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Abstract

Cache memories are used extensively in modern computer organizations in order to
reduce the performance gap between fast microprocessors and slower main memory.
Cache memory hides the main memory access latency by exploiting the data locality
present in pre-fetched memory blocks in the cache. Conventional pre-fetching policies
used in traditional cache organizations have the potential to waste the available cache
bandwidth and space by bringing non-usable data in the cache. Conventional caches
cannot meet the different sized storage requirements of data that exhibit spatial or
temporal locality characteristics when their address spaces vary and are non-overlapping.
Data characterized by spatial or temporal locality could be more efficiently
accommodated if caches with different line sizes based on the locality type could be used.
The fixed line size of a conventional cache restricts this efficiency. To reduce the
performance bottleneck of conventional caches, an alternative cache organization is
explored in this research. The SPEC92 benchmarks as well as other standard benchmark
programs are used to observe run-time data locality. Based on the locality analysis, a
simple locality prediction technique was designed in hardware capable of estimating the
data locality bias of the cache-resident data during run-time. This prediction hardware is
used to design a split data cache that uses two sub-caches; spatial and temporal cache.
This organization stores data in the respective sub-caches based on the dynamic locality
estimation during run-time of the executing programs. The split data cache organization

showed a considerable performance increase over a conventional unified data cache by
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reducing the overall cache miss rate and bus data traffic. A better utilization of the cache

space and bandwidth is possible using this new organization.

Key words and Phrases: Data Locality Cache, Computer Architecture, Memory system

organization, High Speed Memory, Run-time Memory Access pattern.
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CHAPTER 1

7 Introduction

One of the main bottlenecks of current computer architectures is the processor-memory
interface. This bottleneck results in a mismatch between the speed of the CPU and
memory, and is referred to as the processor-memory performance gap [1, 2, 3, 4].
Microprocessor performance is increasing at a faster rate than memory. Typical usage of
off-chip memory units in computer architectures causes increases in access latencies and
bandwidth limitations due to the processor-memory interface path and the finite number
of pins that chip packaging allows [2,3]. Off-chip memory access times are higher than
on-chip memory access times due to the relatively larger latency introduced during data
propagation from the memory chip to the microprocessor through an external data path.
Bandwidth is dependent on the data transfer rate between microprocessor and memory.
Separate chip packaging limits the number of data I/O pins available. Thus, the data

transfer rate is highly dependent on the number of pins available.

A common scenario is that programmers using state-of-the-art computers are increasingly
demanding faster memory units in their computers to fully utilize the performance
increase of the microprocessors. As faster memory units (specifically SRAM - static

random access memory) are more expensive than slower dynamic RAM, designers must



mitigate this performance gap. Therefore, modern processors use a memory hierarchy
composed of a combination of faster SRAM and slower DRAM. Figure 1.1 shows a

typical memory hierarchy used by computers.

CPU First Stage in Memory hierarchy
(CPU registers)
L1 Cache
1.2 Cache Second Stage in memory hierarchy
8 (SRAM)
9 L3 Cache

JC "

1 Third Stage in Memory Hierarchy

Main Memory 1 (DRAM)
14
Permanent Storage 15 Fourth Stage in Memory Hierarchy
Memory (Mass Storage Device)
1 Figure 1.1. Typical memory

In this organization, the faster SRAM units serve as the second stage of memory
hierarchy, and are organized as a cache memory. With the inclusion of a memory
management unit (MMU), required data and instructions are fetched from the slower
main memory (which is the third stage of the memory hierarchy) into the faster cache
unit. The CPU can take advantage of the faster cache access times and the higher

bandwidth available for using the cache organization. The performance benefit obtained



by using faster cache units depends on both caching policies that exploit data and

instruction locality, and, on the physical organization of the cache.

The introduction of cache memories [5,6] allowed for significant performance increases
in the early 1980°s when the performance gap between the CPU and memory was not as
large. CPU performance continues to increase at a tremendous rate every year, and cache
organizations being used in an attempt to keep up with the faster data access demands. In
the past 10 years, different cache organizations have been proposed to rectify this issue.
In the 1980’s, multi-level cache architectures were introduced. A multi level cache takes
advantage of the extraordinary integration density offered by the current chip fabrication
and packaging technologies, and may be integrated within the same die as the CPU. As
an example, Intel’s Pentium Pro” integrates the CPU, I-Cache, D-Cache and L2 cache
onto the same die. Though multi-level caches help to reduce the memory access latency,
they also introduce additional latency in cases where the memory lookup function has to
traverse deeper into the memory hierarchy for cache misses. In some cases, the CPU can
waste about 75% of its processing time due to the look-up penalty in the multi-level
cache [45]. We are currently living in an ‘information age’ where almost all information
is being kept in local and distributed databases, and, information is consistently being
shared over the Internet and Intranet. Accessing huge databases is a very critical and
time-consuming process. Database programs typically waste more than 50% their
operation time in retrieving information in the memory hierarchy [8,9,12,30,31,32,39].

Proper caching of the requested data is fundamental for these applications.



To obtain a balanced CPU/Cache system we not only need the best architecture, but also
an optimized caching strategy that will perform well in all general cases. The success of
conventional caching policies depends on the locality present in the accessed data or
instructions. The current policies used in caches are not always highly successful in
caching data properly in order to gain maximum benefit from the varying spatial and
temporal localities exhibited by the data. The cache resource can be polluted, in some
cases up to 60%, due to the residence of unused data in the cache occurring to pre-

fetching of non-usable data in the cache [57].

In the following subsections, basic cache organizations and concepts, such as locality,
will be introduced. Then, the motivation for performing the current investigation, current
research results performed by other researchers, and the split data cache subsystem
design are presented. Finally, an overview of the contributions made by this research is

presented.

1.1 Cache Basics:
Cache memories work based on the locality of the code segments of the program and

accessed data. The types of locality are defined as follows [39]:

a. Spatial Locality (or locality in space): Given an access to a particular location in
memory, there is a high probability that other accesses will be made in the

neighboring locations within the lifetime of the program.



e.b.Temporal Locality (or locality in time): Given an access to a particular location, there
is a high probability that references following that access will be made to the same
location. If a program exhibits temporal locality, elements of the reference sequence

will be accessed again during the lifetime of the program.

d.c.Sequentiality:  Given that a reference has been made to a particular location s, it is
likely that subsequent references will access the location of s+/. Sequentiality is a

restricted type of spatial locality and can be regarded as a subset of it.

When a reference made by a processor is found in the cache, it is called a cache hit.
When the reference is not available in the cache, it is called a cache miss. In the case of a
cache miss, the cache control mechanism must fetch the missing data from the main

memory and place it into the cache.

1.2 Cache Organization:

Basic cache organizations follow two fetching schemes. A “demand fetch” organization
where memory contents are fetched based solely on cache misses. The second
organization called “pre-fetching,” fetches data depending on a priori anticipation of

locality of references. This is also referred to as “speculation.”

There are three basic types of cache organizations based on the ‘main memory address
mapping scheme’ in the cache. They are a) Fully Associative, b) Direct Mapped, and c)

Set Associative. Figure 1.2.
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Figure 1.2 Illustration of an 8-line cache address-mapping process for Direct mapped, Set Associative

and Fully Associative organizations (Cache Data Block size is two bytes here).



b.a.Direct mapped: Memory reference blocks are mapped to a specific block location in
the cache. As an example, the address OxCA in the illustration can be mapped only in
the line with index 101.

e:b.Set associative: Memory references are placed into a restricted subset of blocks in the
cache. A particular memory reference block can only be placed in a specific set, but
the block can be placed anywhere within that set. In Figure 1.2, the address OxCA can
be mapped in either ‘line 0’ or ‘line 1° with set index ‘01’ in the 2-way set associative
cache in the illustration.

c. Fully associative: Memory references block may be placed anywhere in the cache.
The address OxCA can be mapped anywhere between set or line O to 7 in the shown

illustration in the Figure 1.2.

