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Abstract 

Cache memories are used extensively in modern computer organizations in order to 

reduce the performance gap between fast microprocessors and slower main memory. 

Cache memory hides the main memory access latency by exploiting the data locality 

present in pre-fetched memory blocks in the cache. Conventional pre-fetching policies 

used in traditional cache organizations have the potential to waste the available cache 

bandwidth and space by bringing non-usable data in the cache.  Conventional caches 

cannot meet the different sized storage requirements of data that exhibit spatial or 

temporal locality characteristics when their address spaces vary and are non-overlapping. 

Data characterized by spatial or temporal locality could be more efficiently 

accommodated if caches with different line sizes based on the locality type could be used. 

The fixed line size of a conventional cache restricts this efficiency. To reduce the 

performance bottleneck of conventional caches, an alternative cache organization is 

explored in this research. The SPEC92 benchmarks as well as other standard benchmark 

programs are used to observe run-time data locality. Based on the locality analysis, a 

simple locality prediction technique was designed in hardware capable of estimating the 

data locality bias of the cache-resident data during run-time. This prediction hardware is 

used to design a split data cache that uses two sub-caches; spatial and temporal cache. 

This organization stores data in the respective sub-caches based on the dynamic locality 

estimation during run-time of the executing programs.  The split data cache organization 

showed a considerable performance increase over a conventional unified data cache by 
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reducing the overall cache miss rate and bus data traffic. A better utilization of the cache 

space and bandwidth is possible using this new organization.   

 

Key words and Phrases: Data Locality Cache, Computer Architecture, Memory system 

organization, High Speed Memory, Run-time Memory Access pattern. 
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CHAPTER 1 

 

7 Introduction 

One of the main bottlenecks of current computer architectures is the processor-memory 

interface. This bottleneck results in a mismatch between the speed of the CPU and 

memory, and is referred to as the processor-memory performance gap [1, 2, 3, 4]. 

Microprocessor performance is increasing at a faster rate than memory. Typical usage of 

off-chip memory units in computer architectures causes increases in access latencies and 

bandwidth limitations due to the processor-memory interface path and the finite number 

of pins that chip packaging allows [2,3].  Off-chip memory access times are higher than 

on-chip memory access times due to the relatively larger latency introduced during data 

propagation from the memory chip to the microprocessor through an external data path. 

Bandwidth is dependent on the data transfer rate between microprocessor and memory. 

Separate chip packaging limits the number of data I/O pins available. Thus, the data 

transfer rate is highly dependent on the number of pins available.  

 

A common scenario is that programmers using state-of-the-art computers are increasingly 

demanding faster memory units in their computers to fully utilize the performance 

increase of the microprocessors. As faster memory units (specifically SRAM - static 

random access memory) are more expensive than slower dynamic RAM, designers must 
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mitigate this performance gap. Therefore, modern processors use a memory hierarchy 

composed of a combination of faster SRAM and slower DRAM. Figure 1.1 shows a 

typical memory hierarchy used by computers.  
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In this organization, the faster SRAM units serve as the second stage of memory 

hierarchy, and are organized as a cache memory. With the inclusion of a memory 

management unit (MMU), required data and instructions are fetched from the slower 

main memory (which is the third stage of the memory hierarchy) into the faster cache 

unit. The CPU can take advantage of the faster cache access times and the higher 

bandwidth available for using the cache organization. The performance benefit obtained 
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by using faster cache units depends on both caching policies that exploit data and 

instruction locality, and, on the physical organization of the cache.  

 

The introduction of cache memories [5,6] allowed for significant performance increases 

in the early 1980’s when the performance gap between the CPU and memory was not as 

large. CPU performance continues to increase at a tremendous rate every year, and cache 

organizations being used in an attempt to keep up with the faster data access demands. In 

the past 10 years, different cache organizations have been proposed to rectify this issue. 

In the 1980’s, multi-level cache architectures were introduced. A multi level cache takes 

advantage of the extraordinary integration density offered by the current chip fabrication 

and packaging technologies, and may be integrated within the same die as the CPU. As 

an example, Intel’s Pentium Pro�  integrates the CPU, I-Cache, D-Cache and L2 cache 

onto the same die. Though multi-level caches help to reduce the memory access latency, 

they also introduce additional latency in cases where the memory lookup function has to 

traverse deeper into the memory hierarchy for cache misses. In some cases, the CPU can 

waste about 75% of its processing time due to the look-up penalty in the multi-level 

cache [45]. We are currently living in an ‘information age’ where almost all information 

is being kept in local and distributed databases, and, information is consistently being 

shared over the Internet and Intranet. Accessing huge databases is a very critical and 

time-consuming process. Database programs typically waste more than 50% their 

operation time in retrieving information in the memory hierarchy [8,9,12,30,31,32,39]. 

Proper caching of the requested data is fundamental for these applications. 
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To obtain a balanced CPU/Cache system we not only need the best architecture, but also 

an optimized caching strategy that will perform well in all general cases. The success of 

conventional caching policies depends on the locality present in the accessed data or 

instructions. The current policies used in caches are not always highly successful in 

caching data properly in order to gain maximum benefit from the varying spatial and 

temporal localities exhibited by the data. The cache resource can be polluted, in some 

cases up to 60%, due to the residence of unused data in the cache occurring to pre-

fetching of non-usable data in the cache [57]. 

 

In the following subsections, basic cache organizations and concepts, such as locality, 

will be introduced. Then, the motivation for performing the current investigation, current 

research results performed by other researchers, and the split data cache subsystem 

design are presented.  Finally, an overview of the contributions made by this research is 

presented. 

 

1.1 Cache Basics: 

Cache memories work based on the locality of the code segments of the program and 

accessed data.  The types of locality are defined as follows [39]: 

 

a. Spatial Locality (or locality in space): Given an access to a particular location in 

memory, there is a high probability that other accesses will be made in the 

neighboring locations within the lifetime of the program. 
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c.b. Temporal Locality (or locality in time): Given an access to a particular location, there 

is a high probability that references following that access will be made to the same 

location. If a program exhibits temporal locality, elements of the reference sequence 

will be accessed again during the lifetime of the program. 

 

d.c. Sequentiality:   Given that a reference has been made to a particular location s, it is 

likely that subsequent references will access the location of s+1.  Sequentiality is a 

restricted type of spatial locality and can be regarded as a subset of it. 

 

When a reference made by a processor is found in the cache, it is called a cache hit.  

When the reference is not available in the cache, it is called a cache miss. In the case of a 

cache miss, the cache control mechanism must fetch the missing data from the main 

memory and place it into the cache. 

 

1.2 Cache Organization: 

Basic cache organizations follow two fetching schemes. A “demand fetch” organization 

where memory contents are fetched based solely on cache misses. The second 

organization called “pre-fetching,” fetches data depending on a priori anticipation of 

locality of references. This is also referred to as “speculation.”   

 

There are three basic types of cache organizations based on the ‘main memory address 

mapping scheme’ in the cache. They are a) Fully Associative, b) Direct Mapped, and c) 

Set Associative. Figure 1.2. 
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Figure 1.2 Illustration of an 8-line cache address-mapping process for Direct mapped, Set Associative 

and Fully Associative organizations (Cache Data Block size is two bytes here). 
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b.a. Direct mapped: Memory reference blocks are mapped to a specific block location in 

the cache. As an example, the address 0xCA in the illustration can be mapped only in 

the line with index 101. 

c.b. Set associative: Memory references are placed into a restricted subset of blocks in the 

cache. A particular memory reference block can only be placed in a specific set, but 

the block can be placed anywhere within that set. In Figure 1.2, the address 0xCA can 

be mapped in either ‘line 0’ or ‘line 1’ with set index ‘01’ in the 2-way set associative 

cache in the illustration.  

c. Fully associative: Memory references block may be placed anywhere in the cache. 

The address 0xCA can be mapped anywhere between set or line 0 to 7 in the shown 

illustration in the Figure 1.2. 

 

 

1.3.1 Cache read process: 

During a read operation, the cache looks for a match between the address and  the stored 

address in the cache. The cache stores the ‘address tag’ for each block in the cache in a 

tag RAM. An additional bit is also stored in the tag RAM for each block to indicate if the 

tag entry is a valid data-block in the cache. During a tag match, the cache control 

circuitry checks this bit, referred as the valid bit ‘V’. If the valid bit is ‘set’ during a tag 

match, then control circuitry makes a data transfer from that cache block to the CPU 

register. In a direct mapped cache, only a single cache block entry is selected by the 

mapping process to be searched for a match. In associative caches, all the cache blocks, 

decided by the degree of associativity, are searched in parallel.  Figure 1.3 shows how the 
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memory address field is partitioned to derive the address tag, cache index, and block 

offset fields for the cache.  First, it is divided into a block address and block offset. The 

block address is further divided into tag and index fields. The block-offset field selects 

the desired data from the block; the index field selects the set, and the tag field is 

compared against the stored address in that set for a hit. 

 

16 Block Address 

19 Tag 20 Index 

17  

18 Block 

Offset 

 

Figure 1.3 The three portions of an address in a set-associative or direct mapped cache. 

 

1.3.2 Cache update process: 

During a cache miss, the control circuitry must update the cache with the missed memory 

block. In performing this operation, a valid cache block may need evicted to 

accommodate the requested data by the CPU. In a direct mapped cache, new memory 

block is placed into a single location independent of whether the existing entry is valid or 

invalid. For a set associative or fully associative cache, there can be multiple cache 

blocks available for replacement.  The cache controller must decide which block of the 

cache should be replaced. There are several cache replacement policies available to make 

this decision. These policies have their own merits and de-merits. Two common “cache 

replacement policies” [3] that are used are as follows: 
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a. Random: In this strategy a block for replacement is selected in random fashion, which 

is believed to provide uniform spread of allocation. This policy may provide poor 

performance in average cases. 

c.b. Least Recently Used (LRU): This strategy allows for replacing blocks based on their 

aging or least recent usage. Some aging counters are used to track the recent usage of 

each block in this strategy. 

 

The hardware cost and complexity is less for implementing the random replacement 

policy, however the cache performance suffers in the average case. Alternatively, the 

LRU policy yields good cache performance but the hardware cost and complexity 

increases linearly with increase of the associativity of the cache. 

 

1.4 Cache Write Process: 

There are two types of write policies generally used for cache writes; a) Write-through 

and b) Write-back. In a write-through policy, both cache blocks and lower order memory 

structures are updated with the data at the same time during a write operation. Whereas, 

in a write-back policy, only the block in the cache is updated. This makes the write-back 

process  faster  than the write-through process since it can be done at cache speed.  

However, additional difficulties can arise due to inconsistencies that can occur in the 

cache versus main memory content.  This difficulty is referred to as the “cache 

coherency” problem. 
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According to  [38], cache reads occur more frequently than cache writes. Usually about 

25% of the cache bandwidth is utilized for a write cycle, whereas approximately 75% is 

utilized for a read cycle. Thus, in any cache design, optimization for the read cycles 

should receive more importance. 

 

1.5 Cache Performance: 

Cache performance is measured in terms of the miss rate. This is the probability that a 

requested reference  is not available in the cache. The miss rate times the miss time 

measures the “delay penalty” due to a cache miss. In most processor designs, the 

processor ceases activity and must stall when a cache miss is encountered. Thus, a cache 

miss behaves in much the same way as a pipeline break.  

 

1.5.1 Cache performance improvement process:  

The average memory access time provides a metric for optimizing the cache for 

improved performance [38]: 

Average memory access time = Hit time + (Miss rate x Miss penalty) 

 

Thus, cache optimization could be accomplished by reducing any of the following 

factors, which are directly  contribute to the overall cache performance: 

a.   Miss rate 

b. Miss penalty 

d.c. Average hit-time in the cache. 
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Two simple and classic techniques for reducing miss rate are using larger block sizes and 

higher associativities in the cache memory (for set-associative organizations). Improving 

one aspect of the average memory access time comes at the expense of another. Larger 

block sizes take advantage of spatial locality, but at the same time can cause an increase 

in the miss penalty. Similarly, greater associativity reduces the miss rate at the expense of 

higher hit time. 

 

1.5.2 Split Instruction & Data Cache: 

A split Instruction (I) and Data (D) cache provides the designer with the possibility of 

significantly increased cache bandwidth, potentially doubling the access capability in the 

cache. Split I- and D- caches are particularly useful when the instruction bandwidth is 

higher than data bandwidth. Split I- and D- caches come at the expense of having higher 

miss rates than unified caches. This is due to two main reasons, a) relative cache sizes, 

and b) adaptation to the changing ratio of instruction and data elements of a running 

program. An 8kB unified cache can provide more flexibility in instruction and data 

storage requirements when compared to a divided 4-KB Instruction and 4-KB Data 

cache. In a unified cache, the cache replacement process intelligently adapts the cache for 

the changing ratio of instruction and data elements during the execution of a program. 

However, such an adaptation is not possible in a split I- and D-Cache. In modern 

processor design achieving higher memory access bandwidth is more desirable and the 

fabrication of separate I- and D- cache with considerable size to avoid potential miss rate 

increase is possible. Most modern processors now employ separate I- and D- caches in 

their organizations. 
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1.5.3 Two or Multi -level caches: 

Another useful technique for reducing the miss rate is to use a two or multi-level cache 

organization. In the case of a two level cache, a small, fast on-chip cache is used as 

primary or level one (L1) cache, and a separate second cache (usually larger than L1) is 

used as a secondary, or a level two (L2) cache. Miss rates can be reduced by up to 10% 

by carefully tailoring the L1 and L2 cache sizes [5]. This type of organization may be 

expanded into a multi-level cache by using additional cache levels. The potential problem 

of using multi-level caches is the look-up penalty that results in cases where the required 

data is not present in any level of the cache. The lookup-time could increase significantly 

with the increase of the depth of the cache. Figure 1.4 shows the typical lookup penalty 

that arises with the depth of a multi-level cache. 
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The intuitive argument for adding multiple caches in the cache hierarchy is that the 

increasing performance gap between the processor and main memory can be reduced by 

using several smaller accesses  to main memory. 

