history of the

BDD as well as descriptions of some of the common modifications and extensions to the

basic structure.

1.2.1 BDDs by Akers ’78

The roots of the Binary Decision Diagram can be loosely traced to the work of Lee in the

late 1950s [4].  Lee used what he termed “Binary-Decision Programs” to represent

switching circuits.  Akers then refined and renamed Lee’s structure to create what is now

often called the Free-Form Binary Decision Diagram [1].  The BDD, as defined by

Akers, is a directed graph with two types of vertices, terminal and non-terminal.

Terminal nodes have a single attribute which is a Boolean constant.  When these nodes
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are reached through a normal traversal of the graph for some set of input values, the value

of the Boolean equation is given by the label of the terminal node.  The non-terminal

nodes are characterized by three attributes, a variable index and two outgoing edges.  One

of the edges is known as the 0-edge; the other is the 1-edge.  The variable value, which is

referenced by the index, determines which edge is traversed.  If the variable has a truth

value of one, then the 1-edge will be traversed, otherwise the 0-edge will be traversed.

As an example, the Boolean Equation f x x x= +1 2 3 can be represented by the BDD

shown in Figure Chapter 1 :-1.  If the input set is given by x1 =1, x2 =0, and x3 =0, then the

path would be given by the highlighted lines (thick lines).  And the value of the equation

for that input set would be determined to be a logical-1 or true value.

BDDs, as defined by Akers, can effectively represent many Boolean equations; however,

they have two major flaws.  First, they are not canonical representations of the equations

(i.e., BDDs of different forms can represent the same function).  The BDD in Figure

Chapter 1 :-2 represents the same function as does Figure Chapter 1 :-1, but it has a

substantially different and larger form.  This lack of uniqueness makes equivalence

testing extremely complex.  The second problem is related to variable ordering.

Variables under Akers design may be encountered in any order along any path and may

even occur twice along a single path, which makes routines to perform basic Boolean

operations such as AND and OR extremely difficult.
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1.2.2 OBDD/ROBDD by Bryant ’86

In 1986, Bryant defined the Ordered Binary Decision Diagram (OBDD) or Reduced

Ordered Binary Decision Diagram (ROBDD) which corrected the major flaws in Akers’

model [2].  He placed three restrictions on the definition of BDDs.  Two of the

restrictions are reduction rules.  The first reduction rule calls for the removal of any

redundant node which has a 1-edge and a 0-edge that point to the same node.  Any edges
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which were incident on the redundant node will now be incident on the node pointed to

by the 1-edge and 0-edge of the redundant node (the x3 node on the far right of Figure

Chapter 1 :-2 is a redundant node since both edges point to 1).  The second reduction rule

calls for the removal of any repeated sub-graphs (the three x3 nodes on the left of Figure

Chapter 1 :-2 are identical and can be replaced by a single node).  As a final restriction,

Bryant created the idea of variable ordering which means that the variable index

associated with a given node must be lower than the indexes associated with the nodes

referred to by its 1-edge and 0-edge.  In other words, variables must be encountered in the

same order along all paths and may only be encountered once along any given path.

The Reduced Ordered Binary Decision Diagram is a canonical representation of Boolean

equations for a fixed variable order.  An equivalence test between two ROBDDs is

simply a check for isomorphism between the two graphs which, for this restricted type of

graph, has a computational time that is linear with respect to the size of the graphs [5].

Bryant’s data structure has been shown to represent a large class of Boolean equations

efficiently.  Furthermore, Bryant’s representation affords an efficient implementation of

basic Boolean operations such as NOT, AND, and OR with a temporal complexity that is

linear with respect to the size of the graphs in terms of the total number of vertices [6].

Bryant’s Reduced Ordered Binary Decision Diagram (ROBDD) is the much more

common structure in work related to Binary Decision Diagrams.  For this reason, they are

often referred to as OBDDs or just simply BDDs.  Any further reference to the acronym

BDD in this work will refer to Bryant’s definition unless otherwise noted.
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1.2.3 Attributed Edge BDDs

In order to reduce time and memory requirements of the BDD, researchers have proposed

the use of Attributed Edges.  The attribute is a function which is to be performed on the

sub-graph referenced by the edge.  The most common attribute is the negation or

complement attribute (see [7] for a list of other attributes).  This attribute simply takes the

inverse of the function represented by the sub-graph.  Figure Chapter 1 :-3 gives the BDD

with negative-edge attributes for the Boolean equation f x x x x= +1 2 1 2.  Among the list

of advantages for negative edge-attributed BDDs are reduced size (up to a half), constant

time negation operation, and accelerated logic through an expanded list of operators [5].

If applied arbitrarily, negative edges can break down the uniqueness property of BDDs,

but if the following rules are observed, uniqueness is preserved:

1. Use only the “1” terminal node.

2. Use negative attributes on the 0-edges only.

Alternatively, one could use the “0” terminal node and attributes on the 1-edge.  As long

as a consistent system is used, uniqueness will be maintained [5].
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1.2.4 Shared Binary Decision Diagrams (SBDD)

Multiple functions can be represented in a single multi-root graph where no two sub-

graphs are isomorphic (i.e., the functions share sub-graphs, and a consistent ordering is

maintained for all functions).  This structure is known as the Shared Binary Decision

Diagram (SBDD).  An example SBDD is illustrated in Figure Chapter 1 :-4.  SBDDs

have a number of advantages including allowing multiple functions to be represented

compactly and reducing equivalence testing to a single pointer comparison [7].
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1.3 Variable Ordering

As previously discussed, Bryant’s definition of the BDD includes the concept of variable

ordering which implies that variables will be encountered in the same order along every

path and that any one variable will be encountered at most once along a given path.

These restrictions ensure that BDDs are canonical representations of Boolean equations

for a fixed variable order, but if the order is changed, then the structure and size (number

of nodes) of the BDD may also change.  It has been shown that the size of the BDD, for

some functions, may vary widely depending on the variable ordering used -- from a best

case of n nodes to a worst case of 2n/n nodes for a function with n primary inputs [5].

Furthermore, it is known that reducing a BDD to its optimum size is an NP-Complete

problem.  To date, the most efficient algorithm known for the determination of the

optimal order has a complexity of O(n3n) [8].  Fortunately, the  optimal ordering is not

necessary, and we only need to obtain a “good” variable ordering.  Hence, we are
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motivated to use heuristic based methods to obtain a variable ordering that produces a

BDD of reasonable size.

There are two standard approaches to achieving a reasonable variable ordering.  The first

is to determine some property of the function prior to representing it in BDD form, set the

order, and then create the BDD.  This approach is known as variable ordering.  The

second approach, variable reordering, requires that the BDD be created with some

general ordering, and then the variables are exchanged until a reasonable ordering is

achieved.

1.3.1 Techniques of Variable Ordering

Since most Boolean functions are given in the form of a circuit description such as a net-

list file, variable ordering generally involves some type of circuit analysis to determine

various properties about the function and its variables.  Two basic properties of variable

ordering have been empirically determined:

• related variables should be near each other in the ordering,

• variables which have great control over the function should come early in the
ordering[5].

In 1988, Fujita et al. proposed an ordering technique which attempted to exploit the first

basic heuristic [9].  This method attempted to minimize cross-points in the circuit, and

involved a depth-first traversal from outputs to inputs whereby the inputs that were

encountered first during the traversal were placed first in the ordering.  Fujita’s technique
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has been applied on a number of practical circuits and often achieved a reasonable

ordering – particularly with circuits which have a low degree of fan-out [5].

A second ordering method, proposed by Minato et al. in 1990, used a dynamic weight

assignment algorithm to attempt to discern those inputs which most greatly affect the

output [7].  This algorithm proceeds by first assigning an equal weight to each of the

primary outputs.  The weight is propagated to the inputs by assigning the weight of each

gate to be the sum of the weights of all its fan-out branches, and the weights of the fan-in

stems to the gate are then determined by equally dividing the weight of the gate among

them.  The primary inputs that have the largest weight are assumed to exert the greatest

control over the output and are ordered first.  Like Fujita’s method, this method can

produce reasonable results for some circuits, but certainly not all.

1.3.2 Techniques of Variable Reordering

A number of reordering techniques have been proposed.  Most of the techniques involve

some sort of variable exchange algorithm which searches for a local minimum.  One of

the more successful reordering methods is known as sifting [10].  Sifting begins by taking

the first variable in the ordering and exchanging it with each successive variable in the

ordering.  When this initial pass is complete, the variable which was originally first will

be moved to the position which produced the smallest BDD.  This process is repeated for

all remaining variables.  Sifting is essentially an exhaustive search of an n2 sub-space of

the possible n! orderings where n is the number of primary inputs.  Sifting can produce

excellent results if  the original ordering places it in a “good” sub-space; however, it may
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be very time consuming or produce poor results or both if the original ordering is very

poor [5].

A second reordering technique is Simulated Annealing.  For a more detailed description

of the algorithm, the reader is referred to [11] as only the basic features will be discussed

here.  Simulated Annealing is a process whereby small random changes are made in the

ordering.  The ordering is then settled into a local minimum according to some cost

function.  This process is repeated according to some “cooling schedule” until no

improvement in size is achieved.  Some of the best known orderings to date have been

found using this process, but it carries the disadvantage of being slow.  For some large

benchmark circuits, simulated annealing algorithms can require several hours to

complete.  Furthermore, because of the random element, it does not necessarily produce

the same result if repeated on the same circuit [11].

1.4 Output Probability as a Measure of Variable Significance

As noted above, one of the central heuristics in many ordering/reordering schemes is the

notion that variables which greatly influence the output of the function should be placed

near the top of the ordering.  The difficulty is in measuring the influence of a particular

variable.  One  primary focus of this work is the use of function output probabilities to

measure the influence of  variables and then determine an efficient ordering based on

these measures.
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Function output probability can be defined as the percentage of “ones” in the truth table.

In other words, it is the likelihood that a function will produce a true value if all its inputs

are selected at random assuming that each input has an equal probability of being a one or

a zero.   This value can be calculated directly from a BDD representation, and in certain

forms can be used as an algebraic measure of Boolean function output correlation to

inputs [12].  The following sections define terms and values needed to calculate the

ordering heuristics used in this work.