1.3.1 Cache read process:

During a read operation, the cache looks for a match between the address and the stored
address in the cache. The cache stores the ‘address tag’ for each block in the cache in a
tag RAM. An additional bit is also stored in the tag RAM for each block to indicate if the
tag entry is a valid data-block in the cache. During a tag match, the cache control
circuitry checks this bit, referred as the valid bit ‘V’. If the valid bit is ‘set’ during a tag
match, then control circuitry makes a data transfer from that cache block to the CPU
register. In a direct mapped cache, only a single cache block entry is selected by the
mapping process to be searched for a match. In associative caches, all the cache blocks,

decided by the degree of associativity, are searched in parallel. Figure 1.3 shows how the



memory address field is partitioned to derive the address tag, cache index, and block
offset fields for the cache. First, it is divided into a block address and block offset. The
block address is further divided into tag and index fields. The block-offset field selects
the desired data from the block; the index field selects the set, and the tag field is

compared against the stored address in that set for a hit.

16 Block Address 17

19 Tag 20 Index 18 Block

Offset

Figure 1.3 The three portions of an address in a set-associative or direct mapped cache.

1.3.2 Cache update process:

During a cache miss, the control circuitry must update the cache with the missed memory
block. In performing this operation, a valid cache block may need evicted to
accommodate the requested data by the CPU. In a direct mapped cache, new memory
block is placed into a single location independent of whether the existing entry is valid or
invalid. For a set associative or fully associative cache, there can be multiple cache
blocks available for replacement. The cache controller must decide which block of the
cache should be replaced. There are several cache replacement policies available to make
this decision. These policies have their own merits and de-merits. Two common ‘“‘cache

replacement policies” [3] that are used are as follows:



a. Random: In this strategy a block for replacement is selected in random fashion, which
is believed to provide uniform spread of allocation. This policy may provide poor
performance in average cases.

e-b.Least Recently Used (LRU): This strategy allows for replacing blocks based on their
aging or least recent usage. Some aging counters are used to track the recent usage of

each block in this strategy.

The hardware cost and complexity is less for implementing the random replacement
policy, however the cache performance suffers in the average case. Alternatively, the
LRU policy yields good cache performance but the hardware cost and complexity

increases linearly with increase of the associativity of the cache.

1.4 Cache Write Process:

There are two types of write policies generally used for cache writes; a) Write-through
and b) Write-back. In a write-through policy, both cache blocks and lower order memory
structures are updated with the data at the same time during a write operation. Whereas,
in a write-back policy, only the block in the cache is updated. This makes the write-back
process faster than the write-through process since it can be done at cache speed.
However, additional difficulties can arise due to inconsistencies that can occur in the
cache versus main memory content. This difficulty is referred to as the ‘“cache

coherency” problem.



According to [38], cache reads occur more frequently than cache writes. Usually about

25% of the cache bandwidth is utilized for a write cycle, whereas approximately 75% is
utilized for a read cycle. Thus, in any cache design, optimization for the read cycles

should receive more importance.

1.5 Cache Performance:

Cache performance is measured in terms of the miss rate. This is the probability that a
requested reference is not available in the cache. The miss rate times the miss time
measures the ‘“delay penalty” due to a cache miss. In most processor designs, the
processor ceases activity and must stall when a cache miss is encountered. Thus, a cache

miss behaves in much the same way as a pipeline break.

1.5.1 Cache performance improvement process:
The average memory access time provides a metric for optimizing the cache for

improved performance [38]:

Average memory access time = Hit time + (Miss rate x Miss penalty)

Thus, cache optimization could be accomplished by reducing any of the following
factors, which are directly contribute to the overall cache performance:

a. Miss rate

b. Miss penalty

d.c.Average hit-time in the cache.

10



Two simple and classic techniques for reducing miss rate are using larger block sizes and
higher associativities in the cache memory (for set-associative organizations). Improving
one aspect of the average memory access time comes at the expense of another. Larger
block sizes take advantage of spatial locality, but at the same time can cause an increase
in the miss penalty. Similarly, greater associativity reduces the miss rate at the expense of

higher hit time.

1.5.2 Split Instruction & Data Cache:

A split Instruction (I) and Data (D) cache provides the designer with the possibility of
significantly increased cache bandwidth, potentially doubling the access capability in the
cache. Split I- and D- caches are particularly useful when the instruction bandwidth is
higher than data bandwidth. Split I- and D- caches come at the expense of having higher
miss rates than unified caches. This is due to two main reasons, a) relative cache sizes,
and b) adaptation to the changing ratio of instruction and data elements of a running
program. An 8kB unified cache can provide more flexibility in instruction and data
storage requirements when compared to a divided 4-KB Instruction and 4-KB Data
cache. In a unified cache, the cache replacement process intelligently adapts the cache for
the changing ratio of instruction and data elements during the execution of a program.
However, such an adaptation is not possible in a split I- and D-Cache. In modern
processor design achieving higher memory access bandwidth is more desirable and the
fabrication of separate I- and D- cache with considerable size to avoid potential miss rate
increase is possible. Most modern processors now employ separate I- and D- caches in

their organizations.

11



1.5.3 Two or Multi -level caches:

Another useful technique for reducing the miss rate is to use a two or multi-level cache
organization. In the case of a two level cache, a small, fast on-chip cache is used as
primary or level one (L1) cache, and a separate second cache (usually larger than L.1) is
used as a secondary, or a level two (L2) cache. Miss rates can be reduced by up to 10%
by carefully tailoring the L.1 and L2 cache sizes [5]. This type of organization may be
expanded into a multi-level cache by using additional cache levels. The potential problem
of using multi-level caches is the look-up penalty that results in cases where the required
data is not present in any level of the cache. The lookup-time could increase significantly
with the increase of the depth of the cache. Figure 1.4 shows the typical lookup penalty

that arises with the depth of a multi-level cache.

CPU
Register

2 Clock Cvcles

6 ~20 CCs

60 ~ 100 Clock Cvcles

Figure 1.4 Lookup penalty with the depth of the levels in a multi-level cache
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The intuitive argument for adding multiple caches in the cache hierarchy is that the
increasing performance gap between the processor and main memory can be reduced by

using several smaller accesses to main memory.

1.5.4 Blocking & non-blocking Cache:

In a blocking cache, the processor halts processing on a miss until the missed line is
brought in the cache. This can result in frequent stalls. In a non-blocking cache, the
processor is allowed to continue instruction execution without stalling if no true data
dependency exists between instructions and data. A non-blocking cache organization pre-
fetches data to avoid frequent misses. Proper anticipation of the required data plays a

vital role in non-blocking cache performance.

1.5.5. Pseudo-associative Cache:

A pseudo-associative cache is used with a direct mapped or set-associative cache to
increase the hit-speed and reduce the miss rate respectively. In this approach, before
going to the next lower level of memory during a miss, another cache entry is checked in
the pseudo set for a hit. The address of the pseudo set is calculated by inverting the MSB
(most significant bit) of the index field of the cache address. This approach provides a
variable hit time, and reduces the average memory access time as compared to using a
direct mapped or set associative cache organization. Although this is an attractive
process, it is not preferred for practical implementation due to the complications that arise

in the design of a pipelined processor.

13



1.5.4 Victim Cache:

One recent technique of reducing miss rates is to use a victim cache. Figure 1.5 shows
the organization of a CPU architecture with a victim cache. A victim cache is typically a
small, fully associative cache located between a main cache and the refill path, and
contains the blocks that are discarded from the main cache due to a miss. These victim
blocks of data are checked during a miss to determine whether they contain the desired
data before going to the next level of memory. If the data is found in the victim cache,
then the victim cache block and main cache block are swapped. While fully associative
caches are expensive to build in terms of logic, the size of this very small supplemental

cache makes it feasible to implement on chip, along side the main level one (L.1) cache.

CPU

YES

Cache

NO

VICTIM
Cache

>

ﬁ NO

CACHE
CONTROLLER
\ 4 4
ADDRESS DATA
BUFFER BUFFER

v 4

SYSTEM BUS

Figure 1.5 Victim cache placement in the memory hierarchy
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Because it is not as fast as a direct-mapped or set-associative cache, the victim cache is
not placed in the critical path of the processor. This means there is still some additional
penalty associated with satisfying a reference via the victim cache rather than the main
L1 cache. However, the penalty is generally on the order of 1 cycle instead of the 4-16
cycles often required for accessing off-chip L2 caches. A four-entry victim cache can

remove 20% to 95% of the miss rate in a 4-KB direct mapped data cache [38].

