
TECHNOLOGY-DEPENDENT QUANTUM LOGIC SYNTHESIS AND COMPILATION

Approved by:

Dr. Mitchell Thornton - Committee

Chairman

Dr. Jennifer Dworak

Dr. Gary Evans

Dr. Duncan MacFarlane

Dr. Theodore Manikas

Dr. Ronald Rohrer

TECHNOLOGY-DEPENDENT QUANTUM LOGIC SYNTHESIS AND COMPILATION

A Dissertation Presented to the Graduate Faculty of the

Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Electrical Engineering

by

Kaitlin N. Smith

(B.S., EE, Southern Methodist University, 2014)
(B.S., Mathematics, Southern Methodist University, 2014)

(M.S., EE, Southern Methodist University, 2015)

December 21, 2019

ACKNOWLEDGMENTS

I am grateful for the many people in my life who made the completion of this dissertation

possible. First, I would like to thank Dr. Mitch Thornton for introducing me to the field of

quantum computation and for directing me during my graduate studies. I would also like to

thank my committee for supporting my research and for all of the suggestions and guidance

that helped me to develop my skills as a scientist.

To my family and friends: thank you for being there. You have no idea how much your

constant encouragement, advice, and love have meant to me over the years as I completed

this degree.

To my Mom and Dad: thank you for always being my biggest fans and for always

believing in me. You have both taught me so much, and have given me the courage to chase

my dreams. I love you.

iii

Smith , Kaitlin N. B.S., EE, Southern Methodist University, 2014
B.S., Mathematics, Southern Methodist University, 2014
M.S., EE, Southern Methodist University, 2015

Technology-dependent Quantum Logic Synthesis and Compilation

Advisor: Dr. Mitchell Thornton - Committee Chairman

Doctor of Philosophy degree conferred December 21, 2019

Dissertation completed September XX, 2019

The models and rules of quantum computation and quantum information processing

(QIP) differ greatly from those that govern classical computation, and these differences have

caused the implementation of quantum processing devices with a variety of new technologies.

Many platforms have been developed in parallel, but at the time of writing, one method of

quantum computing has not shown to be superior to the rest. Because of the variation

that exists between quantum platforms, even between those of the same technology, there

must be a way to automatically synthesize technology-independent quantum designs into

forms that are capable of physical realization on a quantum computer (QC) with specific

operating parameters. Additionally, results of synthesis must be formally verified to con-

firm that output technology-dependent specifications are logically identical to their original,

technology-independent forms. The first contribution of this work to the field of quantum

computing is the creation of such a methodology. Quantum technology mapping and op-

timization for machines with fixed coupling maps and libraries of gates can be performed

with an automatic quantum compiler, and the development and test of this compiler will be

explored in this dissertation. Furthermore, this compiler can be considered in a more general

context to be a synthesis tool for QIP circuits in a specific realization technology, many of

which are capable of implementing systems where the radix of computation, r, is greater

than two. As a result of this ability, the second contribution of this work is the presentation

of architectures for higher-dimensional quantum entanglement.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xii

CHAPTER

1. Introduction . 1

1.1. Classical Computation and Limitations . 2

1.2. Contribution . 3

2. Quantum Information . 4

2.1. The Qubit . 4

2.2. Physical Quantum Implementations . 6

2.2.1. Transmons . 7

2.2.2. Photonics . 8

2.3. The Superposition Principle . 10

2.4. The Wavefunction and Quantum Computing . 11

2.5. Quantum Operations . 14

2.6. Requirements for Quantum Computation . 17

2.7. Entanglement . 18

3. Quantum Logic Synthesis Considerations . 22

3.1. No-Cloning Theorem . 22

3.2. Reversible Logic . 24

3.3. Gate Libraries and Coupling Constraints . 26

3.4. Current Physical Quantum Technology . 27

v

3.4.1. IBM Q. 27

3.4.2. Rigetti . 29

3.4.3. Quantum with Photonic Devices. 30

3.5. Quantum Cost . 33

3.6. Quantum Multiple-valued Decision Diagrams . 35

3.7. Zero-supressed Decision Diagrams . 36

4. Technology Mapping Algorithms . 39

4.1. Connectivity Tree Reroute . 39

4.2. Zero-suppressed Decision Diagram Technology Mapping 42

4.2.1. Problem Formulation with ZDD Mapping . 42

4.2.2. Finding Maximal Partitions . 43

4.2.3. ZDD mapping in the Quantum Compilation Flow 47

4.2.4. Experimental Results . 48

5. Formally-verified Synthesis Methods and Experiments . 52

5.1. IBM . 53

5.1.1. Methodology . 53

5.1.2. Experimental Results . 55

5.2. Rigetti . 62

5.2.1. Methodology . 62

5.2.2. Experimental Results . 65

6. Higher Dimensioned Quantum Logic Synthesis . 68

6.1. Qudit Information . 71

6.2. Qudit Superposition . 73

6.2.1. The Hadamard Gate . 74

6.2.2. The Chrestenson Gate . 74

vi

6.3. Single Qudit Basis Permutation. 78

6.4. Controlled Qudit Operators . 79

7. Higher Dimensioned Entanglement Generators . 84

7.1. Partial Entanglement of Qudit Pairs . 85

7.2. Maximal Entanglement Generators for Qudit Pairs . 87

7.3. Maximal Entanglement of Qudit Groups . 97

7.3.1. Synthesis of Qudit Entanglement States . 100

8. Conclusion . 106

8.1. Summary . 106

8.2. Future Work . 107

APPENDIX

A. The Radix-4 Chrestenson Gate . 109

A.0.1. Quantum Optics . 110

A.1. The Four-port Coupler . 111

A.2. Physical Realizations of the Four-port Coupler . 115

A.2.1. Fabrication . 117

A.2.2. Characterization . 117

A.3. Implementing Qudit Quantum Operations with the Coupler 118

vii

LIST OF FIGURES

Figure Page

2.1 The Bloch sphere . 5

2.2 Photonic transformation between polarization and dual-rail encoding schemes . 9

2.3 Quantum circuit example 1 . 17

2.4 Bell state generator . 20

3.1 Proposed qubit copying gate, G . 22

3.2 Boolean AND and OR operation symbols and truth tables . 25

3.3 Representation of CNOT operation as a QMDD. 36

3.4 A ZDD representing the family of sets {{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}}.
All internal non-terminal nodes are annotated with the sets they repre-
sent. Dashed edges indicate LO and solid edges indicate HI. 38

4.1 Implementation of SWAP operation using CNOT. 39

4.2 CNOT orientation reversal. 40

4.3 Pseudocode CTR algorithm. 41

4.4 CTR implementation on the ibmqx3 machine for a CNOT with q5 as con-
trol and q10 as target. 41

4.5 Algorithm: Find maximal partitions. 45

5.1 Synthesis and compilation tool architecture. 52

5.2 Proposed 96-qubit machine used for experimentation. 62

5.3 CNOT to CZ transformation. 64

6.1 Comparison of vector spaces for r = 2, 3. 72

6.2 Radix-r Chrestenson gate, Cr evolving |φr〉. 75

6.3 Roots of unity in the complex plane for r = 2, 3, 4, and 5. 76

6.4 Symbol of the controlled modulo-add gate, Ah,k. 83

viii

7.1 a) General circuit for radix-r two-qudit partial entanglement generator. b)
Specific example circuit for radix-3 two-qudit partial entanglement generator. 86

7.2 Radix-3 two-qudit maximal entanglement generator implemented with A1,1

and A2,2 that form the composite gate A(1,2),(1,2). 93

7.3 Generalized maximal entanglement circuit for a radix-r qudit pair. 96

7.4 Three-qubit GHZ state generator. 97

7.5 Radix-3 three-qudit maximal entanglement generator implemented with two
instances of A1,1 ×A2,2 = A(1,2),(1,2). 98

7.6 Generalized structure of circuit needed for radix-r maximal entanglement
among n qudits where j = n− 1 and m = r − 1. 100

7.7 Algorithm: Find entangled state generator circuit. 101

7.8 Sample output of generator circuit synthesis to prepare 1√
3

(|003〉+ |113〉+ |223〉)
from ground state |003〉. 105

A.1 Signal flow for four-port coupler with input at W. 112

A.2 Macroscopic realization of a four-port coupler. 115

A.3 Cross sectional scanning electron microscope image of a four-port coupler
in MQW-InP. 116