 

1.5.4 Blocking & non-blocking Cache: 

In a blocking cache, the processor halts processing on a miss until the missed line is 

brought in the cache. This can result in frequent stalls. In a non-blocking cache, the 

processor is allowed to continue instruction execution without stalling if no true data 

dependency exists between instructions and data. A non-blocking cache organization pre-

fetches data to avoid frequent misses. Proper anticipation of the required data plays a 

vital role in non-blocking cache performance. 

 

1.5.5. Pseudo-associative Cache: 

A pseudo-associative cache is used with a direct mapped or set-associative cache to 

increase the hit-speed and reduce the miss rate respectively. In this approach, before 

going to the next lower level of memory during a miss, another cache entry is checked in 

the pseudo set for a hit. The address of the pseudo set is calculated by inverting the MSB 

(most significant bit) of the index field of the cache address. This approach provides a 

variable hit time, and reduces the average memory access time as compared to using a 

direct mapped or set associative cache organization. Although this is an attractive 

process, it is not preferred for practical implementation due to the complications that arise 

in the design of a pipelined processor. 
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1.5.4 Victim Cache: 

One recent technique of reducing miss rates is to use a victim cache.  Figure 1.5 shows 

the organization of a CPU architecture with a victim cache. A victim cache is typically a 

small, fully associative cache located between a main cache and the refill path, and 

contains the blocks that are discarded from the main cache due to a miss. These victim 

blocks of data are checked during a miss to determine whether they contain the desired 

data before going to the next level of memory. If the data is found in the victim cache, 

then the victim cache block and main cache block are swapped.  While fully associative 

caches are expensive to build in terms of logic, the size of this very small supplemental 

cache makes it feasible to implement on chip, along side the main level one (L1) cache. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Victim cache placement in the memory hierarchy
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Because it is not as fast as a direct-mapped or set-associative cache, the victim cache is 

not placed in the critical path of the processor. This means there is still some additional 

penalty associated with satisfying a reference via the victim cache rather than the main 

L1 cache.  However, the penalty is generally on the order of 1 cycle instead of the 4-16 

cycles often required for accessing off-chip L2 caches. A four-entry victim cache can 

remove 20% to 95% of the miss rate in a 4-KB direct mapped data cache [38]. 

 

1.5.5 Write Buffer: 

On a write operation in a write-through cache, the cache suffers from the slow main 

memory write cycle time to finish a write operation. To hide the main memory write 

cycle delay from the cache and allow the cache to continue its operation at cache speed, a 

small write buffer can be used to temporarily store the data. Write buffers are very 

effective for improving the write cycle time of the cache. However, buffering the data can 

create memory consistency problems when the buffered data is not yet written  into the 

main memory while the cache is updating the same location on a read miss from the main 

memory. To eliminate this problem, commercial processors implement the write buffer as 

a few-entry fully associative cache. On a miss, it makes an associative search in the cache 

and main memory. If the data is still in the write buffer, than it supplies the data directly 

from the write buffer to the microprocessor. This scheme is similar to a ‘victim cache’ as 

described in the previous section. 
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1.5.6 Multimedia Cache: 

Stream data processing is becoming a common factor in modern computer architectures 

due to the heavy usage of the Internet and the popularity of multi-media applications. In 

multimedia system designs, it is common to separate the data and control paths to 

simplify and optimize the hardware and software in order to handle the large volume of 

data traffic. Often in these systems, the video information passes directly from the 

network interface to the display unit without intervention by the CPU. This mechanism is 

highly effective at providing a support mechanism for multimedia applications without 

the high bandwidth data streams consuming CPU time.  Following this strategy incurs the 

disadvantage of precluding the processor from accessing the multimedia data. This 

eliminates an interesting range of applications where processor intervention is necessary. 

A balanced architecture would keep data away from the processor when not necessary, 

but still enable high-speed access by the CPU when the application demands it.  

 

It is particularly helpful to use a special type of cache to address this situation, referred to 

as a “stream-cache” (S-cache). When processing a data stream, it is likely that the data 

will be accessed in order of arrival. Hence, an S-cache holds the most recent data from 

the stream, and new data is written over the oldest data. In S-cache architectures, data 

arriving from the stream is placed directly into the cache, not passing through the main 

memory. This avoids unnecessary buffering. A section of the cache effectively becomes a 

circular buffer holding the latest stream information. Update of the S-cache content is 

asynchronous rather than triggered by a CPU cache miss. When the CPU attempts to 

access the stream data, there are three possible outcomes: 
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1. The data has recently arrived in the stream. In this case, the item is found in the 

cache and processing continues. 

3.2. The data has not arrived yet. This is treated as a cache miss and the CPU may be 

blocked until the required item arrives. If the data does not arrive for some (long) 

period, the operating system may choose to reschedule the CPU. 

4.3. The required data is far in the past accessing order that the buffer can hold. This 

case should be flagged as an exception to the operating system and represents 

“staleness” in terms of temporal locality. 

The stream data will need to be addressed in some way. Most streams include a frame or 

temporal structure used by the application. This can be conveniently mapped into a range 

of processes in the virtual address space. Thus, the process may access the stream as an 

array indexed by frame number as shown in Figure 1.6. 

 

0 1 2 3 4 5 6 7 8 

  

 

 

 
 
 
 
 

Figure 1.6 Addressing a stream 

 

There are two major advantages to a stream cache system. First, the data from the stream 

is placed where it is going to be used, namely in the CPU cache. Hence, even if data is 

Incoming  
Streams 

Frame Index 
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not accessed in a strict temporal order, recent information can still be found in the cache. 

Second, the hardware manages fine grain resynchronization with the stream, imposing no 

overhead other than the necessity to wait for the data to arrive. The stream cache could be 

optimized for improved performance by carefully designing the cache size and 

architecture. 

 

1.6 Cache Policies: 

Cache policies are the rules of operation of the cache and are used to answer the 

following questions. During which cycles can data be read from the cache instead of 

main memory? Where does the cache fit into the system? How associative is the cache? 

What happens during write cycles?  Cache policies are chosen for a single motive  [6,11]; 

the designer wants to get the most performance for the lowest cost. Two variables play 

into this tradeoff: 1. Which is more important, to save engineering time or to save overall 

system parts cost? 2. Is the cache to be integrated or constructed from discrete 

components? 

 

Cache policies may be chosen in a number of ways, depending on the generality of the 

system and the amount of resources available to improve the design. In the best case, the 

hardware and software of the system are designed together (referred to as 

“hardware/software co-design”). In this approach, the hardware can be optimized to a 

very good degree based on a large amount of empirical results on the effects of different 

caching policies on the intended software’s performance. In the worst case, the hardware 

designer is asked to design a cache without any knowledge of the software that will run 
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on the system, no empirical data, nor any chance to develop any, and with very little 

knowledge about the tradeoffs of various cache policies [6].  

 

There are different caching policies and organizations being utilized in different 

computer architectures, and efforts are being made towards their improvement. Though a 

tremendous amount of research is ongoing for achieving an optimum performance cache 

organization, an optimal solution has not been found. It is has been shown [48] that most 

programs require considerably less cache memory than what is available in a typical 

superscalar processor.   

 

1.7 Cache Pollution and Bandwidth Waste: 

Current caching policies in use by most computers result in cache pollution and memory 

bandwidth waste. This is due to pre-fetching a memory block or data cluster into the 

cache when a cache miss occurs without performing any data locality analysis. The 

pollution is due to the placement in cache of a non-reusable block whereas the memory 

bandwidth waste is caused by the additional data brought from a L2 cache to a L1 cache 

in the same block as the requested data. To cope with this issue, some microprocessors 

provide memory reference instructions that can bypass the cache [10]. 

 

Blind caching policies can also create similar cache pollution and memory bandwidth 

waste problems when the data references exhibit temporal locality. In the case of 

temporal locality, only one data element is being referenced from each block of data. 

Thus, the cache becomes full with unusable data elements. It has been reported in recent 
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investigations [48, 49, 50] that a large percentage of references exhibit temporal locality, 

and a significant percentage of references do not show any type of locality.  

 

1.8 Motivation for this Research: 

The research presented here is motivated by finding an alternative cache organization that 

will be able to use the cache resources more efficiently. A split data cache organization is 

proposed that exploit the full benefit of different types of locality references in a running 

program. Based on this motivation, the goal of this research is to design, simulate and 

investigate the performance benefits obtainable using the above mentioned cache 

organization in the hardware abstraction level which will perform dynamic locality 

prediction during runtime using only hardware resources. Before presenting the 

contribution made through this investigation, a brief survey of other efforts is presented 

in the next section. 

 

1.9 A review of the current results: 

Several investigations have proposed different schemes for instruction and data cache 

organizations to reduce overall memory access latency.  These include a transient value 

cache (TVC) [37], lockup-free cache [20,47], cache-conscious load scheduling [27], 

hardware and software pre-fetching [16,17,18,19,20,21,22,29,41,42,43] and 

multithreading [28]. TVC uses a small data cache in addition to a L1 cache to provide 

support for large fraction of parallel loads in a massive parallel-processing environment. 

The mechanism proposed in [28] identifies non-cacheable data by means of profiling. 

The scheme proposed in [56] is based on a run-time managed history table of the most 
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recent load/store instructions. In [45], a pre-fetch engine is used which relies on software 

or hardware optimized Deterministic Prediction Approach (DPA) in order to pre-fetch 

data that is estimated to be referenced in the future.  

 

Compiler assisted optimization of the cache data locality is proposed in 

[23,24,25,26,27,32,33,34,35]. Compiler based optimizations are based mainly on 

improved algorithms which use several techniques to identify locality in loops in 

scientific codes, and perform data layout transformation to provide optimum locality for 

better cache performance. 

 

Combined compile-time and run-time caching policies as proposed in [46] use memory 

access detection, and automatic data caching based on compiler provided analysis of run-

time memory access requirements. This is considered as an efficient approach in a shared 

memory parallel computing on distributed memory machines. In this approach, if the 

compiler analysis fails entirely, then the run-time maintenance of the shared memory is 

done with the hardware resources. Therefore,  the complexity and limitations of 

compilers that directly target message passing [44,46] can be avoided. 

 

Run-time memory performance feedback and memory layout optimization is proposed in 

[55,56]. In [55], the processor is informed about the memory operation by using the 

cache outcome condition code and cache miss traps so that the processor can tackle the 

performance requirements by using in-built hardware supports. This approach is based on 

the observation that modern in-order-issue and out-order-issue superscalar processors 
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already contain the bulk of the necessary hardware support. In [46], a system is proposed 

that uses a memory layout oriented approach to exploit cache locality for parallel loops at 

run-time on Symmetric Multi-Processor (SMP) systems using application dependent 

hints and the targeted cache architecture. 

 

In [41], a programmable pre-fetch engine is used in the on-chip cache. As more chip area 

is available due to the tremendous advancement of the VLSI technology, designers can 

take advantage of using such programmable chips to hide the main memory access 

latency. This pre-fetch engine can pre-fetch data without any compiler intervention 

during run-time. The pre-fetch engine is programmable by software, allowing the 

designer to optimize the cache performance by using improved software algorithms to 

program this pre-fetch engine. Though pre-fetching always increases data traffic in the 

bus, the proposed scheme claims that additional data traffic can be significantly reduced 

by using the programmable approach of the hardware, and benefits from both software 

and hardware.  

 

The selective caching policy proposed in [47] leads to an organization similar to a 

conventional cache in which all memory instructions have an additional bit set (or reset) 

by the compiler. During a cache miss, this bit controls whether a new block should be 

retrieved from the L2 cache and placed in L1 cache, or if the requested data should be 

retrieved from the L2 cache directly without updating the L1 cache. 
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A cache organization with both temporal and spatial subsystems has been proposed in 

[48,49,50,52]. This organization uses a very simple heuristic based on the data type 

which can be changed by dynamic or pre-runtime profiling. Selective caching is a feature 

of current microprocessors such as that being used in the PowerPC. The HP PA-7200 

[51] uses a software-managed data caching policy. Every memory instruction used by the 

HP PA-7200 includes a “hint bit” indicating that spatial locality is used to predict if the 

data referenced by that instruction shows only spatial locality characteristics and not 

temporal locality. The HP PA-7200 consists of two cache modules; the on-chip fully 

associative assist cache and a large direct-mapped off-chip cache. The assist cache holds 

data related to all memory references for which hint bits are explicitly set indicating 

spatial locality. The off-chip main cache holds all data in which the hint bit is not set 

indicating the lack of spatial locality. 

 

To avoid cache pollution, intelligent spatial pre-fetching schemes have been proposed 

[36,57]. In [36], a Spatial FootPrints (SFP) table is maintained by using specialized 

hardware. Depending on the content of the SFP table, the predictor mechanism fetches a 

smaller or larger number of blocks when misses occur in the cache. Also, in [57] a 

somewhat similar strategy based on a Spatial Locality Detection Table (SLDT) is used to 

prefetch multiple data blocks or less in order to reduce memory access latency during 

runtime.  

In [12,13], considerable performance improvement was shown by using a stream cache 

unit with a conventional cache. In this strategy, hardware based reordering of stream data 

was used to improve cache performance. The logic behind this approach is that, the 
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performance of most memory systems is dependent upon the order of the requests 

presented to it. Access ordering refers to any technique that changes the order of memory 

requests to increase bandwidth. Stream data, such as vector (scientific) computations, 

multi-media (de)compression, encryption, signal processing, text searching, etc., are 

affected more by bandwidth than by latency.  

 

Table 1 [38] shows the comparative performance benefits obtainable from different cache 

scheme compiled in [38]. 
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Table 1[38]. Summary of different cache optimization schemes. In the table + indicates it improves the 

factor, -indicates it hurts the factor. Hardware complexity factor 0 indicates easy to implement, and 3 

indicate more complex to implement. 