1.5.5 Write Buffer:

On a write operation in a write-through cache, the cache suffers from the slow main
memory write cycle time to finish a write operation. To hide the main memory write
cycle delay from the cache and allow the cache to continue its operation at cache speed, a
small write buffer can be used to temporarily store the data. Write buffers are very
effective for improving the write cycle time of the cache. However, buffering the data can
create memory consistency problems when the buffered data is not yet written into the
main memory while the cache is updating the same location on a read miss from the main
memory. To eliminate this problem, commercial processors implement the write buffer as
a few-entry fully associative cache. On a miss, it makes an associative search in the cache
and main memory. If the data is still in the write buffer, than it supplies the data directly
from the write buffer to the microprocessor. This scheme is similar to a ‘victim cache’ as

described in the previous section.

15



1.5.6 Multimedia Cache:

Stream data processing is becoming a common factor in modern computer architectures
due to the heavy usage of the Internet and the popularity of multi-media applications. In
multimedia system designs, it is common to separate the data and control paths to
simplify and optimize the hardware and software in order to handle the large volume of
data traffic. Often in these systems, the video information passes directly from the
network interface to the display unit without intervention by the CPU. This mechanism is
highly effective at providing a support mechanism for multimedia applications without
the high bandwidth data streams consuming CPU time. Following this strategy incurs the
disadvantage of precluding the processor from accessing the multimedia data. This
eliminates an interesting range of applications where processor intervention is necessary.
A balanced architecture would keep data away from the processor when not necessary,

but still enable high-speed access by the CPU when the application demands it.

It is particularly helpful to use a special type of cache to address this situation, referred to
as a “stream-cache” (S-cache). When processing a data stream, it is likely that the data
will be accessed in order of arrival. Hence, an S-cache holds the most recent data from
the stream, and new data is written over the oldest data. In S-cache architectures, data
arriving from the stream is placed directly into the cache, not passing through the main
memory. This avoids unnecessary buffering. A section of the cache effectively becomes a
circular buffer holding the latest stream information. Update of the S-cache content is
asynchronous rather than triggered by a CPU cache miss. When the CPU attempts to

access the stream data, there are three possible outcomes:

16



1. The data has recently arrived in the stream. In this case, the item is found in the
cache and processing continues.

3.2.  The data has not arrived yet. This is treated as a cache miss and the CPU may be
blocked until the required item arrives. If the data does not arrive for some (long)
period, the operating system may choose to reschedule the CPU.

4.3.  The required data is far in the past accessing order that the buffer can hold. This
case should be flagged as an exception to the operating system and represents
“staleness” in terms of temporal locality.

The stream data will need to be addressed in some way. Most streams include a frame or

temporal structure used by the application. This can be conveniently mapped into a range

of processes in the virtual address space. Thus, the process may access the stream as an

array indexed by frame number as shown in Figure 1.6.

‘o 12 ]3[4 5]6]7 8 ‘ <4———  Frame Index
Incoming

Figure 1.6 Addressing a stream

There are two major advantages to a stream cache system. First, the data from the stream

is placed where it is going to be used, namely in the CPU cache. Hence, even if data is

17



not accessed in a strict temporal order, recent information can still be found in the cache.
Second, the hardware manages fine grain resynchronization with the stream, imposing no
overhead other than the necessity to wait for the data to arrive. The stream cache could be
optimized for improved performance by carefully designing the cache size and

architecture.

1.6 Cache Policies:

Cache policies are the rules of operation of the cache and are used to answer the
following questions. During which cycles can data be read from the cache instead of
main memory? Where does the cache fit into the system? How associative is the cache?
What happens during write cycles? Cache policies are chosen for a single motive [6,11];
the designer wants to get the most performance for the lowest cost. Two variables play
into this tradeoff: 1. Which is more important, to save engineering time or to save overall
system parts cost? 2. Is the cache to be integrated or constructed from discrete

components?

Cache policies may be chosen in a number of ways, depending on the generality of the
system and the amount of resources available to improve the design. In the best case, the
hardware and software of the system are designed together (referred to as
“hardware/software co-design”). In this approach, the hardware can be optimized to a
very good degree based on a large amount of empirical results on the effects of different
caching policies on the intended software’s performance. In the worst case, the hardware

designer is asked to design a cache without any knowledge of the software that will run
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on the system, no empirical data, nor any chance to develop any, and with very little

knowledge about the tradeoffs of various cache policies [6].

There are different caching policies and organizations being utilized in different
computer architectures, and efforts are being made towards their improvement. Though a
tremendous amount of research is ongoing for achieving an optimum performance cache
organization, an optimal solution has not been found. It is has been shown [48] that most
programs require considerably less cache memory than what is available in a typical

superscalar Processor.

1.7 Cache Pollution and Bandwidth Waste:

Current caching policies in use by most computers result in cache pollution and memory
bandwidth waste. This is due to pre-fetching a memory block or data cluster into the
cache when a cache miss occurs without performing any data locality analysis. The
pollution is due to the placement in cache of a non-reusable block whereas the memory
bandwidth waste is caused by the additional data brought from a L2 cache to a L1 cache
in the same block as the requested data. To cope with this issue, some microprocessors

provide memory reference instructions that can bypass the cache [10].

Blind caching policies can also create similar cache pollution and memory bandwidth
waste problems when the data references exhibit temporal locality. In the case of
temporal locality, only one data element is being referenced from each block of data.

Thus, the cache becomes full with unusable data elements. It has been reported in recent
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investigations [48, 49, 50] that a large percentage of references exhibit temporal locality,

and a significant percentage of references do not show any type of locality.

1.8 Motivation for this Research:

The research presented here is motivated by finding an alternative cache organization that
will be able to use the cache resources more efficiently. A split data cache organization is
proposed that exploit the full benefit of different types of locality references in a running
program. Based on this motivation, the goal of this research is to design, simulate and
investigate the performance benefits obtainable using the above mentioned cache
organization in the hardware abstraction level which will perform dynamic locality
prediction during runtime using only hardware resources. Before presenting the
contribution made through this investigation, a brief survey of other efforts is presented

in the next section.

1.9 A review of the current results:

Several investigations have proposed different schemes for instruction and data cache
organizations to reduce overall memory access latency. These include a transient value
cache (TVC) [37], lockup-free cache [20,47], cache-conscious load scheduling [27],
hardware and software pre-fetching [16,17,18,19,20,21,22,29,41,42,43] and
multithreading [28]. TVC uses a small data cache in addition to a L1 cache to provide
support for large fraction of parallel loads in a massive parallel-processing environment.
The mechanism proposed in [28] identifies non-cacheable data by means of profiling.

The scheme proposed in [56] is based on a run-time managed history table of the most

20



recent load/store instructions. In [45], a pre-fetch engine is used which relies on software
or hardware optimized Deterministic Prediction Approach (DPA) in order to pre-fetch

data that is estimated to be referenced in the future.

Compiler assisted optimization of the cache data locality is proposed in
[23,24,25,26,27,32,33,34,35]. Compiler based optimizations are based mainly on
improved algorithms which use several techniques to identify locality in loops in
scientific codes, and perform data layout transformation to provide optimum locality for

better cache performance.

Combined compile-time and run-time caching policies as proposed in [46] use memory
access detection, and automatic data caching based on compiler provided analysis of run-
time memory access requirements. This is considered as an efficient approach in a shared
memory parallel computing on distributed memory machines. In this approach, if the
compiler analysis fails entirely, then the run-time maintenance of the shared memory is
done with the hardware resources. Therefore, the complexity and limitations of

compilers that directly target message passing [44,46] can be avoided.

Run-time memory performance feedback and memory layout optimization is proposed in
[55,56]. In [55], the processor is informed about the memory operation by using the
cache outcome condition code and cache miss traps so that the processor can tackle the
performance requirements by using in-built hardware supports. This approach is based on

the observation that modern in-order-issue and out-order-issue superscalar processors
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already contain the bulk of the necessary hardware support. In [46], a system is proposed
that uses a memory layout oriented approach to exploit cache locality for parallel loops at
run-time on Symmetric Multi-Processor (SMP) systems using application dependent

hints and the targeted cache architecture.

In [41], a programmable pre-fetch engine is used in the on-chip cache. As more chip area
is available due to the tremendous advancement of the VLSI technology, designers can
take advantage of using such programmable chips to hide the main memory access
latency. This pre-fetch engine can pre-fetch data without any compiler intervention
during run-time. The pre-fetch engine is programmable by software, allowing the
designer to optimize the cache performance by using improved software algorithms to
program this pre-fetch engine. Though pre-fetching always increases data traffic in the
bus, the proposed scheme claims that additional data traffic can be significantly reduced
by using the programmable approach of the hardware, and benefits from both software

and hardware.

