

A SPLIT DATA CACHE ORGANIZATION BASED ON

RUN-TIME DATA LOCALITY ESTIMATION

A Dissertation

Submitted to the Department of Computer Science and Computer Engineering

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Engineering

By

Quazi Galib Samdani

MS in Applied Physics & Electronics,

University of Dhaka, 1990

MS in Electrical Engineering

University of Arkansas, 1996

April 2000

University of Arkansas

 ii

This Dissertation is approved for
recommendation to the
Graduate Council

Dissertation Director:

 Dr. Mitchell A. Thornton

Dissertation Co-Director:

 Dr. David L. Andrews

Dissertation Committee:

 Dr. Neil M. Schmitt

 Dr. J. Sherwood Charlton

 Dr. Terry W. Martin

 iii

Abstract

Cache memories are used extensively in modern computer organizations in order to

reduce the performance gap between fast microprocessors and slower main memory.

Cache memory hides the main memory access latency by exploiting the data locality

present in pre-fetched memory blocks in the cache. Conventional pre-fetching policies

used in traditional cache organizations have the potential to waste the available cache

bandwidth and space by bringing non-usable data in the cache. Conventional caches

cannot meet the different sized storage requirements of data that exhibit spatial or

temporal locality characteristics when their address spaces vary and are non-overlapping.

Data characterized by spatial or temporal locality could be more efficiently

accommodated if caches with different line sizes based on the locality type could be used.

The fixed line size of a conventional cache restricts this efficiency. To reduce the

performance bottleneck of conventional caches, an alternative cache organization is

explored in this research. The SPEC92 benchmarks as well as other standard benchmark

programs are used to observe run-time data locality. Based on the locality analysis, a

simple locality prediction technique was designed in hardware capable of estimating the

data locality bias of the cache-resident data during run-time. This prediction hardware is

used to design a split data cache that uses two sub-caches; spatial and temporal cache.

This organization stores data in the respective sub-caches based on the dynamic locality

estimation during run-time of the executing programs. The split data cache organization

showed a considerable performance increase over a conventional unified data cache by

 iv

reducing the overall cache miss rate and bus data traffic. A better utilization of the cache

space and bandwidth is possible using this new organization.

Key words and Phrases: Data Locality Cache, Computer Architecture, Memory system

organization, High Speed Memory, Run-time Memory Access pattern.

 v

Acknowledgements

I would like to express my sincerest thanks and gratitude to Dr. Mitchell A. Thornton for

letting me pursuing this research, exchanging interesting ideas, solving problems and

finally writing this dissertation. I would also like to thank Dr. David L. Andrews for his

unique thoughts, support and accommodation for research in this department. Finally, I

would like to thank first Dr. J. Sherwood Charlton for his silent support and

encouragement and Dr. Neil M. Schmitt and Dr. Terry W. Martin for serving as valuable

committee members.

 vi

Dedication

To Bimurto, Borshan, Juthee

and

In memory of Golam Samdani (father) and Carl Sagan (NASA)

 vii

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1

1.1 Cache Basics 4

1.2 Cache Organization 5

1.3 Cache Read process 7

1.4 Cache Write process 9

1.5 Cache Performance 10

1.5.1 Cache performance improvement process 10

1.5.2 Split Instruction and Data Cache 11

1.5.3 Two or Multi -level caches 12

1.5.4 Blocking and Non-blocking Cache 13

1.5.5 Pseudo -associative Cache 13

1.5.4 Victim Cache 14

1.5.5 Write Buffer 15

1.5.6 Multimedia Cache 16

 viii

 1.6 Cache Policies 18

 1.7 Cache Pollution and Bandwidth Waste 19

 1.8 Motivation for current research 20

 1.9 Overview of the Research Results 20

 1.10 Research Contributions 26

 1.11 Dissertation Outline 27

2 Cache Resident Data Locality Analysis 28

2.0 Introduction 29

2.1.1 Principle of Locality 32

2.1.2 Motivation for Locality Analysis 34

2.2 Locality Analysis Method 36

2.3 Data Locality Analysis Results 43

2.4 Locality Analysis Conclusions 47

3 Dynamic Data Locality Estimation Circuit 48

3.0 Introduction 48

3.1 Data Locality Prediction Guideline 49

3.2.1 Split Data Locality Cache 51

3.2.2 Dynamic Locality Estimation Scheme 52

3.2.3 Dynamic Locality Estimation Hardware 53

3.4 Experimental Results 55

3.5 Conclusions 58

 ix

4 Split-Cache Subsystem Design 60

4.0 Split Data Cache Organization 60

4.0.1 Defining the Critical Data Path 66

4.0.2 Defining the size and address mapping schemes 68

4.0.3 Defining the cache replacement policy 70

4.1 Implementation of the Locality Cache 72

4.1.1 Locality estimation protocol 73

4.2 Modified line replacement policy of the Split Data Cache 76

4.3 Handling Spatial Victim Blocks 77

4.4 Summary 79

5 Performance Metrics of the Split Data Cache 80

5.0 Experimental Setup 80

5.1 Split Data Cache Performance 84

5.2 Affect of the Modified Line Replacement Policy 87

5.3 Affect of the Spatial Victim Placement Policy 88

5.4 Hardware Cost and Area Analysis 91

5.5 Performance of the Alternate Organization 95

5.6 Summary 97

6 Conclusions and Future Work 98

6.1 Future Research Directions 102

Bibliography 103

 x

List of Tables

1.1 Summary of different cache optimization schemes. 25

2.3-1 Locality behavior of some SPEC benchmark programs 43

3.1 Estimation of locality type for benchmark programs 50

3.2 Comparison of circuit estimated to statistically analyzed locality 56

4.1 Summary of miss rates of the locality estimation based cache 65

5.1 Description of the SPEC92 benchmark programs used in

 the cache test bench 83

5.2 Miss rate and buss traffic of the SPEC benchmarks using

 split and unified data caches 84

5.3 The contribution of the modified LRU policy on reducing miss rate 88

5.4 The contribution of the victim placement policy on reducing miss rate 89

5.5 The performance metrics of the reduced data storage space

 locality cache and the conventional data cache 95

 xi

List of Figures

1.1 Typical memory hierarchy 2

1.2 Illustration of an 8-line cache address-mapping process for Direct mapped,

 Set Associative and Fully Associative organizations (Cache Data Block

 size is two bytes here). 6

1.3 The three portions of an address in a set-associative or direct mapped cache 8

1.4 Lookup penalty with the depth of the levels in a multi-level cache 12

1.5 Victim cache placement in the memory hierarchy 14

1.6 Addressing a Stream 17

2.1-1 Code block of a Sparse Matrix Multiplication, which has a dynamic

 data-access pattern and an irregular computation pattern 31

2.1-2 Cache Line Fill illustrating the “Spatial Access” 33

2.1-3 Cache Line Fill illustrating the “Temporal Access” 35

2.2-1 Temporal access pattern in a cache line 38

2.2-2 Spatial access pattern in a cache line 39

2.2-3 Line and Word hit count strategy in a set 40

2.2-4 Code fragment for average time stride calculation on Hits 41

2.2-5: Diagram illustrating the cache data analysis 42

2.3-1: Graph showing spatial reuse patterns of the cache space by

 SPEC benchmarks 44

 xii

2.3-2: Graph showing temporal reuse patterns of the cache space by

 SPEC benchmarks 44

2.3-3: Cache space pollution for spatial fetching of data into cache lines by

 SPEC benchmarks 45

2.3-4: 3-D plot of the reuse pattern of the portion of cache space by the

 benchmark espresso 46

2.3-5: Diagram of overlapping spatial and temporal Locality Characteristics 47

3.1 The functional blocks of the Split Data Cache organization 51

3.2: Cache Line Entries for the spatial and temporal Caches 52

3.3: Basic Hardware Organization of the Locality Estimation circuitry 54

3.4 Spatial Locality estimates by Dynamic Estimation and Statistical analysis 56

3.5: Typical temporal access pattern in a spatial space of a line 57

4.1 The Split Data Cache in a uniprocessor organization 61

4.2: Flow diagram of caching scheme where initial references are

 considered spatial 62

4.3: Flow diagram of caching scheme where initial references are

 considered temporal 63

4.4 Critical Data Path of the split data cache 67

4.5 The data cache performance metrics as a function of block size

 and associativity 69

4.6 LRU Bits update process on line Hit 72

4.7. The Spatial Cache line organization 72

4.8 State transition diagram for the cache status 73

 xiii

4.9 The decision diagram for setting L, S and T bits 74

4.10 Locality estimation circuitry of the Split Data Cache 75

4.11 Modified line replacement policy 76

4.12 Spatial to temporal Cache Data Transfer 78

5.1 Experimental setup for the Split cache performance evaluation 81

5.2 Relative cache miss rates of split and unified data caches 85

5.3 Comparative bus traffic for using split and unified data caches 85

5.4 The impact on the miss rate due to the modified line replacement

 policy used in the spatial sub-cache 87

5.5 The impact on the miss rate due to the victim placement policy used for the

 spatial victim blocks 90

5.6. The Tag-RAM contents for Spatial and Temporal cache lines 91

5.7 32 bit address splitting of the spatial sub-cache 92

5.8 32 bit address splitting of the temporal sub-cache 93

5.9 The relative storage cost for the 4-way unified and split data caches 93

5.10 The performance comparison between the reduced data storage space

 Locality cache and the conventional Data Cache 96

 1

CHAPTER 1

7 Introduction

One of the main bottlenecks of current computer architectures is the processor-memory

interface. This bottleneck results in a mismatch between the speed of the CPU and

memory, and is referred to as the processor-memory performance gap [1, 2, 3, 4].

Microprocessor performance is increasing at a faster rate than memory. Typical usage of

off-chip memory units in computer architectures causes increases in access latencies and

bandwidth limitations due to the processor-memory interface path and the finite number

of pins that chip packaging allows [2,3]. Off-chip memory access times are higher than

on-chip memory access times due to the relatively larger latency introduced during data

propagation from the memory chip to the microprocessor through an external data path.

Bandwidth is dependent on the data transfer rate between microprocessor and memory.

Separate chip packaging limits the number of data I/O pins available. Thus, the data

transfer rate is highly dependent on the number of pins available.

A common scenario is that programmers using state-of-the-art computers are increasingly

demanding faster memory units in their computers to fully utilize the performance

increase of the microprocessors. As faster memory units (specifically SRAM - static

random access memory) are more expensive than slower dynamic RAM, designers must

 2

mitigate this performance gap. Therefore, modern processors use a memory hierarchy

composed of a combination of faster SRAM and slower DRAM. Figure 1.1 shows a

typical memory hierarchy used by computers.

8
9

10
11
12
13

14
15

In this organization, the faster SRAM units serve as the second stage of memory

hierarchy, and are organized as a cache memory. With the inclusion of a memory

management unit (MMU), required data and instructions are fetched from the slower

main memory (which is the third stage of the memory hierarchy) into the faster cache

unit. The CPU can take advantage of the faster cache access times and the higher

bandwidth available for using the cache organization. The performance benefit obtained

1 Figure 1.1. Typical memory
hi h

CPU

L1 Cache

Main Memory

Second Stage in memory hierarchy
(SRAM)

Third Stage in Memory Hierarchy
(DRAM)

Fourth Stage in Memory Hierarchy
(Mass Storage Device)

Permanent Storage
Memory

First Stage in Memory hierarchy
(CPU registers)

L2 Cache

L3 Cache

 3

by using faster cache units depends on both caching policies that exploit data and

instruction locality, and, on the physical organization of the cache.

The introduction of cache memories [5,6] allowed for significant performance increases

in the early 1980’s when the performance gap between the CPU and memory was not as

large. CPU performance continues to increase at a tremendous rate every year, and cache

organizations being used in an attempt to keep up with the faster data access demands. In

the past 10 years, different cache organizations have been proposed to rectify this issue.

In the 1980’s, multi-level cache architectures were introduced. A multi level cache takes

advantage of the extraordinary integration density offered by the current chip fabrication

and packaging technologies, and may be integrated within the same die as the CPU. As

an example, Intel’s Pentium Pro� integrates the CPU, I-Cache, D-Cache and L2 cache

onto the same die. Though multi-level caches help to reduce the memory access latency,

they also introduce additional latency in cases where the memory lookup function has to

traverse deeper into the memory hierarchy for cache misses. In some cases, the CPU can

waste about 75% of its processing time due to the look-up penalty in the multi-level

cache [45]. We are currently living in an ‘information age’ where almost all information

is being kept in local and distributed databases, and, information is consistently being

shared over the Internet and Intranet. Accessing huge databases is a very critical and

time-consuming process. Database programs typically waste more than 50% their

operation time in retrieving information in the memory hierarchy [8,9,12,30,31,32,39].

Proper caching of the requested data is fundamental for these applications.

 4

To obtain a balanced CPU/Cache system we not only need the best architecture, but also

an optimized caching strategy that will perform well in all general cases. The success of

conventional caching policies depends on the locality present in the accessed data or

instructions. The current policies used in caches are not always highly successful in

caching data properly in order to gain maximum benefit from the varying spatial and

temporal localities exhibited by the data. The cache resource can be polluted, in some

cases up to 60%, due to the residence of unused data in the cache occurring to pre-

fetching of non-usable data in the cache [57].

In the following subsections, basic cache organizations and concepts, such as locality,

will be introduced. Then, the motivation for performing the current investigation, current

research results performed by other researchers, and the split data cache subsystem

design are presented. Finally, an overview of the contributions made by this research is

presented.

1.1 Cache Basics:

Cache memories work based on the locality of the code segments of the program and

accessed data. The types of locality are defined as follows [39]:

a. Spatial Locality (or locality in space): Given an access to a particular location in

memory, there is a high probability that other accesses will be made in the

neighboring locations within the lifetime of the program.

 5

c.b. Temporal Locality (or locality in time): Given an access to a particular location, there

is a high probability that references following that access will be made to the same

location. If a program exhibits temporal locality, elements of the reference sequence

will be accessed again during the lifetime of the program.

d.c. Sequentiality: Given that a reference has been made to a particular location s, it is

likely that subsequent references will access the location of s+1. Sequentiality is a

restricted type of spatial locality and can be regarded as a subset of it.

When a reference made by a processor is found in the cache, it is called a cache hit.

When the reference is not available in the cache, it is called a cache miss. In the case of a

cache miss, the cache control mechanism must fetch the missing data from the main

memory and place it into the cache.

1.2 Cache Organization:

Basic cache organizations follow two fetching schemes. A “demand fetch” organization

where memory contents are fetched based solely on cache misses. The second

organization called “pre-fetching,” fetches data depending on a priori anticipation of

locality of references. This is also referred to as “speculation.”

There are three basic types of cache organizations based on the ‘main memory address

mapping scheme’ in the cache. They are a) Fully Associative, b) Direct Mapped, and c)

Set Associative. Figure 1.2.

 6

Figure 1.2 Illustration of an 8-line cache address-mapping process for Direct mapped, Set Associative

and Fully Associative organizations (Cache Data Block size is two bytes here).

MAIN
MEMORY

1100 1001

1100 1011

1100 1000

1100 1010

ADDRESS DATA

000

001

010

011

100

101

110

111

1100

1 1 0 0 1 0 1 0

INDEX TAG

00

01

10

11

11001

LINE 0 LINE 1

1 1 0 0 1 0 1 0

SET
INDEX

TAG

TAG

 1100101

SET 0 SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7

TAG TAG TAG TAG TAG TAG TAG TAG

1 1 0 0 1 0 1 0

Direct Mapped Cache 2 Way SET Associative Cache

Fully Associative Cache

 7

b.a. Direct mapped: Memory reference blocks are mapped to a specific block location in

the cache. As an example, the address 0xCA in the illustration can be mapped only in

the line with index 101.

c.b. Set associative: Memory references are placed into a restricted subset of blocks in the

cache. A particular memory reference block can only be placed in a specific set, but

the block can be placed anywhere within that set. In Figure 1.2, the address 0xCA can

be mapped in either ‘line 0’ or ‘line 1’ with set index ‘01’ in the 2-way set associative

cache in the illustration.

c. Fully associative: Memory references block may be placed anywhere in the cache.

The address 0xCA can be mapped anywhere between set or line 0 to 7 in the shown

illustration in the Figure 1.2.

1.3.1 Cache read process:

During a read operation, the cache looks for a match between the address and the stored

address in the cache. The cache stores the ‘address tag’ for each block in the cache in a

tag RAM. An additional bit is also stored in the tag RAM for each block to indicate if the

tag entry is a valid data-block in the cache. During a tag match, the cache control

circuitry checks this bit, referred as the valid bit ‘V’. If the valid bit is ‘set’ during a tag

match, then control circuitry makes a data transfer from that cache block to the CPU

register. In a direct mapped cache, only a single cache block entry is selected by the

mapping process to be searched for a match. In associative caches, all the cache blocks,

decided by the degree of associativity, are searched in parallel. Figure 1.3 shows how the

 8

memory address field is partitioned to derive the address tag, cache index, and block

offset fields for the cache. First, it is divided into a block address and block offset. The

block address is further divided into tag and index fields. The block-offset field selects

the desired data from the block; the index field selects the set, and the tag field is

compared against the stored address in that set for a hit.

16 Block Address

19 Tag 20 Index

17

18 Block

Offset

Figure 1.3 The three portions of an address in a set-associative or direct mapped cache.