A.4 Cross sectional transmission electron micrograph of a four-port coupler
backfilled with alumina using atomic layer deposition. 121

ix

LIST OF TABLES

Table Page

2.1 Common single- and multi-qubit quantum operators . 15

3.1 IBM Q device details (* indicates a retired device) (IBM Q team, 2018a,b,c,d,e) 29

3.2 Rigetti device details (* indicates a retired device) (Rigetti Computing, 2019a) 31

3.3 Photonic quantum operators . 32

4.1 Gate depth, gate volume, and two-qubit metrics of benchmarks after zdd
mapping, IBM compiling, and Rigetti compiling. Values that decreased
whenever ZDD mapping was implemented before compilation have been
emphasized. 51

5.1 Results of compilation using benchmarks from (rev, 2017) mapped to IBM
devices. 57

5.2 Percent decrease of (rev, 2017) benchmark cost after optimization. 58

5.3 Results of compilation using benchmarks from (rev) mapped to IBM devices. . . 59

5.4 Percent decrease of (rev) benchmark cost after optimization. 60

5.5 96-qubit QC benchmark details. 61

5.6 96-qubit QC benchmark compilation results. 63

5.7 Metrics for (CZ count/cost) after synthesis using benchmarks from (rev,
2017) targeting the Rigetti QCs. 66

5.8 Percent decrease in cost from unoptimized to optimized synthesis targeting
the rigetti QCs. 67

7.1 Outputs of radix-3 partial entanglement generator circuit with |03〉 as con-
trol level . 88

7.2 Outputs of radix-3 partial entanglement generator circuit with |13〉 as con-
trol level . 88

7.3 Outputs of radix-3 partial entanglement generator circuit with |23〉 as con-
trol level . 91

x

7.4 Outputs of radix-3 maximal entanglement generator circuit with |13〉 and
|23〉 as control levels . 91

7.5 Outputs of radix-3 maximal entanglement generator circuit with |03〉 and
|23〉 as control levels . 92

7.6 Outputs of radix-3 maximal entanglement generator circuit with |03〉 and
|13〉 as control levels . 92

7.7 Outputs of radix-3 three-qudit maximal entanglement generator circuit in
Fig. 7.5 . 99

7.8 Required generator circuit components for two-qudit maximally entangled
state preparation . 103

7.9 Required generator circuit components for multi-qudit maximally entangled
state preparation . 104

xi

LIST OF ABBREVIATIONS

ALD Atomic Layer Deposition

CNOT Controlled-NOT

CPU Central Processing Unit

CTR Connectivity Tree Reroute

CZ Controlled-phase

EPR Einstein, Podolsky, and Rosen

ESOP Exclusive Sum of Products

FIB Focused Ion Beam

GHZ Greenberger–Horne–Zeilinger

HBr Hydrogen Bromine

ICP Inductively Coupled Plasma

MQW Multi-quantum Well

NISQ Noisy Intermediate-scale Quantum

OAM Orbital Angular Momentum

QASM Quantum Assembly Language

QC Quantum Computer

QFT Quantum Fourier Transform

QIP Quantum Information Processing

QKD Quantum Key Distribution

QMDD Quantum Multiple-valued Decision Diagram

QPIC Quantum Photonic Integrated Circuits

xii

QPU Quantum Processing Unit

QUIL Quantum Instruction Language

SDK Software Development Kit

ZDD Zero-surpressed Decision Diagram

xiii

Chapter 1

Introduction

Modern digital circuitry can evaluate complex equations quickly and with precision, al-

lowing for rapid rates of data creation and processing. Computers that are modeled with

classical switching theory have revolutionized problem solving, but due to their nature, these

devices are not ideal for every calculation without large overhead with respect to time or

physical resources. The quantum computing model, however, has potential to solve some of

these difficult problems with greater efficiency due to a fundamentally different underlying

model of computation.

The field of quantum computation is one of great potential. Theoretical work has proven

that a quantum computer (QC) can complete tasks such as searching large data sets and

simulating quantum behavior at a rate much faster than what is currently possible. In

addition, QCs have demonstrated other computing advantages, such as the ability to encode

state spaces where the basis dimension is greater than two. Unfortunately, physical QC

development is not as advanced as the state of quantum theory and algorithms. Currently,

there are many contenders for what will eventually be the standard quantum computing

platform or technology.

Because of the variety that exists in quantum implementations and devices, techniques

are needed that map quantum circuits, especially those that generate important phenomena

such as quantum entanglement, to physical technology platforms that contain varied gate li-

braries and qubit layout topologies. Thus, methods for quantum logic synthesis, or hardware

compilation, are required.

1

1.1. Classical Computation and Limitations

The electronic computers that are widely available today are referred to here as classical

computers. These devices process information in discrete units of information, modeled as

bits, that have a value of either one or zero indicating an asserted or a deasserted state,

respectively. Over the last half century, classical computers have consistently improved in

their processing power. This advance in technology has helped simplify many complex calcu-

lations, such as calculus problems, and has allowed the development of classical algorithms

that support the analysis of system reliability (Smith et al., 2017), computer security (Tay-

lor et al., 2017), poynomial decomposition (Smith and Thornton, 2019h), and many others.

There are, however, still several problems that are impractical to solve on a classical machine

due to their spatial or temporal complexities. Additionally, because of the bistable nature

of transistors that are standard in electronic technology, the majority of classical computa-

tion is based on an implementation of a radix-2 model where the bit takes a single value

of B ∈ {0, 1}. Due to the very nature of classical computing, the Turing machine model

guarantees that theoretical complexities can not be overcome. Examples of problems that

are currently difficult for classical computers to solve involve searching large state spaces

and factoring numbers (DiVincenzo, 2010). Even if classical computers could continue the

trend of increased performance, although the momentum of computational power is slowing

due to the inability to continue to scale down the feature size of transistors, complexity

issues would still exist because some problems remain intractable. The abilities of classical

computers will always exhibit deficits due to the Turing model, leaving many intractable

problems unsolved. Therefore, alternative computing methods, such as quantum methods,

should be investigated.

2

1.2. Contribution

The models and rules of quantum computation and quantum information processing

(QIP) differ greatly from those that govern classical computation, and these differences have

caused quantum device implementation with a variety of new technologies. Many platforms

have been developed in parallel, but at the time of writing, one method of quantum comput-

ing has not shown to be superior to the rest. Because of the variation that exists between

quantum platforms, even between those of the same technology, there must be a way to au-

tomatically synthesize technology-independent quantum designs into forms that are capable

of physical realization on a QC with specific operating parameters. Additionally, results of

synthesis should be verified to confirm that output technology-dependent specifications are

logically identical to their original, technology-independent forms. The first contribution

of this work to the field of quantum computation is the creation of such a methodology.

Quantum technology mapping and optimization for machines with fixed coupling maps and

libraries of gates can be performed with an automatic quantum compiler. The development

and test of compilation algorithms will be explored in this dissertation. Compilation can

be considered in a more general context to be a synthesis tool for QIP circuits in a specific

realization technology, and many of these technologies are capable of implementing systems

where the radix of computation, r, is greater than two. As a result of this ability, the second

contribution of this work is the presentation of architectures for higher-dimensional quantum

entanglement.

The contributions above have been included in (Smith and Thornton, 2017, 2018, 2019a,b,c,d,e,f;

Smith et al., 2019). Other publications and works completed during my PhD studies include

(Smith and Thornton, 2015, 2019g,h; Smith et al., 2017, 2018a,b,c; Taylor et al., 2017).

3

Chapter 2

Quantum Information

2.1. The Qubit

In classical computation, units of information are stored in strings of bits. Each bit

can have a logic value of B ∈ {0, 1}. According to switching theory, Boolean logic gates

are applied to bit values in order to cause change over time. The mathematical model of

Boolean algebra is used to create and manipulate meaningful data from strings of bits, and

this information must be represented physically in computing systems such as in the form

of voltage or current in a wire or as light in a fiber optic cable. The classical states of 0

and 1 are most frequently realized within electronic devices as either a low or high voltage,

respectively, when using positive logic or as a high or low voltage, respectively, when using

negative logic.

In QIP, the unit of information is the quantum bit, or qubit. The qubit stores information

by holding values such as |0〉 or |1〉 which are a set of orthonormal basis states in Dirac

notation (Dirac, 1958) that represent the two-dimensional column vectors of

|0〉 =

1

0

 , |1〉 =

0

1

 . (2.1)

Although similarities between the qubit and the classical bit exist, the qubit may represent

an infinite number of states while in a superposition of a set of basis states. For example,

the qubit |Ψ〉 may equal either |0〉 or |1〉, or it may take a value that is a linear combination

of both basis states in the form of

4

|Ψ〉 = α |0〉+ β |1〉 . (2.2)

In Eqn. 2.2, the probability amplitudes α and β are complex numbers, c, that take the form

of c = a + bi. Here, i is an imaginary number where i2 = −1. The state of a qubit can be

visualized using the geometry of the Bloch sphere (Bloch, 1946; Nielsen and Chuang, 2010).