The selective caching policy proposed in [47] leads to an organization similar to a
conventional cache in which all memory instructions have an additional bit set (or reset)
by the compiler. During a cache miss, this bit controls whether a new block should be
retrieved from the L2 cache and placed in L1 cache, or if the requested data should be

retrieved from the L2 cache directly without updating the L1 cache.
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A cache organization with both temporal and spatial subsystems has been proposed in
[48,49,50,52]. This organization uses a very simple heuristic based on the data type
which can be changed by dynamic or pre-runtime profiling. Selective caching is a feature
of current microprocessors such as that being used in the PowerPC. The HP PA-7200
[51] uses a software-managed data caching policy. Every memory instruction used by the
HP PA-7200 includes a “hint bit” indicating that spatial locality is used to predict if the
data referenced by that instruction shows only spatial locality characteristics and not
temporal locality. The HP PA-7200 consists of two cache modules; the on-chip fully
associative assist cache and a large direct-mapped off-chip cache. The assist cache holds
data related to all memory references for which hint bits are explicitly set indicating
spatial locality. The off-chip main cache holds all data in which the hint bit is not set

indicating the lack of spatial locality.

To avoid cache pollution, intelligent spatial pre-fetching schemes have been proposed
[36,57]. In [36], a Spatial FootPrints (SFP) table is maintained by using specialized
hardware. Depending on the content of the SFP table, the predictor mechanism fetches a
smaller or larger number of blocks when misses occur in the cache. Also, in [57] a
somewhat similar strategy based on a Spatial Locality Detection Table (SLDT) is used to
prefetch multiple data blocks or less in order to reduce memory access latency during
runtime.

In [12,13], considerable performance improvement was shown by using a stream cache
unit with a conventional cache. In this strategy, hardware based reordering of stream data

was used to improve cache performance. The logic behind this approach is that, the
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performance of most memory systems is dependent upon the order of the requests
presented to it. Access ordering refers to any technique that changes the order of memory
requests to increase bandwidth. Stream data, such as vector (scientific) computations,
multi-media (de)compression, encryption, signal processing, text searching, etc., are

affected more by bandwidth than by latency.

Table 1 [38] shows the comparative performance benefits obtainable from different cache

scheme compiled in [38].
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Table 1[38]. Summary of different cache optimization schemes. In the table + indicates it improves the
factor, -indicates it hurts the factor. Hardware complexity factor O indicates easy to implement, and 3

indicate more complex to implement.

Technique Miss | Miss Hit | Hardware | Comment

rate | penalty | time | Complexit
Larger block size + - g Trivial; RS/6000 550 uses 128
Higher associativity + - 1 e.g., MIPS R10000 is 4-way
Victim caches + 2 e.g., HP 7200
Pseudo-associative + 2 Used in L2 of MIPS R10000
Hardware prefetching | + 2 Data are harder to prefetch;
of instruction and Alpha 21064
data
Compiler controlled | + 3 Needs nonblocking cache too
prefetching
Compiler technique | + 0 Software is challenge
to reduce misses
Giving priority to + 1 Trivial for uniprocessor, and widely
read misses over used
writes
Subblock placement + 1 Used primarily to reduce tags
Early restart and + 2 Used in MIPS R10000, IBM 620
critical word first
Nonblocking caches + 3 Used in Alpha 21064
Second-level caches + 2 Costly hardware; widely used
Small and simple | - + 0 Trivial; widely used
caches
Avoiding address + 2 Trivial if small cache; used in Alpha
translation during 21064
indexing of the cache
Pipelining writes for + 1 Used in Alpha 21064
fast write hits

25



1.10 Research Contributions:
The research contributions made are documented in this dissertation and in [63,64,65].

The contributions presented in this dissertation are:

a. The performance bottleneck of the caching scheme used by most current
microprocessor architectures is identified, and reviews of different caching

technologies suggested and implemented by various researchers are highlighted.

b. Run-time cache resident data locality analysis of the memory access patterns of a
wide variety of application programs defined in SPEC92 benchmark suite [62] are
presented using the results of a simulation of real-time data cache access. This
analysis presents a clear understanding of the data locality behavior of the common
application programs. The average cache resource requirements for the spatial and
temporal address spaces used by the programs are also identified. This contribution

provides valuable information for the designer of a cache subsystem.

c. A locality estimation technique and subsequent circuit is designed which can perform
run-time prediction of the data memory access locality shown by the programs [64].
The novelty of this prediction circuit is that it is simple enough to reduce penalties
due to increased hardware complexity, yet it can also provide better performance in
all cases of the SPEC92 benchmarks. In addition, this technique does not require any

compiler assistance and is independent of any particular computer platform.
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d. The design of a new split data cache organization is presented. This organization uses
two sub-caches termed as the Spatial Sub-Cache and temporal Sub-Cache. It stores
data with appropriate locality as predicted by the locality estimation circuitry into
these sub-caches for efficient cache management and thereby improves the overall

memory access efficiency of the microprocessor.

e. A detailed evaluation of the locality estimation circuitry and the split data cache
subsystem. A simulation prototype is written for the split data cache model using the
C programming language and is implemented and tested on a UNIX platform using
memory address traces of data for load/store instructions of the SPEC92 benchmark

suite.

1.11 Dissertation outline

The remainder of this dissertation is organized as follows. Chapter 2 presents the analysis
of the memory access behaviors of different benchmark programs during their runtime
residency in the cache. Chapter 3 presents a hardware scheme used to predict the possible
locality behavior of the accessed data during the execution of a program. Chapter 4
presents the organizational design of a split data cache along with its implementation
strategy. Chapter 5 presents the simulation of the designed split cache model and an
evaluation of its performance. Finally, chapter 6 summarizes the research findings with

conclusion and future research direction.
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CHAPTER 2

Cache Resident Data Locality Analysis

The organization of the data cache can significantly affect overall data access latencies
during program executing. The cache performance depends on the locality characteristics
of the data being processed in a program as well as the underlying architecture. A typical
program has a data access profile that exhibits both temporal and spatial locality
characteristics. Since most processors contain single data caches at a given level, and a
single data cache cannot be optimized for purely spatial nor purely temporal locality data
accesses, cache space pollution and inefficient usage of cache resources can occur. In the
worst case, these phenomena can actually introduce additional data access latencies
through repeated line fills. Here an analysis and modeling scheme is presented that
describes the runtime data access behavior of several benchmark programs in a typical,

unified data cache. The motivation for the development of this model is to produce
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information that may aid in the design of a split data cache with one side optimized for

temporal locality accesses and the other for spatial locality accesses.

2.0 Introduction

A cache memory subsystem pre-fetches additional memory data during a miss along with
the requested data word by the processor. The amount of pre-fetched data depends on the
line size of the cache. With data pre-fetching, a cache memory can hide data access
latencies by exploiting the locality characteristics of the running programs in the pre-
fetched lines. Pre-fetching a greater amount of data helps to hide latency rather than
reducing the latency. The main problem is that pre-fetching can aid in cache performance
only when additional memory bandwidth is available. This is because pre-fetching does
not decrease the number of memory accesses; it simply tries to perform them over a
shorter period. The available cache space and bandwidth may be polluted and misused by
pre-fetching when a large amount of non-usable data is resident in the cache. About 60
percent of available space in a cache can be polluted in some extreme cases due to this
phenomenon [57]. In cases where the program is already memory-bandwidth limited, it
becomes impossible for pre-fetching to improve performance. Alternatively, locality
optimizations such as cache blocking [29] can actually decrease the total number of

accesses to memory, thereby reducing both latency and required bandwidth.

A good knowledge of memory access behavior characterized by the locality of references

can lead to efficient cache memory subsystem designs. Locality analysis of different

types of programs during runtime aid in defining an optimized cache subsystem
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organization. The locality behavior of a program is categorized as either, spatial or
temporal. Most current research projects [36,57,58] are investigating the spatial reuse of

data and strive to find a means to exploit this spatial reuse of data.