1.4.1 The Shannon Decomposition Theorem

For completeness, the definition of the Shannon Decomposition theorem [13] is given.  In

each of the following expressions, f is assumed to be a Boolean equation of n input

variables given by x1, x2,…,xi,…,xn .  Equations 1-1 and 1-2 give the positive and negative

cofactors respectively, while Equation 1-3 gives the relationship between these cofactors

and f.  The positive (negative) cofactor taken about xi can be thought of as f where xi is

given as a 1 (0).  The Shannon Decomposition theorem as given in Equation 1-3 is, in

fact, the mathematical basis of the BDD as each node can be viewed as a decomposition

about its variable index.  The 1-edge points to the positive cofactor, and the 0-edge points

to the negative cofactor.

( )f f x x x x xx i i ni = − +1 2 1 11, ,..., , , ,... (1-1)

( )f f x x x x xx i i ni = − +1 2 1 10, ,..., , , ,... (1-2)
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f x f x fi x i xi i= + (1-3)

1.4.2 The Consensus Function

A number of operations can be defined in terms of the Shannon cofactors.  One such

operator is the Consensus Function (universal quantifier) which is defined as the Boolean

AND or intersection of the positive and negative cofactors from Shannon Decomposition

taken about some variable, xi (Equation 1-4).  This operation gives the portion of f which

is independent of xi [14].  Hence, small values for the probability of the consensus

function tend to indicate that the function is heavily dependent on the variable xi, and

therefore, the consensus function can be used as a reasonable metric in determining

variable ordering.

C f f fx x xi i i( ) = • (1-4)

1.4.3 The Smoothing Function

Another possible ordering metric is the Smoothing Function (existential quantifier) which

is defined as Inclusive-OR or union of the two Shannon cofactors taken about some

variable, xi (Equation 1-5).  The smoothing function represents the behavior of a function

when the dependence on a particular variable is suppressed [14].  Hence, values for the

probability of the smoothing function that are close to the output probability of the

function itself indicate that the variable about which the smoothing operator was taken

has little influence over the function.



14

S f f fx x xi i i( ) = + (1-5)

1.4.4 The Boolean Derivative

A final useful operator which can be defined in terms of the Shannon cofactors is the

Boolean Derivative (Boolean difference).  This operation is defined as the Exclusive-OR

of the Shannon cofactors taken about some variable, xi (Equation 1-6).  The Boolean

derivative is a measure of the observability of a particular input variable [14].  Thus if the

probability of this operator for a particular input is close to zero, then input is relatively

unobservable.

∂
∂

f

x
f f

i
x xi i= ⊕ (1-6)

1.5 Contributions and Outline of Remaining Chapters

This work examines the use of function output probabilities to define variable ordering

and reordering heuristics which can be applied to decision diagrams so that complex

Boolean equations can be represented more efficiently.  Both a new reordering algorithm

(Chapter 3) and a new ordering algorithm (Chapter 4) are defined and empirically tested

to determine their effectiveness.  These algorithms require that function output

probability be computed from a BDD (reordering) and from a circuit description

(ordering).  Therefore, as a byproduct, a new algorithm to determine output probabilities

from BDDs is defined, and previously proposed methods for estimating output
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probabilities from circuit descriptions are implemented and empirically tested to

determine their accuracy.

In Chapter 2, a new algorithm for determining the function or circuit output probabilities

is outlined.  This algorithm is compared to a previously developed algorithm in terms of

complexity and applicability to various decision diagrams.  The new algorithm is found

to be superior because it can more efficiently handle the shared sub-graphs of SBDDs and

because it can be generalized to work with BDDs that have attributed edges.

Chapter 3 defines a new variable reordering algorithm for SBDDs with negative-edge

attributes.  The reordering method is a heuristic based method which uses the probability

of the consensus function as the primary ordering metric.  Experimental results are given

for a number of practical benchmark circuits.  This new reordering algorithm is shown to

significantly reduce the size of SBDDs in reasonable time.

Chapter 4 proposes a new variable ordering algorithm which produces a SBDD with

negative-edge attributes from a net-list file.  The ordering heuristics are similar to those

used in reordering.  The primary difference is that the probability of the consensus is

estimated from a net-list description rather than being calculated exactly from a BDD.

The ordering algorithm is shown to perform in a less efficient manner than did the

reordering algorithm because output probabilities are much more difficult to obtain from

circuit descriptions.  This work highlights the need to develop better algorithms for

estimating the output probabilities from circuit descriptions.



16

Chapter 5 is the concluding chapter.  It seeks to summarize this work and highlight its

significance as well as give direction for future research.
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Chapter 2 :  Algorithm to Calculate Function Output Probability

2.1 Algorithm Definition

In the previous chapter, the function output probability was defined as the likelihood that

a function will have a truth value of one given that each input has an equal probability of

being a one or a zero.  This definition is sufficient for the order/reordering experiments

performed here; however, function output or signal probability can be more generally

defined as the probability that a function  or circuit output will have a truth value of one

given the probability distributions of each of its inputs.  Here, a new algorithm will be

defined to calculate these more general output probabilities from a BDD.  The algorithm

has a linear complexity with respect to the size of the BDD and can work efficiently with

shared and attributed edge BDDs.

The utility of this algorithm is not limited to ordering problems.  Output probabilities

have previously been used to calculate spectral values for Boolean equations, perform

combinational logic synthesis, and to detect variable symmetry among Boolean input

variables [15].  And recently output probabilities have also been utilized to design and

analyze low-power circuitry [16] [17] [18].

2.2 Previous Algorithms

Several exact and approximate methods for the determination of circuit output

probabilities have been developed.  Algebraic and circuit topology based methods were

proposed in the original paper [19].  Some other estimation methods have been developed
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including those in [16] [20] [21] [22] [23] [24].  In addition to these methods which are

largely based on circuit descriptions, one method that uses BDDs to find function or

circuit output probabilities has been proposed [25].

The BDD based method in [25] can be used to compute the output probabilities in a very

efficient manner if the candidate circuit is described using a compact BDD.  The

asymptotic complexity of this method is O(N) where N is the number of nodes in the

BDD representing the function.  The basis of this algorithm is a breadth-first traversal of

the BDD to calculate the so-called “node” probabilities.  Each node probability represents

the probability that a given node will be reached during an arbitrary traversal of the

graph.

The node probability for any node, Pnode, can be defined in terms of the node

probabilities, Ppred_1...Ppred_z, of its predecessor nodes (have an outgoing edge that is

incident on the node).  If the set T = {t1,...,tw} represents all nodes which have a 1-edge

that is incident on the node n, and if the set F = {f1,...fx} represents the set of nodes which

have a 0-edge incident on n, and if the probabilities of all input variables with which the

nodes are associated are known, pt1,...,ptw and pf1,...pfx, then the node probability, Pn, can

be defined as:

( ) ( )P p P p Pn t t

i

w

f f

i

x

i i i i= × + − ×
= =
∑ ∑

1 1

1( ) (2-1)
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It is clear that the node probability of the initial node is 1.0 since all paths must begin at

the initial node.  It is fairly trivial to define a breadth-first algorithm which begins at the

initial node and calculates the node probability of each node until the terminal one is

reached.  The node probability of the terminal one is the output probability of the

function.  It should also be clear that these node probabilities can be calculated in a single

traversal of the BDD, and thus this algorithm has linear complexity.  Figure Chapter 2 :-1

shows an example calculation for a simple ordered binary decision diagram (no negative

attributes).  In this example the probability of each input variable is assumed to be one

half, and the node probability of the terminal-1 node is found to be 0.5 which is the

correct output probability for the given function (the function covers four out of a

possible eight minterms).

X1

X2 X2

X3

10

0 1

0
0

0

1 1

1

 f = x1x2 + x1x3 + x2x3

Px1 10= .

P Px x2 11 05 05= − =( . )* . P Px x′ = =2 105 05. * .

P P Px x x3 2 205 1 05 05= + − =′. * ( . )* .

P P Px x1 05 05 053 2= + =′. * . * .

Figure Chapter 2 :-1: Example Breath-First   Calculation

This algorithm suffers a number of deficiencies.  First only one initial node is assumed

which precludes the use of Shared Binary Decision Diagrams (SBDD).  The algorithm

can be applied to SBDDs but at a computational cost.  The shared sub-graphs will need to

be traversed multiple times (once for each output).  Thus the asymptotic complexity for
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finding the output probability of all functions in the SBDD becomes O(m*max_n), where

m is the number of outputs and max_n is the size of the largest BDD if the functions were

represented individually.  The second problem is that the algorithm does not generalize to

handle Attributed Edge BDDs.  The node probability is defined as the probability that a

node will be reach during a traversal and does not account for how the node was reached,

whether through an attribute or not.  The last problem is related to the need to implement

this algorithm on machines with finite computational precision.  The above algorithm can

cause under-flow problems if a proper pre-scaling value is not used since values as small

as 2-k can be computed where k is the longest path length in the BDD, and in theory k can

be equal to the number of nodes in the BDD.

2.3 A New Depth-first Algorithm

To overcome the difficulties incurred by the algorithm in [25], a new depth-first

algorithm is proposed.  This algorithm also has linear complexity, but it can make more

efficient use of SBDDs, can be generalized to work with attributed edges, and can avoid

the under-flow problem.

Unlike the previous algorithm, this algorithm does not define “node” probabilities.

Instead, a new term, “path” probability, is defined.  The path probability can be defined at

each node as the probability that a path to the terminal one will be taken given that the

present node has been reached.  To formalize the algorithm the following notation is

used: PTn refers to the path probability of a node, PTzero and PTone refer to the path

probabilities of the nodes referenced by the given node’s 0-edge and 1-edge respectively,
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pn is the probability of the variable which is associated with the given node.  Using this

notation, the path probability can be defined as:

PT p PT p PTn n one n zero= × + − ×( ) (( ) )1 (2-2)

The path probability of the terminal one is 1.0, and the probability of the terminal zero (if

one exist) is 0.0 since it has no paths that lead to a one.  It is obvious that if the BDD is

traversed from the terminal one node to the initial node in a depth-first fashion, then the

path probabilities of each node can be easily calculated by the expression in Equation 2-

2.  When the initial node is reached, the path probability of the initial node gives the

probability that any path taken in the BDD  leads to the terminal one which is, in fact, the

function output probability.  Like the previous method, this method requires only a

simple traversal of the BDD where each node is visited exactly once; therefore, the

asymptotic complexity is O(N) where N is the number of nodes in the BDD.  Figure

Chapter 2 :-2 seeks to illustrate this algorithm.  It contains the same simple BDD as did

Figure Chapter 2 :-1, again all input variables are assumed to have a probability value of

one half.  The path probability of the initial x1 node is the correct output probability for

this function.
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X1

X2 X2

X3

10

0 1

0
0

0

1 1

1

 f = x1x2 + x1x3 + x2x3

PT1 10= .PT0 0 0= .