1.3.2 Cache update process:

During a cache miss, the control circuitry must update the cache with the missed memory

block. In performing this operation, a valid cache block may need evicted to

accommodate the requested data by the CPU. In a direct mapped cache, new memory

block is placed into a single location independent of whether the existing entry is valid or

invalid. For a set associative or fully associative cache, there can be multiple cache

blocks available for replacement. The cache controller must decide which block of the

cache should be replaced. There are several cache replacement policies available to make

this decision. These policies have their own merits and de-merits. Two common “cache

replacement policies” [3] that are used are as follows:

 9

a. Random: In this strategy a block for replacement is selected in random fashion, which

is believed to provide uniform spread of allocation. This policy may provide poor

performance in average cases.

c.b. Least Recently Used (LRU): This strategy allows for replacing blocks based on their

aging or least recent usage. Some aging counters are used to track the recent usage of

each block in this strategy.

The hardware cost and complexity is less for implementing the random replacement

policy, however the cache performance suffers in the average case. Alternatively, the

LRU policy yields good cache performance but the hardware cost and complexity

increases linearly with increase of the associativity of the cache.

1.4 Cache Write Process:

There are two types of write policies generally used for cache writes; a) Write-through

and b) Write-back. In a write-through policy, both cache blocks and lower order memory

structures are updated with the data at the same time during a write operation. Whereas,

in a write-back policy, only the block in the cache is updated. This makes the write-back

process faster than the write-through process since it can be done at cache speed.

However, additional difficulties can arise due to inconsistencies that can occur in the

cache versus main memory content. This difficulty is referred to as the “cache

coherency” problem.

 10

According to [38], cache reads occur more frequently than cache writes. Usually about

25% of the cache bandwidth is utilized for a write cycle, whereas approximately 75% is

utilized for a read cycle. Thus, in any cache design, optimization for the read cycles

should receive more importance.

1.5 Cache Performance:

Cache performance is measured in terms of the miss rate. This is the probability that a

requested reference is not available in the cache. The miss rate times the miss time

measures the “delay penalty” due to a cache miss. In most processor designs, the

processor ceases activity and must stall when a cache miss is encountered. Thus, a cache

miss behaves in much the same way as a pipeline break.

1.5.1 Cache performance improvement process:

The average memory access time provides a metric for optimizing the cache for

improved performance [38]:

Average memory access time = Hit time + (Miss rate x Miss penalty)

Thus, cache optimization could be accomplished by reducing any of the following

factors, which are directly contribute to the overall cache performance:

a. Miss rate

b. Miss penalty

d.c. Average hit-time in the cache.

 11

Two simple and classic techniques for reducing miss rate are using larger block sizes and

higher associativities in the cache memory (for set-associative organizations). Improving

one aspect of the average memory access time comes at the expense of another. Larger

block sizes take advantage of spatial locality, but at the same time can cause an increase

in the miss penalty. Similarly, greater associativity reduces the miss rate at the expense of

higher hit time.

1.5.2 Split Instruction & Data Cache:

A split Instruction (I) and Data (D) cache provides the designer with the possibility of

significantly increased cache bandwidth, potentially doubling the access capability in the

cache. Split I- and D- caches are particularly useful when the instruction bandwidth is

higher than data bandwidth. Split I- and D- caches come at the expense of having higher

miss rates than unified caches. This is due to two main reasons, a) relative cache sizes,

and b) adaptation to the changing ratio of instruction and data elements of a running

program. An 8kB unified cache can provide more flexibility in instruction and data

storage requirements when compared to a divided 4-KB Instruction and 4-KB Data

cache. In a unified cache, the cache replacement process intelligently adapts the cache for

the changing ratio of instruction and data elements during the execution of a program.

However, such an adaptation is not possible in a split I- and D-Cache. In modern

processor design achieving higher memory access bandwidth is more desirable and the

fabrication of separate I- and D- cache with considerable size to avoid potential miss rate

increase is possible. Most modern processors now employ separate I- and D- caches in

their organizations.

 12

1.5.3 Two or Multi -level caches:

Another useful technique for reducing the miss rate is to use a two or multi-level cache

organization. In the case of a two level cache, a small, fast on-chip cache is used as

primary or level one (L1) cache, and a separate second cache (usually larger than L1) is

used as a secondary, or a level two (L2) cache. Miss rates can be reduced by up to 10%

by carefully tailoring the L1 and L2 cache sizes [5]. This type of organization may be

expanded into a multi-level cache by using additional cache levels. The potential problem

of using multi-level caches is the look-up penalty that results in cases where the required

data is not present in any level of the cache. The lookup-time could increase significantly

with the increase of the depth of the cache. Figure 1.4 shows the typical lookup penalty

that arises with the depth of a multi-level cache.

2 Clock Cycles

CPU
Register

L1

L2

L3

MM

Figure 1.4 Lookup penalty with the depth of the levels in a multi-level cache

4 ~ 16 CCs

6 ~ 20 CCs

60 ~ 100 Clock Cycles

 13

The intuitive argument for adding multiple caches in the cache hierarchy is that the

increasing performance gap between the processor and main memory can be reduced by

using several smaller accesses to main memory.

1.5.4 Blocking & non-blocking Cache:

In a blocking cache, the processor halts processing on a miss until the missed line is

brought in the cache. This can result in frequent stalls. In a non-blocking cache, the

processor is allowed to continue instruction execution without stalling if no true data

dependency exists between instructions and data. A non-blocking cache organization pre-

fetches data to avoid frequent misses. Proper anticipation of the required data plays a

vital role in non-blocking cache performance.

1.5.5. Pseudo-associative Cache:

A pseudo-associative cache is used with a direct mapped or set-associative cache to

increase the hit-speed and reduce the miss rate respectively. In this approach, before

going to the next lower level of memory during a miss, another cache entry is checked in

the pseudo set for a hit. The address of the pseudo set is calculated by inverting the MSB

(most significant bit) of the index field of the cache address. This approach provides a

variable hit time, and reduces the average memory access time as compared to using a

direct mapped or set associative cache organization. Although this is an attractive

process, it is not preferred for practical implementation due to the complications that arise

in the design of a pipelined processor.

 14

1.5.4 Victim Cache:

One recent technique of reducing miss rates is to use a victim cache. Figure 1.5 shows

the organization of a CPU architecture with a victim cache. A victim cache is typically a

small, fully associative cache located between a main cache and the refill path, and

contains the blocks that are discarded from the main cache due to a miss. These victim

blocks of data are checked during a miss to determine whether they contain the desired

data before going to the next level of memory. If the data is found in the victim cache,

then the victim cache block and main cache block are swapped. While fully associative

caches are expensive to build in terms of logic, the size of this very small supplemental

cache makes it feasible to implement on chip, along side the main level one (L1) cache.

Figure 1.5 Victim cache placement in the memory hierarchy

CPU

VICTIM
Cache

L1
CacheTAG

Match?

TAG
Match?

YES

YES

NO

NO

CACHE
CONTROLLER

ADDRESS
BUFFER

DATA
BUFFER

SYSTEM BUS

 15

Because it is not as fast as a direct-mapped or set-associative cache, the victim cache is

not placed in the critical path of the processor. This means there is still some additional

penalty associated with satisfying a reference via the victim cache rather than the main

L1 cache. However, the penalty is generally on the order of 1 cycle instead of the 4-16

cycles often required for accessing off-chip L2 caches. A four-entry victim cache can

remove 20% to 95% of the miss rate in a 4-KB direct mapped data cache [38].

1.5.5 Write Buffer:

On a write operation in a write-through cache, the cache suffers from the slow main

memory write cycle time to finish a write operation. To hide the main memory write

cycle delay from the cache and allow the cache to continue its operation at cache speed, a

small write buffer can be used to temporarily store the data. Write buffers are very

effective for improving the write cycle time of the cache. However, buffering the data can

create memory consistency problems when the buffered data is not yet written into the

main memory while the cache is updating the same location on a read miss from the main

memory. To eliminate this problem, commercial processors implement the write buffer as

a few-entry fully associative cache. On a miss, it makes an associative search in the cache

and main memory. If the data is still in the write buffer, than it supplies the data directly

from the write buffer to the microprocessor. This scheme is similar to a ‘victim cache’ as

described in the previous section.

 16

1.5.6 Multimedia Cache:

Stream data processing is becoming a common factor in modern computer architectures

due to the heavy usage of the Internet and the popularity of multi-media applications. In

multimedia system designs, it is common to separate the data and control paths to

simplify and optimize the hardware and software in order to handle the large volume of

data traffic. Often in these systems, the video information passes directly from the

network interface to the display unit without intervention by the CPU. This mechanism is

highly effective at providing a support mechanism for multimedia applications without

the high bandwidth data streams consuming CPU time. Following this strategy incurs the

disadvantage of precluding the processor from accessing the multimedia data. This

eliminates an interesting range of applications where processor intervention is necessary.

A balanced architecture would keep data away from the processor when not necessary,

but still enable high-speed access by the CPU when the application demands it.

It is particularly helpful to use a special type of cache to address this situation, referred to

as a “stream-cache” (S-cache). When processing a data stream, it is likely that the data

will be accessed in order of arrival. Hence, an S-cache holds the most recent data from

the stream, and new data is written over the oldest data. In S-cache architectures, data

arriving from the stream is placed directly into the cache, not passing through the main

memory. This avoids unnecessary buffering. A section of the cache effectively becomes a

circular buffer holding the latest stream information. Update of the S-cache content is

asynchronous rather than triggered by a CPU cache miss. When the CPU attempts to

access the stream data, there are three possible outcomes:

 17

1. The data has recently arrived in the stream. In this case, the item is found in the

cache and processing continues.

3.2. The data has not arrived yet. This is treated as a cache miss and the CPU may be

blocked until the required item arrives. If the data does not arrive for some (long)

period, the operating system may choose to reschedule the CPU.

4.3. The required data is far in the past accessing order that the buffer can hold. This

case should be flagged as an exception to the operating system and represents

“staleness” in terms of temporal locality.

The stream data will need to be addressed in some way. Most streams include a frame or

temporal structure used by the application. This can be conveniently mapped into a range

of processes in the virtual address space. Thus, the process may access the stream as an

array indexed by frame number as shown in Figure 1.6.

0 1 2 3 4 5 6 7 8

Figure 1.6 Addressing a stream

There are two major advantages to a stream cache system. First, the data from the stream

is placed where it is going to be used, namely in the CPU cache. Hence, even if data is

Incoming
Streams

Frame Index

 18

not accessed in a strict temporal order, recent information can still be found in the cache.

Second, the hardware manages fine grain resynchronization with the stream, imposing no

overhead other than the necessity to wait for the data to arrive. The stream cache could be

optimized for improved performance by carefully designing the cache size and

architecture.

1.6 Cache Policies:

Cache policies are the rules of operation of the cache and are used to answer the

following questions. During which cycles can data be read from the cache instead of

main memory? Where does the cache fit into the system? How associative is the cache?

What happens during write cycles? Cache policies are chosen for a single motive [6,11];

the designer wants to get the most performance for the lowest cost. Two variables play

into this tradeoff: 1. Which is more important, to save engineering time or to save overall

system parts cost? 2. Is the cache to be integrated or constructed from discrete

components?

Cache policies may be chosen in a number of ways, depending on the generality of the

system and the amount of resources available to improve the design. In the best case, the

hardware and software of the system are designed together (referred to as

“hardware/software co-design”). In this approach, the hardware can be optimized to a

very good degree based on a large amount of empirical results on the effects of different

caching policies on the intended software’s performance. In the worst case, the hardware

designer is asked to design a cache without any knowledge of the software that will run

 19

on the system, no empirical data, nor any chance to develop any, and with very little

knowledge about the tradeoffs of various cache policies [6].

There are different caching policies and organizations being utilized in different

computer architectures, and efforts are being made towards their improvement. Though a

tremendous amount of research is ongoing for achieving an optimum performance cache

organization, an optimal solution has not been found. It is has been shown [48] that most

programs require considerably less cache memory than what is available in a typical

superscalar processor.

1.7 Cache Pollution and Bandwidth Waste:

Current caching policies in use by most computers result in cache pollution and memory

bandwidth waste. This is due to pre-fetching a memory block or data cluster into the

cache when a cache miss occurs without performing any data locality analysis. The

pollution is due to the placement in cache of a non-reusable block whereas the memory

bandwidth waste is caused by the additional data brought from a L2 cache to a L1 cache

in the same block as the requested data. To cope with this issue, some microprocessors

provide memory reference instructions that can bypass the cache [10].

Blind caching policies can also create similar cache pollution and memory bandwidth

waste problems when the data references exhibit temporal locality. In the case of

temporal locality, only one data element is being referenced from each block of data.

Thus, the cache becomes full with unusable data elements. It has been reported in recent

 20

investigations [48, 49, 50] that a large percentage of references exhibit temporal locality,

and a significant percentage of references do not show any type of locality.

1.8 Motivation for this Research:

The research presented here is motivated by finding an alternative cache organization that

will be able to use the cache resources more efficiently. A split data cache organization is

proposed that exploit the full benefit of different types of locality references in a running

program. Based on this motivation, the goal of this research is to design, simulate and

investigate the performance benefits obtainable using the above mentioned cache

organization in the hardware abstraction level which will perform dynamic locality

prediction during runtime using only hardware resources. Before presenting the

contribution made through this investigation, a brief survey of other efforts is presented

in the next section.

1.9 A review of the current results:

Several investigations have proposed different schemes for instruction and data cache

organizations to reduce overall memory access latency. These include a transient value

cache (TVC) [37], lockup-free cache [20,47], cache-conscious load scheduling [27],

hardware and software pre-fetching [16,17,18,19,20,21,22,29,41,42,43] and

multithreading [28]. TVC uses a small data cache in addition to a L1 cache to provide

support for large fraction of parallel loads in a massive parallel-processing environment.

The mechanism proposed in [28] identifies non-cacheable data by means of profiling.

The scheme proposed in [56] is based on a run-time managed history table of the most

 21

recent load/store instructions. In [45], a pre-fetch engine is used which relies on software

or hardware optimized Deterministic Prediction Approach (DPA) in order to pre-fetch

data that is estimated to be referenced in the future.

Compiler assisted optimization of the cache data locality is proposed in

[23,24,25,26,27,32,33,34,35]. Compiler based optimizations are based mainly on

improved algorithms which use several techniques to identify locality in loops in

scientific codes, and perform data layout transformation to provide optimum locality for

better cache performance.

Combined compile-time and run-time caching policies as proposed in [46] use memory

access detection, and automatic data caching based on compiler provided analysis of run-

time memory access requirements. This is considered as an efficient approach in a shared

memory parallel computing on distributed memory machines. In this approach, if the

compiler analysis fails entirely, then the run-time maintenance of the shared memory is

done with the hardware resources. Therefore, the complexity and limitations of

compilers that directly target message passing [44,46] can be avoided.

Run-time memory performance feedback and memory layout optimization is proposed in

[55,56]. In [55], the processor is informed about the memory operation by using the

cache outcome condition code and cache miss traps so that the processor can tackle the

performance requirements by using in-built hardware supports. This approach is based on

the observation that modern in-order-issue and out-order-issue superscalar processors

 22

already contain the bulk of the necessary hardware support. In [46], a system is proposed

that uses a memory layout oriented approach to exploit cache locality for parallel loops at

run-time on Symmetric Multi-Processor (SMP) systems using application dependent

hints and the targeted cache architecture.

In [41], a programmable pre-fetch engine is used in the on-chip cache. As more chip area

is available due to the tremendous advancement of the VLSI technology, designers can

take advantage of using such programmable chips to hide the main memory access

latency. This pre-fetch engine can pre-fetch data without any compiler intervention

during run-time. The pre-fetch engine is programmable by software, allowing the

designer to optimize the cache performance by using improved software algorithms to

program this pre-fetch engine. Though pre-fetching always increases data traffic in the

bus, the proposed scheme claims that additional data traffic can be significantly reduced

by using the programmable approach of the hardware, and benefits from both software

and hardware.

The selective caching policy proposed in [47] leads to an organization similar to a

conventional cache in which all memory instructions have an additional bit set (or reset)

by the compiler. During a cache miss, this bit controls whether a new block should be

retrieved from the L2 cache and placed in L1 cache, or if the requested data should be

retrieved from the L2 cache directly without updating the L1 cache.

 23

A cache organization with both temporal and spatial subsystems has been proposed in

[48,49,50,52]. This organization uses a very simple heuristic based on the data type

which can be changed by dynamic or pre-runtime profiling. Selective caching is a feature

of current microprocessors such as that being used in the PowerPC. The HP PA-7200

[51] uses a software-managed data caching policy. Every memory instruction used by the

HP PA-7200 includes a “hint bit” indicating that spatial locality is used to predict if the

data referenced by that instruction shows only spatial locality characteristics and not

temporal locality. The HP PA-7200 consists of two cache modules; the on-chip fully

associative assist cache and a large direct-mapped off-chip cache. The assist cache holds

data related to all memory references for which hint bits are explicitly set indicating

spatial locality. The off-chip main cache holds all data in which the hint bit is not set

indicating the lack of spatial locality.

To avoid cache pollution, intelligent spatial pre-fetching schemes have been proposed

[36,57]. In [36], a Spatial FootPrints (SFP) table is maintained by using specialized

hardware. Depending on the content of the SFP table, the predictor mechanism fetches a

smaller or larger number of blocks when misses occur in the cache. Also, in [57] a

somewhat similar strategy based on a Spatial Locality Detection Table (SLDT) is used to

prefetch multiple data blocks or less in order to reduce memory access latency during

runtime.

In [12,13], considerable performance improvement was shown by using a stream cache

unit with a conventional cache. In this strategy, hardware based reordering of stream data

was used to improve cache performance. The logic behind this approach is that, the

 24

performance of most memory systems is dependent upon the order of the requests

presented to it. Access ordering refers to any technique that changes the order of memory

requests to increase bandwidth. Stream data, such as vector (scientific) computations,

multi-media (de)compression, encryption, signal processing, text searching, etc., are

affected more by bandwidth than by latency.