Technique Miss 
rate 

Miss 
penalty 

Hit 
time 

Hardware 
Complexit
y 

Comment 

Larger block size + -  0 Trivial; RS/6000 550 uses 128 

Higher associativity +  - 1 e.g., MIPS R10000 is 4-way 

Victim caches +   2 e.g., HP 7200  

Pseudo-associative +   2 Used in L2 of MIPS R10000 

Hardware prefetching 

of  instruction and 

data 

+   2 Data are harder to prefetch; 
Alpha 21064 

Compiler controlled 

prefetching 

+   3 Needs nonblocking cache too 

Compiler technique 

to reduce misses 

+   0 Software is challenge 

Giving priority to 

read misses over 

writes 

 +  1 Trivial for uniprocessor, and widely 
used 

Subblock placement  +  1 Used primarily to reduce tags 

Early restart and 

critical word first 

 +  2 Used in MIPS R10000, IBM 620 

Nonblocking caches  +  3 Used in Alpha 21064 

Second-level caches  +  2 Costly hardware; widely used 

Small and simple 

caches 

-  + 0 Trivial; widely used 

Avoiding address 

translation during 

indexing of the cache 

  + 2 Trivial if small cache; used in Alpha 
21064 

Pipelining writes for 

fast write hits 

  + 1 Used in Alpha 21064 
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1.10 Research Contributions: 

The research contributions made are documented in this dissertation and in  [63,64,65].  

The contributions presented in this dissertation are: 

 

a. The performance bottleneck of the caching scheme used by most current 

microprocessor architectures is identified, and reviews of different caching 

technologies suggested and implemented by various researchers are highlighted. 

 

b. Run-time cache resident data locality analysis of the memory access patterns of a 

wide variety of application programs defined in SPEC92 benchmark suite [62] are 

presented using the results of a simulation of real-time data cache access. This 

analysis presents a clear understanding of the data locality behavior of the common 

application programs. The average cache resource requirements for the spatial and 

temporal address spaces used by the programs are also identified.   This contribution 

provides valuable information for the designer of a cache subsystem. 

 

c. A locality estimation technique and subsequent circuit is designed which can perform 

run-time prediction of the data memory access locality shown by the programs [64]. 

The novelty of this prediction circuit is that it is simple enough to reduce penalties 

due to increased hardware complexity, yet it can also provide better performance in 

all cases of the SPEC92 benchmarks. In addition, this technique does not require any 

compiler assistance and is independent of any particular computer platform. 
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d. The design of a new split data cache organization is presented. This organization uses 

two sub-caches termed as the Spatial Sub-Cache and temporal Sub-Cache. It stores 

data with appropriate locality as predicted by the locality estimation circuitry into 

these sub-caches for efficient cache management and thereby improves the overall 

memory access efficiency of the microprocessor. 

 

e. A detailed evaluation of the locality estimation circuitry and the split data cache 

subsystem. A simulation prototype is written for the split data cache model using the 

C programming language and is implemented and tested on a UNIX platform using 

memory address traces of data for load/store instructions of the SPEC92 benchmark 

suite.  

 

 

1.11 Dissertation outline 

The remainder of this dissertation is organized as follows. Chapter 2 presents the analysis 

of the memory access behaviors of different benchmark programs during their runtime 

residency in the cache. Chapter 3 presents a hardware scheme used to predict the possible 

locality behavior of the accessed data during the execution of a program. Chapter 4 

presents the organizational design of a split data cache along with its implementation 

strategy. Chapter 5 presents the simulation of the designed split cache model and an 

evaluation of its performance. Finally, chapter 6 summarizes the research findings with 

conclusion and future research direction. 

 



 28

 

 

 

 

CHAPTER 2 

 
 

Cache Resident Data Locality Analysis 
 
 

The organization of the data cache can significantly affect overall data access latencies 

during program executing. The cache performance depends on the locality characteristics 

of the data being processed in a program as well as the underlying architecture.  A typical 

program has a data access profile that exhibits both temporal and spatial locality 

characteristics. Since most processors contain single data caches at a given level, and a 

single data cache cannot be optimized for purely spatial nor purely temporal locality data 

accesses, cache space pollution and inefficient usage of cache resources can occur.  In the 

worst case, these phenomena can actually introduce additional data access latencies 

through repeated line fills. Here an analysis and modeling scheme is presented that 

describes the runtime data access behavior of several benchmark programs in a typical, 

unified data cache. The motivation for the development of this model is to produce 
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information that may aid in the design of a split data cache with one side optimized for 

temporal locality accesses and the other for spatial locality accesses. 

 

2.0 Introduction 

A cache memory subsystem pre-fetches additional memory data during a miss along with 

the requested data word by the processor. The amount of pre-fetched data depends on the 

line size of the cache. With data pre-fetching, a cache memory can hide data access 

latencies by exploiting the locality characteristics of the running programs in the pre-

fetched lines. Pre-fetching a greater amount of data helps to hide latency rather than 

reducing the latency. The main problem is that pre-fetching can aid in cache performance 

only when additional memory bandwidth is available. This is because pre-fetching does 

not decrease the number of memory accesses; it simply tries to perform them over a 

shorter period. The available cache space and bandwidth may be polluted and misused by 

pre-fetching when a large amount of non-usable data is resident in the cache.  About 60 

percent of available space in a cache can be polluted in some extreme cases due to this 

phenomenon [57]. In cases where the program is already memory-bandwidth limited, it 

becomes impossible for pre-fetching to improve performance. Alternatively, locality 

optimizations such as cache blocking [29] can actually decrease the total number of 

accesses to memory, thereby reducing both latency and required bandwidth.  

 

A good knowledge of memory access behavior characterized by the locality of references 

can lead to efficient cache memory subsystem designs. Locality analysis of different 

types of programs during runtime aid in defining an optimized cache subsystem 
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organization. The locality behavior of a program is categorized as either, spatial or 

temporal. Most current research projects [36,57,58] are investigating the spatial reuse of 

data and strive to find a means to exploit this spatial reuse of data. 

 

Past research efforts [27,31,32,33] have sought to optimize program loop nest localities. 

Different models and reorganizations of loops have been proposed using tiling, 

compound transformations consisting of loop permutation, loop fusion, loop distribution 

and loop reversal [31] to increase temporal and spatial locality in loop-nests. These 

techniques are primarily compiler-based approaches. Programs must be compiled using 

the target machine’s compiler to gain the optimization benefits. 

 

Cache organizations based on compiler optimizations or based on identifying spatial 

reuse may produce poor performance when running a variety of different application 

programs. This poor performance is due to the particular bias of optimizations for a 

specific subset of the application programs. Usually, the average data access by the 

programs are both from spatial and temporal locality. Analysis of the run-time memory-

data access plays a critical role in this respect.   

 

The question still remains as to why use a run-time locality analysis model to design a 

data cache when compilers exploit detailed information from applications to optimize 

locality. Compiler based locality optimization can perform very effectively to improve 

the performance of those applications to which they can be applied. In reality, many 

dynamic data access patterns of the applications cannot be analyzed during compile time. 
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For example [56], consider the sparse matrix multiplication program shown in Figure 2.1-

1. In the innermost loop, the array elements A[k] and B[r] are indirectly determined by 

the data in the arrays Arow, Acol, Bcol and Brow. These indirect data accesses cannot be 

determined by the compiler since the compiler has no idea about what kind of data the 

program is going to process during run-time.  Therefore, if we want to optimize the data 

access locality for such a case, only run-time locality analysis can optimize cache 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

double  A[X], B[Y], C[M][M];
int Arow[M+1], Acol[X], Bcol[M+1], Brow[Y];

sparse-mm()
{

int i=0, j=0, k, r, start, end;
register double d;
for(;i<M;i++)

for(;j<M;j++)
{

d=0;
start=Bcol[j];
end =Bcol[j+1];

for(k=Arow[i];k<Arow[i+1];k++)
for(r=start;r<end;r++)                                    task t(i,j)

if(Acol[k] == Brow[r])
{

d+=A[k]*B[r];
start = r+1;
break;

}
C[i][j] =d;

}
}

Figure 2.1-1 Code block of a Sparse Matrix Multiplication, which has a dynamic data-

access pattern and an irregular computation pattern 
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A cache sub-system, that targets the true run-time data access of the program can 

improve the cache performance significantly. The advantage of using such a scheme is 

that since it is not designed for specific program sets nor does it depend on compiler 

assistance, in many cases can provide better performance.  

   

In this chapter, a model determining the locality behavior exhibited by several 

benchmarks programs executing in a load/store based uniprocessor with a typical unified 

data cache is presented. Locality analysis results using this model are also presented. The 

motivation for performing this analysis is to determine the data locality behavior of 

different programs, and to use the results to design an efficient cache organization that 

will not suffer from the inability to exploit varying data locality behaviors over a variety 

of executing programs.  

 

The subsequent sections of this chapter are organized as follows.  Section 2.1 presents an 

overview of locality and the need for runtime locality analysis and modeling of executing 

programs.  In section 2.2, the model used for the locality analysis is presented. Next, 

experimental results of the cache access behavior by different SPEC integer and floating 

point programs are presented and discussed. Finally, section 2.4 provides the conclusions 

based on the experimental data. 

 

2.1.1 Principle of Locality  

To hide memory access latency due to fast processors with relatively slower main 

memory, a cache subsystem is used to attempt to store data, which will be accessed in the 
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future by the processor. This is accomplished by loading additional data other than that 

being requested by the processor during a cache line fill. A typical way of doing this is to 

retrieve additional data from the neighboring address space of the requested data. The 

purpose of writing neighboring data into the cache is to exploit the principle of spatial 

locality.  Spatial locality exists due to the empirical observation that “data tends to be 

accessed that is close (in address space) to previously accessed data”.  Figure 2.1-1 shows 

an example of this type of locality. Data block B is requested by the processor and the 

resulting cache miss causes a line fill to occur that loads blocks A through D.  Thus, any 

consecutive memory blocks requested by the CPU within this spatial region will result in 

a cache hit with the access time equal to the (faster) cache access time..  

 

 

Figure 2.1-1: Cache line fill illustrating the “spatial access” 

 

Whenever the data access pattern is largely spatial in nature, the inclusion of large cache 

lines that contain more neighboring data can reduce the overall memory access latencies 

drastically. For strictly spatial data access patterns the reduction in memory access 

latency depends mainly on the cache line size.  
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Another type of locality is “temporal” locality or locality in time. This type of locality is 

characterized by certain locations in memory being accessed repeatedly in time. For 

example, this occurs when a CPU requests data blocks in the order B, G, M, B, G, M 

repeatedly during the execution of a program. The illustration shown in Figure 2.1-2 

depicts this type of access pattern.  In this case, the cache line fills are bringing additional 

memory blocks in each cache line that is not used by the processor. 

 

2.1.2 Motivation for Locality Analysis 

In past work on data cache optimization, mainly numeric (scientific) programs have been 

considered for analysis of the data locality pattern. Since most numeric codes contain a 

large amount of nested loops, a significant amount of research has been attributed to the 

incorporation of more spatial reuse through different compiler optimization techniques 

such as unimodular transformations, loop fusion and distribution and tiling [66]. Some 

assertions of the spatial reuse of data have been made without doing any intra-loop reuse 

analysis [31]. Some computer architectures, such as the HP-7200 [51] do not use any 

detailed program locality information and depend only on spatial reuse of data. 
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Figure 2.1-2: Cache line fill illustrating the “temporal access” 

 

To fully take advantage of the spatial locality present in a program’s data access patterns 

and to also benefit from the temporal locality that is also present, a data cache may be 

organized with multiword line sizes. In Figure 2.1-1 it is seen that for the spatial access 

pattern B, C, D and A the access penalty is one cache miss since the next three 

consecutive accesses result in a cache hit. Thus, the effective miss rate is 25 percent and 

cache space utilization is 100 percent for this case. From Figure 2.1-2, if the access 

pattern is B, G, M, B, G, M then the effective miss rate is increased to 50 percent and 

cache space utilization is reduced to 25 percent. This clearly indicates that the relatively 

large line size used for taking advantage of spatial locality results in the pollution of the 

cache and also increases the memory access bandwidth.  About 40% cache capacity 

waste is typical[57].     
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The depicted scenario indicates that the same cache organization will not perform equally 

well in all cases. To optimize performance, the cache organization must be tuned to 

benefit from both spatial and temporal data access behaviors. The tradeoff arises because 

increasing cache line size to exploit more spatial locality causes more cache pollution and 

wasted bandwidth when temporal accesses are requested.  Alternatively, decreasing the 

line size and adding more lines to a cache can result in inefficient usage when the 

accesses are largely spatial in nature.  Further, as is demonstrated later in this dissertation, 

the data access behavior varies largely from program to program. Data access behavior 

can be purely spatial, purely temporal or (more typically) a combination of both. It is 

possible to optimize a cache organization to provide optimum performance for a 

particular program. However, it is a very difficult task (if not impossible) to provide 

optimum performance for all types of program data access behavior. A reasonable choice 

in this case is to design a cache subsystem that will perform well on average. Analysis 

and modeling of the program data access behavior over a number of different programs 

can provide estimates of average-case behavior. This motivates us to carefully study and 

analyze the data access behavior of the programs that cover a wide range of applications. 

The SPEC benchmark suite has been used as a representative sample of different types of 

application programs.  

 

2.2 Locality Analysis Method 

The data locality behavior of different application programs is analyzed during runtime in 

order to observe the characteristics of interest. In the results presented here, parameters of 

interest are generated through the accumulation of statistics based on data access patterns 



 37

in a general cache during program execution. In this approach, specific cache 

architectures are considered and runtime data access profiles of different SPEC92 

benchmark programs are stored. Initially, different cache sizes with varying line sizes 

were modeled. Among these, a four-way set associative 32 KB cache with 128 byte (32-

bit words) line size was considered as the baseline organization to analyze and model 

cache data locality in terms of miss rates, and a wide window width to capture both 

spatial and temporal locality. This target cache architecture was simulated using the C 

language and complied using the Unix cc compiler.  Input to the program consists of 

memory traces gathered during the execution of the SPEC92 benchmarks. 

 

 

The memory traces of the SPEC92 benchmarks used in this investigation are those 

available from the anonymous ftp site of the New Mexico State University Trace 

Database [62].  The traces contain the addresses of the memory references and a field 

indicating whether it is instruction address or data read/write address. Since the main 

interest is data caching, a filter program was written that extracted only the data 

load/store related addresses. The cache simulator then used the data load/store related 

traces as input and generated the analysis results after simulating the cache.  