Past research efforts [27,31,32,33] have sought to optimize program loop nest localities.
Different models and reorganizations of loops have been proposed using tiling,
compound transformations consisting of loop permutation, loop fusion, loop distribution
and loop reversal [31] to increase temporal and spatial locality in loop-nests. These
techniques are primarily compiler-based approaches. Programs must be compiled using

the target machine’s compiler to gain the optimization benefits.

Cache organizations based on compiler optimizations or based on identifying spatial
reuse may produce poor performance when running a variety of different application
programs. This poor performance is due to the particular bias of optimizations for a
specific subset of the application programs. Usually, the average data access by the
programs are both from spatial and temporal locality. Analysis of the run-time memory-

data access plays a critical role in this respect.

The question still remains as to why use a run-time locality analysis model to design a
data cache when compilers exploit detailed information from applications to optimize
locality. Compiler based locality optimization can perform very effectively to improve
the performance of those applications to which they can be applied. In reality, many

dynamic data access patterns of the applications cannot be analyzed during compile time.
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For example [56], consider the sparse matrix multiplication program shown in Figure 2.1-
1. In the innermost loop, the array elements A[k] and B[r] are indirectly determined by
the data in the arrays Arow, Acol, Bcol and Brow. These indirect data accesses cannot be
determined by the compiler since the compiler has no idea about what kind of data the
program is going to process during run-time. Therefore, if we want to optimize the data
access locality for such a case, only run-time locality analysis can optimize cache
performance.

double A[X], B[Y], CIM][M];
int Arow[M+1], Acol[X], Bcol[M+1], Brow[Y];

sparse-mm()

{
int i=0, j=0, k, 1, start, end;
register double d;
for(;i<M;i++)
for(;j<M;j++)
{
d=0;
start=Bcol[j];
end =Bcol[j+1];
for(k=Arow[i];k<Arow[i+1];k++)
for(r=start;r<end;r++) —» task t@,))
if(Acol[k] == Brow|r])
{
d+=A[K]*B[r];
start =r+1;
break;
¥
Cli][j] =d;
¥
¥

Figure 2.1-1 Code block of a Sparse Matrix Multiplication, which has a dynamic data-

access pattern and an irregular computation pattern
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A cache sub-system, that targets the true run-time data access of the program can
improve the cache performance significantly. The advantage of using such a scheme is
that since it is not designed for specific program sets nor does it depend on compiler

assistance, in many cases can provide better performance.

In this chapter, a model determining the locality behavior exhibited by several
benchmarks programs executing in a load/store based uniprocessor with a typical unified
data cache is presented. Locality analysis results using this model are also presented. The
motivation for performing this analysis is to determine the data locality behavior of
different programs, and to use the results to design an efficient cache organization that
will not suffer from the inability to exploit varying data locality behaviors over a variety

of executing programs.

The subsequent sections of this chapter are organized as follows. Section 2.1 presents an
overview of locality and the need for runtime locality analysis and modeling of executing
programs. In section 2.2, the model used for the locality analysis is presented. Next,
experimental results of the cache access behavior by different SPEC integer and floating
point programs are presented and discussed. Finally, section 2.4 provides the conclusions

based on the experimental data.

2.1.1 Principle of Locality

To hide memory access latency due to fast processors with relatively slower main

memory, a cache subsystem is used to attempt to store data, which will be accessed in the
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future by the processor. This is accomplished by loading additional data other than that
being requested by the processor during a cache line fill. A typical way of doing this is to
retrieve additional data from the neighboring address space of the requested data. The
purpose of writing neighboring data into the cache is to exploit the principle of spatial
locality. Spatial locality exists due to the empirical observation that “data tends to be
accessed that is close (in address space) to previously accessed data”. Figure 2.1-1 shows
an example of this type of locality. Data block B is requested by the processor and the
resulting cache miss causes a line fill to occur that loads blocks A through D. Thus, any
consecutive memory blocks requested by the CPU within this spatial region will result in

a cache hit with the access time equal to the (faster) cache access time..

CPU requesting

memory block Main Memory
CPU B ¥

A|B|C|D
cane [AIBICID] e [T [T
blocks A, M{N|O|P

B, Cand

D

Figure 2.1-1: Cache line fill illustrating the “spatial access”

Whenever the data access pattern is largely spatial in nature, the inclusion of large cache
lines that contain more neighboring data can reduce the overall memory access latencies
drastically. For strictly spatial data access patterns the reduction in memory access

latency depends mainly on the cache line size.
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Another type of locality is “temporal” locality or locality in time. This type of locality is
characterized by certain locations in memory being accessed repeatedly in time. For
example, this occurs when a CPU requests data blocks in the order B, G, M, B, G, M
repeatedly during the execution of a program. The illustration shown in Figure 2.1-2
depicts this type of access pattern. In this case, the cache line fills are bringing additional

memory blocks in each cache line that is not used by the processor.

2.1.2 Motivation for Locality Analysis

In past work on data cache optimization, mainly numeric (scientific) programs have been
considered for analysis of the data locality pattern. Since most numeric codes contain a
large amount of nested loops, a significant amount of research has been attributed to the
incorporation of more spatial reuse through different compiler optimization techniques
such as unimodular transformations, loop fusion and distribution and tiling [66]. Some
assertions of the spatial reuse of data have been made without doing any intra-loop reuse
analysis [31]. Some computer architectures, such as the HP-7200 [51] do not use any

detailed program locality information and depend only on spatial reuse of data.
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CPU requesting memory
blocks B,G and M in

progression of time Main Memory
A|B|C|D
pattemeof E|F|G|H

A/ B C D Cache lines for

requests B, G
Cache F \G H ;1(11 K/It IL1J]|K|L
1 MIN|O|P

M O|P

Figure 2.1-2: Cache line fill illustrating the “temporal access”

To fully take advantage of the spatial locality present in a program’s data access patterns
and to also benefit from the temporal locality that is also present, a data cache may be
organized with multiword line sizes. In Figure 2.1-1 it is seen that for the spatial access
pattern B, C, D and A the access penalty is one cache miss since the next three
consecutive accesses result in a cache hit. Thus, the effective miss rate is 25 percent and
cache space utilization is 100 percent for this case. From Figure 2.1-2, if the access
pattern is B, G, M, B, G, M then the effective miss rate is increased to 50 percent and
cache space utilization is reduced to 25 percent. This clearly indicates that the relatively
large line size used for taking advantage of spatial locality results in the pollution of the
cache and also increases the memory access bandwidth. About 40% cache capacity

waste is typical[57].
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The depicted scenario indicates that the same cache organization will not perform equally
well in all cases. To optimize performance, the cache organization must be tuned to
benefit from both spatial and temporal data access behaviors. The tradeoff arises because
increasing cache line size to exploit more spatial locality causes more cache pollution and
wasted bandwidth when temporal accesses are requested. Alternatively, decreasing the
line size and adding more lines to a cache can result in inefficient usage when the
accesses are largely spatial in nature. Further, as is demonstrated later in this dissertation,
the data access behavior varies largely from program to program. Data access behavior
can be purely spatial, purely temporal or (more typically) a combination of both. It is
possible to optimize a cache organization to provide optimum performance for a
particular program. However, it is a very difficult task (if not impossible) to provide
optimum performance for all types of program data access behavior. A reasonable choice
in this case is to design a cache subsystem that will perform well on average. Analysis
and modeling of the program data access behavior over a number of different programs
can provide estimates of average-case behavior. This motivates us to carefully study and
analyze the data access behavior of the programs that cover a wide range of applications.
The SPEC benchmark suite has been used as a representative sample of different types of

application programs.

2.2 Locality Analysis Method
The data locality behavior of different application programs is analyzed during runtime in
order to observe the characteristics of interest. In the results presented here, parameters of

interest are generated through the accumulation of statistics based on data access patterns
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in a general cache during program execution. In this approach, specific cache
architectures are considered and runtime data access profiles of different SPEC92
benchmark programs are stored. Initially, different cache sizes with varying line sizes
were modeled. Among these, a four-way set associative 32 KB cache with 128 byte (32-
bit words) line size was considered as the baseline organization to analyze and model
cache data locality in terms of miss rates, and a wide window width to capture both
spatial and temporal locality. This target cache architecture was simulated using the C
language and complied using the Unix cc compiler. Input to the program consists of

memory traces gathered during the execution of the SPEC92 benchmarks.