Table 1 [38] shows the comparative performance benefits obtainable from different cache

scheme compiled in [38].

 25

Table 1[38]. Summary of different cache optimization schemes. In the table + indicates it improves the

factor, -indicates it hurts the factor. Hardware complexity factor 0 indicates easy to implement, and 3

indicate more complex to implement.

Technique Miss
rate

Miss
penalty

Hit
time

Hardware
Complexit
y

Comment

Larger block size + - 0 Trivial; RS/6000 550 uses 128

Higher associativity + - 1 e.g., MIPS R10000 is 4-way

Victim caches + 2 e.g., HP 7200

Pseudo-associative + 2 Used in L2 of MIPS R10000

Hardware prefetching

of instruction and

data

+ 2 Data are harder to prefetch;
Alpha 21064

Compiler controlled

prefetching

+ 3 Needs nonblocking cache too

Compiler technique

to reduce misses

+ 0 Software is challenge

Giving priority to

read misses over

writes

 + 1 Trivial for uniprocessor, and widely
used

Subblock placement + 1 Used primarily to reduce tags

Early restart and

critical word first

 + 2 Used in MIPS R10000, IBM 620

Nonblocking caches + 3 Used in Alpha 21064

Second-level caches + 2 Costly hardware; widely used

Small and simple

caches

- + 0 Trivial; widely used

Avoiding address

translation during

indexing of the cache

 + 2 Trivial if small cache; used in Alpha
21064

Pipelining writes for

fast write hits

 + 1 Used in Alpha 21064

 26

1.10 Research Contributions:

The research contributions made are documented in this dissertation and in [63,64,65].

The contributions presented in this dissertation are:

a. The performance bottleneck of the caching scheme used by most current

microprocessor architectures is identified, and reviews of different caching

technologies suggested and implemented by various researchers are highlighted.

b. Run-time cache resident data locality analysis of the memory access patterns of a

wide variety of application programs defined in SPEC92 benchmark suite [62] are

presented using the results of a simulation of real-time data cache access. This

analysis presents a clear understanding of the data locality behavior of the common

application programs. The average cache resource requirements for the spatial and

temporal address spaces used by the programs are also identified. This contribution

provides valuable information for the designer of a cache subsystem.

c. A locality estimation technique and subsequent circuit is designed which can perform

run-time prediction of the data memory access locality shown by the programs [64].

The novelty of this prediction circuit is that it is simple enough to reduce penalties

due to increased hardware complexity, yet it can also provide better performance in

all cases of the SPEC92 benchmarks. In addition, this technique does not require any

compiler assistance and is independent of any particular computer platform.

 27

d. The design of a new split data cache organization is presented. This organization uses

two sub-caches termed as the Spatial Sub-Cache and temporal Sub-Cache. It stores

data with appropriate locality as predicted by the locality estimation circuitry into

these sub-caches for efficient cache management and thereby improves the overall

memory access efficiency of the microprocessor.

e. A detailed evaluation of the locality estimation circuitry and the split data cache

subsystem. A simulation prototype is written for the split data cache model using the

C programming language and is implemented and tested on a UNIX platform using

memory address traces of data for load/store instructions of the SPEC92 benchmark

suite.

1.11 Dissertation outline

The remainder of this dissertation is organized as follows. Chapter 2 presents the analysis

of the memory access behaviors of different benchmark programs during their runtime

residency in the cache. Chapter 3 presents a hardware scheme used to predict the possible

locality behavior of the accessed data during the execution of a program. Chapter 4

presents the organizational design of a split data cache along with its implementation

strategy. Chapter 5 presents the simulation of the designed split cache model and an

evaluation of its performance. Finally, chapter 6 summarizes the research findings with

conclusion and future research direction.

 28

CHAPTER 2

Cache Resident Data Locality Analysis

The organization of the data cache can significantly affect overall data access latencies

during program executing. The cache performance depends on the locality characteristics

of the data being processed in a program as well as the underlying architecture. A typical

program has a data access profile that exhibits both temporal and spatial locality

characteristics. Since most processors contain single data caches at a given level, and a

single data cache cannot be optimized for purely spatial nor purely temporal locality data

accesses, cache space pollution and inefficient usage of cache resources can occur. In the

worst case, these phenomena can actually introduce additional data access latencies

through repeated line fills. Here an analysis and modeling scheme is presented that

describes the runtime data access behavior of several benchmark programs in a typical,

unified data cache. The motivation for the development of this model is to produce

 29

information that may aid in the design of a split data cache with one side optimized for

temporal locality accesses and the other for spatial locality accesses.

2.0 Introduction

A cache memory subsystem pre-fetches additional memory data during a miss along with

the requested data word by the processor. The amount of pre-fetched data depends on the

line size of the cache. With data pre-fetching, a cache memory can hide data access

latencies by exploiting the locality characteristics of the running programs in the pre-

fetched lines. Pre-fetching a greater amount of data helps to hide latency rather than

reducing the latency. The main problem is that pre-fetching can aid in cache performance

only when additional memory bandwidth is available. This is because pre-fetching does

not decrease the number of memory accesses; it simply tries to perform them over a

shorter period. The available cache space and bandwidth may be polluted and misused by

pre-fetching when a large amount of non-usable data is resident in the cache. About 60

percent of available space in a cache can be polluted in some extreme cases due to this

phenomenon [57]. In cases where the program is already memory-bandwidth limited, it

becomes impossible for pre-fetching to improve performance. Alternatively, locality

optimizations such as cache blocking [29] can actually decrease the total number of

accesses to memory, thereby reducing both latency and required bandwidth.

A good knowledge of memory access behavior characterized by the locality of references

can lead to efficient cache memory subsystem designs. Locality analysis of different

types of programs during runtime aid in defining an optimized cache subsystem

 30

organization. The locality behavior of a program is categorized as either, spatial or

temporal. Most current research projects [36,57,58] are investigating the spatial reuse of

data and strive to find a means to exploit this spatial reuse of data.

Past research efforts [27,31,32,33] have sought to optimize program loop nest localities.

Different models and reorganizations of loops have been proposed using tiling,

compound transformations consisting of loop permutation, loop fusion, loop distribution

and loop reversal [31] to increase temporal and spatial locality in loop-nests. These

techniques are primarily compiler-based approaches. Programs must be compiled using

the target machine’s compiler to gain the optimization benefits.

Cache organizations based on compiler optimizations or based on identifying spatial

reuse may produce poor performance when running a variety of different application

programs. This poor performance is due to the particular bias of optimizations for a

specific subset of the application programs. Usually, the average data access by the

programs are both from spatial and temporal locality. Analysis of the run-time memory-

data access plays a critical role in this respect.

The question still remains as to why use a run-time locality analysis model to design a

data cache when compilers exploit detailed information from applications to optimize

locality. Compiler based locality optimization can perform very effectively to improve

the performance of those applications to which they can be applied. In reality, many

dynamic data access patterns of the applications cannot be analyzed during compile time.

 31

For example [56], consider the sparse matrix multiplication program shown in Figure 2.1-

1. In the innermost loop, the array elements A[k] and B[r] are indirectly determined by

the data in the arrays Arow, Acol, Bcol and Brow. These indirect data accesses cannot be

determined by the compiler since the compiler has no idea about what kind of data the

program is going to process during run-time. Therefore, if we want to optimize the data

access locality for such a case, only run-time locality analysis can optimize cache

performance.

double A[X], B[Y], C[M][M];
int Arow[M+1], Acol[X], Bcol[M+1], Brow[Y];

sparse-mm()
{

int i=0, j=0, k, r, start, end;
register double d;
for(;i<M;i++)

for(;j<M;j++)
{

d=0;
start=Bcol[j];
end =Bcol[j+1];

for(k=Arow[i];k<Arow[i+1];k++)
for(r=start;r<end;r++) task t(i,j)

if(Acol[k] == Brow[r])
{

d+=A[k]*B[r];
start = r+1;
break;

}
C[i][j] =d;

}
}

Figure 2.1-1 Code block of a Sparse Matrix Multiplication, which has a dynamic data-

access pattern and an irregular computation pattern

 32

A cache sub-system, that targets the true run-time data access of the program can

improve the cache performance significantly. The advantage of using such a scheme is

that since it is not designed for specific program sets nor does it depend on compiler

assistance, in many cases can provide better performance.

In this chapter, a model determining the locality behavior exhibited by several

benchmarks programs executing in a load/store based uniprocessor with a typical unified

data cache is presented. Locality analysis results using this model are also presented. The

motivation for performing this analysis is to determine the data locality behavior of

different programs, and to use the results to design an efficient cache organization that

will not suffer from the inability to exploit varying data locality behaviors over a variety

of executing programs.

The subsequent sections of this chapter are organized as follows. Section 2.1 presents an

overview of locality and the need for runtime locality analysis and modeling of executing

programs. In section 2.2, the model used for the locality analysis is presented. Next,

experimental results of the cache access behavior by different SPEC integer and floating

point programs are presented and discussed. Finally, section 2.4 provides the conclusions

based on the experimental data.

2.1.1 Principle of Locality

To hide memory access latency due to fast processors with relatively slower main

memory, a cache subsystem is used to attempt to store data, which will be accessed in the

 33

future by the processor. This is accomplished by loading additional data other than that

being requested by the processor during a cache line fill. A typical way of doing this is to

retrieve additional data from the neighboring address space of the requested data. The

purpose of writing neighboring data into the cache is to exploit the principle of spatial

locality. Spatial locality exists due to the empirical observation that “data tends to be

accessed that is close (in address space) to previously accessed data”. Figure 2.1-1 shows

an example of this type of locality. Data block B is requested by the processor and the

resulting cache miss causes a line fill to occur that loads blocks A through D. Thus, any

consecutive memory blocks requested by the CPU within this spatial region will result in

a cache hit with the access time equal to the (faster) cache access time..

Figure 2.1-1: Cache line fill illustrating the “spatial access”

Whenever the data access pattern is largely spatial in nature, the inclusion of large cache

lines that contain more neighboring data can reduce the overall memory access latencies

drastically. For strictly spatial data access patterns the reduction in memory access

latency depends mainly on the cache line size.

A
 B

 C
 D

CPU

CPU requesting
memory block
B

Cache

Cache
line fill
fetching

blocks A,

B, C and

D

A B C D

I J K L

E F G H

M N O P

Main Memory

 34

Another type of locality is “temporal” locality or locality in time. This type of locality is

characterized by certain locations in memory being accessed repeatedly in time. For

example, this occurs when a CPU requests data blocks in the order B, G, M, B, G, M

repeatedly during the execution of a program. The illustration shown in Figure 2.1-2

depicts this type of access pattern. In this case, the cache line fills are bringing additional

memory blocks in each cache line that is not used by the processor.

2.1.2 Motivation for Locality Analysis

In past work on data cache optimization, mainly numeric (scientific) programs have been

considered for analysis of the data locality pattern. Since most numeric codes contain a

large amount of nested loops, a significant amount of research has been attributed to the

incorporation of more spatial reuse through different compiler optimization techniques

such as unimodular transformations, loop fusion and distribution and tiling [66]. Some

assertions of the spatial reuse of data have been made without doing any intra-loop reuse

analysis [31]. Some computer architectures, such as the HP-7200 [51] do not use any

detailed program locality information and depend only on spatial reuse of data.

 35

Figure 2.1-2: Cache line fill illustrating the “temporal access”

To fully take advantage of the spatial locality present in a program’s data access patterns

and to also benefit from the temporal locality that is also present, a data cache may be

organized with multiword line sizes. In Figure 2.1-1 it is seen that for the spatial access

pattern B, C, D and A the access penalty is one cache miss since the next three

consecutive accesses result in a cache hit. Thus, the effective miss rate is 25 percent and

cache space utilization is 100 percent for this case. From Figure 2.1-2, if the access

pattern is B, G, M, B, G, M then the effective miss rate is increased to 50 percent and

cache space utilization is reduced to 25 percent. This clearly indicates that the relatively

large line size used for taking advantage of spatial locality results in the pollution of the

cache and also increases the memory access bandwidth. About 40% cache capacity

waste is typical[57].

Cache

Main Memory

A B C D

CPU

CPU requesting memory
blocks B, G and M in
progression of time

Fetching
patterns of
Cache lines for
requests B, G
and M

A B C D

I J K L

E F G H

M N O P
E F G H

M N O P

 36

The depicted scenario indicates that the same cache organization will not perform equally

well in all cases. To optimize performance, the cache organization must be tuned to

benefit from both spatial and temporal data access behaviors. The tradeoff arises because

increasing cache line size to exploit more spatial locality causes more cache pollution and

wasted bandwidth when temporal accesses are requested. Alternatively, decreasing the

line size and adding more lines to a cache can result in inefficient usage when the

accesses are largely spatial in nature. Further, as is demonstrated later in this dissertation,

the data access behavior varies largely from program to program. Data access behavior

can be purely spatial, purely temporal or (more typically) a combination of both. It is

possible to optimize a cache organization to provide optimum performance for a

particular program. However, it is a very difficult task (if not impossible) to provide

optimum performance for all types of program data access behavior. A reasonable choice

in this case is to design a cache subsystem that will perform well on average. Analysis

and modeling of the program data access behavior over a number of different programs

can provide estimates of average-case behavior. This motivates us to carefully study and

analyze the data access behavior of the programs that cover a wide range of applications.

The SPEC benchmark suite has been used as a representative sample of different types of

application programs.

2.2 Locality Analysis Method

The data locality behavior of different application programs is analyzed during runtime in

order to observe the characteristics of interest. In the results presented here, parameters of

interest are generated through the accumulation of statistics based on data access patterns

 37

in a general cache during program execution. In this approach, specific cache

architectures are considered and runtime data access profiles of different SPEC92

benchmark programs are stored. Initially, different cache sizes with varying line sizes

were modeled. Among these, a four-way set associative 32 KB cache with 128 byte (32-

bit words) line size was considered as the baseline organization to analyze and model

cache data locality in terms of miss rates, and a wide window width to capture both

spatial and temporal locality. This target cache architecture was simulated using the C

language and complied using the Unix cc compiler. Input to the program consists of

memory traces gathered during the execution of the SPEC92 benchmarks.

The memory traces of the SPEC92 benchmarks used in this investigation are those

available from the anonymous ftp site of the New Mexico State University Trace

Database [62]. The traces contain the addresses of the memory references and a field

indicating whether it is instruction address or data read/write address. Since the main

interest is data caching, a filter program was written that extracted only the data

load/store related addresses. The cache simulator then used the data load/store related

traces as input and generated the analysis results after simulating the cache.

For locality profiling purposes, the simulator keeps track of the number of accesses in

each line of the cache as well as the average time difference of each word being accessed

in a line over successive hits, or the “temporal stride”. Although the term “stride” is

generally used to refer to the absolute distance between different memory addresses, here

 38

it is used in a temporal sense to refer the relative time difference in terms of the processor

clock cycles. The analysis tool records the number of hits for each word in a line.

Analyzing the runtime behavior of the SPEC92 benchmark programs’ memory traces

allows the data access locality characteristics of these programs to be noted.

For the locality analysis, the line hit-rate and strides of the words in the lines as well as

word-hit frequency is used. Usually, for spatial locality, the strides of the words in a line

should be similar or should have a fixed difference with an equal or close number of hits.

For temporal locality behavior, the number of accesses to a line should become very high

and we may expect that the strides of the words and word-hit frequencies will vary

greatly. Figure 2.2-1 and 2.2-2 shows the typical nature of the strides for temporal and

spatial locality in a cache line for two benchmark programs used in this test bench.

Temporal Locality Pattern in a Line

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 4 7 10 13 16

Word Number

W
o

rd
 H

it
 C

o
u

n
t

a
n

d

S
tr

id
e

Number of Word Hits

Average Stride

Figure 2.2-1: Temporal access pattern in a cache line

 39

Spatial Locality Pattern in a line

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1 4 7 10 13 16

Word Number

W
o

rd
 H

it
 C

o
u

n
t

a
n

d

S
tr

id
e

Word Hit Count

Average Stride

Figure 2.2-2: Spatial access pattern in a cache line

Spatial Locality Pattern in a line

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1 4 7 10 13 16

Word Number

W
o

rd
 H

it
 C

o
u

n
t

a
n

d

S
tr

id
e Word Hit Count

Average Stride

Figure 2.2-2: Spatial access pattern in a cache line

The following equation for the estimation of hit rate (in percentage) for spatial or

temporal locality was used:

 40

Where:

 EHit = Estimated percent of Hits due to spatial or temporal Locality

 WHCi = ith Word Hit Count due to spatial or temporal Locality

 NSpatial/Temporal = Number of Word Hits due to spatial or temporal Locality

TWHC = Total Number of Word Hit Count in the cache

To facilitate this estimation process, the model uses counters for each line of each set in

the cache and for all corresponding words in the lines. Two-dimensional unsigned integer

array variables are used to store the count values. The mapping process of a 4-way set

associative cache is used to gather the array indexes of the counter variables in a manner

similar to hashing, where the hash function is actually the cache mapping function. These

counters are used to maintain the hit counts for each word in each line of the sets. For

each respective word in the cache, the average time between successive hits is also

maintained in another variable in terms of memory access cycles that we refer to as stride

(in this case, temporal stride) in the plots. Figure 2.2-3 illustrates this basic strategy of

counting the hits for a single 4-way set that contains 4 words per line. Figure 2.2-4

contains a code fragment that shows how to calculate temporal stride values for

successive word hits.