On the Bloch sphere, pictured in Fig. 2.1, |0〉 is found at the north pole, ẑ whereas |1〉 is

found at the south pole, −ẑ. The states |0〉 and |1〉 are referred to as the computational

basis. A qubit may take any value on the surface of the Bloch sphere that represents a linear

combination of |0〉 and |1〉.

Figure 2.1. The Bloch sphere

The magnitude of qubit probability amplitudes must sum to unity, thus, the Bloch sphere

has a radius of one. In Eqn 2.2, the probability that |Ψ〉 = |0〉 is equivalent to α∗α = |α|2

and the probability that |Ψ〉 = |1〉 is β∗β = |β|2 where ∗ indicates a complex conjugate and

|α|2 + |β|2 = 1. Once a qubit is measured, it collapses into a basis state and its quantum

properties are lost.

5

2.2. Physical Quantum Implementations

Qubits have been successfully realized in many different mediums. In microscopic real-

izations, the size of the particles acting as qubits are on the atomic scale. Because these

particles are so small, they exhibit the quantum characteristics needed by the qubit to exist

in states of superposition. Of these different particle types, none have proven to be a supe-

rior information carrier. Some examples of popular qubit representations within quantum

particle systems are photons in optical cavities, photons in microwave cavities, ions in ion

traps, spin in electrons, and charge in quantum dots (Nielsen and Chuang, 2010). Qubits

can also be realized in larger, mesoscopic systems like with electric charge in solid-state

superconducting circuits (Koch et al., 2007).

At the time of writing, quantum technology is in the noisy intermediate-scale quantum

(NISQ) era (Preskill, 2018). The QCs available are of modest size, but a significant limiting

factor with these devices is the high probability of an accidental measurement of qubit state

that causes the system to collapse. This collapse, usually caused by an unintended interaction

between a qubit and its environment, is called decoherence (Nielsen and Chuang, 2010).

Scientists have observed through experimentation that some quantum systems are more

resilient to decoherence than others. For example, the quantum coherence time for a photon

within an optical cavity is approximately 10−5 second whereas the quantum coherence time

for an indium atom within an ion trap is approximately 10−1 second (Nielsen and Chuang,

2010). More recent implementations with transmons, charge-based qubits used by companies

such as IBM and Rigetti, have demonstrated coherence times of approximately 10−4 second

(Devoret and Schoelkopf, 2013).

There are two types of qubits in QIP: stationary qubits and “flying” qubits. Stationary

qubits are used to perform calculations in fixed locations such as within a integrated cir-

cuit. Because stationary qubits are used for computation, they must be implemented with

technologies that allow qubits to easily interact with each other. Flying qubits, on the other

6

hand, are used for the transmission of quantum information. This type of qubit must be

implemented with technology resistant to decoherence so the quantum state is stable as it

travels.

2.2.1. Transmons

The transmon QC is a popular platform of the NISQ era. The technology was first

developed in 2007 at Yale University, and current work with these devices have demon-

strated very promising coherence times of around 100 µs (Devoret and Schoelkopf, 2013;

Koch et al., 2007). One- and two-qubit quantum state transformations can be executed with

high fidelity (Tripathi et al., 2019), and as a result, many companies and research groups,

such as IBM and Rigetti, have invested resources to continue to develop transmon technol-

ogy. For example, IBM Q includes quantum machines with 5 or more qubits that can be

programmed to run user-generated quantum circuits. A discussion of the IBM quantum

machines can be found in Section 3.4.1 while information about the Rigetti devices can be

found in Section 3.4.2.

Transmons are a physical quantum realization that are categorized as superconducting

charge qubits. Superconducting qubits in general use microscopic phenomena within meso-

scopic devices, such as electric charge in a circuit for the case of the transmon, to realize

quantum information. To better understand how a transmon works, its components must

be understood. A Cooper Pair Box, a capacitive shunt, and a transmission line resonator

are the main components that comprise a transmon with the Cooper Pair Box being the ele-

ment that contains the charge qubit. A Josephson Junction, two superconducting materials

separated by a very thin insulator, along with a Cooper pair, two electrons bonded at low

energy levels, form the Cooper Pair Box (Bader, 2013).

As indicated by the name “superconducting charge qubit,” electric charge provides the

representation of qubit basis states for the transmon. The transmission line resonator on

the device provides a means of interacting with the qubit. For example, by applying specific

7

electric fields to the resonator, a single qubit operation can be performed. Multiple transmon

qubits can be coupled together if additional connecting resonators are added, allowing for

multi-qubit transformations to occur. More details about the transmon architecture and

the available operations can be found in (Bader, 2013; Devoret and Schoelkopf, 2013; Koch

et al., 2007).

2.2.2. Photonics

Photonic computing is a promising area that provides some benefits with respect to secu-

rity such as resilience to side channel attacks. There have been recent efforts to implement

photonic computing using the classical Turing machine model (Singh et al., 2014; Smith

and Thornton, 2015), however, the potential of quantum computing and the ability to use

photons as qubit state carriers is considered by many in the field to be a more valuable use

of photonics.

Photonic implementations could be considered one of the more successful physical quan-

tum realizations. Its weaknesses due to the nature of light, however, have prohibited photonic

devices from becoming the standard platform for quantum logic. In a photonic QC, qubits

are realized with photons. A photonic qubit is characterized by having a long coherence time

that can be demonstrated experimentally to travel lengthy distances at room temperature

(Myers and Laflamme, 2006). This long coherence time is caused by the photon’s resistance

to coupling with other elements in its environment (Kok et al., 2007). While the photonic

qubit’s failure to interact with other objects is an advantage in terms of maintaining state, it

creates difficulties in situations where qubits must interact in multi-qubit gates such as with

the controlled-NOT (CNOT) or controlled-phase (CZ) operations. Single-qubit operations

are easily implemented and deterministic with photonics, but multi-qubit gates are currently

probabilistic in outcome. For example, the first quantum photonics gate with a control, a

conditional phase flip gate, was demonstrated to have a success probability of 1
16

in 2001

(Knill et al., 2001). These results were improved in 2003 by (O’Brien et al., 2003) when a

8

photonic CNOT device was shown to operate with a success rate of 1
9
. Currently, controlled

quantum operations implemented with photonic devices are proven to only have a fidelity of

1
4

in ideal operating conditions (Eisert, 2005).

A physical quantum implementation must have a technique for encoding qubit state.

Although other encoding methods exist with quantum photonics, the two main methods for

representing the qubit are with photon polarization and location. In the first method, photon

polarization acts as the information carrier where two orthogonal polarization angles of light

represent a set of quantum basis states. Typically with the polarization-encoded qubit,

horizontal polarization represents |0〉 and vertical polarization represents |1〉 (Kok et al.,

2007). The second method of photonic qubit realization uses what is known as dual-rail

representation. Dual-rail representation is a location-based means of representing quantum

information. Whenever using location to represent qubit state, it is most common that

the top rail represents |0〉 and the bottom rail represents |1〉 on quantum circuit diagrams

(Kok et al., 2007; Myers and Laflamme, 2006). Converting between polarization-encoded

and dual-rail encoded qubits is a relatively easy process that is frequently done in photonic

quantum circuitry. To convert between the two forms of photonic qubits, both a polarizing

beam splitter and a half wave plate can be used (Myers and Laflamme, 2006; O’Brien et al.,

2003). The schematic representing the photonic transformation from a polarization encoding

to a location encoding can be seen in Fig. 2.2.

Figure 2.2. Photonic transformation between polarization and dual-rail encoding schemes

Orbital angular momentum (OAM) states of light are also used to encode qubit state (Garćıa-

Escart́ın and Chamorro-Posada, 2008).

9

Choosing a qubit encoding scheme for a photonic quantum implementation depends

on the qubit’s task. For example, since fewer communication lines are needed for the

polarization-encoded qubit, this representation may be more suitable for long-haul qubit

transmissions. Whenever photonic quantum computations are performed, however, dual-rail

representation is most frequently used. Additionally, dual-rail encoding is easier to imple-

ment on quantum photonic integrated circuits (QPICs). More information about photonic

quantum operators for both polarization and location encoding methods can be found in

Section 3.4.3.

2.3. The Superposition Principle

In Section 2.1, the concept of superposition for a single qubit was introduced. Because of

superposition, if |Ψ〉 and |Φ〉 are two quantum basis states for a qubit, any linear combination

of these two states, α |Ψ〉 + β |Φ〉 is also a valid state of the system where |α|2 + |β|2 = 1.

The superposition principle, however, is one that does not only pertain to a single qubit.

Quantum networks composed of multiple qubits can be in states of superposition as well.