PT PT PTx3 05 1 05 051 0= + − =. * ( . )* .

PT PT PTx x′ = + − =2 305 1 05 0 751. * ( . )* .PT PT PTx x2 305 1 05 0 250= + − =. * ( . )* .

PT PT PTx x x1 2 205 1 05 05= + − =′. * ( . )* .

Figure Chapter 2 :-2: Example Depth-First Calculation

2.3.1 Depth-first Algorithm with SBDDs

This new depth-first algorithm can take advantage of the shared sub-graphs of the SBDD

to increase efficiency (i.e., the shared sub-graphs will only need to be traversed once).

Path probabilities are defined in terms of successor nodes while the node probabilities of

the previous algorithm are defined in terms of predecessor nodes.  Thus the path

probabilities depend only on the structure of the sub-graph to which they refer and not on

the overall structure of the graph.  The path probabilities for shared sub-graphs can be

calculated independent of how many and what types of functions refer to them.  The

asymptotic complexity for finding the output probability of every function in a SBDD is

O(N) where N is the total number of nodes in the SBDD.  Figure Chapter 2 :-3 gives a

SBDD with the corresponding path probabilities calculated.



23

X1 X1

X2

10

0
0

0

1 1

1

 f 1= x1x2  

PT1 10= .PT0 0 0= .

PT PT PTx2 05 1 05 051 0= + − =. * ( . )* .

PT PT PTx x′ = + − =1 205 1 05 0 751. * ( . )* .PT PT PTx x1 205 1 05 0 250= + − =. * ( . )* .

 f 2= x1+x2  

Figure Chapter 2 :-3: Example Calculation with a SBDD

2.3.2 Depth-first Algorithm with Attributed Edges

The depth-first algorithm can be extended to handle BDDs which contain attributed

edges.  For example, the common negation or inverse attribute can be handled by

inserting a simple condition into the path probability calculation for each node.  If the

zero edge has the negative attribute (by our definition in Chapter 1, only the zero edge

can have the negative attribute, but this idea could be extended to handle other cases),

then the expression in Equation 2-2 is replaced by that in Equation 2-3; otherwise the

expression in Equation 2-2 is used.

PT p PT p PTn n one n zero= × + − × −( ) (( ) ( ))1 1 (2-3)

In general, the depth-first algorithm can be used with any attribute so long as a function

can be defined to map the path probability of a Boolean equation onto the path

probability of that equation when the attribute is applied.  In other words, if A is an

attribute which maps one set of Boolean equations onto another, then there must exist a
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function, AP, that maps path probabilities such that the relationship in Equation 2-4 is

maintained.

PT A f AP PT f( ( )) ( ( ))=  (2-4)

The AP function for the negation attribute is simply 1-PT(f) since for any function

PT f PT f( ) ( )= −1 .

2.4 Implementation and Example Calculation

The algorithm described above was implemented and used in the ordering/reordering

experiments described in the following chapters.  For these experiments, the input

variables are assumed to have an equal probability of being one or zero thus Equation 2-2

reduces to Equation 2-5.

PT PT PTn one zero= +1
2( ) (2-5)

This algorithm was implemented as a recursive depth-first traversal very similar to the

pseudocode in Figure Chapter 2 :-4.  The get_path_prob routine can be called repeatedly

on the multiple outputs of a SBDD.
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double get_path_prob (BDD curNode)
{
     double zeroProb, oneProb, pathProb;

     if curNode is terminal-1
return 1.0;

     if curNode has been visited
return previously found pathProb value;

     zeroProb = get_path_prob (curNode->zeroEdge);
     oneProb  = get_path_prob (curNode->oneEdge);

     if (curNode->zeroEdge has negative attribute)
zeroProb = 1- zeroProb;

     pathProb = 0.5 * (zeroProb + oneProb);
     store pathProb for curNode;
     mark curNode as visited

    return pathProb;
}

Figure Chapter 2 :-4: pseudocode for probability algorithm

As an example of this calculation, consider the BDD in Figure Chapter 2 :-5.  Consider

first the calculation of the output probability for f1.  The traversal starts at the terminal-1

node (after some initial recursive calls to initialize the frame stack).  The path probability

for this node is by definition 1.0.  The next node to be visited is the x2 node; the path

probability for this node is found to be ½*(1.0+(1.0-1.0))= ½.  The final node to be

visited in this calculation is the initial x1 node for f1; the path probability for this node is

½*( ½ +(1.0-1.0))= ¼  which is the correct output probability.  Now if the output

probability for f2 is desired, there will be no need to recalculate the path probability of the

x2 node.  The path probability for the initial x1 node is ½ ( 1.0 + ½  ) = ¾ which is the

output probability for f2.
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X1 X1

X2

1

0
0

0

1 1

1

 f 1= x1x2  

PT1 10= .

 f 2= x1+x2  

PTx2 05= .

PTx′ =1 0 75.PTx1 0 25= .

Figure Chapter 2 :-5: Depth-First Calculation with Negative Edge-Attributed SBDD

2.5 Experiments with Benchmark Circuits

Both the original breadth-first algorithm and the new depth-first algorithm were

implemented so that a run-time comparison could be made.  Figure Chapter 2 :-6 gives

the results of this comparison.  The column labeled SBDD size is the total number of

nodes needed to represent the entire circuit in a SBDD, and the columns labeled depth

and breadth give the total time, in seconds, needed to calculate the output probability of

all outputs in the circuit.  These experiments were performed on a 100 Mhz Sun

SPARCstation 20 with 160 MB of RAM using SunOS version 5.5.

Cir. Name Inputs Ouputs SBDD size depth breadth
c432.isc 36 7 31172 0.221 0.948
c880.isc 60 26 10348 0.064 0.548
duke2.pla 22 29 973 0.007 0.095
misex2.pla 25 18 136 0.001 0.004
misex3.pla 14 14 1301 0.014 0.152
apex2.pla 39 3 7096 0.068 0.209

Figure Chapter 2 :-6: Depth-first vs. Breadth-first Probability Algorithm
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From Figure Chapter 2 :-6, it is clear that the depth-first algorithm is considerably faster

for all circuits in the sample set.  Unfortunately, a larger set of sample circuits can not be

used because the available BDD library (the CMU package by D. Long) utilizes negative-

edge attributes, and as previously noted, the breadth-first algorithm cannot account for

the negative edges.  The circuits in Figure Chapter 2 :-6, as it happens, do not contain any

negative-edge attributes; therefore, both algorithms will produce correct results.
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Chapter 3 :  Reordering for Negative Edge-Attributed SBDDs

As discussed in previous chapters, decision diagrams are capable of representing a large

class of  Boolean equations in a compact manner [2].  It was further noted that this

compactness is generally predicated on the choice of variable ordering.  In this chapter a

heuristic based reordering technique is defined which takes as initial input a negative

edge-attributed SBDD.

3.1 Formulation of Methodology

The following sections define the terms and mathematical relationships needed to

formulate the reordering heuristics.  In addition, the motivation behind the heuristics will

be discussed.

3.1.1 Consensus verses Smoothing and Derivative

In Chapter 1, three possible ordering metrics were outlined – the output probability of the

consensus function, the smoothing function and the Boolean derivative (equations 1-4, 1-

5, and 1-6 respectively).  However, as is shown here, these quantities are closely related,

and ordering according to any one of the three will produce similar results.  The

probability of the consensus function was chosen as the ordering metric in this work

because it has a simple form that is easy to calculate.  The probability of the smoothing

function and the Boolean derivative can be expressed in terms of the output probability of

the function itself, p{f}, and the output probability of the consensus function.  The

relationships are derived below.
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The following lemmas define relationships between the output probabilities of the

consensus function, the smoothing function, and the Boolean derivative.

Lemma 1: { } { } { }2× = +p f p f p fx xi i

proof of Lemma 1:

f x f x fi x i xi i= + (Shannon Decomposition – Equation 1-3)

{ } { } { }p f p x f p x fi x i xi i= + (union of mutually disjoint sets )

{ } { } { } { } { }p f p x p f p x p fi x i xi i= + (independent terms–cofactors are independent of xi)

{ } { } { }p f p f p fx xi i= +1
2

1
2 (primary inputs are assumed to have probability=½)

{ } { } { }2× = +p f p f p fx xi i �

The consensus function is defined to be the intersection of the two cofactors from

Shannon decomposition (Equation 1-4).  Therefore, the probability of the consensus

function about a given variable, xi, is defined by the following equation:

{ } { }p C f p f fx x xi i i( ) = • (3-1)

Lemma 2: { } { } { }p S f p f p C fx xi i( ) ( )= × −2

proof of Lemma 2:

{ } { }p S f p f fx x xi i i( ) = + (Equation 1-5)

{ } { } { } { }p S f p f p f p f fx x x x xi i i i i( ) = + − • (probability of an Inclusive-OR)

{ } { } { }p S f p f p f fx x xi i i( ) = × − •2 (Lemma 1)

{ } { } { }p S f p f p C fx xi i( ) ( )= × −2 � (Equation 3-1)
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Lemma 3: { } { } { }p f
x p f p C f

i
xi

∂
∂ = × − ×2 2 ( )

proof of Lemma 3:

{ } { }p f
x p f f

i
x xi i

∂
∂ = ⊕ (Equation 1-6)

{ } { } { } { }p f
x p f p f p f f

i
x x x xi i i i

∂
∂ = + − × •2 (probability of an Exclusive-OR )

{ } { } { }p f
x p f p f f

i
x xi i

∂
∂ = × − × •2 2 (Lemma 1)

{ } { } { }p f
x p f p C f

i
xi

∂
∂ = × − ×2 2 ( )    � (Equation 3-1)

Given these relationships and the fact that p{f} is constant with respect to the input

variables, ordering in ascending order according to the consensus function or in

descending order according to the smoothing function or Boolean derivative will yield

identical results.  Therefore, only the consensus function is considered in this work.