/

/
1

100 Spatial TemporalN

Spatial Temporal i
i

EHit WHC
TWHC =

� �=� �
� �

�

 41

Figure 2.2-3 Line and word hit count strategy in a set

Counter

Set ‘0’ Line ‘0’
Counter
Word ‘0’

Counter
Word ‘1’

Counter
Word ‘2’

Counter
Word ‘3’

Word
‘0’
HIT

Word
‘1’
HIT

Word
‘2’
HIT

Word
‘3’
HIT

Set ‘0’
Line ‘0’

HIT

Counter
Set ‘0’ Line ‘1’

Counter
Word ‘0’

Counter
Word ‘1’

Counter
Word ‘2’

Counter
Word ‘3’

Word
‘0’
HIT

Word
‘1’
HIT

Word
‘2’
HIT

Word
‘3’
HIT

Set ‘0’
Line ‘1’

HIT

Counter
Set ‘0’ Line ‘2’

Counter
Word ‘0’

Counter
Word ‘1’

Counter
Word ‘2’

Counter
Word ‘3’

Word
‘0’
HIT

Word
‘1’
HIT

Word
‘2’
HIT

Word
‘3’
HIT

Set ‘0’
Line ‘2’

HIT

Counter
Set ‘0’ Line ‘3’

Counter
Word ‘0’

Counter
Word ‘1’

Counter
Word ‘2’

Counter
Word ‘3’

Word
‘0’
HIT

Word
‘1’
HIT

Word
‘2’
HIT

Word
‘3’
HIT

Set ‘0’
Line ‘3’

HIT

// Initially, before any memory load store operation the index variables are set to zero, so,
// Access_Cycle[Set & Line Index][Word Index] = 0
// Avg_Stride[Set & Line Index][Word Index] = 0
// Cum_Stride[Set & Line Index][Word Index] = 0
// Code fragment below showing the method of calculating average time stride calculation on HITs on
// words in the cache lines

Current_Access_Cycle = Mem_Access_Cycle;

if(MatchFound)
{

Cum_Stride[Set_Line_Index][Word_Index] =
Cum_Stride[Set_Line_Index][Word_Index] + (Current_Access_Cycle -

Access_Cycle[Set_Line_Index][Word_Index]);

Access_Cycle[Set_Line_Index][Word_Index] = Current_Access_Cycle;
Word_Hit_Count[Set_Line Index][Word_Index]++;

}

…………
…………
if(feof(Memory_Trace_File_Pointer))
{
 for(I=0; I<Number_of_Sets;I++)
 for(J=0; J<4; J++)
 {
 Set_Line_Index = ((I<<2)|J);
 for(Word_Index=0; Word_Index<Max_Word_Count_Per_Line;Word_Index++)
 if(Word_Hit_Count[Set_Line_Index][Word_Index]!=0)
 {

Avg_Stride[Set_Line Index][Word Index] =
Cum_Stride[Set_Line Index][Word Index]/ Word_Hit_Count[Set_Line Index][Word Index];
}
}

}

Figure 3 1-4 Code fragment for average time-stride calculation on Hits

 42

As input, the analysis program uses memory traces obtained through the simulated

execution of the SPEC92 benchmarks assuming a load/store CPU with the cache

structure described above. After processing the hit rate and average stride of all words in

the cache, the portion of the cache hits due to spatial and temporal accesses is

determined. This determination is based on the ‘hit count’ and ‘average stride’ values for

each word in the cache, and is compared with the other words’ hit count and stride

values. For spatial accesses, the hit count and stride should be similar in value for each

word in relation to the other words in a specific line of the cache. This observation

forms the basis of how spatial locality is detected. The spatial accesses are isolated by

simple relative comparisons of both the word and total line hit count values. For

temporal accesses, the words with large differences in stride and hit count as compared

with other words in the line are considered and their cumulative counts are recorded for

each line. Following the same process for all of the lines in the cache, a combined set of

statistics based on spatial, temporal and unused word counts are obtained to calculate the

percentage of cache hits due to spatial versus temporal locality. Figure 2.2-5 shows a

flow diagram illustrating the major steps of the analysis method.

 43

START

Look for Match in the Cache
for the Memory Reference

Request from CPU

HIT?

Calculate & St ore Hit count
and stride for reference

Update Cache with
the requested
reference by CPU

End of
Reference?

Process Spatial Hit Count
 Process Temporal Hit Count

 Process Cache Pollution Count

END

NO

YES

YES

NO

 44

Figure 2.2-5: Diagram illustrating the cache data analysis

2.3 Data Locality Analysis Results

Data locality behavior of several SPEC92 integer and floating point programs is shown in

Table 2.3-1. From the data locality behavior of the benchmark programs, it is apparent

that the data access patterns do not show purely spatial or temporal locality in any case.

The ratio of spatial versus temporal locality varies from program to program. These

results indicate that the spice2g6, gcc and doduc benchmarks have a bias toward temporal

locality. Table 2.3-1 also indicates that most of the benchmark programs possess a

significant amount of temporal locality. The average spatial locality is 68 percent and

average temporal locality is 32 percent for the SPEC benchmark programs used in this

study.

Table 2.3-1: Locality behavior of some SPEC Benchmark Programs

Benchmark Spatial
Reuse

Average
Spatial
Reuse

Temporal
Reuse

Average
temporal

Reuse

Cache
Space

Pollution

Average
Space

Pollution

Espresso 0.54 0.46 0.34
spice2g6 0.38 0.62 0.25
Doduc 0.45 0.55 0.01
Li 0.54 0.46 0.07
Eqntott 0.67 0.33 0.18
Compress 0.63 0.37 0.01
mdljdp2 0.64 0.36 0.28
wave5 0.63 0.68 0.37 0.32 0.62 0.23
Tomcatv 0.99 0.01 0.14
Ora 0.90 0.10 0.61
Alvinn 0.79 0.21 0.15
Ear 0.81 0.19 0.10

 45

Sc 0.55 0.45 0.40
mdljsp2 0.49 0.51 0.31
swm256 0.96 0.04 0.10
Gcc 0.44 0.56 0.10
su2cor 0.87 0.13 0.01
nasa7 0.99 0.01 0.38

The spatial and temporal locality distributions of the SPEC benchmarks are shown in

Figures 2.3-1 and 2.3-2.

Spatial Data Locality distribution of the SPEC

Benchmarks

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

esp
res
so

spi
ce
2g
6

do
du
c

li eq
nto
tt

co
mp
res
s

md
ljd
p2

wa
ve
5

to
mc
atv

ora alv
inn

ear sc md
ljs
p2

sw
m2
56

gc
c

su
2c
or

nas
a7

Benchmark

Spatial Locality

(%)

Figure 2.3-1: Graph showing spatial reuse patterns of the cache space by
SPEC benchmarks

Temporal Data Locality Distribution of the SPEC

Benchmarks

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Benchmark

Temporal Locality

(%)

 46

Figure 2.3-3 shows the pollution of cache space due to spatial fetching of data in the

cache lines. The results suggest that on average, 23% of the available cache space be

polluted by the spatial pre-fetching of data. In an extreme case the pollution was 62%

(wave5).

Figure 2.3-4 shows a 3-D plot of the portion of the cache space usage by the benchmark

espresso. This plot indicates that even when the spatial reuse component is dominant, the

Cache space pollution index of the SPEC

Benchmarks

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

0.90
1.00

Benchmark

Space

Pollution (%)

Figure 2.3-3: Cache space pollution for spatial fetching of data into cache lines

by SPEC benchmarks

 47

reuse surface is not very uniform. The reuse frequency is very high in some lines.

However, in most of the lines, spatial reuse is minimal.

Careful analysis of the results suggests that the address space of the memory references

could be pre-dominantly spatial, pre-dominantly temporal or a combination of each. This

is illustrated in Figure 2.3-5 where set A represents accesses that exhibit spatial locality

and set B indicates those with temporal locality. The results indicate that programs

typically contain a subset of accesses that have characteristics of both sets A and B. The

intersection of these two classes of memory access types is indicated by set C in Figure

2.3-5. As an example, consider a program that consists of several consecutive loops,

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

S 1

S 1 2

S 2 3
0

1 00 0 0

2 0 00 0

3 00 0 0

4 0 00 0

50 00 0

6 0 00 0

70 00 0

80 00 0

W
ord

 N
um

ber
 in

 C
ac

he
Lin

e

C ac h e L in e N u m b er

R eu s e

C o u n t

R e u s e p a tte r n o f th e c a c he lin e s fo r th e B e n c h m a rk E s p re s s o

Figure 2.3-4: 3-D plot of the reuse pattern of the portion of cache space by the

benchmark espresso

 48

each of which accesses an array of data sequentially. Clearly, the accesses within a

single loop are spatial in nature, however examining the access pattern of a single array

element is temporal in nature due to the existence of multiple loops, and hence, multiple

accesses of the same element.

Figure 2.3-5: Diagram of overlapping spatial and temporal locality characteristics

2.4 Conclusions

Based on the locality analysis presented above, the following conclusions are made:

1. Run-time data access behavior of different programs needs to be supported.

Thus, both spatial and temporal locality data should be cached. Therefore, a

split data cache is justified to facilitate both types of locality.

2. A unified data cache can perform poorly in some cases by wasting valuable

cache capacity.

SPATIAL
ADDRESS SPACE

TEMPORAL
ADDRESS SPACE

 49

3. The data that should be cached in a spatial cache are whose reuse frequency is

good enough to allow for future cache hits. Otherwise, their accesses can be

bypassed in the cache.

4. Since spatial reuse is dominant in most of the cases, a relatively larger spatial

cache with bigger line sizes should be used as compared to the temporal cache

in the split data cache.

CHAPTER 3

Dynamic Data Locality Estimation Circuit

A split data-cache architecture with separate caches for data accesses classified as

predominately spatial or temporal requires specialized hardware or software to predict

these characteristics. This chapter presents a locality estimation circuit that operates

dynamically as the program executes. The technique is developed based on an analysis

of the locality behavior of several benchmark programs as described in the previous

chapter. The split data cache organization is then described and simulated. Experimental

results obtained from the simulations are preserved. These results are of use in

 50

determining the effectiveness of the dynamic locality-estimation circuit and the relative

line sizes that should be used for the two caches.

3.0 Introduction

A data locality cache requires specialized hardware to predict the data access locality, and

to determine in which cache the data should be stored. Run-time access behavior could

show a random variation of locality of data from program to program. Performing

compiler assisted profiling of locality before execution of the program is much easier in

this case. Accomplishing the same result with a hardware scheme is more difficult due to

the finite size of the hardware. The design of the prediction hardware should be simple

and effective in any case to avoid complexity and minimize the additional hardware

resources required. Complex locality-estimation hardware may provide best the locality

estimation but the overall organization may introduce additional ‘in-cache’ locality

computation time that effects the cache access time. With this in mind, a locality

prediction hardware unit is designed which does not require any complex hardware

scheme and uses only a simple protocol to estimate the data access locality.

The subsequent sections of this chapter are organized as follows. Section 3.1 presents a

guideline to predict data locality analysis done in chapter 2. Section 3.2 describes a

simple ‘locality-estimation-circuit’ to be included in the cache controller for dynamic

prediction. Next, the performance of the locality prediction circuit when used in a split

data cache organization as compared to the locality prediction with the statistical analysis

is discussed. Finally, in section 3.4, conclusions based on the experimental data are

 51

presented.

3.1 Data Locality Prediction Guideline

The locality analysis presented in chapter 2 provided insight to the overall data access

behavior of the programs during run-time. This analysis model can be used effectively to

define the guidelines for designing a locality prediction circuit. It has been seen that the

data access behaviors exhibit uniform access and equal strides in most of the spatial

accesses in a cache line. For temporal references, the access frequencies are quite high in

some memory locations. Some temporal accesses are within very limited zones of the

cache lines. It has been also observed that overlapped spatial and temporal accesses exist

in some lines of the cache. Table 3.1 illustrates the spatial and temporal locality

distribution of a few more benchmark programs in addition to that presented in Chapter

2.

Table 3.1: Estimation of locality type for Benchmark programs

Benchmark Estimated Hit Rate (%)

due to spatial Locality

 Estimated Hit Rate (%)

due to temporal Locality

LINPACK 35.36 64.64

MATMULT64 13.85 86.15

QSORT 50.03 49.97

WORDFREQ 20.48 79.52

CELLAUTO 62.51 37.49

QUEENS 0.01 99.99

 52

From the locality analysis presented in Chapter 2, a guideline that the data cache needs

support for storing data in two different sub-caches according to the locality bias can be

inferred. These analysis results are used to propose a simple hardware solution for a split

spatial and temporal data cache that allows for an overall improvement in caching

efficiency. The approach followed is to implement a solution in hardware using dynamic

locality estimation. This poses the problem of which cache to store the data in during

cold-start accesses. At the cold-start point, no prior information is known about the data

and an estimate of the locality would simply be a guess. Furthermore, the results in Table

3.1 indicate that depending on the functionality of the program, some exhibit

predominately temporal locality while others exhibit spatial locality. The second

guideline is that an estimation circuit should be designed to estimate the data access

locality during run-time and then store those data in the proper locality caches. The next

section describes the organization and working principle of a locality estimation circuit

considered in this research for its simplicity and effectiveness.

3.2.1 Split data locality cache

The functional blocks of a generic split data cache is in Figure 3.1. This cache

organization contains a dynamic locality-estimation circuit that controls the runtime

caching policies for the whole organization. The dynamic locality estimation circuitry

analyzes the locality pattern of recently accessed data in the cache and directs the next

line-fill to the appropriate cache. This is accomplished by runtime locality analysis on

hits occurring after the cold start of the cache.

 53

3.2.2 Dynamic locality estimation scheme

Locality prediction hardware must estimate run-time data access patterns. This can be

accomplished with the knowledge of the run-time data access pattern in the cache blocks.

To store the access pattern information, we need to keep a pattern table in hardware. To

maintain a separate run-time data prediction-pattern table is both expensive and difficult.

Instead of using a separate locality prediction table, we can use the cache line structure

for both spatial and temporal data caches as shown in Figure 3.2. This requires some

additional storage space in the spatial cache. The fields in this cache line are typical for

any set-associative cache with the exception of the inclusion of a single bit, L, which is

referred to as the "locality" bit and a “reuse” bit, R. The V field is used to indicate cache

line invalidation for write-through operations, the LRU bits are included for the

implementation of the replacement policy, the tag bits will serve as inputs to the address

circuitry to determine matches or hits, the DATA field contains the actual cache data.

Spatial
Cache

Cache
Directory

Cache
Controller

Temporal
CacheLocality

Estimation
CircuitC

P

U

Data address from CPU

Hit S Hit T

Data To/From CPU

Address

Buffer

Data

Buffer

System
Bus

Miss T

Miss S

Figure 3.1 The functional blocks of the split data cache organization

 54

Although the line sizes differ in the temporal and spatial data caches, the structure is the

same.

V L R LRU TAG LINE

OFFSET
DATA

L = Locality Information, ‘0’ for all cache lines initially, and SET to ‘1’ when data shows

locality.

V = Valid Bit.

TAG = Tag bits of the address.

LRU = Least Recently Used bits (Number of Bits depends on the number of sets in the cache).

Figure 3.2: Cache line entries for the spatial and temporal caches

The locality bit is used to indicate that the cache line has an estimated spatial locality

behavior while in the spatial cache, or exhibits temporal locality behavior while residing

in the temporal data cache when it is set. During the cold start execution phase, data is

brought into the spatial cache initially. During cold start, bringing data in the spatial

cache is advantageous because we cannot do any prior anticipation of data locality before

they are accesses by the program. Thereby, if data is brought into the temporal cache with

an anticipation of temporal hits then the cache might face multiples misses if the

prediction is wrong. Copying data from the spatial cache to the temporal cache will not

increase miss rate and the release of the spatial cache space is possible in case the hit in a

particular spatial cache line is found temporal. The strategy for doing this spatial cache to

temporal cache transfer is described in the next paragraph.

During a hit in the spatial cache, if the hit occurs due to the same word for which that line

 55

was originally brought from a lower level of memory to the cache, the temporal reuse bit

is set to “1”. Otherwise, the spatial locality bit is set to “1” to indicate that spatial locality

of references is present in the line. The match of the line offset of the new memory

reference with line OFFSET field of the spatial cache maintained in cache directory will

be used to infer the locality information.

3.2.3 Dynamic locality estimation hardware

The simple hardware scheme for the locality estimation circuit is shown in Figure 3.3.

This scheme sets the spatial locality bit and reuse bit following the principles outlined

above. To estimate the temporal locality, when a second hit in a line occurs due to

temporal reuse of the same memory reference, the circuit checks whether or not the

spatial locality bit is set. If it is set, then the access-pattern into that cache line’s address

space exhibits both types of locality behavior. In this case, maintaining the data

residence in the spatial cache is better. Alternatively, if the consecutive access is due to

the same memory word reference and the spatial bit is not set, there is a high probability

that the reference is temporal. In this case, the estimation circuit initiates a move

operation of that particular data word into the temporal cache.