For example, if there are two quantum systems, and these two systems have their quantum

state held in the vectors |x〉 = α1 |Ψ〉 + β1 |Φ〉 =

α1

β1

 and |y〉 = α2 |Ψ〉 + β2 |Φ〉 =

α2

β2

,

respectively. If these two systems were to be combined, the vector |xy〉 would be formed by

the tensor product of two original state vectors:

|xy〉 = |x〉 |y〉 = |x〉 ⊗ |y〉 =

α1

β1

⊗
α2

β2

 =

α1α2

α1β2

β1α2

β1β2

Due to the superposition principle, any linear function of the possible basis states of the

multi-qubit system is also a valid state, as long as the inner product, or the dot product, of

the vector formed from the qubits’ combined state equals unity.

10

2.4. The Wavefunction and Quantum Computing

Quantum mechanics is commonly viewed under the perspective of the Schrödinger pic-

ture. When looking through this lens, state vectors evolve in time and operators are constant

with respect to time. In other words, operators act on a wavefunction, Ψ, a mathematical

description of the quantum points of interest of a system, causing change. The wavefunction

includes complex-valued amplitudes, and the probabilities for the possible outcomes from

measurement of the system can be derived from solving |Ψ|2 = Ψ∗Ψ (Griffiths, 1995). Upon

measurement, the wavefunction collapses into a basis state of the system. The wavefunction

is a solution of the time- and position-dependent Schrödinger equation

i~
∂Ψ(x, t)

∂t
= ĤΨ(x, t). (2.3)

In the equation above, i =
√
−1, and ~ is the reduced Planck constant. Ĥ is the Hamiltonian

operator,

Ĥ = − ~2

2m

∂2

∂x2
+ V (x), (2.4)

that represents the total energy for a system where where m represents mass and V (x)

represent potential as a function of position. The differential equation of Eqn. 2.3 can be

solved to derive an expression for the wavefunction. To begin, the right side of the Eqn. 2.3

will be expanded using Eqn. 2.4 to form

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t). (2.5)

A function that describes how Ψ(x, 0) evolves into Ψ(x, t) is desired, but this is difficult to

find while the Schrödinger equation contains partial differential equations. To put Eqn. 2.5

into a simpler form, a separation of variables technique will be applied to find a solution

in the form of Ψ(x, t) = F (t)Ψ(x) where the time and position components of Ψ(x, t) are

separated into two different equations, respectively, that intersect under multiplication. The

11

reason why Ψ(x, t) is written as two functions rather than one is because it allows difficult

partial derivatives to become total derivatives. Writing Eqn. 2.5 with Ψ(x, t) = F (t)Ψ(x)

gives

i~Ψ(x)
dF (t)

dt
=

(
− ~2

2m

d2Ψ(x)F (t)

dx2
+ V (x)Ψ(x)F (t)

)
,

i~Ψ(x)
dF (t)

dt
= F (t)

(
− ~2

2m

d2Ψ(x)

dx2
+ V (x)Ψ(x)

)
,

which can be reduced using Eqn. 2.4 to

i~Ψ(x)
dF (t)

dt
= F (t)ĤΨ(x).

So that time- and position-dependent functions are grouped. Next, both sides of the equation

will be divided by F (t)Ψ(x) to give

i~
1

F (t)

dF (t)

dt
=

1

Ψ(x)
ĤΨ(x) = E. (2.6)

Note how Eqn. 2.6 has the time- and position-dependent parts separated by the equals

sign. Since changes to either x or t would cause only the right or left side of the equation

to change, respectively, they need to be related by a term that is not a function of either

variable. This term is a constant, E, that allows states of definite energy, or an eigenvectors

of the Hamiltonian, to be expressed. Two new equations surface from the manipulation of

Eqn. 2.6:

i~
dF (t)

dt
= EF (t), (2.7)

and

ĤΨ(x) = EΨ(x). (2.8)

12

Eqn. 2.7 is time-dependent and Eqn. 2.8 is time-independent and is instead dependent on

position. Now the wavefunction can be solved while keeping the value for E in both Eqn. 2.7

and Eqn. 2.8 equal. Solving the differential equation in Eqn. 2.7 allows

i~
dF (t)

dt
= EF (t),

to become

F (t) = F (0)e−iEt/~.

Now that the time-dependent Eqn. 2.7 has been solved, the variables can be recombined to

create the wavefunction

Ψ(x, t) = F (t)Ψ(t) = F (0)e−iEt/~ΨE(x),

thus,

ΨE(x, t) = e−iEt/~ΨE(x, t = 0). (2.9)

The subscript E is used to denote that Ψ(x) is associated with the same state of definite

energy as that of F (t).

In quantum computing, the state of the wavefunction Ψ is written using dirac notation

and is embodied by the qubit. For instance, the qubit |Ψ〉 can be in a state of either |0〉

or |1〉, or in a superposition of both simultaneously. After measurement, it collapses into

one of the basis states. The qubit is transformed by quantum gates that are represented

collectively by U such that

U = e−iEt/~ =

u00 u01

u10 u11

 . (2.10)

U is a unitary operator. When U is substituted into Eqn. 2.9, the following form of the

wavefunction,

13

|ΨE(x, t)〉 = U |ΨE(x, t = 0)〉 , (2.11)

results. In Eqn. 2.11, U allows |ΨE(x, t = 0)〉 to transform into |ΨE(x, t)〉 over time.

2.5. Quantum Operations

Quantum operators transform qubit state to implement quantum computation. If a

quantum algorithm were to be thought of as a circuit, the quantum operators would be the

gates. These operators are represented by a unique transfer function matrix of size 2n × 2n

where n is the number of qubits that the operation transforms. The transformation matrix

for a quantum operator, U, is always unitary, so the following characteristics are observed:

• U†U = UU† = In,

• U−1 = U†,

• Rank(U) = n,

• |U| = 1.

In the identities above, the symbol † indicates a complex-conjugate transpose. Gate trans-

formations can take place on single or multiple qubits. Some of the most common one- and

two-qubit operations are included in Table 2.1.

The transformations described in Table 2.1 are frequently used quantum operations, and

controlled variations of these gates can also be defined. For example, the CNOT operation

is the controlled Pauli-X, or controlled NOT, operation where a control qubit determines

the enable operation on a target qubit. Additional controls can be added onto the CNOT.

The transformation matrix and symbol for the Toffoli operation, an operator that acts as

a controlled-CNOT, can be seen in Table. 2.1. Adding more control qubits onto a Toffoli

gate results in an n-qubit generalized Toffoli where m = n− 1 qubits act as controls and the

nth qubit is the target.

14

Table 2.1. Common single- and multi-qubit quantum operators

Operator Symbol Transfer Matrix

Pauli-X (X)
[
0 1

1 0

]
Pauli-Y (Y)

[
0 −i

i 0

]
Pauli-Z (Z)

[
1 0

0 −1

]
Hadamard (H) 1√

2

[
1 1

1 −1

]
Phase (S)

[
1 0

0 i

]
π/8 (T)

[
1 0

0 eiπ/4

]
CNOT

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

CZ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

SWAP

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Toffoli

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

15

Quantum operators are combined to form quantum circuits, and quantum circuits can

be described in a variety of ways. Some of the most popular techniques include drawing the

circuits as graphs, like the one seen in Fig. 2.3, or describing them as a netlist with Quantum

Assembly Language (QASM) or Quantum Instruction Language (Quil).

Understanding how information is transformed in a quantum circuit requires some knowl-

edge of linear algebra and tensor products. As seen in Table. 2.1, quantum operators are

represented by transformation matrices. To determine the resulting quantum state, |Ψout〉,

after gate transformation, U, the calculation

|Ψout〉 = U |Ψin〉 (2.12)

must be completed. To determine |Ψin〉, the input qubit values are combined via tensor

product. Consider the quantum circuit pictured in Fig. 2.3. In this circuit, two qubits, |a〉

and |b〉, are each represented by a single horizontal line, but these horizontal lines should not

be confused with conductors like those in electrical circuit schematics. Reading from left to

right on the graph, qubit state evolves as time progresses and they pass though the CNOT

gate. Together at the input they form the value of |Ψin〉 and

|Ψin〉 = |ain〉 ⊗ |bin〉 = |1〉 ⊗ |0〉 =

0

1

⊗
1

0

 =

0

0

1

0

= |10〉 .

Determining |Ψout〉 requires Eqn. 2.12 to be used, and in this case, CNOT will take the

place of generalized transformation matrix U to generate

16

|Ψout〉 = U |Ψin〉 = CNOT |10〉 =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0

0

1

0

=

0

0

0

1

= |11〉

.

Figure 2.3. Quantum circuit example 1

Quantum operators are not limited to radix-2, or base-2, operations. Higher-order gates

act on quantum digits or “qudits” that are characterized by three or more basis states.