The memory traces of the SPEC92 benchmarks used in this investigation are those
available from the anonymous ftp site of the New Mexico State University Trace
Database [62]. The traces contain the addresses of the memory references and a field
indicating whether it is instruction address or data read/write address. Since the main
interest is data caching, a filter program was written that extracted only the data
load/store related addresses. The cache simulator then used the data load/store related

traces as input and generated the analysis results after simulating the cache.

For locality profiling purposes, the simulator keeps track of the number of accesses in
each line of the cache as well as the average time difference of each word being accessed
in a line over successive hits, or the “temporal stride”. Although the term “stride” is

generally used to refer to the absolute distance between different memory addresses, here
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it is used in a temporal sense to refer the relative time difference in terms of the processor
clock cycles. The analysis tool records the number of hits for each word in a line.
Analyzing the runtime behavior of the SPEC92 benchmark programs’ memory traces

allows the data access locality characteristics of these programs to be noted.

For the locality analysis, the line hit-rate and strides of the words in the lines as well as
word-hit frequency is used. Usually, for spatial locality, the strides of the words in a line
should be similar or should have a fixed difference with an equal or close number of hits.
For temporal locality behavior, the number of accesses to a line should become very high
and we may expect that the strides of the words and word-hit frequencies will vary
greatly. Figure 2.2-1 and 2.2-2 shows the typical nature of the strides for temporal and

spatial locality in a cache line for two benchmark programs used in this test bench.

Temporal Locality Pattern in a Line

1.00E+05
1.00E+04
1.00E+03 & Number of Word Hits
1.00E+02 B Average Stride

1.00E+01
1.00E+00

Word Hit Count and
Stride

1 4 7 10 13 16

Word Number

Figure 2.2-1: Temporal access pattern in a cache line
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Spatial Locality Pattern in a line
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2
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E 1.00E+03

8 § | OOE402 = Word Hit Count
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Word Number

Figure 2.2-2: Spatial access pattern in a cache line

Spatial Locality Pattern in a line
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Figure 2.2-2: Spatial access pattern in a cache line

The following equation for the estimation of hit rate (in percentage) for spatial

temporal locality was used:
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. 1 OO Spatial | Temporal
EHltSpal‘ial/Tenworal = W |:| WHC.
i=1

Where:
EHit = Estimated percent of Hits due to spatial or temporal Locality
WHC; = i" Word Hit Count due to spatial or temporal Locality
Nspasiaytemporar = Number of Word Hits due to spatial or temporal Locality
TWHC = Total Number of Word Hit Count in the cache

To facilitate this estimation process, the model uses counters for each line of each set in
the cache and for all corresponding words in the lines. Two-dimensional unsigned integer
array variables are used to store the count values. The mapping process of a 4-way set
associative cache is used to gather the array indexes of the counter variables in a manner
similar to hashing, where the hash function is actually the cache mapping function. These
counters are used to maintain the hit counts for each word in each line of the sets. For
each respective word in the cache, the average time between successive hits is also
maintained in another variable in terms of memory access cycles that we refer to as stride
(in this case, temporal stride) in the plots. Figure 2.2-3 illustrates this basic strategy of
counting the hits for a single 4-way set that contains 4 words per line. Figure 2.2-4
contains a code fragment that shows how to calculate temporal stride values for

successive word hits.
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2.2-3 I;n&an%woruh&cougt ateg-y_u;a set

i

Counter Counter Counter Counter Counter
Set ‘0’ Line ‘0’ Word ‘0’ Word ‘1’ Word 2’ Word ‘3”
Scl ‘0 - —4 —_ —
L‘:lcl'llw “,“:.rd “,‘]’.rd \and \\nrd
HIT HIT HIT
Counter Counter Counter Counter Counter
Set ‘0’ Line ‘I’ Word ‘0’ Word ‘1’ Word 2’ ¢
Set ‘0° —_
Line ‘1"
HIT

T

Word Word Word \\nrd
Py pd 9
HIT HIT HIT H,T

v v

Counter Counter Counter Counter Counter
Set ‘0’ Line 2’ Word ‘0’ Word ‘1’ Word 2’ ¢

Word \\nrd Word \\nrd
o 9
HIT HIT HIT H,T

v v

Counter Counter Counter Counter Counter
Set ‘0’ Line ‘3’ Word ‘0’ Word ‘1’ Word 2’ ¢

Word Word Word \\nrd
P B Py
HIT HIT HIT

// Initially, before any memory load store operation the index variables are set to zero, so,

/I Access_Cycle[Set & Line Index][Word Index] =0

/I Avg_Stride[Set & Line Index][Word Index] =0

// Cum_Stride[Set & Line Index][Word Index] =0

/I Code fragment below showing the method of calculating average time stride calculation on HITs on
// words in the cache lines

Set 0 -

HIT

g
¢@ii

z
a
“

Set 0" —
Line 3°
HIT

-
&

Current_Access_Cycle = Mem_Access_Cycle;

if(MatchFound)
{
Cum_Stride[Set_Line_Index][Word_Index] =
Cum_Stride[Set_Line_Index][Word_Index] + (Current_Access_Cycle -
Access_Cycle[Set_Line_Index][Word_Index]);

Access_Cycle[Set_Line_Index][Word_Index] = Current_Access_Cycle;
Word_Hit_Count[Set_Line Index][Word_Index]++;

if(feof(Memory_Trace_File_Pointer))

for(I=0; I<Number_of_Sets;[++)
for(J=0; J<4; J++)
{
Set_Line_Index = ((I<<2)lJ);
for(Word_Index=0; Word_Index<Max_Word_Count_Per_Line;Word_Index++)
if(Word_Hit_Count[Set_Line_Index][Word_Index]!=0)

{

Avg_Stride[Set_Line Index][Word Index] =

Cum_Stride[Set_Line Index][Word Index]/ Word_Hit_Count[Set_Line Index][Word Index];
}

}

Fionre R 1.4 Cade fracmaent far averace time_ctride calenlatinn an Hite



As input, the analysis program uses memory traces obtained through the simulated
execution of the SPEC92 benchmarks assuming a load/store CPU with the cache
structure described above. After processing the hit rate and average stride of all words in
the cache, the portion of the cache hits due to spatial and temporal accesses is
determined. This determination is based on the ‘hit count’ and ‘average stride’ values for
each word in the cache, and is compared with the other words’ hit count and stride
values. For spatial accesses, the hit count and stride should be similar in value for each
word in relation to the other words in a specific line of the cache. This observation
forms the basis of how spatial locality is detected. The spatial accesses are isolated by
simple relative comparisons of both the word and total line hit count values. For
temporal accesses, the words with large differences in stride and hit count as compared
with other words in the line are considered and their cumulative counts are recorded for
each line. Following the same process for all of the lines in the cache, a combined set of
statistics based on spatial, temporal and unused word counts are obtained to calculate the
percentage of cache hits due to spatial versus temporal locality. Figure 2.2-5 shows a

flow diagram illustrating the major steps of the analysis method.
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Figure 2.2-5: Diagram illustrating the cache data analysis

2.3 Data Locality Analysis Results

Data locality behavior of several SPEC92 integer and floating point programs is shown in
Table 2.3-1. From the data locality behavior of the benchmark programs, it is apparent
that the data access patterns do not show purely spatial or temporal locality in any case.
The ratio of spatial versus temporal locality varies from program to program. These
results indicate that the spice2g6, gcc and doduc benchmarks have a bias toward temporal
locality. Table 2.3-1 also indicates that most of the benchmark programs possess a
significant amount of temporal locality. The average spatial locality is 68 percent and

average temporal locality is 32 percent for the SPEC benchmark programs used in this

study.
Table 2.3-1: Locality behavior of some SPEC Benchmark Programs
Benchmark Spatial | Average [Temporal| Average | Cache | Average
Reuse | Spatial | Reuse | temporal | Space Space

Reuse Reuse |Pollution| Pollution

Espresso 0.54 0.46 0.34

spice2g6 0.38 0.62 0.25

Doduc 0.45 0.55 0.01

Li 0.54 0.46 0.07

Eqgntott 0.67 0.33 0.18

Compress 0.63 0.37 0.01

mdljdp2 0.64 0.36 0.28

waveb 0.63 0.68 0.37 0.32 0.62 0.23

Tomcatv 0.99 0.01 0.14

Ora 0.90 0.10 0.61

Alvinn 0.79 0.21 0.15

Ear 0.81 0.19 0.10
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The spatial and temporal locality distributions of the SPEC benchmarks are

Figures 2.3-1 and 2.3-2.
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Figure 2.3-1: Graph showing spatial reuse patterns of the cache space by
SPEC benchmarks
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Figure 2.3-3 shows the pollution of cache space due to spatial fetching of data in the
cache lines. The results suggest that on average, 23% of the available cache space be

polluted by the spatial pre-fetching of data. In an extreme case the pollution was 62%

(wave)).
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Figure 2.3-3: Cache space pollution for spatial fetching of data into cache lines

by SPEC benchmarks

Figure 2.3-4 shows a 3-D plot of the portion of the cache space usage by the benchmark

espresso. This plot indicates that even when the spatial reuse component is dominant, the
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reuse surface is not very uniform. The reuse frequency is very high in some lines.