Figure 3.3: Basic Hardware Organization of the Locality Estimation circuitry

S HitSpatial
Cache
Line

Access

TAG of
Reference

V L R TAG LINE OFFSETLRU

COMPARATOR

COMPARATOR

OFFSET of
Reference

L Bit
Write
Enable

R Bit
Write
Enable

If ‘1’
Temporal HIT

Cache HIT
If ‘1’ Reference is
Temporal.
Copy this reference
from Spatial Cache
to Temporal Cache

 56

This simple runtime heuristic for estimating the locality behavior of memory accesses

requires less hardware and avoids complexity in design as compared to other schemes

proposed in [36,57], which only detect spatial locality. Simplicity in the hardware of the

locality estimation circuit is a crucial design constraint. Simple hardware ensures that

overall program access times that are enhanced by the split cache organization are not

offset due to excessive latency in the estimation circuit itself. The prediction hardware

instructs the cache controller to move data from the spatial cache to temporal cache when

a hit is considered due to the temporal locality. Therefore, the cache read-write operation

is transparent from the affect of this data movement. The data movement from the spatial

to temporal cache occurs simultaneously at the cache speed while the ‘hit-data’ is

transferred to the CPU register. The identification of the temporal hit requires only a

comparator and an additional gate through the critical path. The split cache is considered

L1 cache, which is fabricated on the same CPU die that offers very fast logic usage.

Therefore, minimal latency for the comparator and the gate comprises the prediction

latency, and doesn’t affect the cache access cycle.

3.4 Experimental Results

A split data cache model that uses the locality prediction circuit defined above was

simulated using C language constructs in Unix Platform. The performance of the locality

prediction circuit is compared with the statistical metrics as described in chapter 2 for the

SPEC92 benchmark suite.

 57

Table 3.2 shows the comparison of estimated spatial locality by using the split cache as

compared to the “true” locality characteristics as predicted by the corresponding

statistical analysis [64]. These data are also shown in Figure 3.4 as a plot of the two

estimates.

Table 3.2: Comparison of Circuit Estimated to Statistically Analyzed Locality

Benchmark

Program

Spatial Locality

Percentage

estimated by Split

Cache

(%)

Spatial Locality

Percentage

estimated by

Statistical

Analysis

(%)

Deviation

(%)

nasa7 0.99 0.99 0.00

tomcatv 0.81 0.99 -18.18

espresso 0.76 0.54 40.74

ora 0.75 0.9 -16.67

alvinn 0.87 0.79 10.13

ear 0.89 0.81 9.88

swm256 0.99 0.96 3.13

su2cor 0.71 0.87 -18.39

eqntott 0.73 0.67 8.96

compress 0.95 0.63 50.79

wave5 0.86 0.63 36.51

mdljdp2 0.84 0.64 31.25

sc 0.74 0.55 34.55

li 0.61 0.54 12.96

mdljsp2 0.72 0.49 46.94

doduc 0.60 0.45 33.33

gcc 0.70 0.44 59.09

spice2g6 0.63 0.38 65.79

 58

Figure 3.4 Spatial Locality estimates by Dynamic Estimation and Statistical analysis

As is evident from Figure 3.4, the locality estimation circuit usually provides a higher

estimation of spatial locality as compared to the statistical analysis. As mentioned

previously, all references initially result in spatial cache line fills. Since they are resident

in the spatial cache initially, if there is an overlapped spatial and temporal access

characteristic, the over estimation of the spatial locality is due to simple nature of the

estimation hardware used and the fact that all data are placed into the spatial cache on

cold-start initialization. The overlapped spatial and temporal access zone was also

Spatial Locality Estimates By Locality Cache and

Statistical Analysis

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Benchmark

Spatial

Locality

(%)

Locality Cache

Analysis
Statistical Analysis

Temporal access pattern in a Spatial Space of a

Cache line

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1 3 5 7 9 11 13 15

Word Number in the Cache line

Word
Hit
Rate
and

Stride

Word Hit Count

Average Stride

Between Hits

 59

apparent from the statistical analysis as depicted in Figure 3.5.

In some cases, the estimation circuit also under-estimates spatial locality characteristics.

This occurs since, in these experiments, the spatial and temporal caches are divided into

two equally sized caches. In comparing these results to the unified cache, we only utilize

one-half of the capacity for the spatial cache as compared to the unified data cache that

contains lines of size greater than one word throughout the entire cache. However, we

are still striving to provide better performance even in the case where spatial locality is

highly dominant. Since we effectively have a spatial cache with one-half the size of a

corresponding unified cache, problems can occur due to “thrashing” where data

simultaneously exhibits behavior that is consistent with both temporal and spatial

locality. This can easily occur in a case where subsequent loops are present in program

that sequentially accesses an array. Within a single loop, the array elements have spatial

locality, but among the set of subsequent loops, a single array element may be accessed

several times indicating temporal locality characteristics.

To alleviate this problem, the temporal cache was used to store “victim” blocks of data

when they are being evicted from the spatial cache due to the replacement policy. Any hit

of spatial data that resides in the temporal cache increases the temporal hit count and

indicates the presence of more temporal locality in some cases. The justification of this

explanation is obvious if we look at the overestimated temporal locality cases for the

 60

benchmarks tomcatv, ora and su2cor. For these cases, the statistical analysis always

suggests that the presence of spatial locality is greater than 80%.

3.5 Conclusion

A simple locality prediction circuit is designed and evaluated based on the run-time data

access model presented in Chapter 2. The run-time cache resident data analysis indicated

the design strategy for this hardware unit. The prediction circuit helps to determine into

which cache a specific data block should reside during program run-time. In addition, the

prediction circuit incorporates a small amount of additional overhead in terms of

hardware complexity and access latency. Due to the simplicity of the hardware, the

estimates did not fully agree with the statistical analysis of the locality characteristics as

discussed in Chapter 2. The deviation from the statistical analysis is attributed to the cold

start strategy, the spatial victim block placement policy and the overlapped temporal and

spatial address spaces.

 61

CHAPTER 4

Split-Cache Subsystem Design

The implementation of the locality estimation circuit in a cache organization requires

defining the typical data path and the control hardware of the memory management unit

(MMU) in the processor architecture. The targeted architecture is an uniprocessor to test

the performance of the split data locality cache. In this Chapter, the hardware

organization of the split cache subsystem is presented. After describing the hardware and

 62

the associated test bench model, the performance evaluation of this subsystem is

presented.

4.0 Split Data Cache Organization

The approach used to design the split data cache was to, a) define the data path, b) define

the size and address mapping schemes for the spatial and temporal sub-caches, and c)

define the replacement algorithm. Before going through each of these steps, structural

placement of this cache in the processor architecture is discussed. Figure 5.1 shows the

basic placement of the split data cache in a uniprocessor organization. Here the cache is

considered as a level one (L1) cache. The size of the sub-caches is dependent on the

optimum cache performance design. To store data into spatial or temporal cache, this

organization requires the locality estimation circuit. Data localities are dynamically

determined by the estimation circuitry after cold-start of the process.

Figure 4.1 The Split Data Cache in a uniprocessor organization

Register

L1
Split data cache (On Chip)

ALU

L2 Cache
(Off Chip)

 63

The question now arises, into which cache data should be brought during the cold starts

of the process. Incorrect placement of data during cold starts will introduce additional

miss penalty. To find a solution, analysis of the cache performance by setting up a split

cache simulation scheme for bringing data during cold start was done. The simulation

scheme considers all new entries in the cache as having spatial locality initially in one

scheme and as having temporal locality in another. During a cache hit, a comparison is

performed that determines if hit is due to the same memory reference for which the line

was brought into the cache or not. If the line is resident in the "wrong" cache (according

to the locality estimate), then that line is copied to the other cache and the current entry is

invalidated. The flow diagrams shown in Figure 4.2 and 4.3 depict these two schemes.

 64

NO

YES (T-
Cache Hit)

(A)
Memory Reference
Requested by CPU

Hit in Spatial
Cache?

Hit due to same
reference for
which this line
was filled?

Hit in Temporal
Cache?

Bring Data from
Lower Level Memory
to Spatial Cache. Go
To (A)

NO (S-Cache Miss)

NO
(T-Cache
Miss)

YES (S-Cache
Hit)

Move this reference to
Temporal Cache, and
Invalidate this linefrom
from the S-Cache. Go
To (A)

Is Locality Bit
SET?

NO

YES
SET Locality Bit.

Provide data to CPU.
Go To (A)

SET Locality Bit,
Provide data to CPU
and Go To (A)

Provide data to CPU
and Go To (A)

YES

 Figure 4.2: Flow diagram of caching scheme where initial references are considered spatial

 65

Two different data locality based cache simulators were created using the C programming

language in UNIX. The simulators predicted the performance of these cache

organizations for varying cache line sizes for both temporal and spatial caches. The

simulation results reveal how cache performance is affected by using the locality

estimation based caching scheme and by varying cache line sizes. In both schemes, a 16

KB 4-way set associative organization initially was used. The 16 KB address space was

(A)
Memory Reference
Requested by CPU

Hit in Temporal
Cache?

Hit due to same
reference for
which this line
was filled?

Hit in Spatial
Cache?

Bring Data from
Lower Level Memory
to T Cache. Go To
(A)

NO (T-Cache Miss)

NO
(S-Cache
Miss)

YES (T-Cache
Hit)

Move this reference to
Spatial Cache, and
Invalidate this linefrom
from the T-Cache. Go
To (A)

Is Locality Bit
SET?

NO

NO
SET Locality Bit.

Provide data to CPU.
Go To (A)

SET Locality Bit,
Provide data to CPU
and Go To (A)

Provide data to CPU
and Go To (A)

YES

YES
S-Cache Hit

YES

 Figure 4.3: Flow diagram of caching scheme where initial references are considered temporal

 66

further divided into two 8 KB sub-caches (one for temporal and the other for spatial

locality).

Using the two 8-KB organizations, a series of simulations for six benchmark programs by

varying the cache line sizes in words were conducted. The performance of the caches by

keeping the spatial cache line size fixed at a particular word size and varying the line

sizes of the temporal cache line sizes by words such as 1, 2, 4, 8, 16 and 32 words were

simulated. The simulated performance of the cache for six benchmark programs based on

the resulting miss rates was recorded. Next, the cache was simulated by keeping the

temporal cache line size fixed and by varying the spatial cache line size.

The simulation results are shown in Table 4-1. As expected, the deciding factor in the

success of a locality-based cache depends on the ability to predict the data locality bias of

a particular program. The simulation results indicate that varying the size of the spatial

cache lines (when all data is initially placed in the temporal cache) does not affect overall

hit rates significantly. A more important factor is that the size of the temporal cache line

appears to affect the miss rate to a larger extent. This is the case regardless of whether

"cold start" data is assumed to exhibit spatial, or temporal, locality. This attribute to the

fact that the temporal access behavior of data initially present in a spatial cache helps to

reduce the overall miss rate just as it would if it were initially present in the temporal

cache.

 67

Table 4-1: Summary of Miss rates of the Locality Estimation based Cache

All data stored in spatial Cache first: All data stored in temporal Cache first:

 Spatial Line
Sizes:

 Spatial Line
Sizes:

Benchmark 4 Byte 8 Byte 16 Byte 32 Byte 64 Byte 128 Byte 4 Byte 8 Byte 16 Byte 32 Byte 64 Byte 128 Byte Temporal
Line Size

LINPACK 21.847 21.931 19.203 17.304 16.510 17.181 21.948 21.948 21.948 21.948 21.948 21.948 4 Byte

 21.863 21.904 19.090 17.181 16.391 16.943 22.052 21.980 21.963 21.963 21.963 21.952 8 Byte

 10.939 10.929 14.533 12.635 11.750 11.371 21.182 21.175 12.180 11.217 10.798 10.558 16 Byte

 7.305 7.142 8.412 7.603 6.749 6.309 16.357 16.119 7.370 6.366 5.892 5.598 32 Byte

 5.728 5.413 5.388 4.573 4.246 3.637 15.287 14.335 5.296 4.368 3.617 3.596 64 Byte

 5.104 4.778 3.962 3.152 2.907 2.358 17.823 13.794 5.415 4.290 3.668 2.782 128 Byte

MATMULT64 3.077 5.367 5.769 6.995 7.096 7.291 4.036 4.036 4.036 4.036 4.036 4.036 4 Byte

 3.107 5.402 5.792 6.965 7.127 7.350 9.099 5.529 5.977 6.409 6.634 6.742 8 Byte

 3.309 4.660 5.723 6.386 10.032 10.618 10.299 7.234 4.958 5.409 5.291 5.341 16 Byte

 3.704 4.949 5.807 9.451 9.973 10.707 10.346 7.629 6.857 6.954 7.239 8.407 32 Byte

 3.912 5.233 5.819 9.967 9.438 10.491 10.971 8.330 7.879 6.796 5.124 7.859 64 Byte

 4.120 5.293 5.723 10.284 10.566 11.119 11.711 9.385 8.873 8.959 8.498 6.894 128 Byte

QSORT 3.599 2.824 2.625 2.084 1.528 1.173 3.847 3.846 3.847 3.848 3.850 3.851 4 Byte

 2.908 2.318 2.297 1.908 1.522 1.152 2.903 2.259 2.291 2.013 1.571 1.152 8 Byte

 2.401 1.912 2.268 2.000 1.682 1.212 2.349 1.919 2.275 2.065 1.716 1.201 16 Byte

 1.900 1.571 1.862 2.099 1.752 1.248 1.888 1.625 1.920 2.143 1.794 1.244 32 Byte

 1.393 1.253 1.503 1.779 1.533 1.099 1.495 1.337 1.599 1.858 1.719 1.149 64 Byte

 0.983 0.949 1.151 1.454 1.270 0.782 1.218 1.095 1.305 1.553 1.516 0.965 128 Byte

WORDFREQ 0.757 1.453 1.639 2.376 3.173 3.639 0.852 0.794 0.789 0.756 0.709 0.682 4 Byte

 0.886 1.278 1.687 2.100 2.869 3.313 6.197 0.947 0.912 0.889 0.903 0.947 8 Byte

 1.561 1.285 1.207 1.836 2.508 3.130 20.956 5.754 1.482 1.285 1.167 0.981 16 Byte

 1.108 1.034 1.049 1.507 2.256 3.003 23.173 7.002 6.355 1.541 1.351 1.169 32 Byte

 1.206 1.121 1.151 1.255 1.899 2.743 18.730 13.109 8.685 6.218 1.320 1.264 64 Byte

 1.639 2.922 2.113 1.038 1.681 1.989 18.136 17.784 15.084 12.977 11.070 2.966 128 Byte

QUEENS 0.008 0.007 0.005 0.003 0.003 0.054 0.008 0.008 0.008 0.008 0.008 0.008 4 Byte

 0.007 0.005 0.004 0.003 0.003 0.054 0.601 0.005 0.005 0.004 0.004 0.003 8 Byte

 0.006 0.005 0.004 0.003 0.003 0.054 6.618 0.912 0.004 0.004 0.003 0.002 16 Byte

 0.005 0.004 0.003 0.003 0.002 0.003 5.228 3.184 0.029 0.003 0.002 0.002 32 Byte

 0.003 0.003 0.003 0.002 0.002 0.002 5.411 0.500 2.846 1.036 0.002 0.002 64 Byte

 0.003 0.002 0.002 0.002 0.002 0.002 0.451 0.539 2.888 1.078 0.044 0.001 128 Byte

CELLAUTO 0.151 0.671 0.361 0.256 2.513 3.038 0.308 0.299 0.298 0.295 0.294 0.294 4 Byte

 0.841 0.658 0.359 0.255 2.512 2.789 7.010 0.634 0.338 0.184 0.109 0.108 8 Byte

 1.729 0.649 0.353 0.254 2.511 2.722 10.467 2.912 0.338 0.186 0.111 0.063 16 Byte

 1.717 0.648 0.353 0.194 2.387 2.463 16.272 12.027 1.519 0.186 0.110 0.102 32 Byte

 1.791 0.648 0.353 0.194 0.111 0.104 10.942 8.630 4.909 0.226 0.109 0.099 64 Byte

 1.905 0.618 0.353 0.185 0.104 0.064 13.693 8.678 4.901 0.243 0.107 0.080 128 Byte

 68

Moving data from larger lines present in the spatial cache to smaller ones in the temporal

cache avoids an external memory access, however the converse of this is not true. Due to

the variance in locality bias exhibited by the benchmark programs, leads us to believe

that the default-starting cache should not be fixed. Rather, these results indicate that the

default should be allowed to dynamically change during program execution for all new

line fills. Of course, at the beginning of a programs’ execution, there must be some

initial default cache. Based on the reasoning in the previous paragraph, the initial default

cache should be the spatial cache. This will result in wasting memory space due to

having a data word with temporal locality consuming a (relatively larger) spatial cache

line, but it will avoid the miss penalty due to having a word exhibiting spatial locality

present in a temporal cache initially.

In the subsequent sections, the detail design of the split data cache is presented. These

include defining the critical data path, defining the size and address-mapping scheme,

defining the cache replacement policy. Following this, the implementation strategy of the

locality cache and performance modification features such as modified line replacement

policy and spatial victim placement policy maintained in the design process are

discussed.

4.0.1 Defining the Critical Data Path

The critical data path of the split data cache architecture is shown in Figure 4.4. The

critical data path involves the path through which the data needs to travel for a read or

write operation at a minimum. The critical path includes the chip data path, the cache

 69

controller, and the tag RAM. For a read or write operation during a search in the cache,

the cache controller sends a read/write signal to the cache and the spatial and temporal

tags of the memory address is compared simultaneously by the comparators with the

stored tags in the tag ram. As this is the usual process of searching in a conventional

cache, there is no additional delay for storing or retrieving data for using this

organization. The locality estimation circuitry operates independent from data read or

writes operations, and therefore does not add to the critical path. As such additional

access latency into the cache are not introduced.