An example radix-4 Chrestenson gate can be found in (Smith et al., 2018a,b) and in Ap-

pendix A. Methods and operators for generating higher-radix quantum entanglement are

found in (Smith and Thornton, 2019a,c) and within Chapter 6 and Chapter 7.

2.6. Requirements for Quantum Computation

Quantum computation holds the key to unlocking the mystery of nature as QCs are the

ideal devices for the simulation of physics (Feynman, 1982). Performing quantum compu-

tations, however, requires more than simply realizing a qubit in a physical medium. For

example, while it is important for a system to demonstrate quantum characteristics to hold

qubits, these qubits must be able to evolve and interact with each other in order to represent

computation. In (Deutsch, 1985), a work that many scientists accept as the fundamental

model for quantum computation, the requirements for a quantum computer are described in

detail. According to this paper, a grouping of n qubits that are successfully able to act as a

17

quantum computer must demonstrate the following:

• Qubits must be initialized to a known state, such as |0〉 or |1〉.

• Qubits must be measurable, causing their collapse into a basis state.

• A qubit (or set of qubits) has the ability to evolve through a universal quantum gate

or set of gates, U, in a series that represents a unitary transformation (i.e. operations

are reversible because UU†=U† U=I).

• Qubits maintain their current quantum state if the aforementioned actions do not

occur.

The requirements above list the basic necessities for the evaluation of a quantum algorithm.

They describe a system where the outputs of the circuitry are dependent only on the current

inputs, or the original qubits that were initialized to a known state. If viewed from a

classical computing perspective, the requirements outlined in (Deutsch, 1985) allow us to

realize combinational quantum logic circuits where the output is a function of the current

circuit input only. These theoretical concepts for quantum computing have been expanded

since their original introduction in 1985.

In (DiVincenzo, 2010), the essential operational characteristics for a quantum computer

are described in greater detail along with the requirements for communicating in quan-

tum networks. In addition to the above necessities for quantum algorithm execution from

(Deutsch, 1985), (DiVincenzo, 2010) states that a practical quantum computer will need to

be built using technology that is scalable and is capable of long coherence times to main-

tain qubit state during computation. For quantum computation between machines, qubits

must be transmitted in a controlled manner, and those transmitted qubits, known as “flying

qubits,” must interact with stationary qubits in order to produce meaningful information

(DiVincenzo, 2010).

18

2.7. Entanglement

Entanglement is one of the most significant quantum phenomena. It describes how two

or more qubits can interact in such a way where they become a composite system that is no

longer separable. In other words, none of the member qubits can be described independently

from the qubit group once the group is in an entangled state. From a mathematical point

of view, if |Ψ〉 is an entangled quantum state, it cannot be expressed as a product |x〉 ⊗ |y〉

of its component systems. The following four states are examples of two-qubit entangled

states:

|β00〉 =
|00〉+ |11〉√

2
, (2.13)

|β01〉 =
|01〉+ |10〉√

2
, (2.14)

|β10〉 =
|00〉 − |11〉√

2
, (2.15)

|β11〉 =
|01〉 − |10〉√

2
. (2.16)

The states listed in the equations above are known as the Bell states. In some texts, they

are also referred to as EPR states, or pairs, after Einstein, Podolsky, and Rosen and their

groundbreaking paper (Einstein et al., 1935). The Bell states represent how two qubits may

be maximally entangled, or each of the possible outcomes of an observation are equally likely.

A Hadamard gate followed by a CNOT gate can be used to create Bell state entanglement.

The Bell state generating circuit is pictured in Fig. 2.4. Entanglement between two qubits

is not limited to just the Bell states, however. Other arbitrary entangled pairs are possible

where the probability amplitudes are unequal.

One of the significant properties of an entangled qubit pair is that knowledge of a single

qubit in the set gives insight to the rest of the member qubits. For example, consider a

19

Figure 2.4. Bell state generator

two-qubit system in the Bell state of |β00〉. Before measurement, the system has an equal

probability of being in either state |00〉 or state |11〉, respectively. During computation, the

first qubit is measured, and it collapses into a basis state. If the first qubit is measured to be

a |0〉, the second qubit must also be |0〉 because the two qubits in the system were entangled.

Likewise, if the first qubit is measured to be a |1〉, the second qubit must also be |1〉.

Quantum entanglement is an important phenomenon that is a critical component of

most quantum computation and communications algorithms. The ability to experimen-

tally demonstrate entanglement is significant because this phenomenon enables quantum

computing algorithms that exhibit a computational advantage as compared to their classical

counterparts. Another very important application of entanglement is that it allows for the im-

plementation of ultra-secure quantum communications protocols. For example, although the

original BB84 quantum key distribution (QKD) protocol only relies on superposition (Ben-

nett Ch and Brassard, 1984), entanglement is necessary for many BB84 derivatives (Ekert,

1991; Enzer et al., 2002). Additionally, quantum factoring of composite prime numbers (Shor,

1994), quantum radar (Lanzagorta, 2011), quantum teleportation (Bennett et al., 1993), and

many other applications depend upon and exploit the properties of entanglement in their

implementation. The entire concept of many QIS systems such as teleportation, quantum

communication channels, and others are based on the property of entanglement. Recently,

the well-known recent Chinese experiments based upon their Micius satellite demonstrated

that a quantum channel could be created between the earth and space. The Micius exper-

20

iments utilized quantum entanglement generators as a key function (Yin et al., 2017) for

their impenetrable communication network.

21

Chapter 3

Quantum Logic Synthesis Considerations

3.1. No-Cloning Theorem

Another unique characteristic quantum computation that further distinguishes it from

the classical computation model is the inability copy information. This property is especially

apparent whenever qubits are in a superimposed state. A classical bit encoded as a voltage

level can ideally fan out onto multiple branches as connections are added in parallel. Due to

the no-cloning theorem, a similar action cannot be performed on a qubit that results in the

creation of two qubits with identical value (Nielsen and Chuang, 2010).

Figure 3.1. Proposed qubit copying gate, G

The no-cloning theorem can be proven using a contradiction. Assume that there exists

a generalized cloning gate, G, that transforms any steady state, such as |0〉, into a copy

of a qubit, |Ψ〉. The transformation G is represented by a unitary transformation matrix

as is required for quantum gates. A block diagram describing the function of the proposed

gate G can be seen in Fig. 3.1. With G, two orthogonal quantum basis states are cloned,

G(|Ψ0〉) = |ΨΨ〉 and G(|Φ0〉) = |ΦΦ〉. Attempts to copy a state that is in a superposition

22

of these basis states, however, is not as successful. The qubit |β〉 = 1√
2
(|Ψ〉 + |Φ〉) will be

the example state that will undergo the cloning transform:

Anticipated cloned value of |ββ〉:

|ββ〉 =
1√
2

(|Ψ〉+ |Φ〉)⊗ 1√
2

(|Ψ〉+ |Φ〉) =
1

2
[|ΨΨ〉+ |ΨΦ〉+ |ΦΨ〉+ |ΦΦ〉]

Actual value of |ββ〉 after applying cloning transform, G:

G(|β0〉) = G

(
1√
2

(|Ψ〉+ |Φ〉) |0〉
)

=
1√
2

[G(|Ψ0〉) + G(|Φ0〉)] =
1√
2

[|ΨΨ〉+ |ΦΦ〉]

The anticipated cloned value of |ββ〉 using G and the actual value are unequal. This con-

tradiction proves the no-cloning theorem since it shows that G cannot exist.

The limitations of the no-cloning theorem on the qubit have severe implications in terms

of how quantum algorithms store information. Because of the inability to copy a qubit, quan-

tum memory will differ greatly from a classical memory. An example of a proposed method

to implement quantum storage using ring oscillator structures can be found in (Smith et al.,

2018c). While a classical bit can theoretically be read from memory as many times as nec-

essary while it occupies a memory address, stored qubits are available for one use only as

measurement causes superposition to collapse into a basis state. It is reasonable to conclude

that to agree with the no-cloning theorem, any sort of space that once held quantum infor-

mation will be invalid after a qubit is retrieved from storage for use if no sort of regeneration

of the qubit occurs. The no-cloning theorem is just one of many examples of qubit proper-

ties that change the way engineers must think about information storage while developing

quantum designs and performing compilation procedures. Quantum information is highly

sensitive and cannot be copied, and this characteristic must be taken into consideration

whenever transforming a quantum algorithm into a QC executable.

23

3.2. Reversible Logic

Reversible logic is a type of logic where information can travel bidirectionally without loss.

In a reversible circuit, a combination of inputs is sent through a function, fREV (x1, x2, ..., xn),

to produce a set of outputs, [y1, y2, ..., ym]. If these outputs are sent back through the

inverse of the function, f−1REV (y1, y2, ..., ym), the original inputs, [x1, x2, ..., xn], are generated.