3.1.2 Support of a Boolean Function

In a SBDD, it is not necessary that a given output function depend on all of the input

variables.  The Support of a function, f, is defined to be the set of variables on which f

depends [26], and will further be denoted as sup(f).  In addition, the set of output

functions which depend on a given variable, xi, can be defined as that variable’s

dependent set, denoted here as δi.  In other words, δi is defined as all functions,  fj, such

that x f ji j∈ ∀sup( ), .
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3.1.3 Calculation of the Consensus Metric over Multiple Outputs

Since the output probability of the consensus function provides a direct measure of the

dependence of a function on a given variable, one can order a single BDD (not shared)

according to the probability of the consensus taken about each individual variable.

However, shared binary decision diagrams, specifically SBDDs with negative-edge

attributes, provide a more compact means of representing multi-output functions, and the

output probability of the consensus function with respect to a given variable may (and

indeed likely will) vary across multiple functions.  Hence, one must devise a means to

combine these multiple probability measures into one ordering metric.  Secondly, one

must account for cases where a given variable is not a member of the support of all

functions (i.e., some functions may not depend on a particular variable).  A heuristic

based algorithm was developed which utilizes a negative edge-attributed SBDD as an

initial input and has the following basic steps:

1.  Determine a “Support Matrix” containing information regarding input variable
support.

2.  Compute a series of consensus function output probabilities.

3.  Sort the variables according to the magnitude of the consensus output probabilities
which are weighted by information derived from the “Support Matrix”.

4.  Apply the sifting algorithm  [10].

These algorithmic steps are illustrated by the flowchart in Figure Chapter 3 :-1.  This

flowchart is further explained in the textual description of the algorithm contained in the

flowing sections.
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Reorder such that those
variables with the smallest
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in the ordering.

Apply Sifting.

Loop BodyExit

No Yes

Key
 |I|   Æ Number of Inputs
 |O|   Æ Number of Outputs
sup(f)   Æ Support of function f

δi   Æ Set of Outputs which
depend on xi

sparseVal Æ measure of variable
sparseness

 THRES    Æ Threshold value
(0.5 presently)

Branch 1 Branch 2

Figure Chapter 3 :-1: Flowchart for Reordering Algorithm
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3.2 The Reordering Algorithm

3.2.1 Determination of the Support for Each Function

The first step is to determine the support for each output function.  This operation

requires a traversal of the SBDD from each output to all dependent inputs.  During each

traversal a list of inputs in the support is maintained, and  each time a node representing a

new variable is encountered that variable is added to the support list.  The temporal

complexity is then bounded by the product of the number of outputs and the average size

of the BDDs representing the individual output functions.  The support sets for the output

functions effectively give the dependent sets for the input variables.  A function, f, is in

the dependent set of the variable, xi, if and only if xi is in the support set for f.  This step is

represented as the first item in the flowchart (Figure Chapter 3 :-1).

Also during this step, a measure of the “sparseness of support” is calculated.  This

measure is the average percentage of the total number of inputs which are in the support

of each function.  It is found by summing the number of variables in the support of each

function and dividing by the product of the number of inputs and the number of outputs.

For example, consider the four functions f1 = x1x2,  f2 = x1 + x2, f3 = x3x4,  f4 = x3 + x4,

each function depends on two of the four possible input variables, so the sparseness

measure is found to be one half.  This measurement can be further illustrated by Figure

Chapter 3 :-2.  In Figure Chapter 3 :-2, if a given variable, xi, is in the support set for a

particular function, fj, then an ‘* ’ is placed in the cell i, j.  The sparseness measure is then

the number of asterisks over the total number of cells or the degree to which the support
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sets cover the “support area”.  In this case, half the area is covered, so the sparseness

measure is fifty percent or 0.5.

f 1 f 2 f 3 f 4

x1 * *
x2 * *
x3 * *
x4 * *

Figure Chapter 3 :-2: Support Area

This measure of support sparseness, denoted simply as sparseness for the remainder of

this work,  is later used as a threshold value to determine how functions which are not in

the dependent set for a given variable affect its position in the ordering.    In Figure

Chapter 3 :-1, the sparseness value is referred to as sparseVal.  The total number of

variables in support of the functions, totalSup, is actually a counter that is maintain

during the calculation of the support sets, but is shown in the flowchart as a separate step

for clarity.

3.2.2 Determination of ordering metrics

The variables are ordered according to a weighted sum of the probability of the consensus

function with respect to a given variable taken over all output functions.  Stated

differently, each variable is associated with an ordering metric.  This metric is found by

calculating, for each output function,  the probability of the consensus with respect to the

associated variable, summing the probability values, and dividing by some weight value.

(This phase is contained in the for loop of the flowchart in Figure Chapter 3 :-1)
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Variables will be ordered in ascending order according to their associated ordering

metric.

The weight value for a given variable is the number of functions that the variable

supports (i.e., the number of functions which are in the dependent set, δ, for the given

variable).  The rational behind this weight is reasonably straight forward.  The possibility

for node sharing between output functions exist only among common variables in the

support of those functions.  Furthermore, node sharing between output functions can only

exist if these common variables are not separated in the ordering by variables which are

not common in the support of the functions.  The weighting value serves to push

variables which occur in few supports down in the ordering, and to pull those which

occur in many supports up in the ordering; thus increasing the likelihood for node sharing

between output functions.

Since all functions do not necessarily depend on all the input variables, the consensus

function must be defined for those cases.  If the standard definition for the consensus is

used (Boolean AND of Shannon cofactors – Equation 1-4), then the consensus of a

function about a variable on which the function does not depend is equal to the function

itself ( ffC ix =)(  if f does not depend on xi).  This observation can be easily seen from

the definition of Shannon cofactors and the consensus function.  The positive and

negative cofactors of a function taken about an irrelevant variable are both equal to the

function itself.  Therefore, their intersection is equal to the function itself.  Furthermore,

the output probability of a function, p{f}, is always greater than or equal to the output

probability of the consensus taken with respect any variable, p{Cxi(f)} (the proof is
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trivial).  Thus functions which are not in the dependent set, δi, for a given variable tend to

push that variable down in the ordering.  This definition of the consensus is represented

by Branch 1 of the flowchart in Figure Chapter 3 :-1.

This downward push on irrelevant variables can cause problems with circuits which have

a high degree of coverage in their “support area”, i.e., the sparseness measure is close to

one.  In these cases, there is a great chance of node sharing between output functions

since they have many common dependent variables.  Hence, it was discovered that better

orderings could be achieved by pulling the less common variables up in the ordering;

therefore, the consensus function taken about irrelevant variables was defined to be zero

when the function had a high sparseness value.  This alternative definition is represent by

Branch 2 in Figure Chapter 3 :-1.

The decision on whether to take branch one or branch two is made by examining the

degree of coverage of the “support area”.  This sparseness value was calculated in step

one when the supports were determined.  A threshold of one half was determined

empirically, and this value worked well in the experiments performed here which utilize a

large set of benchmark circuits.

3.2.3 Reordering of variables

At this stage, the variables are reordered such that those with the smallest ordering metric

are ordered first and those with larger ordering metrics are ordered last.  For the purpose

of reordering, the swap operator is defined as in [10].  Performing a swap on a given
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variable, xi, will cause xi to be moved to the i+1 position.  For example, if the original

ordering was x1, x2,…, xi-1, xi, xi+1,…, xn, then a call to swap(i) will result in an ordering

of x1, x2,…, xi-1, xi+1, xi,…, xn.  Swap itself is a relatively elementary operation which can

be implemented with most BDD packages.  However, it can be seen that to completely

reorder from one arbitrary ordering to another equally arbitrary ordering could require

O(n2) steps where n is the number of primary inputs.  It has been argued that this

reordering can be done in at most O(n-1) steps if a more complex jump operator is used

[11].  This jump operator would allow any variable, xi, to be directly moved to the jth

position.  However, each jump operation is itself more complex than the swap operation,

and its implementation is much more involved.  Hence only swap operations were used in

this work.

3.2.4 Sifting Algorithm

As a final step, we apply standard sifting as defined in [10].  As was discussed in Chapter

1, sifting is a reordering technique which searches a subspace of all possible orderings for

a local minimum.  In fact, it searches n2 of the possible n! orderings and keeps that

ordering which produces the smallest BDD.  This technique works well if the initial

ordering is reasonable; therefore, our reordering metrics can be viewed as a pre-filter

which selects a proper subspace for sifting to search.  Sifting is the final step represented

by the flowchart in Figure Chapter 3 :-1.
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3.3 Experimental Results

In this section, the results from experiments where the reordering algorithm was applied

to a number of benchmark circuits are presented.  All experiments were performed on a

100 MHz Sun SPARCstation 20 with 160 MB of RAM using SunOS version 5.5, and all

algorithms were implemented in C using the GNU gcc compiler and the BDD package

developed by David Long at CMU.  Figure Chapter 3 :-3 contains results from

experiments using the ISCAS85 benchmark suite.  The column labeled Original Size is

the size of the SBDD used as input to the reordering routine. The original SBDD was

created using a simplistic and not necessarily efficient variable ordering heuristic.  This

simple ordering technique first sorts all the output functions in descending order

according to the number of variables in their support set, then the circuits are traversed in

a depth-first fashion where each input is added to the ordering as it is encountered.  The

column labeled Order Time contains the time (in seconds) to parse the file and create the

original SBDD using the simple ordering heuristic.  The column labeled Consensus-Sift

contains the size of the SBDD after variable reordering is performed using the reordering

algorithm described in this chapter.  The column labeled Time contains time needed (in

seconds) to reorder the SBDD, and the column labeled SimAnn contains, for the purpose

of comparison, the size of SBDDs obtained by simulated annealing and reported in [11]