Figure 4.4 Critical Data Path of the Split Data Cache

Split Data Cache

SPATIAL
SUB

CACHE

TEMPORAL
SUB

CACHE

R/W’

DATA

SELECT

Address
Buffer

Cache Controller
Load/Store

Data
Address

 HIT/MISS

Cache
TAG
RAM

Control

Circuitry

SPATIAL
INDEX

TEMPORAL
INDEX

S-TAG

T-TAG

WORD
OFFSET

COMPARATORS

LOCALITY
ESTIMATION
CIRCUITRY

From

Instruction

Decoder

Address

Data

Read/Write

Buffer

 70

4.0.2 Defining the size and address mapping schemes

Past research has shown [59, 60, 61] that a data cache which stores a relatively small

number of recently accessed or written memory locations can potentially service more

than 60% fraction of loads and stores. The goal here is to design a L1 data cache for

which a 16KB size is chosen based on the observation that for the benchmark program

traces used, 16 KB is enough memory to keep the total miss rate less than 5% including

cold start misses in almost all cases and without using any L2 or other assist cache. The

SPEC92 benchmark suite can create a substantial amount of bus traffic on the data

memory system. Thus, if a small cache can provide good performance for this test suite,

then it will perform equally well for many other application programs. Using a small

cache size has another advantage; the cache access time for all blocks within the cache

remains nearly constant. Using a bigger cache may reduce the miss rate but it will also

incorporate unequal access times for different blocks within the cache with the increase

of size simply due to the increased distance of data blocks within the cache. Typical

observations also show that in most cases, the cache size requirement is very small

compared to the cache capacity contained by superscalar processors.

The choice of the address-mapping scheme depends on factors such as, cache lookup

speed, hardware complexity and cache performance. The available choices here are direct

mapped, set associative and, fully associative. The direct mapped address scheme

provides faster lookup time and requires less hardware, however, the cache performance

suffers when multiple main memory blocks must map into the same cache blocks.

Frequent cache misses and cache updates become a bottleneck in this case. The fully

 71

associative mapping technique suffers minimally from misses and updates in this respect,

but it increases the hardware overhead due to usage of comparators equal to the number

of lines in the cache. A compromise between these two mapping schemes generally is

based on associative mapping. In this case, the number of comparators depends on the

degree of associativity in the cache. For example, an 8-way set associative cache requires

a total of 8 tag comparators. Figure 4.5 shows the variance of the cache performance [61]

on the degree of associativity for typical data cache for SPEC92 benchmarks.

Figure 4.5 suggests that the impact of increasing associativity on cache performance is

minimal after degree 4. The 4-way set associative scheme is also very popular in industry

allowing the results of the split data cache to be compared to a large number of systems.

For these reasons, 4-way set associative mapping scheme was selected in the target cache

organization. From the locality analysis experiments, it is evident that a cache line size

Average Miss Rate Metrics of SPEC92

Benchmarks as a function of block size and

associativity

0

1

2

3

4

5

6

7

8

16 Byte 32 Byte 64 Byte 128 Byte 256 Byte

Cache Block Size (Bytes)

M
is

s
R

a
te

 (
%

)

Associativity

- 1 Way

Associativity

- 2 Way

Associativity

- 4 Way

Associativity

- 8 Way

Figure 4.5 The data cache performance metrics as a function of block size and associativity

 72

of 128 bytes provides a good window size to determine the locality trend of data accesses

over the SPEC92 benchmarks. From Figure 4.5, we observe that a cache line size of 128

bytes also provides good cache performance in terms of minimum miss rate. Considering

these two experimental outcomes, the spatial cache line size is chosen to be 128 bytes or

32 words (1 word = 4 bytes). The temporal cache line size is chosen to be 4 bytes or 1

word, as truly temporal data does not require a larger line size to accommodate spatial

locality.

4.0.3 Defining the cache replacement policy

When a cache miss occurs after a cold-start, the critical decision becomes which block in

the cache should be replaced with the new block from the main memory. Due to the small

size of the cache, it is not possible to keep all the working sets of the executing program

in the cache. In a direct mapped cache, there is no choice since only one block can be

replaced by the new block. However, in set associative or fully associative cache, there

are multiple blocks available, which can be replaced with the new block. The placement

policy largely depends on the locality property of the reference in the programs.

Generally, fixed space replacement algorithms are used for this constrained mapping

mechanism. For example, in the set associative cache, the block to be replaced is within a

set, thus, the replacement algorithm is invoked for block frames within that set.

Least Recently Used (LRU), First In First Out (FIFO), and Random (RAND) are

examples of some common fixed space replacement algorithms. In LRU policy, the

block, which was used in least recent time, is the candidate for replacement. In FIFO, the

 73

longest resident is replaced based on first come first out strategy. In RAND, a random

block is selected for replacement. The LRU replacement algorithm performs best among

these three policies due to the obvious demerits of the other two.

The LRU replacement policy was used in the designed cache organization finding as the

best candidate. The LRU policy could be implemented efficiently in the hardware for a

small set size and can operate at the cache speed. There are several implementation

strategies available to implement the LRU replacement policy in the hardware.

One simple implementation of the LRU policy in hardware uses an aging counter. For a 4

way set associative cache, a counter only requires 2 bits for each line of the set.

Therefore, it can count from 0 to 3. Though there are multiple sets in a cache, only one

set of LRU bits needs to be updated on a hit. Thus, the maximum number of 2 bit

counters required for a 4 way set associative cache is 4. Each time a reference results in a

hit and the block frame with count M is referenced, its counter is reset to 0 and all the

counters within that set having a value less than j is incremented. The other counters are

unmodified. If the reference results in a miss and the set is full, the block with counter

value of j = 3 is overwritten with the new block and its counter is reset to 0. The counters

of the other three blocks are incremented by 1. The block with the counter value of 3 can

be obtained by an associative search of the counters. LRU bits update process on line hit

is shown in Figure 4.6.

 74

4.1 Implementation of the locality cache

Determining the line size of the spatial sub-cache has already been discussed. For the

temporal sub-cache, a line size of 1 word (4 bytes) was chosen. For the data locality

estimation, we need to store the run-time data locality history. For this purpose 3

additional bits in the spatial cache line are used to estimate the data locality type when a

cache hit is encountered during the execution of a program. Figure 4.7 shows the

organization of the spatial cache line. This organization was chosen to avoid keeping a

separate locality prediction table in the hardware and to maintain a simple strategy for

estimating the data locality type. The temporal cache line does not require any additional

bits like S, T or Line Offset and uses an L bit per line to indicate that an entry in a

particular line is temporal.

V = Valid bit
LRU = Least Recently Used bits
L = Spatial Locality Bit, S = Spatial Reuse Bit, T = Temporal use bit

Figure 4.7. The spatial cache line organization

V 8 9 10 11 TAG 12 Line
Off

1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 0 0 1 1 1 1

1 0 0 1 0 0 1 1

1 1 0 0 0 1 1 1

Line 0 Line 1 Line 2 Line 3

HIT in Line 0

HIT in Line 1

HIT in Line 2

HIT in Line 1

Initially

Figure 4.6 LRU Bits update process on line Hit

 75

Both the spatial and temporal Caches use a 4-way set associative address-mapping

scheme. The line size of spatial cache is 32 words and the temporal cache line size is 1

word. The line size of spatial cache was chosen to be 32 Words to provide the best

window size for the data locality analysis based on results obtained from the heuristics

for different line sizes that were analyzed in [63,64].

4.1.1 Locality estimation protocol

A simple locality estimation protocol was designed using 3 bits L, S, and T. During a

line fill, the spatial Cache line stores the line offset to indicate the particular word for

which that line was brought to cache. On successive hits into a line, the line offset is

always compared with the initial line offset. The estimation circuit sets the L (locality

bit), S (spatial reuse bit), and T (temporal use bit) bits according to the state transition

diagram shown in Figure 4.8.

Spatial
Localit

Bit
L

HIT
Due to

Referenc
in current

Tempora
Use
Bit

T

Spatial
Reuse

Bit
S

L=1

Same Word is accessed

Different
Word is
accessed

L=0

L=1

L=1

Same Word is accessed

 76

The decision diagram to set the L, S and T bits is shown in Figure 4.9. The temporal use

bit sets to ‘1’ if the hit is due to same word reference for which the line was brought into

cache initially and at the same time the spatial locality bit is not Set. The spatial Locality

bit sets to ‘1’ if the hit is not due to same reference. The spatial Reuse bit sets to ‘1’ if the

L bit is set and Hit is due to same reference. On a second temporal hit, when the L bit is

not Set then the probability of that reference being temporal is quite high, so, the cache

organization copies that particular reference to the temporal Cache. In addition, this time

the cache circuitry invalidates that entry from the spatial Cache to avoid cache-coherence

problem.

No

Hit due to
same
reference?

Is ‘L’ bit

set?

Set ‘S’ bit

Set ‘T’ bit

Set ‘L’ bit

Yes

No

Yes

Figure 4.9 The decision diagram for setting L, S and T bits

Figure 4.8 State transition diagram for the cache status

 77

The basic circuitry for the locality estimation protocol is shown in Figure 4.10. For

simplified implementation of the Split-Data Cache the L bit from the temporal cache, and

the S bit from the spatial cache could be avoided with the sacrifice of minor cache

performance. The additional storage space required for this cache for the spatial sub-

cache is 64 Bytes for 8KB-cache capacity, which is quite low in comparison to 8.75 KB

required to maintain a spatial Footprint Table suggested in [57].

921

TAGSet
Index

Line
Offset

V L Spatial
Reuse

Temporal
Use

Spatial
Tag

Spatial
Set Index

Line
Offset

Temporal
Tag

Temporal
Set Index

TAGSet
Index

V L

1

2 3

HIT (1)
or

MISS (0)

Copy to
Temporal

Cache

Spatial Cache Line

Temporal Cache Line

1 – Set Temporal use Bit
2 – Set Spatial Locality Bit
3 – Set Spatial re-use Bit

Data Address from CPU

32

21 4 5

32 Bit Address Splitting. 1 Word = 4 Byte
Word Offset = 1:0
Line Offset = 6:2
Set Index = 10:7
Tag = 31:11

EQUALITY CHECKER

Figure 4.10 Locality estimation circuitry of the Split Data Cache

 78

4.2 Modified line replacement policy of the split data cache

The locality based split data cache is further benefited from the use of the spatial reuse bit

‘S’. The reuse bit ‘S’ will be set when the spatial line is used more than once. The

probability of setting the ‘S’ bits for the highly reused spatial lines are quite high. In this

case, if we can increase the residency period of these lines in the cache, then the cache

performance will increase further. With this goal, a modified replacement algorithm as

depicted in Figure 4.11 has been suggested. This algorithm will replace the lines with the

‘S’ bit set with a new line only when it is unavoidable. The performance enhancement of

using this scheme can be readily compared with the usual LRU replacement policy. If the

split data cache uses a normal LRU replacement policy, the use of the ‘S’ bit is redundant

and can be avoided to save storage space.

Process Line
Replacement

Replace this line

with new Line
(2nd Priority)

Replace this line

with new Line
(1st Priority)

Line
LRU=3?

Next Line
in Set

NO

YES

S bit set?

NO YES

Figure 4.11 Modified line replacement policy

 79

In the temporal cache, this modified line replacement policy can be used for keeping the

temporal locality data longer in the cache using the temporal locality bit. In a normal

LRU replacement policy, this temporal locality bit is also redundant in the temporal

cache and thus can be avoided.

4.3 Handling spatial Victim Blocks

One of the major performance bottlenecks arises due to the reduction of cache capacity

due to the division of the cache space into two separate sub-caches. The spatial sub-cache

suffers more from this problem. A 16 KB 4-way set associative cache can place a total of

128 (4*32) lines memory blocks of size 128 bytes. For the split cache for equal spatial

capacity to the temporal, the cache capacity for spatial sub-cache is 8KB with 4-way

associativity. This implies that it can place a total of 64 (4*16) lines memory blocks of

size 128 bytes. So, when mapping into the split cache more frequently the memory blocks

from the cache will be evicted with compared to the 16KB unified cache. This increased

number of spatial victim blocks must be properly handled to maintain the cache

performance. With this in mind, a simple victim placement policy was used to reduce the

conflict misses that occur more frequently in the split data cache. Usually the initial

placement of a memory block is always in the spatial cache since we do not initially

know what the access locality would be for a newly accessed memory block. It is

essentially increasing the traffic into the spatial cache and results in creating more

 80

victims. Thus, whenever a block is evicted from the spatial cache, instead of removing

the block, the block is placed into the temporal cache. This process utilizes the temporal

cache bandwidth and space properly and helps to eliminate the problem, which arises due

to the reduction of the spatial cache capacity. This transfer of the victim blocks can be

done quite easily within the hardware making a parallel transfer of the spatial cache block

into temporal size multiple blocks. Since the process is internal to the cache, it operates at

the speed of the cache and will not harm the normal read/write operation of the cache.

For faster data transfer, the temporal cache is capable of writing 32 Words of the spatial

line at the same time into itself if required. Figure 4.12 illustrates spatial to temporal

transfer process.

5

SPATIAL
CACHE
DATA
BUFFER

WORD 31

WORD 0

VICTIM
SPATIAL
BLOCK
INDEX

DATA IN PORT

OF THE
TEMPORAL

CACHE

TEMPORAL

CACHE

ROW

 INDEX

DECODER

1 K Bit

VICTIM

SPATIAL
BLOCK
TAG

TEMPORAL

CACHE

TAG

PORT

TEMPORAL

CACHE

COLUMN

 INDEX

DECODER

COLUMN
INDEX

20

Figure 4.12 Spatial to temporal Cache Data Transfer

 81

4.4 Summary

The basic implementation strategy of the split data cache emphasizing performance

modification techniques was presented. The cache performance metrics for different

spatial and temporal cache line sizes and placing the data as predicted by the locality

prediction circuit for several benchmark programs were analyzed and characterized by

simulating the locality cache organization. This performance metric led us to determine

which cache the data should initially be stored in during the "cold-start" phase of program

execution. Based on the simulation results, it was determined that the organization should

initially store data in the spatial cache to avoid additional memory accesses that would

occur if spatial data were initially incorrectly placed in the temporal cache. The split

cache subsystem design process also incorporates some further performance modification

issues by using modified line replacement policy in the spatial cache and the placement

of the spatial victim blocks in the temporal cache.

Performance evaluation of the split data cache is presented in the next chapter. The

performance metrics presents a detailed step by step evaluation of the different factors

that contributes in the increase of the cache performance.

 82

CHAPTER 5

Performance metrics of the split data cache

The performance metrics of the split data cache along with the impact of the

implementation strategy is presented in this chapter. The performance metrics show a

step-by-step evaluation of the impact of using the locality estimation circuit, the impact

of modified replacement policy over conventional LRU policy, and the performance

impact of placing the spatial victim blocks into the temporal cache. Finally, this chapter

concludes with a generalized evaluation of the split data cache.

5.0 Experimental setup

The split data cache organization was modeled using C language and compiled under

UNIX using cc compiler in a Sun Workstation. The program simulates the cache and

 83

accumulates runtime profiles of memory accesses into the temporal and spatial sub-

caches. The spatial sub-cache is organized to store 128 bytes (32 Word) of data per line

using 4-way set associative address scheme and a capacity of 8KB. The spatial line size is

kept at 128 bytes, identical to that used in [7] for locality analysis. The temporal cache

line is 4 bytes (1 Word). This was chosen after evaluating several other line sizes. The

temporal sub-cache data storage capacity is 8 KB and the total data storage capacity of

the spatial sub-cache is 8 KB. The split data cache organization follows the same caching

strategy described in chapter 4 to place data into appropriate sub-caches. Data memory

address (load and store) traces for different SPEC benchmarks were used to evaluate this

cache performance. The performance of the split data cache was compared with the

performance of the unified data cache with a storage capacity of 16 KB. Figure 5.1 shows

the experimental setup.

Data Memory
Address Trace File

Address

16 KB
SPLIT DATA

CACHE
Model

16 KB
UNIFIED

DATA
CACHE
Model

Performance
Database

Performance
Database

 84

Runtime profiles of spatial and temporal hit rates were mainly maintained with data

traffic from the memory. After final execution of each benchmark program, measures of

total memory read, write, miss, hit, total bus traffic and percentage of spatial reuse were

recorded. A demand fetching policy was used that fetches data only during a cache miss.

For writing, write allocation on miss, and, write updates on write-buffer policies were

used. For a write, no write allocation on miss and write update on write buffer may be

followed to increase the cache performance further. This has an advantage over using the

write allocation on write miss. The advantage comes, due to that fact that, on write

misses, if the cache is not updated immediately, the cache performance will not be

affected. In most of the write cases, data is written once in the memory. Therefore, if the

same location is not accessed again, which is true in many cases, then the cache will

suffer less from write misses. If the written data is required to be read again, then it will

be cached by a read-miss. The experimental setup discussed here uses the write

allocation policy to observe the cache performance even when the cache is suffering extra

misses for the absence of memory write locations.

The performance of a 16-KB 4-way set associative unified data cache was also

investigated using a line size of 128 bytes. The performance metrics of the Split and

Unified data caches were stored for various benchmarks in separate databases for further

analysis and comparison. Table 5.1 shows the description of the SPEC92 benchmarks

 85

used in this experiment. The SPEC92 benchmark suite consists of public domain, non-

trivial programs that are widely used to measure the performance of computer systems in

a Unix like operating system environment [61]. These benchmarks were expressly chosen

to represent real-world applications and were intended to be large enough to stress the

computational and memory system resources of current generation computers.