 

For locality profiling purposes, the simulator keeps track of the number of accesses in 

each line of the cache as well as the average time difference of each word being accessed 

in a line over successive hits, or the “temporal stride”. Although the term “stride” is 

generally used to refer to the absolute distance between different memory addresses, here 
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it is used in a temporal sense to refer the relative time difference in terms of the processor 

clock cycles. The analysis tool records the number of hits for each word in a line. 

Analyzing the runtime behavior of the SPEC92 benchmark programs’ memory traces 

allows the data access locality characteristics of these programs to be noted.  

 

For the locality analysis, the line hit-rate and strides of the words in the lines as well as 

word-hit frequency is used.  Usually, for spatial locality, the strides of the words in a line 

should be similar or should have a fixed difference with an equal or close number of hits. 

For temporal locality behavior, the number of accesses to a line should become very high 

and we may expect that the strides of the words and word-hit frequencies will vary 

greatly. Figure 2.2-1 and 2.2-2 shows the typical nature of the strides for temporal and 

spatial locality in a cache line for two benchmark programs used in this test bench.  

 

 

 

Temporal Locality Pattern in a Line

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 4 7 10 13 16

Word Number

W
o

rd
 H

it
 C

o
u

n
t 

a
n

d

S
tr

id
e

Number of Word Hits

Average Stride

Figure 2.2-1: Temporal access pattern in a cache line
 



 39

Spatial Locality Pattern in a line

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1 4 7 10 13 16

Word Number

W
o

rd
 H

it
 C

o
u

n
t 

a
n

d

S
tr

id
e

Word Hit Count

Average Stride

Figure 2.2-2: Spatial access pattern in a cache line
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Figure 2.2-2: Spatial access pattern in a cache line  

 

 

 

The following equation for the estimation of hit rate (in percentage) for spatial or 

temporal locality was used: 
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Where: 

 EHit = Estimated percent of Hits due to spatial or temporal Locality 

 WHCi  = ith Word Hit Count due to spatial or temporal Locality 

 NSpatial/Temporal = Number of Word Hits due to spatial or temporal Locality 

TWHC  = Total Number of Word Hit Count in the cache 

 

To facilitate this estimation process, the model uses counters for each line of each set in 

the cache and for all corresponding words in the lines. Two-dimensional unsigned integer 

array variables are used to store the count values.  The mapping process of a 4-way set 

associative cache is used to gather the array indexes of the counter variables in a manner 

similar to hashing, where the hash function is actually the cache mapping function. These 

counters are used to maintain the hit counts for each word in each line of the sets. For 

each respective word in the cache, the average time between successive hits is also 

maintained in another variable in terms of memory access cycles that we refer to as stride 

(in this case, temporal stride) in the plots.  Figure 2.2-3 illustrates this basic strategy of 

counting the hits for a single 4-way set that contains 4 words per line. Figure 2.2-4 

contains a code fragment that shows how to calculate temporal stride values for 

successive word hits. 
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Figure 2.2-3 Line and word hit count strategy in a set 
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// Initially, before any memory load store operation the index variables are set to zero, so,  
// Access_Cycle[Set & Line Index][Word Index] = 0  
// Avg_Stride[Set & Line Index][Word Index] = 0 
// Cum_Stride[Set & Line Index][Word Index] = 0 
// Code fragment below showing the method of calculating average time stride calculation on HITs on  
// words in the cache lines 
 
Current_Access_Cycle = Mem_Access_Cycle; 
 
if(MatchFound) 
{ 

Cum_Stride[Set_Line_Index][Word_Index] = 
Cum_Stride[Set_Line_Index][Word_Index] + (Current_Access_Cycle  -  

Access_Cycle[Set_Line_Index][Word_Index]); 
 

Access_Cycle[Set_Line_Index][Word_Index] = Current_Access_Cycle; 
Word_Hit_Count[Set_Line Index][Word_Index]++; 

} 
 
………… 
………… 
if(feof(Memory_Trace_File_Pointer)) 
{ 
    for(I=0; I<Number_of_Sets;I++) 
 for(J=0; J<4; J++) 
 { 
 Set_Line_Index = ((I<<2)|J); 
 for(Word_Index=0; Word_Index<Max_Word_Count_Per_Line;Word_Index++) 
 if(Word_Hit_Count[Set_Line_Index][Word_Index]!=0) 
 { 

Avg_Stride[Set_Line Index][Word Index] =  
Cum_Stride[Set_Line Index][Word Index]/ Word_Hit_Count[Set_Line Index][Word Index]; 
} 
} 

} 

Figure 3 1-4 Code fragment for average time-stride calculation on Hits 



 42

 

 

 

As input, the analysis program uses memory traces obtained through the simulated 

execution of the SPEC92 benchmarks assuming a load/store CPU with the cache 

structure described above. After processing the hit rate and average stride of all words in 

the cache, the portion of the cache hits due to spatial and temporal accesses is 

determined. This determination is based on the ‘hit count’ and ‘average stride’ values for 

each word in the cache, and is compared with the other words’ hit count and stride 

values. For spatial accesses, the hit count and stride should be similar in value for each 

word in relation to the other words in a specific line of the cache.   This observation 

forms the basis of how spatial locality is detected.  The spatial accesses are isolated by 

simple relative comparisons of both the word and total line hit count values.  For 

temporal accesses, the words with large differences in stride and hit count as compared 

with other words in the line are considered and their cumulative counts are recorded for 

each line. Following the same process for all of the lines in the cache, a combined set of 

statistics based on spatial, temporal and unused word counts are obtained to calculate the 

percentage of cache hits due to spatial versus temporal locality. Figure 2.2-5 shows a 

flow diagram illustrating the major steps of the analysis method. 
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Figure 2.2-5: Diagram illustrating the cache data analysis 

 

2.3 Data Locality Analysis Results 

Data locality behavior of several SPEC92 integer and floating point programs is shown in 

Table 2.3-1. From the data locality behavior of the benchmark programs, it is apparent 

that the data access patterns do not show purely spatial or temporal locality in any case. 

The ratio of spatial versus temporal locality varies from program to program. These 

results indicate that the spice2g6, gcc and doduc benchmarks have a bias toward temporal 

locality. Table 2.3-1 also indicates that most of the benchmark programs possess a 

significant amount of temporal locality. The average spatial locality is 68 percent and 

average temporal locality is 32 percent for the SPEC benchmark programs  used in this 

study.  

 

 

Table 2.3-1: Locality behavior of some SPEC Benchmark Programs 

Benchmark Spatial 
Reuse  

Average 
Spatial 
Reuse  

Temporal 
Reuse  

Average 
temporal 

Reuse  

Cache 
Space 

Pollution 

Average 
Space 

Pollution  

Espresso 0.54  0.46  0.34  
spice2g6 0.38  0.62  0.25  
Doduc 0.45  0.55  0.01  
Li 0.54  0.46  0.07  
Eqntott 0.67  0.33  0.18  
Compress 0.63  0.37  0.01  
mdljdp2 0.64  0.36  0.28  
wave5 0.63 0.68 0.37 0.32 0.62 0.23 
Tomcatv 0.99  0.01  0.14  
Ora 0.90  0.10  0.61  
Alvinn 0.79  0.21  0.15  
Ear 0.81  0.19  0.10  
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Sc 0.55  0.45  0.40  
mdljsp2 0.49  0.51  0.31  
swm256 0.96  0.04  0.10  
Gcc 0.44  0.56  0.10  
su2cor 0.87  0.13  0.01  
nasa7 0.99  0.01  0.38  

 

The spatial and temporal locality distributions of the SPEC benchmarks are shown in 

Figures 2.3-1 and 2.3-2.  
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Figure 2.3-3 shows the pollution of cache space due to spatial fetching of data in the 

cache lines. The results suggest that on average, 23% of the available cache space be 

polluted by the spatial pre-fetching of data. In an extreme case the pollution was 62% 

(wave5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3-4 shows a 3-D plot of the portion of the cache space usage by the benchmark 

espresso. This plot indicates that even when the spatial reuse component is dominant, the 
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Figure 2.3-3: Cache space pollution for spatial fetching of data into cache lines 

by SPEC benchmarks 
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reuse surface is not very uniform. The reuse frequency is very high in some lines. 

However, in most of the lines, spatial reuse is minimal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Careful analysis of the results suggests that the address space of the memory references 

could be pre-dominantly spatial, pre-dominantly temporal or a combination of each. This 

is illustrated in Figure 2.3-5 where set A represents accesses that exhibit spatial locality 

and set B indicates those with temporal locality.  The results indicate that programs 

typically contain a subset of accesses that have characteristics of both sets A and B.  The 

intersection of these two classes of memory access types is indicated by set C in Figure 

2.3-5.  As an example, consider a program that consists of several consecutive loops, 
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each of which accesses an array of data sequentially.  Clearly, the accesses within a 

single loop are spatial in nature, however examining the access pattern of a single array 

element is temporal in nature due to the existence of multiple loops, and hence, multiple 

accesses of the same element. 

 

 

 

Figure 2.3-5: Diagram of overlapping spatial and temporal locality characteristics 

 

 

2.4 Conclusions 

Based on the locality analysis presented above, the following conclusions are made: 

1. Run-time data access behavior of different programs needs to be supported.  

Thus, both spatial and temporal locality data should be cached.  Therefore, a 

split data cache is justified to facilitate both types of locality. 

2. A unified data cache can perform poorly in some cases by wasting valuable 

cache capacity. 
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3. The data that should be cached in a spatial cache are whose reuse frequency is 

good enough to allow for future cache hits. Otherwise, their accesses can be 

bypassed in the cache. 

4. Since spatial reuse is dominant in most of the cases, a relatively larger spatial 

cache with bigger line sizes should be used as compared to the temporal cache 

in the split data cache.  

 

 

 

CHAPTER 3 

 
 

Dynamic Data Locality Estimation Circuit 
 
 

A split data-cache architecture with separate caches for data accesses classified as 

predominately spatial or temporal requires specialized hardware or software to predict 

these characteristics. This chapter presents a locality estimation circuit that operates 

dynamically as the program executes.  The technique is developed based on an analysis 

of the locality behavior of several benchmark programs as described in the previous 

chapter.  The split data cache organization is then described and simulated.  Experimental 

results obtained from the simulations are preserved.  These results are of use in 
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determining the effectiveness of the dynamic locality-estimation circuit and the relative 

line sizes that should be used for the two caches. 

 

3.0 Introduction 

A data locality cache requires specialized hardware to predict the data access locality, and 

to determine in which cache the data should be stored. Run-time access behavior could 

show a random variation of locality of data from program to program. Performing 

compiler assisted profiling of locality before execution of the program is much easier in 

this case. Accomplishing the same result with a hardware scheme is  more difficult due to 

the finite size of the hardware. The design of the prediction hardware should be simple 

and effective in any case to avoid complexity and minimize the additional hardware 

resources required. Complex locality-estimation hardware may provide best the locality 

estimation but the overall organization may introduce additional ‘in-cache’ locality 

computation time that effects the cache access time.  With this in mind, a locality 

prediction hardware unit is designed which does not require any complex hardware 

scheme and uses only a simple protocol to estimate the data access locality.  

 

The subsequent sections of this chapter are organized as follows.  Section 3.1 presents a 

guideline to predict data locality analysis done in chapter 2. Section 3.2 describes a 

simple ‘locality-estimation-circuit’ to be included in the cache controller for dynamic 

prediction. Next, the performance of the locality prediction circuit when used in a split 

data cache organization as compared to the locality prediction with the statistical analysis 

is discussed. Finally, in section 3.4, conclusions based on the experimental data are 
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presented. 

 

3.1 Data Locality Prediction Guideline 

The locality analysis presented in chapter 2 provided insight to the overall data access 

behavior of the programs during run-time. This analysis model can be used effectively to 

define the guidelines for designing a locality prediction circuit. It has been seen that the 

data access behaviors exhibit uniform access and equal strides in most of the spatial 

accesses in a cache line. For temporal references, the access frequencies are quite high in 

some memory locations. Some temporal accesses are within very limited zones of the 

cache lines. It has been also observed that overlapped spatial and temporal accesses exist 

in some lines of the cache. Table 3.1 illustrates the spatial and temporal locality 

distribution of a few more benchmark programs in addition to that presented in Chapter 

2. 

 

Table 3.1: Estimation of locality type for Benchmark programs 

Benchmark Estimated Hit Rate (%) 

due to spatial Locality 

 Estimated Hit Rate (%) 

due to temporal Locality 

LINPACK 35.36 64.64 

MATMULT64 13.85 86.15 

QSORT 50.03 49.97 

WORDFREQ 20.48 79.52 

CELLAUTO 62.51 37.49 

QUEENS 0.01 99.99 
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From the locality analysis presented in Chapter 2, a guideline that the data cache needs 

support for storing data in two different sub-caches according to the locality bias can be 

inferred. These analysis results are used to propose a simple hardware solution for a split 

spatial and temporal data cache that allows for an overall improvement in caching 

efficiency.  The approach followed is to implement a solution in hardware using dynamic 

locality estimation.  This poses the problem of which cache to store the data in during 

cold-start accesses.  At the cold-start point, no prior information is known about the data 

and an estimate of the locality would simply be a guess.  Furthermore, the results in Table 

3.1 indicate that depending on the functionality of the program, some exhibit 

predominately temporal locality while others exhibit spatial locality.  The second 

guideline is that an estimation circuit should be designed to estimate the data access 

locality during run-time and then store those data in the proper locality caches. The next 

section describes the organization and working principle of a locality estimation circuit 

considered in this research for its simplicity and effectiveness. 

 

3.2.1 Split data locality cache 

The functional blocks of a generic split data cache is in Figure 3.1. This cache 

organization contains a dynamic locality-estimation circuit that controls the runtime 

caching policies for the whole organization.  The dynamic locality estimation circuitry 

analyzes the locality pattern of recently accessed data in the cache and directs the next 

line-fill to the appropriate cache. This is accomplished by runtime locality analysis on 

hits occurring after the cold start of the cache. 
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3.2.2 Dynamic locality estimation scheme 

Locality prediction hardware must estimate run-time data access patterns. This can be 

accomplished with the knowledge of the run-time data access pattern in the cache blocks. 