However, in most of the lines, spatial reuse is minimal.
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Figure 2.3-4: 3-D plot of the reuse pattern of the portion of cache space by the

benchmark espresso

Careful analysis of the results suggests that the address space of the memory references
could be pre-dominantly spatial, pre-dominantly temporal or a combination of each. This
is illustrated in Figure 2.3-5 where set A represents accesses that exhibit spatial locality
and set B indicates those with temporal locality. The results indicate that programs
typically contain a subset of accesses that have characteristics of both sets A and B. The
intersection of these two classes of memory access types is indicated by set C in Figure

2.3-5. As an example, consider a program that consists of several consecutive loops,
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each of which accesses an array of data sequentially. Clearly, the accesses within a
single loop are spatial in nature, however examining the access pattern of a single array
element is temporal in nature due to the existence of multiple loops, and hence, multiple

accesses of the same element.

SPATIAL
ADDRESS SPACE

R

&8

TEMPORAL
ADDRESS SPACE

B

Figure 2.3-5: Diagram of overlapping spatial and temporal locality characteristics

2.4 Conclusions
Based on the locality analysis presented above, the following conclusions are made:
1. Run-time data access behavior of different programs needs to be supported.
Thus, both spatial and temporal locality data should be cached. Therefore, a
split data cache is justified to facilitate both types of locality.
2. A unified data cache can perform poorly in some cases by wasting valuable

cache capacity.
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3. The data that should be cached in a spatial cache are whose reuse frequency is
good enough to allow for future cache hits. Otherwise, their accesses can be
bypassed in the cache.

4. Since spatial reuse is dominant in most of the cases, a relatively larger spatial
cache with bigger line sizes should be used as compared to the temporal cache

in the split data cache.

CHAPTER 3

Dynamic Data Locality Estimation Circuit

A split data-cache architecture with separate caches for data accesses classified as
predominately spatial or temporal requires specialized hardware or software to predict
these characteristics. This chapter presents a locality estimation circuit that operates
dynamically as the program executes. The technique is developed based on an analysis
of the locality behavior of several benchmark programs as described in the previous
chapter. The split data cache organization is then described and simulated. Experimental

results obtained from the simulations are preserved. These results are of use in

49



determining the effectiveness of the dynamic locality-estimation circuit and the relative

line sizes that should be used for the two caches.

3.0 Introduction

A data locality cache requires specialized hardware to predict the data access locality, and
to determine in which cache the data should be stored. Run-time access behavior could
show a random variation of locality of data from program to program. Performing
compiler assisted profiling of locality before execution of the program is much easier in
this case. Accomplishing the same result with a hardware scheme is more difficult due to
the finite size of the hardware. The design of the prediction hardware should be simple
and effective in any case to avoid complexity and minimize the additional hardware
resources required. Complex locality-estimation hardware may provide best the locality
estimation but the overall organization may introduce additional ‘in-cache’ locality
computation time that effects the cache access time. With this in mind, a locality
prediction hardware unit is designed which does not require any complex hardware

scheme and uses only a simple protocol to estimate the data access locality.

The subsequent sections of this chapter are organized as follows. Section 3.1 presents a
guideline to predict data locality analysis done in chapter 2. Section 3.2 describes a
simple ‘locality-estimation-circuit’ to be included in the cache controller for dynamic
prediction. Next, the performance of the locality prediction circuit when used in a split
data cache organization as compared to the locality prediction with the statistical analysis

is discussed. Finally, in section 3.4, conclusions based on the experimental data are
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presented.

3.1 Data Locality Prediction Guideline

The locality analysis presented in chapter 2 provided insight to the overall data access
behavior of the programs during run-time. This analysis model can be used effectively to
define the guidelines for designing a locality prediction circuit. It has been seen that the
data access behaviors exhibit uniform access and equal strides in most of the spatial
accesses in a cache line. For temporal references, the access frequencies are quite high in
some memory locations. Some temporal accesses are within very limited zones of the
cache lines. It has been also observed that overlapped spatial and temporal accesses exist
in some lines of the cache. Table 3.1 illustrates the spatial and temporal locality

distribution of a few more benchmark programs in addition to that presented in Chapter

2.

Table 3.1: Estimation of locality type for Benchmark programs

Benchmark Estimated Hit Rate (%) | Estimated Hit Rate (%)
due to spatial Locality due to temporal Locality
LINPACK 35.36 64.64
MATMULT64 13.85 86.15
QSORT 50.03 49.97
WORDFREQ 20.48 79.52
CELLAUTO 62.51 37.49
QUEENS 0.01 99.99
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From the locality analysis presented in Chapter 2, a guideline that the data cache needs
support for storing data in two different sub-caches according to the locality bias can be
inferred. These analysis results are used to propose a simple hardware solution for a split
spatial and temporal data cache that allows for an overall improvement in caching
efficiency. The approach followed is to implement a solution in hardware using dynamic
locality estimation. This poses the problem of which cache to store the data in during
cold-start accesses. At the cold-start point, no prior information is known about the data
and an estimate of the locality would simply be a guess. Furthermore, the results in Table
3.1 indicate that depending on the functionality of the program, some exhibit
predominately temporal locality while others exhibit spatial locality. The second
guideline is that an estimation circuit should be designed to estimate the data access
locality during run-time and then store those data in the proper locality caches. The next
section describes the organization and working principle of a locality estimation circuit

considered in this research for its simplicity and effectiveness.

3.2.1 Split data locality cache

The functional blocks of a generic split data cache is in Figure 3.1. This cache
organization contains a dynamic locality-estimation circuit that controls the runtime
caching policies for the whole organization. The dynamic locality estimation circuitry
analyzes the locality pattern of recently accessed data in the cache and directs the next
line-fill to the appropriate cache. This is accomplished by runtime locality analysis on

hits occurring after the cold start of the cache.
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Figure 3.1 The functional blocks of the split data cache organization

3.2.2 Dynamic locality estimation scheme

Locality prediction hardware must estimate run-time data access patterns. This can be
accomplished with the knowledge of the run-time data access pattern in the cache blocks.
To store the access pattern information, we need to keep a pattern table in hardware. To
maintain a separate run-time data prediction-pattern table is both expensive and difficult.
Instead of using a separate locality prediction table, we can use the cache line structure
for both spatial and temporal data caches as shown in Figure 3.2. This requires some
additional storage space in the spatial cache. The fields in this cache line are typical for
any set-associative cache with the exception of the inclusion of a single bit, L., which is
referred to as the "locality" bit and a “reuse” bit, R. The V field is used to indicate cache
line invalidation for write-through operations, the LRU bits are included for the
implementation of the replacement policy, the tag bits will serve as inputs to the address

circuitry to determine matches or hits, the DATA field contains the actual cache data.
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Although the line sizes differ in the temporal and spatial data caches, the structure is the

same.

V |L| R| LRU TAG LINE DATA
OFFSET
L = Locality Information, ‘0’ for all cache lines initially, and SET to ‘1’ when data shows
locality.
A\ = Valid Bit.

TAG = Tag bits of the address.

LRU = Least Recently Used bits (Number of Bits depends on the number of sets in the cache).

Figure 3.2: Cache line entries for the spatial and temporal caches

The locality bit is used to indicate that the cache line has an estimated spatial locality
behavior while in the spatial cache, or exhibits temporal locality behavior while residing
in the temporal data cache when it is set. During the cold start execution phase, data is
brought into the spatial cache initially. During cold start, bringing data in the spatial
cache is advantageous because we cannot do any prior anticipation of data locality before
they are accesses by the program. Thereby, if data is brought into the temporal cache with
an anticipation of temporal hits then the cache might face multiples misses if the
prediction is wrong. Copying data from the spatial cache to the temporal cache will not
increase miss rate and the release of the spatial cache space is possible in case the hit in a
particular spatial cache line is found temporal. The strategy for doing this spatial cache to

temporal cache transfer is described in the next paragraph.