Table 5.1 Description of the SPEC benchmark programs used in the cache test bench

Benchmark
Program

Language Description

Alvinn C Robotics neural network training
Compress C Reduces file size by Adaptive Lempel-Ziv compression
Doduc Fortran Thermohydrolic simulation of a neural network
Ear C Human ear simulation
Eqntott C Builds truth table from a Boolean expression
Espresso C Boolean function minimization
Gcc C GNU C compiler
Mdljdp2 Fortran Molecular dynamics (double precision)
Mdljsp2 Fortran Molecular dynamics (single precision)
Nasa7 Fortran Seven floating-point synthetic kernels
Ora Fortran Ray tracing
Sc C Spreadsheet calculator
Su2cor Fortran Quantum physics mass computation
Swm256 Fortran Shallow water equation solver
Wave5 Fortran Maxwell’s equation solver
Li C LISP interpreter solving the nine queens problem
Tomcatv Fortran Mesh generation program

In the subsequent sections of this Chapter, the performance evaluation of the split data

cache is presented. The effect of the modified replacement policy used for the cache, the

effect of using the temporal sub-cache as a victim cache for storing the spatial victim

blocks, and finally the hardware requirement and relative size comparison of the unified

and split data cache models used are all discussed.

 86

5.1 Split Data Cache Performance

Table 5.2 and Figures 5.2 and 5.3 show the tabulation and graph of the split and unified

cache miss rates and bus traffic for different SPEC92 benchmark programs.

Table 5.2 Miss rate and bus traffic of the SPEC benchmarks using split and unified data caches

Benchmark

Miss Rate

(%)

Unified Data

Cache

Miss Rate

(%)

Split Data

Cache

Miss Rate

Reduced

(%)

Bus Traffic

(Bytes)

Unified Data

Cache

Bus Traffic

(Bytes) Split

Data Cache

Bus Traffic

Reduced

(%)

espresso 0.30 0.21 30.00 72,960 51,440 29.50

spice2g6 0.94 0.48 48.94 259,840 129,860 50.02

doduc 0.93 0.55 40.86 291,968 170,008 41.77

li 0.65 0.54 16.92 212,992 169,920 20.22

eqntott 0.59 0.52 11.86 173,184 148,824 14.07

compress 4.39 4.36 0.68 1,564,928 1,552,468 0.80

mdljdp2 1.04 0.68 34.62 307,584 195,100 36.57

wave5 0.16 0.14 12.50 34,944 31,872 8.79

tomcatv 1.35 1.26 6.67 666,368 618,316 7.21

ora 0.07 0.07 0.00 18,816 17,920 4.76

alvinn 0.14 0.13 7.14 32,512 31,888 1.92

ear 0.45 0.43 4.44 130,816 124,748 4.64

sc 0.38 0.24 36.84 95,232 57,468 39.65

mdljsp2 0.54 0.22 59.26 128,640 51,452 60.00

swm256 0.14 0.14 0.00 36,992 36,992 0.00

gcc 1.68 0.85 49.40 475,264 232,416 51.10

nasa7 0.72 0.71 1.39 182,784 179,932 1.56

fpppp 1.02 0.62 39.22 391,552 230,112 41.23

 87

Figure 5.2 Relative cache miss rates of split and unified data caches

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Miss Rate (%)

Benchmark

Relative Miss Rates of Unified & Split Data

Caches for the SPEC Benchmarks

Unified Data Cache

Split Data Cache

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

2.E+06

Bus Traffic (Bytes)

Comparative Bus Traffic for Unified Data Cache &

Split Data Cache for the SPEC Benchmarks

Unified Data Cache

Split Data Cache

 88

Figure 5.3 Comparative bus traffic for using split and unified data caches

The performance metrics presented in Table 5.2 indicates the miss rate is reduced up to

59% and bus traffic is be reduced up to 60% in the best cases. In most of the cases, the

performance increase of the split data cache is significant when compared to a traditional

unified data cache. It is also noted that in some cases, such as for benchmark ora, the bus

traffic is reduced by 5% although the cache miss rate remains the same as that for a

unified data cache.

It is interesting to note by observing Table 5.2 that the performance increase for the

benchmark programs whose temporal locality (by statistical analysis) is higher than that

for the spatial locality cases (i.e. spice2g, doduc, mdljdp2, mdljsp2, gcc). This implies

that the locality estimation circuit tends to predict temporal locality more accurately than

spatial locality.

The split data cache has to perform better even in the case where spatial locality is highly

dominant. Due to the nature of splitting the capacity smaller than the original size in the

unified cache, the split cache will suffer from a thrashing problem in the presence of a

majority spatial locality data more than the unified data cache. To solve this problem, the

temporal cache was used to store the victim blocks of data when they are being evicted

 89

from the spatial cache due to the thrashing problem. In addition, a modified replacement

policy based on the spatial reuse frequency of a line in the spatial cache was used. The

justification of using this scheme is to give more residency time to the spatial blocks in

the spatial cache whose reuse frequency is higher. The effect of this modified

replacement policy and spatial victim replacement policy is presented in the next section.

5.2 Affect of the Modified Line Replacement Policy in the spatial sub-cache

The split data cache uses a spatial reuse bit to mark lines in the spatial cache if that

particular line is used more than one time spatially. Typically in normal address patterns,

the probability of future reuse of cache lines is quite high. In this situation if a line is

detected for repeated spatial use, keeping that line longer in the cache increases the hit

rate of the cache. To facilitate this hit increase process, the modified replacement policy

replaces spatial lines whose spatial reuse bit is not set first. If no lines are available to

continue this operation, only then will the cache replace a spatially reused line. The

general LRU replacement policy is also followed to select lines with least recently used

signatures. The impact of this modified replacement policy is shown in Figure 5.4, which

uses the data of Table 5.3.

Impact of using the modified LRU policy for line replacement in

the Spatial Sub-Cache

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Miss Rate (%)

 90

Figure 5.4 The impact on the miss rate due to the modified line replacement policy used in the

spatial sub-cache

Table 5.3 The contribution of the modified LRU policy on reducing miss rate

Benchmark

Miss Rate (%)

using General

LRU Policy

Miss Rate (%)

using Modified

LRU policy

Contribution of the

modified LRU policy

(%)

espresso 0.22 0.21 4.55
spice2g6 0.44 0.48 -9.09
doduc 0.56 0.55 1.79
li 0.57 0.54 5.26
eqntott 0.53 0.52 1.89
compress 4.38 4.36 0.46
mdljdp2 0.71 0.68 4.23
wave5 0.15 0.14 6.67
tomcatv 1.28 1.26 1.56
ora 0.07 0.07 0.00
alvinn 0.13 0.13 0.00
ear 0.43 0.43 0.00
sc 0.25 0.24 4.00
mdljsp2 0.22 0.22 0.00
swm256 0.14 0.14 0.00
gcc 0.89 0.85 4.49
nasa7 0.72 0.71 1.39
fpppp 0.65 0.62 4.62

The observed contribution of the modified replacement policy is not highly significant

and is only about 7% of the reduced miss rate at maximum. Therefore, the modified line

 91

replacement policy could be eliminated in the actual implementation of the Split Data

cache without sacrificing any significant performance factor. This will also reduce

hardware requirement costs.

5.3 Affect of the spatial Victim Placement Policy

In the split cache design, separate victim cache was not included to place the spatial

victim blocks. The number of victim blocks in the split data cache is expected to be

higher than the unified data cache due to the reduced data storage space of the spatial

cache than the unified data cache. Main goal is to keep the split data cache performance

similar to the unified data cache even in the case when the data locality bias shows strong

spatial dominance. In this case, some sort of victim cache arrangement to avoid the

increased victim traffic of the spatial sub-cache should be included. To solve this

problem, the designed split cache uses the temporal cache to place the victim spatial

blocks only when their spatial reuse bit is set. The performance variation of using this

victim placement policy is tabulated in Table 5.4 and the corresponding comparison bar

graph is shown in Figure 5.5.

Table 5.4 The contribution of the victim placement policy on reducing miss rate

Benchmark

Miss Rate (%)

without using

Victim placement

Policy

Miss Rate (%)

using Victim

placement

policy

Contribution of the

Victim placement

policy (%)

espresso 0.21 0.21 0.00
spice2g6 1.35 0.48 64.44
doduc 1.45 0.55 62.07
li 0.75 0.54 28.00
eqntott 0.79 0.52 34.18

 92

compress 4.68 4.36 6.84
mdljdp2 1.05 0.68 35.24
wave5 0.17 0.14 17.65
tomcatv 1.61 1.26 21.74
ora 0.09 0.07 22.22
alvinn 0.14 0.13 7.14
ear 0.46 0.43 6.52
sc 0.39 0.24 38.46
mdljsp2 0.53 0.22 58.49
swm256 0.30 0.14 53.33
gcc 1.38 0.85 38.41
nasa7 0.73 0.71 2.74
fpppp 0.79 0.62 21.52

Figure 5.5 The impact on the miss rate due to the victim placement policy used for the

spatial victim blocks

Impact of using the victim placement policy of the Spatial

Victim blocks in the Temporal Sub-Cache

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Benchmark Program

Miss Rate (%)

Without using Victim Placement

Using Victim Placement Policy

 93

The performance metrics presented in Table 5.4 clearly indicates the importance of the

spatial victim placement policy. If spatial locality is highly dominant, then without using

the victim placement policy the cache performance can degrade more than 60%. This

issue clearly challenges the advantage of using the split data cache without using a victim

cache. Usual caches in modern computers use a victim-cache to gain a performance

boost. In the current split cache design, no overhead of using a separate victim cache is

preferred due to the fact that, the goal should be to use the existing cache space more

fruitfully. The split cache organization does not posses the need for using any additional

victim cache as a contrast to unified caches.

5.4 Hardware cost and area analysis

One of the main objectives in designing the split data cache was to keep the hardware

design and cost simple and minimum. In this respect, the question arises of how much

space should be allocated for the spatial and the temporal sub-caches. Obviously, we

want to obtain a cache organization which will not suffer from the majority data access

bias whether it is spatial or temporal. In this respect, splitting the spatial and temporal

sub-cache size as two equal parts is advantageous in one sense; it provides an equal space

for both types of locality, and the tag sizes in two sub caches remains the same. In the

experimental setup, 8KB spatial and 8KB temporal sub-caches have been used. Figure

5.6 shows the structure of the tag-rams for this organization.

V = Valid bit
LRU = Least Recently Used bits
L = Spatial Locality Bit, S = Spatial Reuse Bit, T = Temporal use bit

V 13 14 15 16 TAG 17 Line

1 18 19 20 21 21 22 5

Spatial Tag RAM Content

 94

The number of sets for the 8KB spatial and 8KB temporal caches comes from the

following calculation.

Spatial sub-cache:

 Cache size = 8 KB = 213 bytes

 Associativity = 4 = 22

 Block size = 128 bytes = 27 bytes

 Therefore, the number of lines per set

 213
 = ---------------------- = 24 = 16
 22 X 27

 Total lines = 16 * 4 = 64

For 32 bit data address the splitting of the address is shown in Figure 5.7.

 95

Temporal sub-cache:

Cache size = 8 KB = 213 bytes

 Associativity = 4 = 22

 Block size = 4 bytes = 22 bytes

 Therefore, the number of lines per set

 213
 = ---------------------- = 29 = 512
 22 X 22
 Total lines = 512 * 4 = 2048

For 32-bit data address, the splitting of the address for the temporal cache is shown in

Figure 5.8.

The comparison of this organization with the conventional 16 KB 4 way set associative

cache is shown in Figure 5.9.

TAG SET INDEX BLOCK OFFSET

31 11 10 7 6 0

Figure 5.7 32 bit address splitting of the spatial sub-cache

TAG SET INDEX BLOCK OFFSET

31 11 10 2 1 0

Figure 5.8 32 bit address splitting of the temporal sub-cache

Cache Type

Unified 4-way
data cache

Split 4-way
data cache

Size

16KB

8KB

Spatial

8KB

temporal

Total Lines

4*32

4*16

4*512

V+LRU+L+S+T+OFFSET

1+2+0+0+0+0

1+2+1+1+1+5

1+2+1+0+0+0

TAG

20

21

21

Total Bits

134016

184320

Data

128*8

128*8

4*8

Figure 5.9 The relative storage cost for the 4-way unified and split data caches

 96

The potential disadvantage of splitting the data storage capacity in equal size sub-caches

is the increased overhead of storing tags in the tag-ram for the temporal sub-cache. For

spatial sub-cache to store and track 128 bytes of data, only requirement is one tag to store

in the tag-RAM. However, to store 128 bytes into the temporal sub-cache requires 32

separate tags to be stored to track the data. If the tag size is 21 bits, then the overall cost

for storing the separate tags for the temporal cache increases dramatically.

The statistical analysis suggests that using a higher spatial cache size is advantageous

since, in most cases, the data access behavior either shows more spatial dominance or

overlapping spatial and temporal access zones.

If 75% of the space for the spatial sub-cache and 25% for the temporal sub-cache is

allocated, then the total size is 12 KB for spatial and 4 KB for temporal caches. In this

case, the total tag storage requirement is significantly reduced. The problem still exists

due to the fact that, the number of lines in the temporal cache sets is now 256, that

reduces the tag storage cost by 50% but the total number of the storage bit requirements

is still higher than the unified data cache. Another problem that arises for a 12KB spatial

cache is the address mapping issue if 4-way mapping-scheme is still used. In this case,

one can make it 3 way for uniform mapping of addresses, but, the cache performance will

suffer with comparison to that of a 4 way-mapping scheme of a unified data cache.

 97

Another approach to reduce the storage cost is to reduce the data storage space and use a

different space allocation. In this case, if we make the spatial cache size 8-KB and the

temporal cache size 4 KB, then the total cost (in bits) of this organization would be

 Spatial 64 * (32+1024) = 67584 bits

 Temporal 4*256*(26+32) = 59392 bits

 Total: 126976 bits = 15872 bytes

Therefore, the total space savings would be in this case with comparison to the unified

cache is

 ((134016-126976)/134016) * 100 = 5.25%

with the sacrifice of the data storage space of 25%. The simulation of the split cache

architecture using this space savings plan and the performance of this organization is

presented in the next section.

5.5 Performance of the alternate organization

The spatial cache capacity has been kept higher than the temporal cache for several

reasons. Statistical analysis reveals that the average data access behavior shows higher

spatial locality compared to the temporal locality. In addition, in many cases, the data

access shows highly overlapped spatial and temporal access zones. Therefore, it is always

advantageous to keep the spatial sub-cache higher than the temporal sub-cache, which

also reduces problems such as ‘thrashing’. The performance metrics and graph of the

reduced storage space Split Data caches are presented in Table 5.5 and Figure 5.10

respectively.

Table 5.5 The performance metrics of the reduced data storage space

 98

Locality Cache and the Conventional Data Cache

Figure 5.10 The performance comparison between the reduced data storage space Locality Cache

and the Conventional Data Cache

Benchmark

Miss Rate

(%)

Unified Data

Cache

Miss Rate

(%) of

the reduced

space Split

Data Cache

Miss Rate

Reduced

(%)

espresso 0.30 0.24 20.00

spice2g6 0.94 0.85 9.57

doduc 0.93 0.66 29.03

li 0.65 0.75 -15.38

eqntott 0.59 0.59 0.00

compress 4.39 4.66 -6.15

mdljdp2 1.04 0.86 17.31

wave5 0.16 0.15 6.25

tomcatv 1.35 1.35 0.00

ora 0.07 0.07 0.00

alvinn 0.14 0.14 0.00

ear 0.45 0.44 2.22

sc 0.38 0.30 21.05

mdljsp2 0.54 0.36 33.33

swm256 0.14 0.14 0.00

gcc 1.68 1.36 19.05

nasa7 0.72 0.71 1.39

fpppp 1.02 0.83 18.63

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Miss Rate (%)

Benchmark

Relative Miss Rates of Unified & Reduced size Split Data

Caches for the SPEC Benchmarks

Unified Data Cache

Split Data Cache

 99

The data storage reduction to keep the split data cache size comparable with the

conventional cache poses an additional challenge in order to provide better performance

than the conventional cache with a reduced data storage resource in the cache. The

performance metrics of the implementation strategy as shown in Table 5.5 still signifies

that the average performance is better for the split data cache than the unified data cache.

The miss rate can be reduced up to 33% than the conventional large data storage capable

cache. Only in two cases (li, compress), the observed performance degraded due to the

inherent requirements of using more cache space. To make the split data cache more

comparable with a unified data cache and to increase the performance even more we can

utilize the unused 5% space to provide some additional space for the spatial blocks. The

associativity of the temporal cache is considered to be reduced to attack the storage space

problem. However, the observation of the performance effects reveals that the cache

performance degrades more for reduced associativity of the temporal cache than the size.

Therefore, the better strategy is to keep the associativity as 4-way and to find some

alternate size-tailoring scheme.

5.6 Summary

The performance evaluation of the split data cache is presented in this chapter. The split

data cache can provide up to 250% performance boost over the conventional cache,

reduce the bus traffic at a similar rate and does not pollute the available cache bandwidth.

The contribution of the modified replacement policy and the victim placement policies

are also evaluated in detail. The space cost problem due to increased tag overhead of the

temporal cache is also presented and an approach to overcome this problem are discussed

 100

with the simulation results of a reduced storage space split data cache organization.

Chapter 6

Conclusions and Future work

The higher main-memory cycle time creates a major obstacle in utilizing the full CPU

 101

performance in modern computer organizations. CPU clock speeds are becoming faster

more quickly than the main memory bandwidth is increasing. The off-chip main memory

cannot utilize this increased bandwidth due to its’ slower access cycle time and the

latency introduced due to the chip interface path. Using a cache memory is a remedy to

reduce this performance gap. The trend of using cache subsystems is not new. Since the

introduction of the first use of cache memories in the early 1980s’ research approaches

have been investigated that attempt to develop new organizations that can keep pace with

increasing CPU bandwidth. The use of small on-chip caches on the same CPU die is a

must in modern computer architectures. These on-chip level one (L1) caches can utilize

CPU bandwidths more effectively since access delays due to chip packaging constraints

are avoided during cache hits.