To store the access pattern information, we need to keep a pattern table in hardware. To 

maintain a separate run-time data prediction-pattern table is both expensive and difficult. 

Instead of using a separate locality prediction table, we can use the cache line structure 

for both spatial and temporal data caches as shown in Figure 3.2.  This requires some 

additional storage space in the spatial cache. The fields in this cache line are typical for 

any set-associative cache with the exception of the inclusion of a single bit, L, which is 

referred to as the "locality" bit and a “reuse” bit, R.  The V field is used to indicate cache 

line invalidation for write-through operations, the LRU bits are included for the 

implementation of the replacement policy, the tag bits will serve as inputs to the address 

circuitry to determine matches or hits, the DATA field contains the actual cache data.  
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Figure 3.1 The functional blocks of the split data cache organization



 54

Although the line sizes differ in the temporal and spatial data caches, the structure is the 

same. 

 
V L R LRU TAG LINE  

OFFSET 
DATA 

 
L       = Locality Information, ‘0’ for all cache lines initially, and SET to ‘1’ when data shows 

locality.                

V       = Valid Bit.  

TAG = Tag bits of the address. 

LRU = Least Recently Used bits (Number of Bits depends on the number of sets in the cache). 

 
Figure 3.2: Cache line entries for the spatial and temporal caches 

 

The locality bit is used to indicate that the cache line has an estimated spatial locality 

behavior while in the spatial cache, or exhibits temporal locality behavior while residing 

in the temporal data cache when it is set. During the cold start execution phase, data is 

brought into the spatial cache initially. During cold start, bringing data in the spatial 

cache is advantageous because we cannot do any prior anticipation of data locality before 

they are accesses by the program. Thereby, if data is brought into the temporal cache with 

an anticipation of temporal hits then the cache might face multiples misses if the 

prediction is wrong. Copying data from the spatial cache to the temporal cache will not 

increase miss rate and the release of the spatial cache space is possible in case the hit in a 

particular spatial cache line is found temporal. The strategy for doing this spatial cache to 

temporal cache transfer is described in the next paragraph. 

 

During a hit in the spatial cache, if the hit occurs due to the same word for which that line 
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was originally brought from a lower level of memory to the cache, the temporal reuse bit 

is set to “1”. Otherwise, the spatial locality bit is set to “1” to indicate that spatial locality 

of references is present in the line. The match of the line offset of the new memory 

reference with line OFFSET field of the spatial cache maintained in cache directory will 

be used to infer the locality information.  

 

3.2.3 Dynamic locality estimation hardware 

The simple hardware scheme for the locality estimation circuit is shown in Figure 3.3. 

This scheme sets the spatial locality bit and reuse bit following the principles outlined 

above.  To estimate the temporal locality, when a second hit in a line occurs due to 

temporal reuse of the same memory reference, the circuit checks whether or not the 

spatial locality bit is set. If it is set, then the access-pattern into that cache line’s address 

space exhibits both types of locality behavior.  In this case, maintaining the data 

residence in the spatial cache is better. Alternatively, if the consecutive access is due to 

the same memory word reference and the spatial bit is not set, there is a high probability 

that the reference is temporal. In this case, the estimation circuit initiates a move 

operation of that particular data word into the temporal cache.  

Figure 3.3: Basic Hardware Organization of the Locality Estimation circuitry
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This simple runtime heuristic for estimating the locality behavior of memory accesses 

requires less hardware and avoids complexity in design as compared to other schemes 

proposed in [36,57], which only detect spatial locality.  Simplicity in the hardware of the 

locality estimation circuit is a crucial design constraint. Simple hardware ensures that 

overall program access times that are enhanced by the split cache organization are not 

offset due to excessive latency in the estimation circuit itself. The prediction hardware 

instructs the cache controller to move data from the spatial cache to temporal cache when 

a hit is considered due to the temporal locality. Therefore, the cache read-write operation 

is transparent from the affect of this data movement. The data movement from the spatial 

to temporal cache occurs simultaneously at the cache speed while the ‘hit-data’ is 

transferred to the CPU register. The identification of the temporal hit requires only a 

comparator and an additional gate through the critical path. The split cache is considered 

L1 cache, which is fabricated on the same CPU die that offers very fast logic usage. 

Therefore, minimal latency for the comparator and the gate comprises the prediction 

latency, and doesn’t affect the cache access cycle.   

 

3.4 Experimental Results  

A split data cache model that uses the locality prediction circuit defined above was 

simulated using C language constructs in Unix Platform. The performance of the locality 

prediction circuit is compared with the statistical metrics as described in chapter 2 for the 

SPEC92 benchmark suite. 
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Table 3.2 shows the comparison of estimated spatial locality by using the split cache as 

compared to the “true” locality characteristics as predicted by the corresponding 

statistical analysis [64]. These data are also shown in Figure 3.4 as a plot of the two 

estimates.  

 

 

 

 

Table 3.2: Comparison of Circuit Estimated to Statistically Analyzed Locality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Benchmark 

Program

Spatial Locality 

Percentage 

estimated by Split 

Cache           

(%)

Spatial Locality 

Percentage 

estimated by 

Statistical 

Analysis         

(%)

Deviation         

(%)

nasa7 0.99 0.99 0.00

tomcatv 0.81 0.99 -18.18

espresso 0.76 0.54 40.74

ora 0.75 0.9 -16.67

alvinn 0.87 0.79 10.13

ear 0.89 0.81 9.88

swm256 0.99 0.96 3.13

su2cor 0.71 0.87 -18.39

eqntott 0.73 0.67 8.96

compress 0.95 0.63 50.79

wave5 0.86 0.63 36.51

mdljdp2 0.84 0.64 31.25

sc 0.74 0.55 34.55

li 0.61 0.54 12.96

mdljsp2 0.72 0.49 46.94

doduc 0.60 0.45 33.33

gcc 0.70 0.44 59.09

spice2g6 0.63 0.38 65.79
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Figure 3.4 Spatial Locality estimates by Dynamic Estimation and Statistical analysis 

As is evident from Figure 3.4, the locality estimation circuit usually provides a higher 

estimation of spatial locality as compared to the statistical analysis. As mentioned 

previously, all references initially result in spatial cache line fills. Since they are resident 

in the spatial cache initially, if there is an overlapped spatial and temporal access 

characteristic, the over estimation of the spatial locality is due to simple nature of the 

estimation hardware used and the fact that all data are placed into the spatial cache on 

cold-start initialization.  The overlapped spatial and temporal access zone was also 
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apparent from the statistical analysis as depicted in Figure 3.5. 

 

 

 

In some cases, the estimation circuit also under-estimates spatial locality characteristics. 

This occurs since, in these experiments, the spatial and temporal caches are divided into 

two equally sized caches.  In comparing these results to the unified cache, we only utilize 

one-half of the capacity for the spatial cache as compared to the unified data cache that 

contains lines of size greater than one word throughout the entire cache.  However, we 

are still striving to provide better performance even in the case where spatial locality is 

highly dominant. Since we effectively have a spatial cache with one-half the size of a 

corresponding unified cache, problems can occur due to “thrashing” where data 

simultaneously exhibits behavior that is consistent with both temporal and spatial 

locality.  This can easily occur in a case where subsequent loops are present in program 

that sequentially accesses an array.  Within a single loop, the array elements have spatial 

locality, but among the set of subsequent loops, a single array element may be accessed 

several times indicating temporal locality characteristics. 

 

To alleviate this problem, the temporal cache was used to store “victim” blocks of data 

when they are being evicted from the spatial cache due to the replacement policy. Any hit 

of spatial data that resides in the temporal cache increases the temporal hit count and 

indicates the presence of more temporal locality in some cases. The justification of this 

explanation is obvious if we look at the overestimated temporal locality cases for the 
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benchmarks tomcatv, ora and su2cor. For these cases, the statistical analysis always 

suggests that the presence of spatial locality is greater than 80%. 

 

3.5 Conclusion 

A simple locality prediction circuit is designed and evaluated based on the run-time data 

access model presented in Chapter 2. The run-time cache resident data analysis indicated 

the design strategy for this hardware unit. The prediction circuit helps to determine into 

which cache a specific data block should reside during program run-time. In addition, the 

prediction circuit incorporates a small amount of additional overhead in terms of 

hardware complexity and access latency.  Due to the simplicity of the hardware, the 

estimates did not fully agree with the statistical analysis of the locality characteristics as 

discussed in Chapter 2. The deviation from the statistical analysis is attributed to the cold 

start strategy, the spatial victim block placement policy and the overlapped temporal and 

spatial address spaces.  
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CHAPTER 4 

 

Split-Cache Subsystem Design 

 

The implementation of the locality estimation circuit in a cache organization requires 

defining the typical data path and the control hardware of the memory management unit 

(MMU) in the processor architecture. The targeted architecture is an uniprocessor to test 

the performance of the split data locality cache. In this Chapter, the hardware 

organization of the split cache subsystem is presented. After describing the hardware and 
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the associated test bench model, the performance evaluation of this subsystem is 

presented. 

 

4.0 Split Data Cache Organization 

The approach used to design the split data cache was to, a) define the data path, b) define 

the size and address mapping schemes for the spatial and temporal sub-caches, and c) 

define the replacement algorithm. Before going through each of these steps, structural 

placement of this cache in the processor architecture is discussed. Figure 5.1 shows the 

basic placement of the split data cache in a uniprocessor organization. Here the cache is 

considered as a level one (L1) cache. The size of the sub-caches is dependent on the 

optimum cache performance design. To store data into spatial or temporal cache, this 

organization requires the locality estimation circuit. Data localities are dynamically 

determined by the estimation circuitry after cold-start of the process.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The Split Data Cache in a uniprocessor organization 
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The question now arises, into which cache data should be brought during the cold starts 

of the process. Incorrect placement of data during cold starts will introduce additional 

miss penalty. To find a solution, analysis of the cache performance by setting up a split 

cache simulation scheme for bringing data during cold start was done. The simulation 

scheme considers all new entries in the cache as having spatial locality initially in one 

scheme and as having temporal locality in another.  During a cache hit, a comparison is 

performed that determines if hit is due to the same memory reference for which the line 

was brought into the cache or not. If the line is resident in the "wrong" cache (according 

to the locality estimate), then that line is copied to the other cache and the current entry is 

invalidated. The flow diagrams shown in Figure 4.2 and 4.3 depict these two schemes.   
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       Figure 4.2: Flow diagram of caching scheme where initial references are considered  spatial
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Two different data locality based cache simulators were created using the C programming 

language in UNIX.  The simulators predicted the performance of these cache 

organizations for varying cache line sizes for both temporal and spatial caches. The 

simulation results reveal how cache performance is affected by using the locality 

estimation based caching scheme and by varying cache line sizes.  In both schemes, a 16 

KB 4-way set associative organization initially was used. The 16 KB address space was 
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      Figure 4.3:  Flow diagram of caching scheme where initial references are considered temporal
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further divided into two 8 KB sub-caches (one for temporal and the other for spatial 

locality).   

 

Using the two 8-KB organizations, a series of simulations for six benchmark programs by 

varying the cache line sizes in words were conducted. The performance of the caches by 

keeping the spatial cache line size fixed at a particular word size and varying the line 

sizes of the temporal cache line sizes by words such as 1, 2, 4, 8, 16 and 32 words were 

simulated. The simulated performance of the cache for six benchmark programs based on 

the resulting miss rates was recorded. Next, the cache was simulated by keeping the 

temporal cache line size fixed and by varying the spatial cache line size.   

 

The simulation results are shown in Table 4-1.  As expected, the deciding factor in the 

success of a locality-based cache depends on the ability to predict the data locality bias of 

a particular program. The simulation results indicate that varying the size of the spatial 

cache lines (when all data is initially placed in the temporal cache) does not affect overall 

hit rates significantly.   A more important factor is that the size of the temporal cache line 

appears to affect the miss rate to a larger extent. This is the case regardless of whether 

"cold start" data is assumed to exhibit spatial, or temporal, locality.  This attribute to the 

fact that the temporal access behavior of data initially present in a spatial cache helps to 

reduce the overall miss rate just as it would if it were initially present in the temporal 

cache.  
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Table 4-1: Summary of Miss rates of the Locality Estimation based Cache 

 
All data stored in spatial Cache first:   All data stored in temporal Cache first:   

 Spatial Line 
Sizes: 

    Spatial Line 
Sizes: 

     

Benchmark  4 Byte  8 Byte  16 Byte  32 Byte 64 Byte  128 Byte 4 Byte 8 Byte 16 Byte  32 Byte  64 Byte  128 Byte Temporal 
Line Size 

LINPACK 21.847 21.931 19.203 17.304 16.510 17.181 21.948 21.948 21.948 21.948 21.948 21.948 4 Byte 

 21.863 21.904 19.090 17.181 16.391 16.943 22.052 21.980 21.963 21.963 21.963 21.952 8 Byte 

 10.939 10.929 14.533 12.635 11.750 11.371 21.182 21.175 12.180 11.217 10.798 10.558 16 Byte 

 7.305 7.142 8.412 7.603 6.749 6.309 16.357 16.119 7.370 6.366 5.892 5.598 32 Byte 

 5.728 5.413 5.388 4.573 4.246 3.637 15.287 14.335 5.296 4.368 3.617 3.596 64 Byte 

 5.104 4.778 3.962 3.152 2.907 2.358 17.823 13.794 5.415 4.290 3.668 2.782 128 Byte 

MATMULT64 3.077 5.367 5.769 6.995 7.096 7.291 4.036 4.036 4.036 4.036 4.036 4.036 4 Byte 

 3.107 5.402 5.792 6.965 7.127 7.350 9.099 5.529 5.977 6.409 6.634 6.742 8 Byte 

 3.309 4.660 5.723 6.386 10.032 10.618 10.299 7.234 4.958 5.409 5.291 5.341 16 Byte 

 3.704 4.949 5.807 9.451 9.973 10.707 10.346 7.629 6.857 6.954 7.239 8.407 32 Byte 

 3.912 5.233 5.819 9.967 9.438 10.491 10.971 8.330 7.879 6.796 5.124 7.859 64 Byte 