(and discussed in Chapter 1).  Figure Chapter 3 :-4 contains the results of our experiments

on several smaller two level circuits – no comparison with simulated annealing is

available.
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Circuit Name Orignal size Order time Consensus-Sift Time SimAnn
c432.isc 31172 17 1691 969 1087
c499.isc 53866 9 34432 239 25866
c880.isc 10348 6 5816 48 4083
c1355.isc 53866 28 34432 242 25866
c1908.isc 13934 11 8762 67 5526
c3540.isc 72858 75 43564 652 23828

Figure Chapter 3 :-3: Reordering Experiments on ISCAS85 Benchmark Circuits

Circuit NameOriginal size Order Time Consensus-Sift Time
5xp1.pla 74 0 42 0
9sym.pla 25 0 25 0
alu4.pla 1197 2 567 1
bw.pla 108 0 101 0
con1.pla 18 0 16 0
duke2.pla 973 0 361 1
misex1.pla 41 0 37 0
misex2.pla 136 0 96 0
misex3.pla 1301 2 504 1
rd53.pla 17 0 17 0
rd73.pla 31 0 31 0
rd84.pla 42 1 42 0
sao2.pla 155 0 83 0
vg2.pla 1044 0 156 1
misex3c.pla 828 1 413 1
clip.pla 226 0 95 0
e64.pla 1441 1 231 4
apex1.pla 28336 43 1383 66
apex2.pla 7096 23 455 13
apex4.pla 928 1 893 0
apex5.pla 2679 1 1179 7
seq.pla 142252 31 1295 180

Figure Chapter 3 :-4: Reordering Experiments on PLA Circuits
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3.4 Interpretation and Evaluation

As can be seen in Figure Chapter 3 :-3 and Figure Chapter 3 :-4, the reordering technique

given here effectively reduced the size of the SBDDs for the set of benchmark circuits in

reasonable time.  In some cases, this reduction was quite significant (see c432, apex1, and

seq).  However, this algorithm was outperformed by simulated annealing in every case

(where comparison was available).  Simulated annealing has produced the best known

orderings for many circuits, but this algorithm can require much computational time to

complete.  No exact times were reported in [11], but simulated annealing algorithms can

require from one hour to one day to complete.  When computational time is considered,

the SBDDs produced by this reordering technique are certainly superior.
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Chapter 4 :  Ordering for Negative Edge-Attributed SBDDs

4.1 Ordering vs. Reordering

Chapter 3 described a new reordering technique.  This technique requires an initial SBDD

as input.  It then determines some support information and calculates some probability

values (probability of the consensus function to be precise).  Using this information, the

SBDD is reordered before sifting is applied.  Ideally, a similar variable ordering

technique could be developed where the support and consensus information are

determined directly from the circuit description (e.g., a net-list file), and the original

ordering determined from that information.  Once this SBDD was created, sifting could

be applied just as it was in the reordering algorithm.  If the probability values could be

accurately determined from the circuit description, then the final SBDD should be as

small as the final SBDDs created by the reordering algorithm, and the need to create an

initial SBDD as input would be eliminated.

The Achilles heel to this approach is the need to calculate output probabilities from a net-

list description which is a very difficult problem.  In fact, it is a provably hard problem

(see [24] for discussion of complexity issues).  The following section discusses some of

the issues incurred in calculating the output probabilities.  Next, the ordering algorithm is

further specified and experimental results are given for various ordering experiments.
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4.2 Obtaining Output Probability from a Circuit Diagram

The output probability values (probability that an output will be one given the probability

distributions of each of its inputs) can be directly calculated from a circuit description

(e.g., net-list files); however, the algorithm has exponential  complexity with respect to

computational time and is impractical for many circuits.  Therefore, it has been necessary

to develop methods which can estimate these values.  A method to compute output

probabilities for tree circuits (those with no fanout) was given in [21].  This exact method

was extended in [23] to include circuits with fanout nodes.  [23] also suggested some

heuristic alterations to the exact method so that the probability could be estimated in a

more reasonable time.  The details of these algorithms and their implementation are

repeated here to facilitate understanding of the difficulties in variable ordering heuristics

based on these algorithms.

4.2.1 Exact method for tree circuits

Two paths in a circuit are reconvergent if they begin at a common node (node A) and end

at another common node (node B).  The paths fanout at node A and reconverge at node B

[23].  Circuits which do not contain this reconvergent fanout are  called tree circuits, and

their output probabilities can be calculated in linear time by the algorithm given in [21].

If the input signals at each gate are independent as they are in tree circuits, then the

output probability at each gate can be defined in terms of the probabilities of its inputs

alone.  The relationships are given in Figure Chapter 4 :-1.  It is clear that the output

probability of any other logic gate can be defined in terms of these relationships.  Using

these relationships, the output probability can be calculated by traversing the circuit from
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inputs to outputs, calculating the probability at each gate.  Figure Chapter 4 :-2 gives an

example tree circuit and shows the probability calculation.  This calculation is linear with

respect to the number of gates in the circuit since only a simple traversal of the circuit is

needed.

A

B

P(f)=  P (A)*P(B)f

A
B

P(f)=  P (A) +  P (B) --  P (A)*P(B)f

A
f P (f)=  1-- P (A)

Figure Chapter 4 :-1: Output Probabilities for Simple Gates
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Figure Chapter 4 :-2: Simple Tree Circuit
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4.2.2 Exact Method for Fanout Circuits

The above method works only for circuits which have no reconvergent fanout.  If a

circuit has reconvergent fanout, then the inputs to the reconvergent node (node where

fanout paths meet) are not independent.  For example, node 14 in circuit in Figure

Chapter 4 :-3 is a reconvergent node, and its input signals are not independent.  A method

for handling this more general circuit was given in [23].  The algorithm involves the

following major steps:

1. Represent the circuit in graph form and perform preprocessing.

2. Identify reconvergent nodes.

3. Find the “supergate” for each reconvergent node.

4. Using the supergates, find the output probability at each node.

1
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9
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11

14

1 2

1 3

f

Figure Chapter 4 :-3: Circuit with Reconvergent Fanout
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4.2.2.1 Labeling the Graph

When the circuit file (net-list file) is parsed, the circuit will be represented in graph form

as in Figure Chapter 4 :-4.  As an initial step, the graph nodes are labeled with certain

attributes which ease the computational burden of later processes.  The first attribute is

the dependent input set which is defined at each node as the set of primary inputs in the

node’s cone of influence.  The dependent sets can be easily determined by first labeling

all primary inputs as depending only on themselves, and then defining the dependent set

of every other node as the union of the dependent sets of its predecessor nodes.  These

sets can be calculated in a single traversal of the graph from inputs to outputs.  At each

node, the dependent set is the union of all sets on its incoming arcs.  In Figure Chapter 4

:-4, the dependent sets are contained within the brackets.

The second attribute is the depth attribute.  The depth is defined for each node as the

maximum distance (number of nodes) between the given node and any node in its

dependent input set.  It can be found during the same pass as the dependent input sets are

found.  At each node, the depth is the maximum depth of all its predecessor nodes plus

one.  The depth of the primary inputs is defined to be zero.  The depth attributes in Figure

Chapter 4 :-4 are labeled as d.
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Figure Chapter 4 :-4: Labeled Graph for Circuit in Figure Chapter 4 :-3

4.2.2.2 Identifying the Reconvergent Nodes

Given a labeled graph like Figure Chapter 4 :-4, it is trivial to determine if a node is

reconvergent or not.  A node is reconvergent if an intersection exists between the

dependent input sets of any two of its predecessor nodes.  In other words, a node is not

reconvergent if the dependent input sets of all its predecessor nodes are mutually disjoint.

From Figure Chapter 4 :-4, it is clear that node 14 is the only reconvergent node since

two of its predecessor nodes have an intersection (for example, compare node 10’s

dependent set to that of node 12, they have 1 and 2 in common).

Finding the output probability at a non-reconvergent node is a simple application of the

tree formulas in Figure Chapter 4 :-1.  The process for reconvergent nodes, on the other
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hand, is more involved and is exponential in nature if the exact value is calculated.  The

following two steps help to explain this process.

4.2.2.3 Finding the Supergates

A formal definition of the term supergate is given in [23], but intuitively, the supergate of

a given node can be viewed as a sub-graph  which has its root at the given node and

extends until the input signals to the sub-graph become independent.  Consider again

node 14 from Figure Chapter 4 :-4, its supergate is given in Figure Chapter 4 :-5.  The

dependent sets of the inputs to the supergate, 8, 3, 4, 5, 9, are mutually disjoint, and no

smaller sub-graph with a root at node 14 exists where the inputs are independent.  The

supergate can be specified by its root node and its inputs.  In this case, root=14 and the

inputs I={8,3,4,5,9}.  Furthermore, the input set of a supergate can be partitioned into

two distinct sets, the fanout-inputs (IF) and non-fanout-inputs (INF).  Fanout inputs are

defined to be those which themselves fanout or those which are within the cone of

influence of a fanout stem; all other inputs are non-fanout-inputs.  Here, the fanout set is

{8,4,9} and the non-fanout set is {3,4}.
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Figure Chapter 4 :-5: Supergate for Node 14

Identifying the supergates is a somewhat involved process, but this burden is lessened by

the use of the dependent input sets and the depth attribute at each node.  The basis of the

process is a backward sweep of the nodes in the cone of influence of the node for which

the supergate is to be determined (the supergate node).  The process concludes when the

dependent input sets become disjoint.  To perform this backward sweep, two lists are

maintained – an independent list and a non-independent list.  The independent list is

initialized to null and the non-independent list is initialized with the predecessor nodes of

the supergate node.  At each iteration, every node in the non-independent set is examined

to see if it is independent (i.e., its dependent set has no intersection with any other node in

the list).  If a node is independent, it is removed from the non-independent list and placed

in the independent list; otherwise, it remains in the non-independent list.  At the end of

this process, the remaining non-independent node with the greatest depth is “expanded”
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which means that it is removed from the list and its predecessor nodes are added.  Care

must be taken to ensure that nodes are not processed multiple times.  For this reason, the

nodes are marked as they are added to the non-independent list and will not be added if

they are already marked.  Once the node with the greatest depth has been expanded, the

process repeats.  The process terminates when the non-independent list is empty.  At that

time, the independent list will contain the inputs to the supergate.  This process is linear

with respect to the number of nodes in the supergate [23].