During a hit in the spatial cache, if the hit occurs due to the same word for which that line
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was originally brought from a lower level of memory to the cache, the temporal reuse bit
is set to “1”. Otherwise, the spatial locality bit is set to “1” to indicate that spatial locality
of references is present in the line. The match of the line offset of the new memory
reference with line OFFSET field of the spatial cache maintained in cache directory will

be used to infer the locality information.

3.2.3 Dynamic locality estimation hardware

The simple hardware scheme for the locality estimation circuit is shown in Figure 3.3.
This scheme sets the spatial locality bit and reuse bit following the principles outlined
above. To estimate the temporal locality, when a second hit in a line occurs due to
temporal reuse of the same memory reference, the circuit checks whether or not the
spatial locality bit is set. If it is set, then the access-pattern into that cache line’s address
space exhibits both types of locality behavior. In this case, maintaining the data
residence in the spatial cache is better. Alternatively, if the consecutive access is due to

the same memory word reference and the spatial bit is not set, there is a high probability
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Figure 3.3: Basic Hardware Organization of the Locality Estimation circuitry
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This simple runtime heuristic for estimating the locality behavior of memory accesses
requires less hardware and avoids complexity in design as compared to other schemes
proposed in [36,57], which only detect spatial locality. Simplicity in the hardware of the
locality estimation circuit is a crucial design constraint. Simple hardware ensures that
overall program access times that are enhanced by the split cache organization are not
offset due to excessive latency in the estimation circuit itself. The prediction hardware
instructs the cache controller to move data from the spatial cache to temporal cache when
a hit is considered due to the temporal locality. Therefore, the cache read-write operation
is transparent from the affect of this data movement. The data movement from the spatial
to temporal cache occurs simultaneously at the cache speed while the ‘hit-data’ is
transferred to the CPU register. The identification of the temporal hit requires only a
comparator and an additional gate through the critical path. The split cache is considered
L1 cache, which is fabricated on the same CPU die that offers very fast logic usage.
Therefore, minimal latency for the comparator and the gate comprises the prediction

latency, and doesn’t affect the cache access cycle.

3.4 Experimental Results

A split data cache model that uses the locality prediction circuit defined above was
simulated using C language constructs in Unix Platform. The performance of the locality
prediction circuit is compared with the statistical metrics as described in chapter 2 for the

SPEC92 benchmark suite.
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Table 3.2 shows the comparison of estimated spatial locality by using the split cache as
compared to the “true” locality characteristics as predicted by the corresponding

statistical analysis [64]. These data are also shown in Figure 3.4 as a plot of the two

estimates.
Table 3.2: Comparison of Circuit Estimated to Statistically Analyzed Locality
Spatial Locality
Spatial Locality Percentage
Percentage estimated by
estimated by Split Statistical
Benchmark Cache Analysis Deviation

Program (%) (%) (%)
nasa’7 0.99 0.99 0.00
tomcatv 0.81 0.99 -18.18
espresso 0.76 0.54 40.74
ora 0.75 0.9 -16.67
alvinn 0.87 0.79 10.13
ear 0.89 0.81 9.88
swm256 0.99 0.96 3.13
su2cor 0.71 0.87 -18.39
eqgntott 0.73 0.67 8.96
compress 0.95 0.63 50.79
wavebs 0.86 0.63 36.51
mdljdp2 0.84 0.64 31.25
Sc 0.74 0.55 34.55
li 0.61 0.54 12.96
mdljsp2 0.72 0.49 46.94
doduc 0.60 0.45 33.33
gcc 0.70 0.44 59.09
spice2d06 0.63 0.38 65.79
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Figure 3.4 Spatial Locality estimates by Dynamic Estimation and Statistical analysis

As is evident from Figure 3.4, the locality estimation circuit usually provides a higher
estimation of spatial locality as compared to the statistical analysis. As mentioned
previously, all references initially result in spatial cache line fills. Since they are resident
in the spatial cache initially, if there is an overlapped spatial and temporal access
characteristic, the over estimation of the spatial locality is due to simple nature of the
estimation hardware used and the fact that all data are placed into the spatial cache on

cold-start initialization. The overlapped spatial and temporal access zone was also
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apparent from the statistical analysis as depicted in Figure 3.5.

In some cases, the estimation circuit also under-estimates spatial locality characteristics.
This occurs since, in these experiments, the spatial and temporal caches are divided into
two equally sized caches. In comparing these results to the unified cache, we only utilize
one-half of the capacity for the spatial cache as compared to the unified data cache that
contains lines of size greater than one word throughout the entire cache. However, we
are still striving to provide better performance even in the case where spatial locality is
highly dominant. Since we effectively have a spatial cache with one-half the size of a
corresponding unified cache, problems can occur due to “thrashing” where data
simultaneously exhibits behavior that is consistent with both temporal and spatial
locality. This can easily occur in a case where subsequent loops are present in program
that sequentially accesses an array. Within a single loop, the array elements have spatial
locality, but among the set of subsequent loops, a single array element may be accessed

several times indicating temporal locality characteristics.

To alleviate this problem, the temporal cache was used to store “victim” blocks of data
when they are being evicted from the spatial cache due to the replacement policy. Any hit
of spatial data that resides in the temporal cache increases the temporal hit count and
indicates the presence of more temporal locality in some cases. The justification of this

explanation is obvious if we look at the overestimated temporal locality cases for the
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benchmarks tomcatv, ora and su2cor. For these cases, the statistical analysis always

suggests that the presence of spatial locality is greater than 80%.

3.5 Conclusion

A simple locality prediction circuit is designed and evaluated based on the run-time data
access model presented in Chapter 2. The run-time cache resident data analysis indicated
the design strategy for this hardware unit. The prediction circuit helps to determine into
which cache a specific data block should reside during program run-time. In addition, the
prediction circuit incorporates a small amount of additional overhead in terms of
hardware complexity and access latency. Due to the simplicity of the hardware, the
estimates did not fully agree with the statistical analysis of the locality characteristics as
discussed in Chapter 2. The deviation from the statistical analysis is attributed to the cold
start strategy, the spatial victim block placement policy and the overlapped temporal and

spatial address spaces.
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CHAPTER 4

Split-Cache Subsystem Design

The implementation of the locality estimation circuit in a cache organization requires
defining the typical data path and the control hardware of the memory management unit
(MMU) in the processor architecture. The targeted architecture is an uniprocessor to test
the performance of the split data locality cache. In this Chapter, the hardware

organization of the split cache subsystem is presented. After describing the hardware and
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the associated test bench model, the performance evaluation of this subsystem is

presented.

4.0 Split Data Cache Organization

The approach used to design the split data cache was to, a) define the data path, b) define
the size and address mapping schemes for the spatial and temporal sub-caches, and c)
define the replacement algorithm. Before going through each of these steps, structural
placement of this cache in the processor architecture is discussed. Figure 5.1 shows the
basic placement of the split data cache in a uniprocessor organization. Here the cache is
considered as a level one (L.1) cache. The size of the sub-caches is dependent on the
optimum cache performance design. To store data into spatial or temporal cache, this
organization requires the locality estimation circuit. Data localities are dynamically

determined by the estimation circuitry after cold-start of the process.

Register

L2 Cache
(Off Chip)

Figure 4.1 The Split Data Cache in a uniprocessor organization
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The question now arises, into which cache data should be brought during the cold starts
of the process. Incorrect placement of data during cold starts will introduce additional
miss penalty. To find a solution, analysis of the cache performance by setting up a split
cache simulation scheme for bringing data during cold start was done. The simulation
scheme considers all new entries in the cache as having spatial locality initially in one
scheme and as having temporal locality in another. During a cache hit, a comparison is
performed that determines if hit is due to the same memory reference for which the line
was brought into the cache or not. If the line is resident in the "wrong" cache (according
to the locality estimate), then that line is copied to the other cache and the current entry is

invalidated. The flow diagrams shown in Figure 4.2 and 4.3 depict these two schemes.
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Figure 4.2: Flow diagram of caching scheme where initial references are considered spa