 4.120 5.293 5.723 10.284 10.566 11.119 11.711 9.385 8.873 8.959 8.498 6.894 128 Byte 

QSORT 3.599 2.824 2.625 2.084 1.528 1.173 3.847 3.846 3.847 3.848 3.850 3.851 4 Byte 

 2.908 2.318 2.297 1.908 1.522 1.152 2.903 2.259 2.291 2.013 1.571 1.152 8 Byte 

 2.401 1.912 2.268 2.000 1.682 1.212 2.349 1.919 2.275 2.065 1.716 1.201 16 Byte 

 1.900 1.571 1.862 2.099 1.752 1.248 1.888 1.625 1.920 2.143 1.794 1.244 32 Byte 

 1.393 1.253 1.503 1.779 1.533 1.099 1.495 1.337 1.599 1.858 1.719 1.149 64 Byte 

 0.983 0.949 1.151 1.454 1.270 0.782 1.218 1.095 1.305 1.553 1.516 0.965 128 Byte 

WORDFREQ 0.757 1.453 1.639 2.376 3.173 3.639 0.852 0.794 0.789 0.756 0.709 0.682 4 Byte 

 0.886 1.278 1.687 2.100 2.869 3.313 6.197 0.947 0.912 0.889 0.903 0.947 8 Byte 

 1.561 1.285 1.207 1.836 2.508 3.130 20.956 5.754 1.482 1.285 1.167 0.981 16 Byte 

 1.108 1.034 1.049 1.507 2.256 3.003 23.173 7.002 6.355 1.541 1.351 1.169 32 Byte 

 1.206 1.121 1.151 1.255 1.899 2.743 18.730 13.109 8.685 6.218 1.320 1.264 64 Byte 

 1.639 2.922 2.113 1.038 1.681 1.989 18.136 17.784 15.084 12.977 11.070 2.966 128 Byte 

QUEENS 0.008 0.007 0.005 0.003 0.003 0.054 0.008 0.008 0.008 0.008 0.008 0.008 4 Byte 

 0.007 0.005 0.004 0.003 0.003 0.054 0.601 0.005 0.005 0.004 0.004 0.003 8 Byte 

 0.006 0.005 0.004 0.003 0.003 0.054 6.618 0.912 0.004 0.004 0.003 0.002 16 Byte 

 0.005 0.004 0.003 0.003 0.002 0.003 5.228 3.184 0.029 0.003 0.002 0.002 32 Byte 

 0.003 0.003 0.003 0.002 0.002 0.002 5.411 0.500 2.846 1.036 0.002 0.002 64 Byte 

 0.003 0.002 0.002 0.002 0.002 0.002 0.451 0.539 2.888 1.078 0.044 0.001 128 Byte 

CELLAUTO 0.151 0.671 0.361 0.256 2.513 3.038 0.308 0.299 0.298 0.295 0.294 0.294 4 Byte 

 0.841 0.658 0.359 0.255 2.512 2.789 7.010 0.634 0.338 0.184 0.109 0.108 8 Byte 

 1.729 0.649 0.353 0.254 2.511 2.722 10.467 2.912 0.338 0.186 0.111 0.063 16 Byte 

 1.717 0.648 0.353 0.194 2.387 2.463 16.272 12.027 1.519 0.186 0.110 0.102 32 Byte 

 1.791 0.648 0.353 0.194 0.111 0.104 10.942 8.630 4.909 0.226 0.109 0.099 64 Byte 

 1.905 0.618 0.353 0.185 0.104 0.064 13.693 8.678 4.901 0.243 0.107 0.080 128 Byte 

 



 68

Moving data from larger lines present in the spatial cache to smaller ones in the temporal 

cache avoids an external memory access, however the converse of this is not true. Due to 

the variance in locality bias exhibited by the benchmark programs, leads us to believe 

that the default-starting cache should not be fixed.  Rather, these results indicate that the 

default should be allowed to dynamically change during program execution for all new 

line fills.  Of course, at the beginning of a programs’ execution, there must be some 

initial default cache.  Based on the reasoning in the previous paragraph, the initial default 

cache should be the spatial cache.  This will result in wasting memory space due to 

having a data word with temporal locality consuming a (relatively larger) spatial cache 

line, but it will avoid the miss penalty due to having a word exhibiting spatial locality 

present in a temporal cache initially. 

 

In the subsequent sections, the detail design of the split data cache is presented. These 

include defining the critical data path, defining the size and address-mapping scheme, 

defining the cache replacement policy. Following this, the implementation strategy of the 

locality cache and performance modification features such as modified line replacement 

policy and spatial victim placement policy maintained in the design process are 

discussed.   

 

4.0.1 Defining the Critical Data Path 

The critical data path of the split data cache architecture is shown in Figure 4.4. The 

critical data path involves the path through which the data needs to travel for a read or 

write operation at a minimum. The critical path includes the chip data path, the cache 
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controller, and the tag RAM. For a read or write operation during a search in the cache, 

the cache controller sends a read/write signal to the cache and the spatial and temporal 

tags of the memory address is compared simultaneously by the comparators with the 

stored tags in the tag ram. As this is the usual process of searching in a conventional 

cache, there is no additional delay for storing or retrieving data for using this 

organization. The locality estimation circuitry operates independent from data read or 

writes operations, and therefore does not add to the critical path. As such additional 

access latency into the cache are not introduced.  

 

 

 

Figure 4.4 Critical Data Path of the Split Data Cache
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4.0.2 Defining the size and address mapping schemes 

Past research has shown [59, 60, 61] that a data cache which stores a relatively small 

number of recently accessed or written memory locations can potentially service more 

than 60% fraction of loads and stores. The goal here is to design a L1 data cache for 

which a 16KB size is chosen based on the observation that for the benchmark program 

traces used, 16 KB is enough memory to keep the total miss rate less than 5% including 

cold start misses in almost all cases and without using any L2 or other assist cache.  The 

SPEC92 benchmark suite can create a substantial amount of bus traffic on the data 

memory system. Thus, if a small cache can provide good performance for this test suite, 

then it will perform equally well for many other application programs. Using a small 

cache size has another advantage; the cache access time for all blocks within the cache 

remains nearly constant. Using a bigger cache may reduce the miss rate but it will also 

incorporate unequal access times for different blocks within the cache with the increase 

of size simply due to the increased distance of data blocks within the cache.   Typical 

observations also show that in most cases, the cache size requirement is very small 

compared to the cache capacity contained by superscalar processors.  

 

The choice of the address-mapping scheme depends on factors such as, cache lookup 

speed, hardware complexity and cache performance. The available choices here are direct 

mapped, set associative and, fully associative. The direct mapped address scheme 

provides faster lookup time and requires less hardware, however, the cache performance 

suffers when multiple main memory blocks must map into the same cache blocks. 

Frequent cache misses and cache updates become a bottleneck in this case. The fully 
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associative mapping technique suffers minimally from misses and updates in this respect, 

but it increases the hardware overhead due to usage of comparators equal to the number 

of lines in the cache. A compromise between these two mapping schemes generally is 

based on associative mapping. In this case, the number of comparators depends on the 

degree of associativity in the cache. For example, an 8-way set associative cache requires 

a total of 8 tag comparators. Figure 4.5 shows the variance of the cache performance [61] 

on the degree of associativity for typical data cache for SPEC92 benchmarks.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 suggests that the impact of increasing associativity on cache performance is 

minimal after degree 4. The 4-way set associative scheme is also very popular in industry 

allowing the results of the split data cache to be compared to a large number of systems. 

For these reasons, 4-way set associative mapping scheme was selected in the target cache 

organization.  From the locality analysis experiments, it is evident that a cache line size 
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of 128 bytes provides a good window size to determine the locality trend of data accesses 

over the SPEC92 benchmarks. From Figure 4.5, we observe that a cache line size of 128 

bytes also provides good cache performance in terms of minimum miss rate. Considering 

these two experimental outcomes, the spatial cache line size is chosen to be 128 bytes or 

32 words (1 word = 4 bytes). The temporal cache line size is chosen to be 4 bytes or 1 

word, as truly temporal data does not require a larger line size to accommodate spatial 

locality.    

 

4.0.3 Defining the cache replacement policy 

When a cache miss occurs after a cold-start, the critical decision becomes which block in 

the cache should be replaced with the new block from the main memory. Due to the small 

size of the cache, it is not possible to keep all the working sets of the executing program 

in the cache. In a direct mapped cache, there is no choice since only one block can be 

replaced by the new block. However, in set associative or fully associative cache, there 

are multiple blocks available, which can be replaced with the new block. The placement 

policy largely depends on the locality property of the reference in the programs. 

Generally, fixed space replacement algorithms are used for this constrained mapping 

mechanism. For example, in the set associative cache, the block to be replaced is within a 

set, thus, the replacement algorithm is invoked for block frames within that set.  

 

Least Recently Used (LRU), First In First Out (FIFO), and Random (RAND) are 

examples of some common fixed space replacement algorithms. In LRU policy, the 

block, which was used in least recent time, is the candidate for replacement. In FIFO, the 
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longest resident is replaced based on first come first out strategy. In RAND, a random 

block is selected for replacement. The LRU replacement algorithm performs best among 

these three policies due to the obvious demerits of the other two. 

 

The LRU replacement policy was used in the designed cache organization finding as the 

best candidate. The LRU policy could be implemented efficiently in the hardware for a 

small set size and can operate at the cache speed. There are several implementation 

strategies available to implement the LRU replacement policy in the hardware.   

 

One simple implementation of the LRU policy in hardware uses an aging counter. For a 4 

way set associative cache, a counter only requires 2 bits for each line of the set. 

Therefore, it can count from 0 to 3. Though there are multiple sets in a cache, only one 

set of LRU bits needs to be updated on a hit. Thus, the maximum number of 2 bit 

counters required for a 4 way set associative cache is 4. Each time a reference results in a 

hit and the block frame with count M is referenced, its counter is reset to 0 and all the 

counters within that set having a value less than j is incremented. The other counters are 

unmodified. If the reference results in a miss and the set is full, the block with counter 

value of j = 3 is overwritten with the new block and its counter is reset to 0. The counters 

of the other three blocks are incremented by 1. The block with the counter value of 3 can 

be obtained by an associative search of the counters. LRU bits update process on line hit 

is shown in Figure 4.6. 
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4.1 Implementation of the locality cache  

Determining the line size of the spatial sub-cache has already been discussed. For the 

temporal sub-cache, a line size of 1 word (4 bytes) was chosen. For the data locality 

estimation, we need to store the run-time data locality history. For this purpose 3 

additional bits in the spatial cache line are used to estimate the data locality type when a 

cache hit is encountered during the execution of a program. Figure 4.7 shows the 

organization of the spatial cache line. This organization was chosen to avoid keeping a 

separate locality prediction table in the hardware and to maintain a simple strategy for 

estimating the data locality type. The temporal cache line does not require any additional 

bits like S, T or Line Offset and uses an L bit per line to indicate that an entry in a 

particular line is temporal. 

  

 

 

V      = Valid bit 
LRU = Least Recently Used bits 
L = Spatial Locality Bit, S = Spatial Reuse Bit, T = Temporal use bit 
 

Figure 4.7. The spatial cache line organization 
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Both the spatial and temporal Caches use a 4-way set associative address-mapping 

scheme. The line size of spatial cache is 32 words and the temporal cache line size is 1 

word. The line size of spatial cache was chosen to be 32 Words to provide the best 

window size for the data locality analysis based on results obtained from the heuristics 

for different line sizes that were analyzed in [63,64]. 

 

4.1.1 Locality estimation protocol  

A simple locality estimation protocol was designed using 3 bits L, S, and T.  During a 

line fill, the spatial Cache line stores the line offset to indicate the particular word for 

which that line was brought to cache.  On successive hits into a line, the line offset is 

always compared with the initial line offset. The estimation circuit sets the L (locality 

bit), S (spatial reuse bit), and T (temporal use bit) bits according to the state transition 

diagram shown in Figure 4.8.  
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The decision diagram to set the L, S and T bits is shown in Figure 4.9. The temporal use 

bit sets to ‘1’ if the hit is due to same word reference for which the line was brought into 

cache initially and at the same time the spatial locality bit is not Set. The spatial Locality 

bit sets to ‘1’ if the hit is not due to same reference. The spatial Reuse bit sets to ‘1’ if the 

L bit is set and Hit is due to same reference.  On a second temporal hit, when the L bit is 

not Set then the probability of that reference being temporal is quite high, so, the cache 

organization copies that particular reference to the temporal Cache. In addition, this time 

the cache circuitry invalidates that entry from the spatial Cache to avoid cache-coherence 

problem.  
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Figure 4.8 State transition diagram for the cache status 
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The basic circuitry for the locality estimation protocol is shown in Figure 4.10.  For 

simplified implementation of the Split-Data Cache the L bit from the temporal cache, and 

the S bit from the spatial cache could be avoided with the sacrifice of minor cache 

performance. The additional storage space required for this cache for the spatial sub-

cache is 64 Bytes for 8KB-cache capacity, which is quite low in comparison to 8.75 KB 

required to maintain a spatial Footprint Table suggested in [57]. 
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4.2 Modified line replacement policy of the split data cache 

The locality based split data cache is further benefited from the use of the spatial reuse bit 

‘S’. The reuse bit ‘S’ will be set when the spatial line is used more than once. The 

probability of setting the ‘S’ bits for the highly reused spatial lines are quite high. In this 

case, if we can increase the residency period of these lines in the cache, then the cache 

performance will increase further.  With this goal, a modified replacement algorithm as 

depicted in Figure 4.11 has been suggested. This algorithm will replace the lines with the 

‘S’ bit set with a new line only when it is unavoidable. The performance enhancement of 

using this scheme can be readily compared with the usual LRU replacement policy. If the 

split data cache uses a normal LRU replacement policy, the use of the ‘S’ bit is redundant 

and can be avoided to save storage space. 
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In the temporal cache, this modified line replacement policy can be used for keeping the 

temporal locality data longer in the cache using the temporal locality bit. In a normal 

LRU replacement policy, this temporal locality bit is also redundant in the temporal 

cache and thus can be avoided. 