4.2.2.4 Finding Probability for Supergate Nodes

Once the supergate for a node has been identified, the output probability for that node can

be calculated, assuming that the output probability of each of the inputs to the supergate

is known.  Let X be the node for which the output probability is desired and the root of

the supergate, and let A be a binary vector, (a1,a2,…,an), such that each bit in the A vector

is an assignment to one of the n fanout inputs of the supergate.  The output probability of

X given A can then be found by using the simple tree circuit relationships given in Figure

Chapter 4 :-1 and traversing the supergate as if had no reconvergent fanout.  This process

is repeated for the 2n possible A vectors, and the output probability of X is given by:

P X P X A prob A
A

( ) ( | )* ( )=
∀
∑ (4-1)

The value prob(A) is the probability of a given A vector and is found by taking the

product of the probability of each bit in the vector.  This calculation is obviously
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exponential with respect to the number of fanout inputs to the supergate (see [23] for a

formal proof).

As an example, consider the supergate given in Figure Chapter 4 :-5.  The probability of

each input is given – these values can be easily calculated using the tree formulas.  The

table in Figure Chapter 4 :-6 gives the conditional probability calculation for each A

vector.

A vector X=Node 14
Node 8 Node 4 Node 9 prob(A) P(X|A) P(X|A)*prob(A)

0 0 0 0.28125 1.00 0.28125
0 0 1 0.09375 1.00 0.09375
0 1 0 0.28125 1.00 0.28125
0 1 1 0.09375 1.00 0.09375
1 0 0 0.09375 1.00 0.09375
1 0 1 0.03125 0.00 0.00
1 1 0 0.09375 1.00 0.09375
1 1 1 0.03125 0.75 0.0234375

Sum --> 0.9609375

Figure Chapter 4 :-6: Example Supergate Calculation

The circuit in Figure Chapter 4 :-3 is functionally equivalent to that in Figure Chapter 4 :-

7, yet the circuit in Figure Chapter 4 :-7 has no reconvergent fanout.  The simple

probability routine for tree circuits can be applied to this example.  And the result is the

same as was obtained using the circuit with fanout and the supergate method.
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Figure Chapter 4 :-7: Equivalent Circuit without Fanout

4.2.2.5 Creating a Recursive Algorithm

A recursive algorithm can be defined which uses the steps outlined in the previous

sections.  Given a labeled graph as input, the probability algorithm will examine each

node starting at the output node.  If the node is not reconvergent, then a recursive call is

made to each predecessor node and the output probability is defined by the relationships

in Figure Chapter 4 :-1.  If the node is reconvergent, the supergate for that node must be

identified, and then recursive calls are made to each input to the supergate.  Once the

probabilities of the inputs to the supergate are known, the calculation can proceed as

previously described.  The recursion terminates when the primary input nodes are

reached which have defined probabilities.
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4.2.3 Estimation Techniques

The method described above can calculate the output probability for any circuit exactly.

However, it has an exponential complexity with respect to the number of fanout inputs in

each supergate.  Many circuits have supergates with a large number of fanout inputs

(c432.isc has supergates with as many as 35 fanout inputs); therefore, methods to

estimate the probability using heuristics are necessary.  In [23], two such heuristics were

suggested.  Both were implemented here, and the results will be discussed following the

description of the heuristics themselves.

4.2.3.1 Heuristic One

Heuristic one is a distance based heuristic.  Each node is defined to be a distance, D,

away from the node for which the supergate is to be determined.  The distance from a

node, N, to the supergate node, X,  is defined to be the length (number of nodes) of the

shortest path from N to X (single input buffers and inverters are not counted).  If the

threshold is a distance, T, then any node at a distance of T or greater is assumed to be an

independent signal, and the supergate will terminate at no more than a distance of T from

the supergate node.  Consider the graph in Figure Chapter 4 :-8.  If the threshold is two,

then the supergate for node 8 will be determined to be Figure Chapter 4 :-9 (a) which has

one fanout input.  If the threshold is one, then the sub-graph in Figure Chapter 4 :-9 (b) –

which has no fanout inputs – will be considered the supergate, as node 6 and node 7 are a

distance of one from node 8 and, thereby, considered independent.
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The justification for this heuristic is that the farther a node is from the supergate node

then the more it will “mix” with other signals and the less its effect will be on the output

[23].  It is clear that if the threshold value is zero then all signals are considered

independent and no node will be reconvergent, and if the threshold is larger than the

largest supergate, then the routine will calculate the output probability exactly.
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Figure Chapter 4 :-8: Example for Heuristics
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Figure Chapter 4 :-9: Heuristic Based Supergates for Node 8
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4.2.3.2 Heuristic Two

The second heuristic proposed in [23] was based on a measure of the degree of

independence between two nodes or signals.  Let N1 and N2 represent two nodes from a

circuit graph, and let Dp(N1) and Dp(N2) be the dependent input sets for the two nodes –

input labels on the graph.  The degree of independence between N1 and N2 is defined to

be:

In N N
Dp N Dp N

Dp N Dp N
( , )

( ) ( )

( ) ( )
1 2

1 2

1 2
=

•
∆

(4-2)

In Equation 4-2, |X| is defined as the cardinality of the set X, X Y• is the intersection of

the sets X and Y, and X Y∆ is the symmetric difference between sets X and Y where the

symmetric difference is defined as all elements that are in one of the two sets but not in

both.

If a threshold is set to be some value, T, then any two signals which have an

independence measure greater than T are considered independent.  Clearly, if two nodes

are truly independent (have no intersection), the denominator in Equation 4-2 goes to

zero, and the independence measure goes to infinity.  If the nodes have exactly the same

dependent set, the numerator and thus the independence measure will be zero.

Consider again the graph in Figure Chapter 4 :-8.  The independence measure between

nodes 6 and 7 can be found by Equation 4-2 to be 1.0, since they have two dependent

inputs in common (2 and 3) and two which are not in common ( 1 and 4).  Therefore, if
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the threshold value was equal to 0.5, then the supergate for node 8 would be represented

by the sub-graph in Figure Chapter 4 :-9 (b) because nodes 6 and 7 would be considered

independent signals, but if the threshold value was 1.5, then the supergate would be the

sub-graph in Figure Chapter 4 :-9 (a).

4.2.4 Experimental Results for Probability Algorithm

Both heuristics were implemented and tested using circuits from the ISCA85 set of

benchmark circuits.  Unfortunately, heuristic two proved impractical as it would not

complete in reasonable time for any threshold greater than zero; therefore, no results are

reported for that method.  The first heuristic, the distance based method, will run on the

benchmark circuits for thresholds up to three, and the results from these experiments are

reported in Figure Chapter 4 :-10.  For every circuit in the sample set, the output

probability was estimated for each of its outputs using the defined heuristic and the given

threshold.  This estimated probability was compared against the actual probability so that

the error could be calculated.  In Figure Chapter 4 :-10, the column labeled Dist.

Threshold is the distance threshold in terms of maximum depth of the supergate.  The

column labeled Avg. Error refers to the average absolute error for all outputs in the

circuit.  Max Error gives the maximum error of any of the estimations concerning the

given circuit.  Avg. %Error is the average percentage error found by dividing the absolute

error of each probability estimation by the actual probability and taking the average over

all outputs of the circuit.  And the column labeled Time contains the time in seconds to

estimate the probability for all outputs in the circuit.  All experiments were performed on

a 100 MHz Sun SPARCstation 20 with 160 MB of RAM using SunOS version 5.5.
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Upon examining the results given in Figure Chapter 4 :-10, one should observe that the

estimation algorithm completes in reasonable time.  It generally completes in less than a

second and requires at most three seconds to complete.  However, one should also notice

that the error in this estimation is often quite high.  Errors of twenty to forty percent are

hardly acceptable.  Furthermore, these estimations were taken on the output of the

functions themselves.  When the output probability of the consensus function is

estimated, the error will likely be greater because the consensus function introduces

additional reconvergent fanout (see algorithm discussion below).

Cir. Name Inputs Outputs Dist. Threshold Avg. Error Max Error Avg. %Error Time
c432.isc 36 7 0 0.13167 0.3514 19.167 0.007
c432.isc 36 7 1 0.13167 0.3514 19.167 0.007
c432.isc 36 7 2 0.12203 0.32239 17.706 0.013
c432.isc 36 7 3 0.13751 0.31966 20.042 2.497

c499.isc 41 32 0 0 0 0 0.007
c499.isc 41 32 1 0 0 0 0.007
c499.isc 41 32 2 0 0 0 0.008
c499.isc 41 32 3 0 0 0 0.020

c880.isc 60 26 0 0.01915 0.05728 3.492 0.012
c880.isc 60 26 1 0.01915 0.05728 3.492 0.013
c880.isc 60 26 2 0.01867 0.05656 3.359 0.014
c880.isc 60 26 3 0.0073 0.03311 1.36 0.025

c1355.isc 41 32 0 0.00113 0.00113 0.226 0.031
c1355.isc 41 32 1 0.00113 0.00113 0.226 0.032
c1355.isc 41 32 2 0.00042 0.00079 0.085 0.037
c1355.isc 41 32 3 0 0 0 0.118

c1908.isc 33 25 0 0.02994 0.2031 6.102 0.034
c1908.isc 33 25 1 0.02994 0.2031 6.102 0.035
c1908.isc 33 25 2 0.0299 0.20295 6.094 0.162
c1908.isc 33 25 3 0.01327 0.15656 2.144 2.995

c3540.isc 50 22 0 0.17646 0.33187 45.49 0.078
c3540.isc 50 22 1 0.17646 0.33187 45.49 0.081
c3540.isc 50 22 2 0.16712 0.33211 42.98 0.107
c3540.isc 50 22 3 0.07353 0.18904 20.471 0.646

Figure Chapter 4 :-10: Results using Heuristic one on Benchmark Circuits
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4.3 The ordering Algorithm

Here, a variable ordering algorithm is described which takes as initial input a circuit

description in the form of a net-list file and generates a SBDD which represents the

circuit.  The algorithm has four basic steps.