Due to the finite size of a cache, an optimization scheme is required to utilize the storage

assets. Since the cache works based on the locality behavior of the accessed address

space of the main memory, many optimizations of the data access layout for locality are

found in other research endeavors.. These proposed optimization schemes either perform

a better locality distribution during compile time or try to identify the memory reuse

zones during run-time in order to keep those data more in the conventional cache

architecture. Pre-fetching additional memory blocks greater than the cache line size is

also being utilized in almost all-modern computer organizations in order to reduce the

overall memory access latency. Though, pre-fetching can hide the memory access latency

effectively, it also incorporates the overhead of bringing additional non-usable memory

blocks into the cache. Pre-fetching creates cache space pollution and bandwidth waste

 102

and ultimately can reduce the performance benefit obtainable from using a cache.

Instead of blind pre-fetching, proper anticipation of the data locality of the programs can

aid in the cache performance. Typical memory access locality behavior shows two major

sub-classes: a) Spatial and b) temporal. Average data memory accesses are contributed

from both types of the mentioned localities. Conventional caches are not highly

optimized for taking advantage of either of these locality behaviors. Rather, they are

designed to take operate such that temporal and spatial localities are equally exploited.

The locality optimization schemes used by compiler-based approaches can perform better

for specific sub-sets of application programs. The dynamic run-time data access pattern

fails to take advantage of such compiler based locality optimizations. The advantage of

doing compiler optimization is that the compiler can optimize the whole programs’ data

access patterns when the program contains all the necessary information for the compiler.

The challenge in performing dynamic locality estimation during the run-time occurs due

to the limited hardware resources that can reasonably be used to detect and optimize

locality. This poses the importance of investigating simple non-complex hardware that

can be utilized for performing run-time locality prediction at a better rate for the

application programs. A run-time locality prediction scheme can further aid to cache data

in the appropriate sub-cache that is not possible otherwise in conventional cache

architecture. Run-time locality estimation does not suffer from the above mentioned

compiler based limitations and it is architecture independent. Therefore, such an

organization can be used in any computer system without posing any architectural or

compiler constraints. Analyzing this potential, a locality prediction hardware was

 103

investigated throughout this research to define a locality based split data cache which will

perform dynamic caching of the data in the appropriate caches during the runtimes of the

applications.

The findings of this investigation are the following:

a. The average locality behaviors of the accessed data are a combination of

spatial and temporal locality in varying ratios. In some cases the data access

behavior shows predominantly spatial or predominantly temporal access

behavior and in other cases, it is the combination of both types of locality.

Based on this fact, the application programs need a cache organization which

can support both types of data access locality in order to achieve a better

overall performance.

b. The line-fetching policy can waste about 60% of available cache space in

extreme cases. Thus, proper placement of data into separate Spatial and

temporal sub-caches can aid in reducing the cache space pollution.

c. Simple locality-estimation circuitry is sufficient to detect the run-time locality

behavior of data.

d. The run-time data locality analysis and prediction hardware support can be

used to define a split data cache organization which uses two sub-caches

termed as spatial and temporal to improve the performance over the

conventional cache organization.

 104

e. The performance metrics indicate that the cache resource utilization can be

increased up to 150% for many application programs and the average

performance can always yield a better result over a comprehensive set of

benchmark programs.

f. The only restriction that arises for defining such a split data cache is the

increased storage space requirements for the tag ram overhead of the temporal

sub-cache. The investigation further shows that the performance boost can

also be obtained in most of the cases by using a smaller temporal cache and in

that case, the organization may require smaller data storage space than the

conventional data cache.

g. The split cache organization does not pollute the cache space by caching non-

usable data in the cache. The bus traffic is reduced significantly for using this

organization even in the cases where the cache miss rates are similar to the

conventional cache. Reduction of the bus data traffic indicates the improved

utilization of the cache bandwidth, which might be very useful in modern

multi-processor computing organization design.

6.1 Future research direction

The current locality data cache organization is tested using a uniprocessor organization.

The utilization of this organization in a multi-processor computing environment needs the

cache protocol support that is appropriate for that environment. Fine-tuning of the

 105

locality cache hardware scheme for such an environment may be of interest in future

research. The increased storage space overhead due to tag ram of the temporal cache also

needs to be further addressed. Several different cache organizations can be tried to

improve the performance further and not increasing the storage overhead of the tag ram.

Future research should therefore address all of these issues in order to increase the

performance boosts available by using a split data cache with a dynamic locality

estimation circuit.

Bibliography

1. Patterson D., Anderson T., Cardwell N., Fromm R., Keeton K., Kozyrakis C.,

Thomas R., and Yelick K., “A Case for Intelligent RAM: IRAM,” IEEE Micro,

vol.17, (no. 2), March-April 1997, pp.34-44.

 106

2. Patt Y. N., Patel S. J., Evers M., Friendly D. H., and Stark J., “One Billion

Transistors, One Uniprocessor, One, Chip,” IEEE Computers, September 1997, pp.

51-57.

3. Burger D., Goodman J. R., and Kagi A., “Memory Bandwidth Limitations of Future

Microprocessors”, In Proceedings of ISCA ’96, 5/96, USA.

4. Burger D., Goodman J. R., and Kagi A., “Limited bandwidth to affect processor

design,” IEEE Micro, November/ ember 1997, pp. 55-62.

5. Handy J., “The Cache Memory book”, 2nd Edition, Academic Press, New York, 1998,

pp. 188-198.

6. Smith A. J., “Cache Memories,” Computing Surveys, vol. 14, 3, September, 1982.

7. Kabakibo A., Milutinovic V., Silbey A., and Furht B., “A Survey of Cache Memory

in Modern Microcomputer and Minicomputer Systems,” Tutorial: Computer

Architecture, IEEE Computer Society Press, 1987.

8. Silbey A., “Improved Cache Scheme Boosts System Performance”, Computer

Design, Vol. 24, November 1985, pp. 83-86.

 107

9. Tanenbaum A. S., “Structured Computer Organization,” Prentice Hall, New Jersey,

1999.

10. Culler D. E., Singh J. P., and Gupta A., “Parallel Computer Architecture – A

Hardware/Software Approach,” Morgan Kaufmann Publishers, Inc., San Francisco,

California, 1999.

11. Przybylski S. A., “Cache and Memory Hierachy Design,” Morgan Kaufmann

Publishers, Inc., San Francisco, California, 1996.

12. Mckee S A, Wulf M. A., and Landon T. C., “Bounds on Memory Bandwidth in

Streamed Computations,” Proceedings of Europar ’95, Stockholm, Sweden, August

1995.

13. McKee S A, Klenke Robert H, Kenneth L Wright, William A Wulf, Maximo H

Salinaas, James H Aylor, and Alan P Baston, “Smarter Memory: Improving

Bandwidth for Stream References,” Computers, IEEE Computer Society, July 1998.

14. Deijl E V, Kanbier G, Temam O, and Granston E D, “A Cache Visualization Tool,”

Computers, IEEE Computer Society, July 1997, pp. 71-78.

 108

15. Rajamony R., and Cox A. L., “Performance Debugging Shared Memory Parallel

Programs Using Run-Time Dependence Analysis,” In Proceedings of the ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems, Seattle, WA, June, 1997.

16. Lee R. L., Yew P. C., and Lawrie D. H., “Data prefetching in shared memory

multiprocessors,” In Proceedings of the Int. Conf. on Parallel Processing, 1987, pp.

28-31.

17. Wiel V. S. and Lilja D. J., “When Caches Aren’t Enough: Data Prefetching

Technique,” IEEE Computer, July 1997, pp. 23-30.

18. Mowry T. C., “Tolerating latency through software-controlled data prefetching,” Ph.

D. Dissertation, Stanford University, March 1994.

19. Yamada Y., Gyllenhaal J., Haab G., Hwu W.W., “Data Relocation and Prefetching

for Large Data Sets,” In Proceedings of the 27th Annual ACM/IEEE Int. Symp. On

Microarchitecture, San Jose, California, November 1994, pp. 217-227.

20. Chen T.F. and Baer J. L., “ Reducing Memory Latency via Non-Blocking and

prefetching Caches,” Technical Report 92-06-03, University of Washington at

Seattle, June 1992.

 109

21. Fu J. W. and Patel J. H., “Stride directed prefetching in scalar processors,” In

Proceedings of the 25th Int. Conf. on Architectural Support for Programming

Languages and Operating Systems, 1992, pp. 245-259.

22. Chen T. F., “Data Prefetching for High-Performance Processors,” Technical Report

93-07-01, University of Washington at Seattle, July 1993.

23. Coleman S. and McKinley K. S., “Tile size selection using cache organization and

data layout,” In Proceedings of PLDI’95, June 1995, pp. 279-289.

24. Jeremiassen T.E. and Eggers S. J., “Reducing false sharing on shared memory

multiprocessors through compile time data transformations,” In Proceeding of

PPOPP’95, July 1995, pp. 179-188.

25. Kodukula I., Ahmed N., and Pingali K., “Data-centric multi-level blocking,”

Proceedings of PLDI’97, May 1997, pp. 346-357.

26. Lam M. S., Rothberg E.E., and Wolf M.E., “The cache performance and

optimizations of blocked algorithms,” In Proceedings of ASPLOS’91, April 19991,

pp. 63-74.

 110

27. McKinley K. S., Carr S., and Tseng C. W., “Improving data locality with loop

transformations,” ACM Transaction on Prog. Lang. Syst., 18(4), July 1996, pp. 424-

453.

28. Philbin J. E., Anshus O. J., Douglas C. C., and Li K., “Thread scheduling for cache

locality,” Proceedings of ASPLOS’96, October 1996, pp. 60-71.

29. Mowry T.C., Lam M. S., and Gupta A., “Design and Evaluation of a Compiler

Algorithm for Prefetching,” In Proceedings of the 5th International Conference on

Architectural Support for Programming Languages and Operating Systems, Vol. 27,

October 1992, pp. 62-73.

30. Censier L. M., and Feautirier P., “A new solution to the coherence problem in Multi

cache systems,” IEEE Trans. On Computers C-27:112, 1992, pp. 1112-1118.

31. McKinley K. S., Temam O., “A Quantitative Analysis of Loop Nest Locality”, In

proceedings of the 7th International Conference on Architectural Support for

Programming Languages and Operating Systems, Boston, MA, October, 1996.

32. Kandemir M., Ramanujam J., and Choudhary A., “A Compiler Algorithm for

Optimizing Locality in Loop Nests”, In Proceedings of the 11th ACM Int’l.

Conference on Supercomputing, Vienna, Austria, July 1997, pp. 269-278.

 111

33. McKinley K., Carr S., and Tseng C. W., “Improving Data Locality with Loop

Transformations,” ACM Transactions on Programming Languages and Systems,

1996.

34. Wolf M. and Lam M., “A Data Locality Optimizing Algorithm,” In Proceedings of

ACM SIGPLAN 91 Conference on Programming Language Design and

Implementation, June 1991, pp. 30-44.

35. Sanchez J, Gonzalez A., “Fast, Accurate and Flexible Data Locality Analysis”, In

Proceedings of PACT’98, October 13-17, Paris, 1998.

36. Johnson T. L., Merten M. C., Hwu W., “Run-time Spatial Locality Detection and

Optimization”, In Proceedings of the 30th Annual International Symposium on

Microarchitecture, pp. 57-64, Research Triangle Park.

37. Moshovos A. I., “Memory Dependence Prediction”, Ph.D. dissertation, Department

of Computer Science, University of Wisconsin, Madison, 1998.

38. Hennesy J. L., Patterson D., “Computer Architecture A Quantitative approach”, 2nd

Edition, Morgan Kaufmann Publishers, Inc., San Francisco, California, 1996, pp.

390-426.

 112

39. Flynn M. J., “Computer Architecture – Pipelined and Parallel Processor Design”,

Narosa Publishing House, London, 1996, pp. 396-417.

40. Abraham S. G., Sugumar R. A., Rau B. R., and Gupta R., “Predictability of

Load/Store Instruction Latencies”, Proceedings of the 26th International Symposium

on Microarchitecture, December, 1993, pp. 139-152.

41. Chen T.F., “Reducing memory penalty by a programmable prefetch engine for on-

chip caches,” Microprocessors and Microsystems, Vol. 21, 1997, pp. 121-130.

42. Callahan D., Kennedy K., and Portefield A., “Software prefetching”, Proceedings of

the Fourth Symposium on Architectural Support for Programming Languages and

Operating Systems, April, 1991, pp. 40-52.

43. Chen T. F., and Baer J. L., “A Performance Study of Software and Hardware Data

Prefetching Schemes”, Proceedings of the 21st Annual International Symposium on

Computer Architecture, April 1994, pp. 69-73.

44. Kaplow W. K., Szymanski B. K., Tannenbaum P, Decyk V. K. and CalTech Jet

Propulsion Laboratory, “Run-Time Reference Clustering for Cache Performance

Optimization”, In Proceedings of the 2nd Aizu International Symposium on Parallel

Algorithms/Architecture Synthesis, March 17-21, 1997, Aizu-Wakamatsu,

Fukushima, Japan.

 113

45. Avila A., “Reference prediction based on memory access patterns for scientific

codes”, Ph.D. Dissertation, University of Arkansas, Fayetteville, December 1998, pp.

15-19.

46. Dwarkadas S., Lu H., Cox A. L., Rajamony R., and Zwaenepoel W., “Combining

Compile-Time and Run-Time Support for Efficient Software Distributed Shared

Memory”, Dept. of Computer Science, Univ. of Rochester and Dept. of Electrical &

Computer Engineering, Rice University.

47. Sanchez F. J., Gonzales A., and Valero M., “Static Locality Analysis for Cache

Management,” In Proceedings of IEEE , 1997.

48. Milutinovic V., Milutinovic D., Ciric V., Starcevic D., Radenkovic B., and Ivkovic

M., “Some Solutions for Critical Problems in the Theory and Practice of Distributed

Shared Memory: Ideas and Implications”, IEEE Proceedings, 1997.

49. Prvulovic M., Marinov D., Dimitrijevic Z., and Milutinovic V., “The Split

Spatial/Non-Spatial Cache: A Performance and Complexity Evaluation”, IEEE

TCCA Newsletters, 1999, pp.18-25.

 114

50. Prvulovic M., Marinov D., Dimitrijevic Z., and Milutinovic V., “Split

Temporal/Spatial Cache: A Survey and Reevaluation of Performance”, IEEE TCCA

Newsletters, 1999, pp. 8-17.

51. Chan K. K., Hay C. C., Keller J. R., Kurpanek G. P., Schumacher F. X., and Sheng

J., “Design of the HP PA 7200 CPU”, Hewlett-Packard Journal, February 1996.

52. Gonzalez A., Valero M., and Aliagas C., “A data cache with Multiple Caching

Strategies Tuned to Different Types of Locality”, Proceedings of ICS 95, pp. 338-

347, 1995.

53. Agarwal A., Horowitz M., and Hennessy J., “An Analytical Cache Model”, ACM

Trans. Computer Systems, Vol. 7, No. 2, May 1989, pp. 184-215.

54. Sanchez J, Gonzalez A., “Data Locality Analysis of the SPECfp95”, In Proceedings

of the ISCA, 1998.

55. Horowitz M., Martonosi M., Mowry T. C., and Smith M.D., “Informing Memory

Opeartions: Providing Memory Performance Feedback in Modern Processors”, In

Proceedings of the 23rd Annual International Symposium on Computer Architecture,

May, 1996.

 115

56. Yan Y., Zhang X., and Zhang Z., “A Memory-layout Oriented Run-Time Technique

for Locality Optimization”, In Proceeding of 1998 Int’l. Conference on Parallel

Processing (ICPP ’98), August 1998.

57. Kumar S., Wilkerson C., “Exploiting Spatial Locality in Data Caches using Spatial

Footprints”, IEEE, pp. 357-368, 1998.

58. Kandemir M., Choudhary A., Ramanujam J., Shenoy N., and Baerjee P., “Enhancing

spatial locality via data layout optimizations”, In Proceedings of Europar 98,

Southampton, UK, September, 1998.

59. Hill M., and Smith A. J., “Evaluating Associativity in CPU Caches,” IEEE Trans. On

Computers, 38, 12, December, 1989, pp. 1612-1630.

60. Smith A. J., “Line (Block) Size Choices for CPU Cache Memories,”, IEEE Trans. On

Computers, vol. C-36, 9, September 1987, pp. 1063-1075.

61. Gee J. D., Hill M. D., and Smith A. J., “Cache Performance of the SPEC92

Benchmark Suite,” In IEEE Micro, 1993.

62. “New Mexico State University Trace Database”, Parallel Architecture Research

Laboratory, (Online), Available: ftp://tracebase.nmsu.edu/pub/README., Accessed:

January 15th, 2000.

 116

63. Samdani Q. G., Thornton M. A., and Andrews D. L., “A Split Data Cache

Organization Based on Dynamic Locality Estimation”, Technical Report, Department

of Computer Science and Computer Engineering, University of Arkansas, 2000.

64. Samdani Q. G., Thornton M. A., “Cache Resident Data Locality Analysis”, Technical

Report, Department of Electrical and Computer Engineering, Mississippi State

University, 2000.

65. Samdani Q. G., Thornton M. A., “A Split Data Cache Organization based on Runtime

Data Locality estimation”, Technical Report, Department of Electrical and Computer

Engineering, Mississippi State University, 2000.