 
 
 
4.3 Handling spatial Victim Blocks 
 

One of the major performance bottlenecks arises due to the reduction of cache capacity 

due to the division of the cache space into two separate sub-caches. The spatial sub-cache 

suffers more from this problem. A 16 KB 4-way set associative cache can place a total of 

128 (4*32) lines memory blocks of size 128 bytes. For the split cache for equal spatial 

capacity to the temporal, the cache capacity for spatial sub-cache is 8KB with 4-way 

associativity. This implies that it can place a total of 64 (4*16) lines memory blocks of 

size 128 bytes. So, when mapping into the split cache more frequently the memory blocks 

from the cache will be evicted with compared to the 16KB unified cache. This increased 

number of spatial victim blocks must be properly handled to maintain the cache 

performance. With this in mind, a simple victim placement policy was used to reduce the 

conflict misses that occur more frequently in the split data cache. Usually the initial 

placement of a memory block is always in the spatial cache since we do not initially 

know what the access locality would be for a newly accessed memory block. It is 

essentially increasing the traffic into the spatial cache and results in creating more 
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victims. Thus, whenever a block is evicted from the spatial cache, instead of removing 

the block, the block is placed into the temporal cache. This process utilizes the temporal 

cache bandwidth and space properly and helps to eliminate the problem, which arises due 

to the reduction of the spatial cache capacity. This transfer of the victim blocks can be 

done quite easily within the hardware making a parallel transfer of the spatial cache block 

into temporal size multiple blocks. Since the process is internal to the cache, it operates at 

the speed of the cache and will not harm the normal read/write operation of the cache.  

For faster data transfer, the temporal cache is capable of writing 32 Words of the spatial 

line at the same time into itself if required. Figure 4.12 illustrates spatial to temporal 

transfer process. 
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4.4 Summary 

The basic implementation strategy of the split data cache emphasizing performance 

modification techniques was presented. The cache performance metrics for different 

spatial and temporal cache line sizes and placing the data as predicted by the locality 

prediction circuit for several benchmark programs were analyzed and characterized by 

simulating the locality cache organization. This performance metric led us to determine 

which cache the data should initially be stored in during the "cold-start" phase of program 

execution. Based on the simulation results, it was determined that the organization should 

initially store data in the spatial cache to avoid additional memory accesses that would 

occur if spatial data were initially incorrectly placed in the temporal cache.  The split 

cache subsystem design process also incorporates some further performance modification 

issues by using modified line replacement policy in the spatial cache and the placement 

of the spatial victim blocks in the temporal cache.  

 

Performance evaluation of the split data cache is presented in the next chapter. The 

performance metrics presents a detailed step by step evaluation of the different factors 

that contributes in the increase of the cache performance. 
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CHAPTER 5 

 
 
Performance metrics of the split data cache 
 

 

The performance metrics of the split data cache along with the impact of the 

implementation strategy is presented in this chapter. The performance metrics show a 

step-by-step evaluation of the impact of using the locality estimation circuit, the impact 

of modified replacement policy over conventional LRU policy, and the performance 

impact of placing the spatial victim blocks into the temporal cache. Finally, this chapter 

concludes with a generalized evaluation of the split data cache. 

 

5.0 Experimental setup 

The split data cache organization was modeled using C language and compiled under 

UNIX using cc compiler in a Sun Workstation. The program simulates the cache and 
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accumulates runtime profiles of memory accesses into the temporal and spatial sub-

caches. The spatial sub-cache is organized to store 128 bytes (32 Word) of data per line 

using 4-way set associative address scheme and a capacity of 8KB. The spatial line size is 

kept at 128 bytes, identical to that used in [7] for locality analysis. The temporal cache 

line is 4 bytes (1 Word).  This was chosen after evaluating several other line sizes.   The 

temporal sub-cache data storage capacity is 8 KB and the total data storage capacity of 

the spatial sub-cache is 8 KB. The split data cache organization follows the same caching 

strategy described in chapter 4 to place data into appropriate sub-caches. Data memory 

address (load and store) traces for different SPEC benchmarks were used to evaluate this 

cache performance. The performance of the split data cache was compared with the 

performance of the unified data cache with a storage capacity of 16 KB. Figure 5.1 shows 

the experimental setup. 
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Runtime profiles of spatial and temporal hit rates were mainly maintained with data 

traffic from the memory. After final execution of each benchmark program, measures of 

total memory read, write, miss, hit, total bus traffic and percentage of spatial reuse were 

recorded. A demand fetching policy was used that fetches data only during a cache miss. 

For writing, write allocation on miss, and, write updates on write-buffer policies were 

used.  For a write, no write allocation on miss and write update on write buffer may be 

followed to increase the cache performance further. This has an advantage over using the 

write allocation on write miss. The advantage comes, due to that fact that, on write 

misses, if the cache is not updated immediately, the cache performance will not be 

affected. In most of the write cases, data is written once in the memory. Therefore, if the 

same location is not accessed again, which is true in many cases, then the cache will 

suffer less from write misses. If the written data is required to be read again, then it will 

be cached by a read-miss.  The experimental setup discussed here uses the write 

allocation policy to observe the cache performance even when the cache is suffering extra 

misses for the absence of memory write locations.  

 

The performance of a 16-KB 4-way set associative unified data cache was also 

investigated using a line size of 128 bytes.  The performance metrics of the Split and 

Unified data caches were stored for various benchmarks in separate databases for further 

analysis and comparison. Table 5.1 shows the description of the SPEC92 benchmarks 
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used in this experiment. The SPEC92 benchmark suite consists of public domain, non-

trivial programs that are widely used to measure the performance of computer systems in 

a Unix like operating system environment [61]. These benchmarks were expressly chosen 

to represent real-world applications and were intended to be large enough to stress the 

computational and memory system resources of current generation computers. 

 

Table 5.1 Description of the SPEC benchmark programs used in the cache test bench 

Benchmark 
Program 

Language Description 

Alvinn C Robotics neural network training 
Compress C Reduces file size by Adaptive Lempel-Ziv compression 
Doduc Fortran Thermohydrolic simulation of a neural network 
Ear C Human ear simulation 
Eqntott C Builds truth table from a Boolean expression 
Espresso C Boolean function minimization 
Gcc C GNU C compiler 
Mdljdp2 Fortran Molecular dynamics (double precision) 
Mdljsp2 Fortran Molecular dynamics (single precision) 
Nasa7 Fortran Seven floating-point synthetic kernels 
Ora Fortran Ray tracing 
Sc C Spreadsheet calculator 
Su2cor Fortran Quantum physics mass computation 
Swm256 Fortran Shallow water equation solver 
Wave5 Fortran Maxwell’s equation solver 
Li C LISP interpreter solving the nine queens problem 
Tomcatv Fortran Mesh generation program 

 

In the subsequent sections of this Chapter, the performance evaluation of the split data 

cache is presented. The effect of the modified replacement policy used for the cache, the 

effect of using the temporal sub-cache as a victim cache for storing the spatial victim 

blocks, and finally the hardware requirement and relative size comparison of the unified 

and split data cache models used are all discussed.   
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5.1 Split Data Cache Performance 

Table 5.2 and Figures 5.2 and 5.3 show the tabulation and graph of the split and unified 

cache miss rates and bus traffic for different SPEC92 benchmark programs. 

 

 

 

 

Table 5.2 Miss rate and bus traffic of the SPEC benchmarks using split and unified data caches 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Benchmark

Miss Rate     

(%)          

Unified Data 

Cache

Miss Rate     

(%)          

Split Data 

Cache

Miss Rate 

Reduced     

(%)

Bus Traffic 

(Bytes) 

Unified Data 

Cache

Bus Traffic 

(Bytes)    Split 

Data Cache

Bus Traffic 

Reduced     

(%)

espresso 0.30 0.21 30.00 72,960 51,440 29.50

spice2g6 0.94 0.48 48.94 259,840 129,860 50.02

doduc 0.93 0.55 40.86 291,968 170,008 41.77

li 0.65 0.54 16.92 212,992 169,920 20.22

eqntott 0.59 0.52 11.86 173,184 148,824 14.07

compress 4.39 4.36 0.68 1,564,928 1,552,468 0.80

mdljdp2 1.04 0.68 34.62 307,584 195,100 36.57

wave5 0.16 0.14 12.50 34,944 31,872 8.79

tomcatv 1.35 1.26 6.67 666,368 618,316 7.21

ora 0.07 0.07 0.00 18,816 17,920 4.76

alvinn 0.14 0.13 7.14 32,512 31,888 1.92

ear 0.45 0.43 4.44 130,816 124,748 4.64

sc 0.38 0.24 36.84 95,232 57,468 39.65

mdljsp2 0.54 0.22 59.26 128,640 51,452 60.00

swm256 0.14 0.14 0.00 36,992 36,992 0.00

gcc 1.68 0.85 49.40 475,264 232,416 51.10

nasa7 0.72 0.71 1.39 182,784 179,932 1.56

fpppp 1.02 0.62 39.22 391,552 230,112 41.23
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Figure 5.2 Relative cache miss rates of split and unified data caches 
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Figure 5.3 Comparative bus traffic for using split and unified data caches 

 
 

The performance metrics presented in Table 5.2 indicates the miss rate is reduced up to 

59% and bus traffic is be reduced up to 60% in the best cases. In most of the cases, the 

performance increase of the split data cache is significant when compared to a traditional 

unified data cache. It is also noted that in some cases, such as for benchmark ora, the bus 

traffic is reduced by 5% although the cache miss rate remains the same as that for a 

unified data cache. 

 

It is interesting to note by observing Table 5.2 that the performance increase for the 

benchmark programs whose temporal locality (by statistical analysis) is higher than that 

for the spatial locality cases  (i.e. spice2g, doduc, mdljdp2, mdljsp2, gcc).  This implies 

that the locality estimation circuit tends to predict temporal locality more accurately than 

spatial locality. 

  

The split data cache has to perform better even in the case where spatial locality is highly 

dominant. Due to the nature of splitting the capacity smaller than the original size in the 

unified cache, the split cache will suffer from a thrashing problem in the presence of a 

majority spatial locality data more than the unified data cache. To solve this problem, the 

temporal cache was used to store the victim blocks of data when they are being evicted 
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from the spatial cache due to the thrashing problem. In addition, a modified replacement 

policy based on the spatial reuse frequency of a line in the spatial cache was used. The 

justification of using this scheme is to give more residency time to the spatial blocks in 

the spatial cache whose reuse frequency is higher. The effect of this modified 

replacement policy and spatial victim replacement policy is presented in the next section. 

 

5.2 Affect of the Modified Line Replacement Policy in the spatial sub-cache 

The split data cache uses a spatial reuse bit to mark lines in the spatial cache if that 

particular line is used more than one time spatially. Typically in normal address patterns, 

the probability of future reuse of cache lines is quite high. In this situation if a line is 

detected for repeated spatial use, keeping that line longer in the cache increases the hit 

rate of the cache. To facilitate this hit increase process, the modified replacement policy 

replaces spatial lines whose spatial reuse bit is not set first. If no lines are available to 

continue this operation, only then will the cache replace a spatially reused line. The 

general LRU replacement policy is also followed to select lines with least recently used 

signatures. The impact of this modified replacement policy is shown in Figure 5.4, which 

uses the data of Table 5.3. 
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Figure 5.4 The impact on the miss rate due to the modified line replacement policy used in the  

spatial sub-cache 

 

Table 5.3 The contribution of the modified LRU policy on reducing miss rate 

 

Benchmark 

Miss Rate (%) 

using General 

LRU  Policy 

Miss Rate (%) 

using Modified 

LRU policy 

Contribution of the 

modified LRU policy 

(%) 

espresso 0.22 0.21 4.55 
spice2g6 0.44 0.48 -9.09 
doduc 0.56 0.55 1.79 
li 0.57 0.54 5.26 
eqntott 0.53 0.52 1.89 
compress 4.38 4.36 0.46 
mdljdp2 0.71 0.68 4.23 
wave5 0.15 0.14 6.67 
tomcatv 1.28 1.26 1.56 
ora 0.07 0.07 0.00 
alvinn 0.13 0.13 0.00 
ear 0.43 0.43 0.00 
sc 0.25 0.24 4.00 
mdljsp2 0.22 0.22 0.00 
swm256 0.14 0.14 0.00 
gcc 0.89 0.85 4.49 
nasa7 0.72 0.71 1.39 
fpppp 0.65 0.62 4.62 

 

The observed contribution of the modified replacement policy is not highly significant 

and is only about 7% of the reduced miss rate at maximum. Therefore, the modified line 
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replacement policy could be eliminated in the actual implementation of the Split Data 

cache without sacrificing any significant performance factor. This will also reduce 

hardware requirement costs. 

 

5.3 Affect of the spatial Victim Placement Policy 

In the split cache design, separate victim cache was not included to place the spatial 

victim blocks. The number of victim blocks in the split data cache is expected to be 

higher than the unified data cache due to the reduced data storage space of the spatial 

cache than the unified data cache. Main goal is to keep the split data cache performance  

similar to the unified data cache even in the case when the data locality bias shows strong 

spatial dominance. In this case, some sort of victim cache arrangement to avoid the 

increased victim traffic of the spatial sub-cache should be included. To solve this 

problem, the designed split cache uses the temporal cache to place the victim spatial 

blocks only when their spatial reuse bit is set. The performance variation of using this 

victim placement policy is tabulated in Table 5.4 and the corresponding comparison bar 

graph is shown in Figure 5.5. 