1. Create a graph which represents the circuit.

2. Calculate ordering metrics and determine initial ordering.

3. Create SBDD using predetermined variable order.

4. Apply sifting.

4.3.1 Create Graph

The first step is to create a graph which represents the circuit.  The net-list file is parsed

into a graph where each node in the graph will represent a logic gate and each edge will

represent a connection between gates.  Node attributes will include gate labels such as its

name or address, the logic type for the gate (AND, OR, NOT, XOR, etc.), and two sets of

distinct edges – one set which connects the node to its fanin nodes and one which

connects it to its fanout nodes.  Once the graph has been created, it is “labeled” with the

dependent input sets and the depth values as are needed by the probability routine.

4.3.2 Calculate Ordering Metrics

To determine variable ordering, an ordering metric must be associated with each variable.

The metric used here is the same as that used in the reordering algorithm given in Chapter
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3 – a weighted sum of the output probability of the consensus function taken over all

outputs with the weight value being determined by support information.  The difference

is that the probability values and the support information are found from a circuit graph

and not from an initial SBDD.  The support information is readily available from the

graph.  In fact, it is given by the dependent sets of the output nodes which were

calculated in the first step.  The output probability of the consensus function, on the other

hand, is more difficult to obtain.  First a structural representation of the consensus

function must be constructed.  The consensus function can be constructed by copying the

circuit graph, adding an AND gate for each output in the circuit, connecting the

corresponding outputs of the two graphs (the original and the copy) through the AND

gates, and lastly, connecting the inputs in such a way that the consensus is formed about

the proper variable.  As an example, consider the simple four input circuit in Figure

Chapter 4 :-11.  The consensus of the output f about the variable x1 can be structurally

represented by the circuit in Figure Chapter 4 :-12.  Once the consensus function has been

constructed, its output probability can be estimated using the distance based heuristic

previously described, but this method for constructing the consensus function creates

significant reconvergent fanout as all the inputs except the one about which the consensus

is formed now fanout and reconverge at the AND gate, and thus the output probability is

difficult to accurately estimate.
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Figure Chapter 4 :-12: Consensus for Circuit in Figure Chapter 4 :-11

4.3.3 Create SBDD and Sift

Once the ordering has been determined (ascending order according to the ordering

metrics), the SBDD can be created.   Variables which represent the primary inputs are

created according to the desired ordering, and the SBDD is created by traversing the



60

graph representing the circuit from inputs to outputs.  At each node, a SBDD representing

the given node is created by combining the SBDDs of its predecessor nodes according to

the logic function of the gate which the node represents (AND, OR, NOT, XOR, etc.).

After this initial SBDD is created, then standard sifting is applied as defined in [10].

4.4 Experimental Results

The ordering algorithm was applied to the ISCAS85 benchmark circuits.  All experiments

were performed on a 100 MHz Sun SPARCstation 20 with 160 MB of RAM using

SunOS version 5.5.  The table in Figure Chapter 4 :-13 contains the results of all ordering

experiments performed.  The column labeled Threshold is the distance threshold used in

the probability estimation (heuristic one).  The column labeled SBDD Size is the final size

of the SBDD after sifting is applied. The column labeled Time is the total time in seconds

to parse the net-list file, calculate ordering metrics, create a SBDD using determined

ordering, and sift.  And the column labeled Reorder Size is the size of the final SBDD

created by the reordering algorithm defined in Chapter 3.
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Cir. Name Threshold SBDD Size Time Reorder Size
c499.isc 0 30460 93 34432
c499.isc 1 30460 94 34432
c499.isc 2 30460 93 34432
c499.isc 3 30460 95 34432

c880.isc 0 8583 38 5816
c880.isc 1 8583 38 5816
c880.isc 2 8583 38 5816
c880.isc 3 8588 39 5816

c1355.isc 0 30461 106 34432
c1355.isc 1 30461 106 34432
c1355.isc 2 45759 172 34432
c1355.isc 3 41016 146 34432

c1908.isc 0 9709 30 8762
c1908.isc 1 9709 31 8762
c1908.isc 2 9709 40 8762
c1908.isc 3 9534 789 8762

c3540.isc 0 66544 342 43564
c3540.isc 1 66544 342 43564
c3540.isc 2 66954 349 43564
c3540.isc 3 48348 842 43564

Figure Chapter 4 :-13: Ordering Experiments on ISCAS85 Benchmark Circuits

4.5 Interpretation and Evaluation

Ideally, the ordering technique defined here would produce the same orderings and thus

the same SBDDs as the reordering technique defined in Chapter 3.  These two methods

use the same ordering heuristics (output probability of the consensus and support

information).  However, the probability algorithm used in the ordering technique can only

estimate where the algorithm used in reordering can compute these values exactly.  While

some of the results in Figure Chapter 4 :-13 compare reasonably well to the reordering

results,  the results  of the ordering experiments are not completely satisfying.  First, c432

is noticeably absent from the sample set.  When the algorithm was attempted on this
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circuit, the SBDD became very large and the algorithm would not complete.  Also, the

resultant SBDD for c3540 is quite large except when the largest threshold is applied, and

even then it requires a significant amount of time and most of the reduction is achieved

through sifting.  It should be noted that c432 and c3540 are the two circuits for which the

probability estimation algorithm produced the poorest estimates (see Figure Chapter 4 :-

10).  Therefore, before this ordering technique can be used in practical applications, a

better means of determining the output probability form a circuit description must be

developed.
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Chapter 5 :  Conclusions and Future Work

5.1 Conclusions

This work examined the use of function output probabilities to form heuristics which

could be applied to decision diagrams so that they could represent complex Boolean

equations in an effective manner.  Algorithms, which use the output probability of the

consensus function in conjunction with support information, to perform both variable

reordering and variable ordering were proposed, and experimental results using

benchmark circuits were given.  In addition, a new algorithm to compute output

probabilities from BDDs was presented.  Lastly, previously proposed methods for

estimating the output probabilities from circuit descriptions were implemented and

empirically tested to determine their accuracy.

In Chapter 2, a new depth-first algorithm for computing output probabilities from BDD

structures was detailed and compared to the previously developed breadth-first algorithm.

Both algorithms have linear complexity with respect to the size of the BDD on which

they operate, but the new algorithm was shown to be superior insofar as it can efficiently

handle the shared sub-graphs of SBDDs as well as be applied to attributed edge BDDs.

This new algorithm has a general utility which extends beyond the variable

ordering/reordering problem;  it may find application in such areas as combinational logic

synthesis, spectral analysis, and the design and analysis of low power circuitry.

Chapter 3 presents a new variable reordering algorithm for shared binary decision

diagrams with negative-edge attributes.  This algorithm takes a SBDD as input and
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attempts to reduce its size (number of nodes) through variable reordering.  This method is

a heuristic based method which uses a weighted sum of the probabilities of the consensus

function (weights determined by support information) to select an appropriate ordering

sub-space for the standard sifting algorithm.  Experimental results were given to show

that the algorithm is effective in reducing the size of SBDDs used to represent many

benchmark circuits.  Comparisons were made between the new algorithm and a well

known simulated annealing based algorithm. While the simulated annealing algorithm

produced smaller SBDDs, the new algorithm was shown to produce reasonable SBDDs

in much less time.

In Chapter 4, the reordering heuristics were modified so that they could be applied to the

variable ordering problem, and thus eliminate the need to create an initial SBDD for input

to the reordering algorithm.  The ordering algorithm requires that the output probability

of the consensus function be calculated (or at least estimated) from a circuit description.

Previously suggested estimation techniques were implemented and tested; however, they

proved not to be extremely accurate in all cases.  This deficiency caused the ordering

algorithm to perform poorly in some cases, but this work should further highlight the

need for efficient algorithms to accurately estimate output probabilities from circuit

descriptions.

5.2 Future Work

The first area that needs to be addressed by future research is the estimation of output

probabilities from circuit descriptions or net-list files.  One possible solution is a hybrid
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method that actually uses BDDs during the calculation process.  The current method,

described in Chapter 4, identifies “supergates” for each reconvergent node, and then

exhaustively simulates over all fanout inputs to the supergate.  This phase could be

replaced by using a BDD to represent the supergate and applying the algorithm proposed

in Chapter 2 to determine the output probability of the supergate.  The depth-first

algorithm would have to be implemented in its general form as the probabilities of the

inputs to the supergate are not necessarily even distributions.  Also, this new estimation

algorithm could become impractical if the  supergates become too large; therefore, it may

have to be combined with the previously defined heuristics to limit the size of the

supergate, but the use of BDDs should allow larger thresholds, and thus more accurate

estimations.

The second area which requires further investigation is the relationship between the

support area and variable orderings.  It was determined that for some functions smaller

SBDDs could be produced by pulling the variables which occur in few supports up in the

ordering, while for other functions smaller SBDDs were produced by allowing these

variables to fall into their more natural position.  A certain amount of conjecture was

offered to explain this relationship, but further investigation is needed before it can be

fully specified and an optimum threshold determined (if such an optimum threshold

exists).

Lastly, the set of ordering heuristics could be expanded so that they could produce better

orderings.  One possibility is the use of the Haar spectral coefficients.  In a recent paper

[27], these values were related to the output probabilities of  a set of equivalence
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functions.  Inherent in these equivalence functions was an implied variable ordering.

Perhaps this ordering could be exploited and even combined with the ordering generated

by the consensus function to produce a more general ordering metric.

In addition, the ordering  heuristics might be extended by exploiting variable symmetry.

Variable  symmetry among many variables is difficult to detect, but recently it was

shown that output probabilities could be used to form a necessary, but not sufficient,

condition for variable symmetry [15].  This symmetry might imply a close relationship

among variables and suggest that these variables should be grouped together in the

ordering.
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Appendix A: Supports of Benchmark Circuits

Chapter 3 defines the support of a function as the set of variables on which the function

depends.  It also defines the ideas of “support area” and “sparseness of support”.  The

figures in this appendix illustrate the support areas of the ISCAS85 benchmark circuits

graphically.  In each of the figures, if the function, fj, is supported by the variable, xi, then

an ‘X’ will be placed in the cell i, j.  The circuits c499 and c1355 are not shown as they

have complete coverage in their support area (i.e., all functions depend on all the

variables).