Boolean operations such as the AND and OR operations are not inherently reversible. The

truth tables and symbols for these operations can be found in Fig. 3.2. It is apparent while

examining these Boolean functions that the outputs are easily derived from the inputs, but

information cannot travel in the reverse direction with the same clarity. For example, the

output for the AND function is simple to derive with a set of inputs. The function is x2·x1 = 0

whenever the input variables are x2x1 = 00, 01, 10 and is x2 · x1 = 1 whenever x2x1 = 11.

Since there are three possible combinations of inputs that allow the AND operation to equal

zero, however, there is no way to know with certainty what combination is present at the

input of the gate if only the output of zero is known. This is caused by an irretrievable

loss of information that occurs as soon as the input signals produce an output from the

Boolean logic gate. The loss of information is directly related to total energy dissipated by

the circuit according to Landauer’s principle where each bit of erased data costs at minimum

kT ln(2) Joules in energy dissipation (Landauer, 1961). Therefore, as a computer loses less

information during calculations, it improves in efficiency.

According to the work in (Bennett, 1973), any irreversible function can be made reversible

without drastically increasing its spatial and temporal complexity during computation. A

motivating reason to convert functions into a reversible form would be to minimize the

amount of required power during operation if a physically reversible medium is available.

To make an arbitrary switching function a reversible function, it must be transformed into

a bijection in which it displays the characteristics of being one-to-one and onto (Fazel et al.,

2007). When a function is one-to-one, each element in the codomain, or the target set of the

24

function, is the image of at most one element in the domain, or the set of input argument

values. When a function is onto, each element in the codomain is the image of at least one

element in the domain.

Figure 3.2. Boolean AND and OR operation symbols and truth tables

Although reversible logic was a concept that existed before quantum logic was popular-

ized, reversible forms of classical circuits could be thought of as a subset of quantum circuits

as all quantum circuits are inherently reversible. This is caused by unitary operators where

U† = U−1. Because of this property, a quantum transformation followed by its adjoint on

a vector of qubits results in the original quantum state since UU† = I. For example, since

CNOT is self-adjoint where CNOT = CNOT−1, so

CNOT2 |10〉 =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0

0

1

0

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0

0

1

0

=

0

0

1

0

= |10〉 .

Algorithms exist that transform Boolean logic functions into a reversible form. This

process requires the addition of ancilla input values and garbage output values since the

amount of inputs and outputs must be equal in a reversible logic function. Once Boolean

functions are reversible, they may be compiled into circuits that are executable on a quantum

25

machine. An example of a reversible logic generator is the work discussed in (Fazel et al.,

2007). This algorithm inputs a Boolean logic function in its exclusive sum of products, ESOP,

form and converts it to a reversible Toffoli cascade. Another example of a reversible logic

synthesis tool is RevKit (Soeken et al., 2012). This program includes ESOP transformation

algorithms based on the work first described in (Fazel et al., 2007) as well as decision diagram

based reversible logic synthesis techniques. Recent work has resulted in a methods that

transform irreversible switching functions into reversible forms with a minimal number of

ancillary information carriers (Gabrielson and Thornton, 2018a,b).

3.3. Gate Libraries and Coupling Constraints

There are various architectures for qubit representation currently competing to become

the standardized quantum computing platform. This variety between machines, even be-

tween those using the same underlying technology, causes conflicts during the circuit design

process. For example, several different transmon-based QCs have been developed by the

companies IBM and Rigetti. Although these implementations represent quantum informa-

tion with transmon technology, differences in architecture topology and gate libraries create

compatibility issues which, in many cases, prohibit the use of designs originally mapped for

one QC to properly run on another device. This challenge motivates the development of

techniques to automatically decompose, map, and optimize quantum circuits to forms that

are technologically dependent and physically executable.

Quantum devices have a small set of gates, often ones that are limited to single- and

two-qubit transformations, that are physically executable. Because quantum algorithms

are usually specified using high-level, multi-qubit operations, they must be simplified into

primitive operations that are available in a gate library if the functions are to be physically

realized on a real machine. Additionally, although current QCs contain a modest number

of physical qubits, connections between qubits on these devices are sparse. Because of

nearest neighbor coupling constraints, not all qubit combinations are going to be available

26

for multi-qubit operations. Therefore, special techniques are required to map the decomposed

operations of a generalized quantum circuit so that multi-qubit operations are executable on

an architecture.

3.4. Current Physical Quantum Technology

3.4.1. IBM Q

IBM has developed QCs based on solid-state, superconducting circuit technology, and

quantum information is realized with the charge-based transmon qubit (Chow et al., 2014a;

Córcoles et al., 2015; Takita et al., 2017). The company has developed real quantum machines

and a quantum simulator that the public can access and perform experiments on. The Python

software development kit (SDK) Qiskit is used to implement QIP with their platform.

Circuits targeted for the IBM machines must consist of single-qubit operators that are

within the gate set of Rz(φ), Rx(θ), Ry(γ). This includes the common transformations of

Identity, Pauli-X, Pauli-Y, Pauli-Z, Hadamard (H), Phase (S), Phase† (S†), π/8 (T), π/8†

(T†), phase rotation (φ angle on Bloch sphere), and amplitude rotation (θ angle on Bloch

sphere). The CNOT gate is the only available two-qubit gate on the IBM QCs, and its

implementation is restricted to a specific coupling map that is set by the connectivity of the

transmons on the device. The coupling map prevents arbitrary CNOT placement. Gener-

alized quantum circuits must be redesigned so that CNOT gates are mapped to connected

qubits. The coupling maps for the public IBM devices can be represented as dictionaries

where device = {a0 : [b0], a1 : [b1], . . . , an−1 : [bn−1]}. In these dictionaries, the keywords, ai,

are qubits that can act as CNOT controls and the paired list, bi, indicate the qubit(s) that

the CNOT control can target (IBM Q team, 2018a,b,c,d,e):

• ibmqx2 = {0:[1,2], 1:[2], 3:[2,4], 4:[2]}

• ibmqx3 ={0:[1], 1: [2], 2:[3], 3:[14], 4:[3,5], 6:[7,11], 7:[10], 8:[7], 9:[8,10], 11:[10],

27

12:[5,11,13], 13:[4,14], 15:[0,14]}

• ibmqx4 = {1:[0], 2:[0,1], 3:[2,4] 4:[2]}

• ibmqx5= {1:[0,2], 2:[3], 3:[4,14], 5:[4], 6:[5,7,11], 7:[10], 8:[7], 9:[8,10], 11:[10], 12:[5,11,13],

13:[4,14], 15:[0,2,14]}

• ibmq 16 ={1:[0,2], 2:[3], 4:[3,10], 5:[4,6,9], 6:[8], 7:[8], 9:[8,10], 11:[3,10,12], 12:[2],

13:[1,12]}

The IBM quantum simulator includes additional gates and qubits that are unrestricted by a

coupling map. Information about select IBM machines can be found in Table 3.1. This table

contains information about QC name, date of release, capacity, and coupling complexity.

QCs differ in size and layout, and these variations determine the extent that a general

circuit must be modified for realization on a particular machine. To give designers better

insight to the available qubit connections within a machine, a metric referred to as the

“coupling complexity” was devised. The term complexity was chosen to describe the amount

of topological interconnects between qubits on a QC. In Table 3.1, coupling complexity is

the ratio of the number of allowable CNOT couplings found in the coupling map to the

total number of two-qubit permutations for an IBM quantum machine calculated as

IBM coup. complex. =
total available couplings

q!
(q−2)!

(3.1)

where q is the number of physical qubits on the machine. For example, the ibmqx2 machine

has 6 couplings on the coupling map and a total of 20 two-qubit permutations. Therefore,

ibmqx2 coup. complex. =
6 available couplings

20 total coupling permutations
= 0.3.

A coupling complexity close to one indicates that a high percentage of a quantum machine’s

qubits are coupled for arbitrary two-qubit CNOT operations. A coupling complexity close

to zero indicates a low percentage of coupled qubits.