 

Table 5.4 The contribution of the victim placement policy on reducing miss rate 

 

Benchmark 

Miss Rate (%) 

without using  

Victim placement 

Policy 

Miss Rate (%) 

using Victim 

placement 

policy 

Contribution of the 

Victim placement 

policy (%) 

espresso 0.21 0.21 0.00 
spice2g6 1.35 0.48 64.44 
doduc 1.45 0.55 62.07 
li 0.75 0.54 28.00 
eqntott 0.79 0.52 34.18 
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compress 4.68 4.36 6.84 
mdljdp2 1.05 0.68 35.24 
wave5 0.17 0.14 17.65 
tomcatv 1.61 1.26 21.74 
ora 0.09 0.07 22.22 
alvinn 0.14 0.13 7.14 
ear 0.46 0.43 6.52 
sc 0.39 0.24 38.46 
mdljsp2 0.53 0.22 58.49 
swm256 0.30 0.14 53.33 
gcc 1.38 0.85 38.41 
nasa7 0.73 0.71 2.74 
fpppp 0.79 0.62 21.52 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 The impact on the miss rate due to the victim placement policy used for the  

spatial victim blocks 
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The performance metrics presented in Table 5.4 clearly indicates the importance of the 

spatial victim placement policy. If spatial locality is highly dominant, then without using 

the victim placement policy the cache performance can degrade more than 60%. This 

issue clearly challenges the advantage of using the split data cache without using a victim 

cache. Usual caches in modern computers use a victim-cache to gain a performance 

boost. In the current split cache design, no overhead of using a separate victim cache is 

preferred due to the fact that, the goal should be to use the existing cache space more 

fruitfully. The split cache organization does not posses the need for using any additional 

victim cache as a contrast to unified caches. 

 

 

5.4 Hardware cost and area analysis 

One of the main objectives in designing the split data cache was to keep the hardware 

design and cost simple and minimum. In this respect, the question arises of how much 

space should be allocated for the spatial and the temporal sub-caches. Obviously, we 

want to obtain a cache organization which will not suffer from the majority data access 

bias whether it is spatial or temporal. In this respect, splitting the spatial and temporal 

sub-cache size as two equal parts is advantageous in one sense; it provides an equal space 

for both types of locality, and the tag sizes in two sub caches remains the same. In the 

experimental setup,  8KB spatial and 8KB temporal sub-caches have been used. Figure 

5.6 shows the structure of the tag-rams for this organization.  

 

  

V      = Valid bit 
LRU = Least Recently Used bits 
L = Spatial Locality Bit, S = Spatial Reuse Bit, T = Temporal use bit 
 

V 13 14 15 16 TAG 17 Line 

1 18 19 20 21 21 22 5 

Spatial Tag RAM Content 
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The number of sets for the 8KB spatial and 8KB temporal caches comes from the 

following calculation. 

 

Spatial sub-cache: 

 Cache size = 8 KB = 213 bytes 

 Associativity = 4 = 22 

 Block size = 128 bytes = 27 bytes 

 Therefore, the number of lines per set  

           213 
      = ----------------------  = 24 = 16 
             22  X  27 
   

 Total lines = 16 * 4 = 64  

For 32 bit data address the splitting of the address is shown in Figure 5.7. 
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Temporal sub-cache: 

Cache size = 8 KB = 213 bytes 

 Associativity = 4 = 22 

 Block size = 4 bytes = 22 bytes 

 Therefore, the number of lines per set  

           213 
      = ----------------------  = 29 = 512 
             22  X  22 
 Total lines = 512 * 4 = 2048 

For 32-bit data address, the splitting of the address for the temporal cache is shown in 

Figure 5.8. 

 

 

   

 

The comparison of this organization with the conventional 16 KB 4 way set associative 

cache is shown in Figure 5.9. 

 

 

 

 

TAG SET INDEX BLOCK OFFSET 

31                                                              11 10               7 6                                      0 

Figure 5.7 32 bit address splitting of the spatial sub-cache 

TAG SET INDEX BLOCK OFFSET 

31                                                              11 10                              2 1                         0 

Figure 5.8 32 bit address splitting of the temporal sub-cache 
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Figure 5.9 The relative storage cost for the 4-way unified and split data caches 
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The potential disadvantage of splitting the data storage capacity in equal size sub-caches 

is the increased overhead of storing tags in the tag-ram for the temporal sub-cache. For 

spatial sub-cache to store and track 128 bytes of data, only requirement is one tag to store 

in the tag-RAM. However, to store 128 bytes into the temporal sub-cache requires 32 

separate tags to be stored to track the data. If the tag size is 21 bits, then the overall cost 

for storing the separate tags for the temporal cache increases dramatically. 

 

The statistical analysis suggests that using a higher spatial cache size  is advantageous 

since, in most cases, the data access behavior either shows more spatial dominance or 

overlapping spatial and temporal access zones. 

 

If 75% of the space for the spatial sub-cache and 25% for the temporal sub-cache is 

allocated, then the total size is 12 KB for spatial and 4 KB for temporal caches. In this 

case, the total tag storage requirement is significantly reduced. The problem still exists 

due to the fact that, the number of lines in the temporal cache sets is now 256, that 

reduces the tag storage cost by 50% but the total number of the storage bit requirements 

is still higher than the unified data cache. Another problem that arises for a 12KB spatial 

cache is the address mapping issue if  4-way mapping-scheme is still used. In this case, 

one can make it 3 way for uniform mapping of addresses, but, the cache performance will 

suffer with comparison to that of a 4 way-mapping scheme of a unified data cache.  
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Another approach to reduce the storage cost is to reduce the data storage space and use a 

different space allocation. In this case, if we make the spatial cache size 8-KB and the 

temporal cache size 4 KB, then the total cost (in bits) of this organization would be  

  Spatial  64 * (32+1024) =  67584 bits 

  Temporal 4*256*(26+32) =  59392 bits 

  Total:     126976 bits = 15872 bytes 

Therefore, the total space savings would be in this case with comparison to the unified 

cache is 

 ((134016-126976)/134016) * 100 = 5.25% 

with the sacrifice of the data storage space of 25%. The simulation of the split cache 

architecture using this space savings plan and the performance of this organization is 

presented in the next section. 

 

5.5 Performance of the alternate organization 

The spatial cache capacity has been kept higher than the temporal cache for several 

reasons. Statistical analysis reveals that the average data access behavior shows higher 

spatial locality compared to the temporal locality. In addition, in many cases, the data 

access shows highly overlapped spatial and temporal access zones. Therefore, it is always 

advantageous to keep the spatial sub-cache higher than the temporal sub-cache, which 

also reduces problems such as ‘thrashing’.  The performance metrics and graph of the 

reduced storage space Split Data caches are presented in Table 5.5 and Figure 5.10 

respectively. 

Table 5.5 The performance metrics of the reduced data storage space 
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Locality Cache and the Conventional Data Cache 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 The performance comparison between the reduced data storage space Locality Cache 

and the Conventional Data Cache 

Benchmark

Miss Rate     

(%)          

Unified Data 

Cache

Miss Rate     

(%)           of 

the reduced 

space Split 

Data Cache

Miss Rate 

Reduced     

(%)

espresso 0.30 0.24 20.00

spice2g6 0.94 0.85 9.57

doduc 0.93 0.66 29.03

li 0.65 0.75 -15.38

eqntott 0.59 0.59 0.00

compress 4.39 4.66 -6.15

mdljdp2 1.04 0.86 17.31

wave5 0.16 0.15 6.25

tomcatv 1.35 1.35 0.00

ora 0.07 0.07 0.00

alvinn 0.14 0.14 0.00

ear 0.45 0.44 2.22

sc 0.38 0.30 21.05

mdljsp2 0.54 0.36 33.33

swm256 0.14 0.14 0.00

gcc 1.68 1.36 19.05

nasa7 0.72 0.71 1.39

fpppp 1.02 0.83 18.63

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Miss Rate (%)

Benchmark

Relative Miss Rates of Unified & Reduced size Split Data 

Caches for the SPEC Benchmarks

Unified Data Cache

Split Data Cache



 99

The data storage reduction to keep the split data cache size comparable with the 

conventional cache poses an additional challenge in order to provide better performance 

than the conventional cache with a reduced data storage resource in the cache. The 

performance metrics of the implementation strategy as shown in Table 5.5 still signifies 

that the average performance is better for the split data cache than the unified data cache. 

The miss rate can be reduced up to 33% than the conventional large data storage capable 

cache. Only in two cases (li, compress), the observed performance degraded due to the 

inherent requirements of using more cache space. To make the split data cache more 

comparable with a unified data cache and to increase the performance even more we can 

utilize the unused 5% space to provide some additional space for the spatial blocks. The 

associativity of the temporal cache is considered to be reduced to attack the storage space 

problem. However, the observation of the performance effects reveals that the cache 

performance degrades more for reduced associativity of the temporal cache than the size. 

Therefore, the better strategy is to keep the associativity as 4-way and to find some 

alternate size-tailoring scheme. 

 

5.6 Summary 

The performance evaluation of the split data cache is presented in this chapter. The split 

data cache can provide up to 250% performance boost over the conventional cache, 

reduce the bus traffic at a similar rate and does not pollute the available cache bandwidth. 

The contribution of the modified replacement policy and the victim placement policies 

are also evaluated in detail. The space cost problem due to increased tag overhead of the 

temporal cache is also presented and an approach to overcome this problem are discussed 
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with the simulation results of a reduced storage space split data cache organization.  

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

 

Conclusions and Future work 

 

 

The higher main-memory cycle time creates a major obstacle in utilizing the full CPU 
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performance in modern computer organizations. CPU clock speeds are becoming faster 

more quickly than the main memory bandwidth is increasing. The off-chip main memory 

cannot utilize this increased bandwidth due to its’ slower access cycle time and the 

latency introduced due to the chip interface path. Using a cache memory is a remedy to 

reduce this performance gap. The trend of using cache subsystems is not new. Since the 

introduction of the first use of cache memories in the early 1980s’ research approaches 

have been investigated that attempt to develop new organizations that can keep pace with  

increasing CPU bandwidth. The use of small on-chip caches on the same CPU die is a 

must in  modern computer architectures. These on-chip level one (L1) caches can utilize  

CPU bandwidths more effectively since access delays due to chip packaging constraints 

are avoided during cache hits.  

 

Due to the finite size of a cache, an optimization scheme is required to utilize the storage 

assets. Since the cache works based on the locality behavior of the accessed address 

space of the main memory, many optimizations of the data access layout for locality are 

found in other research endeavors.. These proposed optimization schemes either perform 

a better locality distribution during compile time or try to identify the memory reuse 

zones during run-time in order to keep those data more in the conventional cache 

architecture. Pre-fetching additional memory blocks greater than the cache line size is 

also being utilized in almost all-modern computer organizations in order to reduce the 

overall memory access latency. Though, pre-fetching can hide the memory access latency 

effectively, it also incorporates the overhead of bringing additional non-usable memory 

blocks into the cache. Pre-fetching creates cache space pollution and bandwidth waste 
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and ultimately can reduce the performance benefit obtainable from using a cache.   

 

Instead of blind pre-fetching, proper anticipation of the data locality of the programs can 

aid in the cache performance. Typical memory access locality behavior shows two major 

sub-classes: a) Spatial and b) temporal. Average data memory accesses are contributed 

from both types of the mentioned localities. Conventional caches are not highly 

optimized for taking advantage of either of these locality behaviors. Rather, they are 

designed to take operate such that temporal and spatial localities are equally exploited.  

The locality optimization schemes used by compiler-based approaches can perform better 

for specific sub-sets of application programs. The dynamic run-time data access pattern 

fails to take advantage of such compiler based locality optimizations. The advantage of 

doing compiler optimization is that the compiler can optimize the whole programs’ data 

access patterns when the program contains all the necessary information for the compiler. 

The challenge in performing dynamic locality estimation during the run-time occurs due 

to the limited hardware resources that can reasonably be used to detect and optimize 

locality. This poses the importance of investigating simple non-complex hardware that 

can be utilized for performing run-time locality prediction at a better rate  for the 

application programs. A run-time locality prediction scheme can further aid to cache data 

in the appropriate sub-cache that is not possible otherwise in conventional cache 

architecture. Run-time locality estimation does not suffer from the above mentioned 

compiler based limitations and it is architecture independent. Therefore, such an 

organization can be used in any computer system without posing any architectural or 

compiler constraints. Analyzing this potential, a locality prediction hardware was 
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investigated throughout this research to define a locality based split data cache which will 

perform dynamic caching of the data in the appropriate caches during the runtimes of the 

applications. 

 

The findings of this investigation are the following: 

a. The average locality behaviors of the accessed data are a combination of 

spatial and temporal locality in varying ratios. In some cases the data access 

behavior shows predominantly spatial or predominantly temporal access 

behavior and in other cases, it is the combination of both types of locality. 

Based on this fact, the application programs need a cache organization which 

can support both types of data access locality in order to achieve a better 

overall performance. 

b. The line-fetching policy can waste about 60% of available cache space in 

extreme cases. Thus, proper placement of data into separate Spatial and 

temporal sub-caches can aid in reducing the cache space pollution. 

 

c. Simple locality-estimation circuitry is sufficient to detect the run-time locality 

behavior of data. 

 

d. The run-time data locality analysis and prediction hardware support can be 

used to define a split data cache organization which uses two sub-caches 

termed as spatial and temporal to improve the performance over the 

conventional cache organization. 
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e. The performance metrics indicate that the cache resource utilization can be 

increased up to 150% for many application programs and the average 

performance can always yield a better result over a comprehensive set of 

benchmark programs. 

 

f. The only restriction that arises for defining such a split data cache is the 

increased storage space requirements for the tag ram overhead of the temporal 

sub-cache. The investigation further shows that the performance boost can 

also be obtained in most of the cases by using a smaller temporal cache and in 

that case, the organization may require smaller data storage space than the 

conventional data cache. 

g. The split cache organization does not pollute the cache space by caching non-

usable data in the cache. The bus traffic is reduced significantly for using this 

organization even in the cases where the cache miss rates are similar to the 

conventional cache. Reduction of the bus data traffic indicates the improved 

utilization of the cache bandwidth, which might be very useful in modern 

multi-processor computing organization design. 

 

6.1 Future research direction 

The current locality data cache organization is tested using a uniprocessor organization. 

The utilization of this organization in a multi-processor computing environment needs the 

cache protocol support that is appropriate for that environment. Fine-tuning of the 
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locality cache hardware scheme for such an environment may be of interest in future 

research. The increased storage space overhead due to tag ram of the temporal cache also 

needs to be further addressed. Several different cache organizations can be tried to 

improve the performance further and not increasing the storage overhead of the tag ram. 

Future research should therefore address all of these issues in order to increase the 

performance boosts available by using a split data cache with a dynamic locality 

estimation circuit. 
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