51 66 60 54 63 75 57 21 6 36 45 27 12 42 15 72 24 9 39 48 69 33 30 3 18
## X X X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X X X X
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## X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X X X X X X X X X X X
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## X X X X X X X X X X X X X X X X X X X X X X X X X
## X X X X X X X X X X X X X X X

Figure A-1: Support Area for c1908
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421gat 431gat 430gat 370gat 432gat 329gat 223gat

4gat X X X X X X X

1gat X X X X X X X

11gat X X X X X X X

17gat X X X X X X X

24gat X X X X X X X

30gat X X X X X X X

37gat X X X X X X X

43gat X X X X X X X

50gat X X X X X X X

56gat X X X X X X X

63gat X X X X X X X

69gat X X X X X X X

76gat X X X X X X X

82gat X X X X X X X

89gat X X X X X X X

95gat X X X X X X X

102gat X X X X X X X

108gat X X X X X X X

8gat X X X X X X

21gat X X X X X X

34gat X X X X X X

47gat X X X X X X

60gat X X X X X X

73gat X X X X X X

86gat X X X X X X

99gat X X X X X X

112gat X X X X X X

14gat X X X X X

27gat X X X X X

40gat X X X X X

53gat X X X X X

66gat X X X X X

79gat X X X X X

92gat X X X X X

105gat X X X X X

115gat X X X X X

Figure A-2: Support Area for c432
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## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
210gat X X X X X X X X
268gat X X X X X X X X X
219gat X X X X X X X X
8gat X X X X X X X X X X X X
138gat X X X X X
91gat X X X X
17gat X X X X X X X X X X X X
42gat X X X X X X X X X X X X X X
59gat X X X X X X X X X X X X X
156gat X X X X X X X X X
1gat X X X X X X X X X X X X X X X
26gat X X X X X X X X X X X X
51gat X X X X X X X X X X
75gat X X X X X X X X X X X
143gat X X X X X X
55gat X X X X X X X X X X X
29gat X X X X X X X X X X X X X X X
80gat X X X X X X X X X X X X
159gat X X X
96gat X X X X X
146gat X X X X X X X
165gat X X X X
101gat X X X X X X
149gat X X X X X X X X
171gat X X X X X
152gat X X X X X
106gat X X X X X X X
153gat X X X X X X X X X
177gat X X X X X X
111gat X X X X X X X X
183gat X X X X X X X
116gat X X X X X X X X X
189gat X X X X X X X X
121gat X X X X X X X X X X
195gat X X X X X X X X X
126gat X X X X X X X X X X
201gat X X X X X X X X X X
261gat X X X X X X X X X
228gat X X X X X X X X
237gat X X X X X X X X
246gat X X X X X X X X
13gat X X X X X X X X X X X X X
68gat X X X X X X X X X X
72gat X X X X X X X X
73gat X X X X X X X X
255gat X X X
259gat X
260gat X
267gat X
130gat X X
207gat X
135gat X
36gat X X X X X X
74gat X
89gat X
87gat X X
88gat X X
90gat X
85gat X
86gat X

Figure A-3: Support Area for c880
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## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
330 X X X X X X X X X X X X X X X

1 X X X X X X X X X X X X X X X X X X
13 X X X X X X X X X X X X X X X X X X
20 X X X X X X X X X X X X X X X X X X

213 X X X X X X X X X X X X X X X
343 X X X X X X X X X X X X X X X
116 X X X X X X X X X X X X X X X X X X X
283 X X X X X X X X X X X X X X X X
33 X X X X X X X X X X X X X X X X X
97 X X X X X X X X X X X X X X X X X X X X

169 X X X X X X X X X X X X X X X X X
41 X X X X X X X X X X X X X X X X X

270 X X X X X X X X X X X X X X X X X X X
45 X X X X X X X X X X X X X X X X X

274 X X X X X X X X X X X X X X X X X
303 X X X X X X X X X X X X X X X X
257 X X X X X X X X X X X X X X X X X X X

1698 X X X X X X X X X X X X X X X X
264 X X X X X X X X X X X X X X X X X X X
179 X X X X X X X X X X X X X X X X X
190 X X X X X X X X X X X X X X X X X
200 X X X X X X X X X X X X X X X X X
107 X X X X X X X X X X X X X X X X X X X X
87 X X X X X X X X X X X X X X X X X X X X

294 X X X X X X X X X X X X X X X X
250 X X X X X X X X X X X X X X X X X X
77 X X X X X X X X X X X X X X X X X X

244 X X X X X X X X X X X X X X X X
68 X X X X X X X X X X X X X X X X X X X

238 X X X X X X X X X X X X X X X
137 X X X X X X X X X
58 X X X X X X X X X X X X X X X X X X X
50 X X X X X X X X X X X X X X X X X X X

159 X X X X X X X X X X X X X X X
150 X X X X X X X X X X X X X X
143 X X X X X X X X X X
317 X X X X X X X X
311 X X X X X X X X X
322 X X X X X X X
326 X X X X X X
232 X X X X X X X X X X X X X X
226 X X X X X X X X X X X X X
329 X X X X X
222 X X X X X X X X
223 X X X X X X X X X
128 X X X X X X X
132 X X X X X X X X
125 X X X X X X
124 X X X X X

2897 X

Figure A-4: Support Area for c3540
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Appendix B: Definition of Structures

This appendix describes some of the C structures used in the experiments described in the

main body of this work.  These structures include the basic structures to define Shared

Binary Decision Diagrams and those used to specify circuit graphs.

Structure:  SBDD

This structure can be used to define a Shared Binary Decision Diagram (SBDD).  It

contains all the output BDDs, the input variables, and the labels for each input and

output.

Defined in: utils.h

Fields:

bdd * outs

This outs field is an array of BDDs, one for each output.  The array is dynamically

allocated using the init_sbdd routine; however, this initialization is normally done by the

routines which parse the input files.

char * *outLabels  

This field is an array of character strings which give the labels for the outputs contained

in the outs array.  Each string in the array contains the label for the output which has the

same index in the outs array (outLabels[i] contains the label for outs[i]).  All memory for

this array is allocated by init_sbdd.
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int numOuts

This field contains the number of outputs in the SBDD.  It will also be the number of

elements in the outs array and the outLabels array.

bdd * ins

This ins field is an array of BDDs which contains the input variables.  The array is

dynamically allocated using the init_sbdd routine; however, this initialization is normally

done by the routines which parse the input files.  The inputs are not necessary ordered in

the array to match the ordering of the SBDD.  They are generally placed in the array as

they are created and will not be moved if reordering is performed.

char * *inLabels  

This field is an array of character strings which give the labels for the inputs contained in

the ins array.  Each string in the array contains the label for the input which has the same

index in the ins array (inLabels[i] contains the label for ins[i] ).  All memory for this

array is allocated by init_sbdd.

int numIns

This field contains the number of inputs in the SBDD.  It will also be the number of

elements in the ins array and the inLabels array.
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int maxLabelLen

This field contains the maximum number of characters allowed for labels.  In other

words, it is the number of characters allocated for each element in the inLabels and

outLabels arrays.

Functions for manipulating:

init_sbdd -- Allocates all memory for the SBDD.
free_sbdd -- Releases all memory contained in a SBDD.
read_file_all -- Parses both .isc and .pla files and creates a SBDD.
pla2bdd_all -- Parses .pla files and creates a SBDD.
isc2bdd_all -- Parses .isc files and creates a SBDD.
dag2sbdd -- Creates a SBDD from a DAG structure.
sbdd_output_prob -- Calculates probability of all outputs in a SBDD.
count_nodes -- Counts the number of nodes in a SBDD.

Structure: DAG

This structure can be used to create a graph which represents a circuit.  Each node in the

graph represents a logic gate and each edge represents a connection between gates.

Defined in: dagnode.h

Fields:

DAG_VERT ** nodeTable

This field is an array of pointers to all nodes in the graph.  The nodes will be arranged in

the same order as they are encountered in the net-list file.  This array is dynamically
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allocated when the graph is created.  Each DAG node is allocated individually and may

be indexed by a number of arrays including nodeTable, inputs, and outputs.

int numNodes

numNodes is the total number of nodes in the graph or the number of elements in the

nodeTable array.

DAG_VERT ** inputs

This field is an array of pointers to the input nodes of the graph. This array is dynamically

allocated when the graph is created.

int numIns

numIns is the number of input nodes in the graph or the number of elements in the inputs

array.

DAG_VERT ** outputs

This field is an array of pointers to the output nodes of the graph. This array is

dynamically allocated when the graph is created.

int numOuts

numOuts is the number of output nodes in the graph or the number of elements in the

outputs array.

Functions for manipulating:
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net2dag -- Parses net-list file (.isc) and creates a DAG.
(all needed memory is allocated by this routine)

delete_dag -- Releases all memory associated with a DAG.
dag2sbdd -- Creates a SBDD from a DAG.
netprob -- Calculates output probabilities using a DAG.
copyDAG -- Copies a DAG for the consensus function.
buildConFunct -- Creates a structural representation of the consensus.
conProb -- Calculates output probabilities of the consensus.

Structure:  DAG_VERT

This structure is used to defined the individual nodes in the DAG structure.  Each

DAG_VERT will represent a gate in the circuit.

Defined in: dagnode.h

Fields:

int address

This field gives the ISCAS address for the gate.  It is copied directly from the net-list file.

char *name

This field gives the ISCAS name for the gate.  It is copied directly from the net-list file.

int vtype

This field gives the type of gate that the node represents (AND, OR, XOR, etc.).  These

types are defined in tokdef.h .

int fanout
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This field gives the number of fanouts from the node.

int fanin

This field gives the number of fanins to the node.

int * fanin_lst

This field is a list of fanin addresses.  It will seldom need to be used once the DAG is

fully created because the fanin nodes can be easily reached using the fanin_ptrs.

char *finame

If the node represents a FROM stem, then this field will contain the name of the gate

from which it fanouts.  Again, this field is seldom used because the fanin_ptrs provide a

more direct route to the fanin stems.

int color

This field is used to “mark” the node during traversals so that it is easy to tell if a node

has been visited or not.

int fwd_pnt_num

This field keeps track of how many forward pointers have been assigned.  It is used only

during the creation of the DAG.

int node_ident
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This field is an internal identifier.  Each node is assigned a unique ID.  These ID’s will

generally correspond to the nodes position in the nodeTable of the DAG.

DAG_VERT ** fanout_ptrs

This field is an array of pointers to the given nodes fanout points.

DAG_VERT ** fanin_ptrs

This field is an array of pointers to the given nodes fanin points.