28

Table 3.1. IBM Q device details (* indicates a retired device) (IBM Q team, 2018a,b,c,d,e)

Name Release Qubits Coupling

Date Supported Complexity

ibmqx2 Jan. 2017 5 0.3

(Yorktown)

ibmqx3* June 2017 16 0.0833

ibmqx4 Sept. 2017 5 0.3

(Tenerife)

ibmqx5* Sept. 2017 16 0.0917

(Rueschlikon)

ibmq 16 Sept. 2018 14 0.0989

(Melbourne)

3.4.2. Rigetti

Rigetti has developed three solid-state-circuit-based QCs named Agave, Aspen, and

Acorn (Didier et al., 2018; Otterbach et al., 2017; Reagor et al., 2018). The Python library

PyQuil as well as a software development kit (SDK) Forest are used for writing quantum al-

gorithms, interacting with the quantum devices, and simulating quantum computing (Rigetti

Computing, 2019b). To specify an algorithm for the Rigetti QCs, quantum operators must

be specified in quantum instruction language, or Quil (Smith et al., 2016). Although Quil

allows for the specification of algorithms using many of the standard quantum gates, for al-

gorithm to be executable on a real quantum processing unit (QPU), a native gate set must be

used. This set includes Rz(φ) rotations, Rx(θ) rotations rotations that are integer-multiples

of π/2, and CZ (Rigetti Computing, 2019b).

Not every qubit pair can couple on a QPU, and this severely limits the total number of ex-

ecutable multi-qubit operations. The Rigetti devices demonstrate this operational constraint

29

because the only available two-qubit gate, CZ, may only be implemented on adjacent qubits

that are connected. Therefore, the device topology prevents the execution of arbitrary CZ

operations in an algorithm. The device topology for the Rigetti QPUs can be represented as

dictionaries where device = {a0 : [b0], a1 : [b1], . . . , an−1 : [bn−1]}. In these dictionaries, the

keywords, ai, are qubits that can act as CZ controls and the paired list, bi, indicates which

qubit(s) that the CZ control can target (Rigetti Computing, 2019a):

• Agave = { 0:[1,7], 1:[0,2], 2:[1,3], 3:[2,4], 4:[3,5], 5:[4,6],6:[5,7], 7:[0,6] }

• Aspen ={ 0:[1,7], 1:[0,2,16], 2:[1,3,15], 3:[2,4], 4:[3,5], 5:[4,6], 6:[5,7], 7:[0,6], 10:[11,17],

11:[10,12], 12:[11,13], 13:[12,14], 14:[13,15], 15:[2,14,16], 16:[1,15,17], 17:[10,16] }

• Acorn = {0:[5,6], 1:[6,7], 2:[7,8], 4:[9], 5:[0,10], 6:[0,1,11], 7:[1,2,12], 8:[2,13], 9:[4,14],

10:[5,15,16], 11:[6,16,17], 12:[7,17,18], 13:[8,18,19], 14:[9,19], 15:[10], 16:[10,11], 17:[11,12],

18:[12,13], 19:[13,14] }

Information about the Rigetti machines that details QC name, date of release, capacity, and

coupling complexity can be found in Table 3.2. An interesting observation is that the CZ

gate is bidirectional in the sense that the transformation matrix is equivalent if the control

and target qubits are interchanged. Because of the bidirectional nature of the CZ gate,

Rigetti coupling complexity is calculated with combinations rather than permutations as

Rigetti coup. complex. =
total available couplings

q!
2(q−2)!

. (3.2)

3.4.3. Quantum with Photonic Devices

Photons are a great medium for representing qubit state. They are stable particles in

the sense that they do not couple easily with their environment. Additionally, photons

are not spatially stationary particles. Since they resist decoherence, photons retain quantum

information for long periods of time at room temperature. This property makes them suitable

30

Table 3.2. Rigetti device details (* indicates a retired device) (Rigetti Computing, 2019a)

Name Release Qubits Coupling

Date Supported Complexity

Aspen Nov. 2018 16 0.15

Agave* June 2018 8 0.2857

Acorn* Dec. 2017 19 0.1345

as flying qubits. The photon’s resistance to decoherence, however, causes the implementation

of multi-qubit gates to be difficult. Because photons fail to easily interact with each other,

multi-qubit gates act in a probabilistic rather than in a deterministic manner.

A popular methodology for implementing a photonic universal quantum computer is with

the KLM protocol (Knill et al., 2001). This protocol uses linear photonics which are devices

that transform light in a linear fashion. Examples of linear photonic devices are lenses,

mirrors, wave plates, phase shifters and beam splitters. Examples of nonlinear photonic

devices include materials that demonstrate the higher-ordered Kerr effect where refractive

index of a material is a function of the applied electric field. Because linear devices are used,

multi-qubit operations have probabilistic outputs. If a KLM protocol quantum computer

is used, it is critical to incorporate error detection and correction in order to repair data

after multi-qubit interactions occur. Photonic qubits can either be polarization encoded or

dual-rail encoded with the KLM protocol. Table 3.3 has descriptions of photonic quantum

operators that operate according to KLM protocol. These components are constructed using

elements such as wave plates, beam splitters, and phase shifters. This table of photonic

operator implementations, however, is not all inclusive; alternative realizations for photonic

gates also exist. Table 3.3 was formed using the information from references (Knill et al.,

2001; Knill, 2002; Lemr et al., 2015; Myers and Laflamme, 2006; Nielsen and Chuang, 2010;

O’Brien et al., 2003).

31

Table 3.3. Photonic quantum operators

Operator Symbol Polarization-encoded Implementation Dual-rail Implementation
Z-axis Rotation

(Phase Shift)

𝐑𝐳(𝛟)

= [𝒆
−𝒊𝝓/𝟐 𝟎
𝟎 𝒆𝒊𝝓/𝟐

]

Deterministic

Pauli-Z

𝒁 = [
𝟏 𝟎
𝟎 −𝟏

]

Deterministic

Phase (S)

𝑺 = [
𝟏 𝟎
𝟎 𝒊

]

Deterministic

π/8 (T)

𝑻 = [
𝟏 𝟎
𝟎 𝒆𝒊𝝅/𝟒

]

Deterministic

Pauli-Y

𝒀 = [
𝟎 −𝒊
𝒊 𝟎

]

Deterministic

NOT (Pauli-X)

𝑿 = [
𝟎 𝟏
𝟏 𝟎

]

Deterministic

Hadamard

𝑯 =
𝟏

√𝟐
[
𝟏 𝟏
𝟏 −𝟏

]

Deterministic

√𝑵𝑶𝑻

𝑽 =
𝟏

𝟐
[
𝟏 + 𝒊 𝟏 − 𝒊
𝟏 − 𝒊 𝟏 + 𝒊

]

𝑽†=
𝟏

𝟐
[
𝟏 − 𝒊 𝟏 + 𝒊
𝟏 + 𝒊 𝟏 − 𝒊

]

Deterministic

Measurement

𝑴|0⟩ = [𝟏 𝟎]

𝑴|𝟏⟩ = [𝟎 𝟏]

Deterministic

CNOT

CNOT=

[

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
𝟏 𝟎

]

Probabilistic, P = 1/9

Controlled-Z

CZ=

[

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝟏 𝟎
𝟎 −𝟏

]

Probabilistic, P = 1/16

Tunable
Controlled Phase

Gate

𝑪𝑹𝒛(𝝓)=

[

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝟏 𝟎
𝟎 𝒆𝒊𝝓

]

Probabilistic, P = 1/48

Implementation
Conversion

32

3.5. Quantum Cost

Whenever engineers think of cost, usually measures for reducing power consumption,

delay, and area of a circuit come to mind. Classical computation has advanced to the point

where certain parameters can be tuned during the design process to optimize one or more

of these metrics. It is often the case, however, that all three of these circuit characteristics

cannot be improved simultaneously because measures made to improve one property can

negatively impact another.

Quantum engineers are still working towards building a reliable and scalable QC during

the NISQ era, so designers have less freedom with implementation parameters. Since the

main goal for researchers is to allow quantum algorithms to run on physical devices, the

reduction of instances where qubit state could decohere is of high importance. With current

implementations, quantum state eventually decoheres after time, but its liklihood of deco-

herence increases as a qubit undergoes more transformations. Additionally, circuit depth

and gate volume is a concern as devices have limited execution times and must be period-

ically recalibrated. Since each transformation requires a finite amount of time, whenever

thinking about reducing cost for a quantum circuit, reducing the total number of operations

performed on a qubit, especially those that implement multi-qubit operations, is of high

priority. All arbitrary n-qubit gates are capible of being decomposed into the set of all single

qubit gates as well as the CNOT or CZ gate (Barenco et al., 1995). Because of this, one

can conclude that an important measurement of cost for quantum circuit is the total number

of multi-qubit operations it requires.

Cost functions need to be tunable during quantum logic synthesis and compilation so that

key circuit features can be optimized. It is expected that each particular technologically-

dependent quantum cell library will be characterized and annotated with custom cost func-

tions for use during synthesis depending on if metrics such as qubit fidelity, operator fidelity,

or decoherence times are of focus. In this work, the quantum cost function for the IBM

33

back-end was defined as

qcost = 0.5× t+ 0.25× c+ a (3.3)

however optimization methods allow for any cost function to be used.

In Eqn. 3.3, t is the count of all T and T† gates, c is the count of CNOT gates, and a

is the total gate count, or gate volume, for a circuit. T gates are given an additional cost

of 0.5 as compared to all other single qubit gates because of the operator’s poor fidelity as

compared to other single qubit operators in fault tolerant quantum implementations (Amy

et al., 2014). CNOT gates are given a cost that is 0.25 more than single qubit gates, with the

exception of T, because two-qubit operations for the transmon are characterized by higher

error rates as compared to the other single qubit operations (Chow et al., 2014b). The IBM

cost function was selected based upon what is commonly seen in the literature: fewer gates

usually leads to smaller circuits with a lower probability for decoherence and fewer T gates

improves reliability and results in greater fault-tolerance. A larger quantum cost indicates

a higher likelihood of qubit decoherence and decreased fault tolerance. Quantum cost for

a design is minimized by quantum logic design automation tools during the optimization

process.

For the Rigetti back-end,

qcost = 5c+ 3h+ 2y + x+ z + s+ t (3.4)

was chosen as the function for quantum cost. In Eqn. 3.4, c is the count of CZ gates, h

is the count of H gates, y is the count of Y gates, x is the count of X gates, s is the

count of S and S† gates, and t is the count of T and T† gates for the technology-dependent

circuit mapping generated by the tool. X, Z, S, and T are given the lowest weights in the

cost function because these gates can be executed with single Rx or Rz gates native to the

Rigetti library. H and Y gates are given weights of 3 and 2, respectively because H =

34

Rz(π/2)Rx(π/2)Rz(π/2) and Y = Rz(π)Rx(π) are the transformations used to decompose

the single qubit gates into the Rigetti gate set. Finally, CZ is given a weight five times that

of the gates that are purely X and Z rotations function because as a two-qubit gate, it has

on average longer execution times with a lower fidelity.

3.6. Quantum Multiple-valued Decision Diagrams

An important aspect for technology-dependent quantum logic synthesis is formal verifi-

cation. In this work, outputs of synthesis and compilation undergo equivalence checking to

confirm that all transformations have occurred without introducing additional error. As pre-

viously mentioned, n-qubit quantum logic gates or operators are functionally described using

unitary matrices of size 2n × 2n. The size of the transfer matrix describing an entire quan-

tum circuit thus grows exponentially as the number of qubits in the function increases. Data

structures have been developed that allow these matrices to be represented in a compact

form. For example, the Quantum Multiple-valued Decision Diagram (QMDD) represents

quantum transfer matrices efficiently in the form of a directed acyclic graph. The QMDD

was first introduced in (Miller and Thornton, 2006) and is further described in (Niemann

et al., 2016b).

QMDDs are a collection of nodes, or vertices, and directed edges. Non-terminal vertices

represent qubits and have four outgoing edges that serve as one of the four quadrants in a

quantum transformation matrix. From left to right, the four edges leaving a non-terminal

node represent the sub matrices of U00, U01, U10, and U11 for the quantum transformation

matrix U. Since redundancy in the graph is removed and each qubit variable only appears

once, the QMDD representing a quantum function becomes compact in size. An example

of the CNOT operation in the form of a QMDD is shown in Fig. 3.3. Here, x0 and x1

are used to encode the binary encoded decimal values for the row and column indices in

the operation transformation matrix. Dashed lines are included in this illustration to make

submatrix values more apparent. The variable order is x0 → x1, so x0 acts as the initial

35

vertex and x1 vertices appear afterwards along the path for submatrices that are not equal

to the constant zero.

Figure 3.3. Representation of CNOT operation as a QMDD.

The QMDD representation of a quantum function is canonical with respect to a fixed

variable order due to the reduction rules described in (Miller and Thornton, 2006). Even

if two circuits with the same transformation matrix are described using different operators,

their QMDDs will be equal as long as the variable order used to construct the QMDDs is

identical. This concept is used to perform formal verification within the automated quan-

tum logic synthesis tool. An equivalence check between the original technology-independent

quantum circuit and the resulting technology-dependent mapped circuit is ensured by re-

quiring the QMDDs to match. If the realizations are indeed identical, the reduction rules

for the QMDDs will cause the two designs to share the same graph in memory. This is

important in the current era of NISQ devices since errors can be attributed to decoherence

since the executable has been formally verified.

3.7. Zero-supressed Decision Diagrams

Zero-supressed decision diagrams (ZDDs) are excellent data structures for representing

sparse sets. Since coupling constraints force limited connectivity between qubits on a device,

it was hypothesized that ZDDs could effectively hold the sparse set that represent valid

36

mapping permutations of algorithm qubits to physical qubits.

Given a set of variables X = {x1, . . . , xn}, a ZDD is a directed acyclic graph with

nonterminal vertices N and two terminal vertices > and ⊥ (Knuth, 2011; Minato, 1993).

Each non-terminal vertex v ∈ N is associated with a variable V (v) ∈ {1, . . . , n} and two

successor nodes HI(v), LO(v) ∈ N ∪ {>,⊥}. The nodes on a path follow a fixed variable

order on the way to a terminal node. There exists HI(v) ∈ {>,⊥} or V (HI(v)) > V (v) for

all v.1 The same applies to LO(v).

Each vertex in the ZDD represents a finite family of finite subsets over X where families

of sets are canonical up to order of the sets and repetition. The terminal node ⊥ represents

the empty family, ∅, and the terminal node > represents the unit family which is the set

containing the empty set {∅}. Each non-terminal v represents the subset

LO(v) ∪ {S ∪ {xV (v)} | S ∈ HI(v)}. (3.5)

A ZDD is reduced if there are no two vertices that represent the same sets. This implies

that in a reduced ZDD there cannot be a vertex v with HI(v) = ⊥, since such a vertex

represents the set LO(v). For the sake of convenience, εx denotes the elementary family

{{x}} for each x ∈ X. Finally, ℘ refers to the ZDD that represents the universal family of

all subsets of X.

|f | denotes the number of sets in a family f . Z(f) denotes the number of nodes, including

the terminal nodes, of the reduced ZDD for f . It should be noted that because of the

reduction rules associated with ZDDs, the data structure is a canonical representation of a

function with respect to a fixed variable order.

Given two ZDDs f and g, the following list of operations is part of what is called a ZDD

1To simplify the presentation, it is assumed the variable ordering 1 < 2 < · · · < n. In practice, any

permutation of this order can be used.

37

Figure 3.4. A ZDD representing the family of sets

{{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}}. All internal non-terminal nodes are

annotated with the sets they represent. Dashed edges indicate LO and solid edges indicate

HI.

family algebra. Each operation can be efficiently implemented using ZDDs.

f ∪ g = {α | α ∈ f or α ∈ g} union

f ∩ g = {α | α ∈ f and α ∈ g} intersection

f \ g = {α | α ∈ f and α /∈ g} difference

f t g = {α ∪ β | α ∈ f and β ∈ g} join

f u g = {α ∩ β | α ∈ f and β ∈ g} meet

f ↘ g = {α ∈ f | β ∈ g implies α 6⊇ β} nonsupersets

Finally, if f represents the family εx′1 ∪ · · · ∪ εx′l for some subset {x′1, . . . , x′l} = X ′ ⊆ X,

then (
f

k

)
is the ZDD that represents the family

(
X′

k

)
.

Note that the nonsupersets operation can be described in terms of the others: f ↘ g =

f \ (f t g). However, it may be more efficient to implement the operation explicitly in a

ZDD package. For a detailed description of how ZDDs are represented in memory and how

the ZDD family algebra operations are implemented, refer to the literature (Knuth, 2011).

38

Chapter 4

Technology Mapping Algorithms

4.1. Connectivity Tree Reroute

A significant drawback of solid-state QCs is that the stationary qubits are limited to

certain multi-qubit operations, like those described in coupling maps, due to the layout and

properties of the physical device. This limitation, however, extends to other implementations

because qubits must be physically connected, in close proximity, and have the appropriate

operational characteristics to realize a multi-qubit operation such as the CNOT or other

controlled operations in any physical realization. For this reason, a generic reroute algorithm

capable of implementing multi-qubit operations on uncoupled qubits for any architecture

specified by a coupling map is essential for the technology-dependent quantum logic synthesis

tool described here. Tree data structures assist in finding the shortest SWAP route for

CNOT execution.

Figure 4.1. Implementation of SWAP operation using CNOT.

The connectivity tree reroute algorithm (CTR) was implemented in the quantum syn-

thesis tool to automatically reroute CNOT operations that are not supported by a coupling

map. In this method, a tree structure based on the coupling map for the selected QC de-

termines the shortest SWAP path that the control qubit travels to reposition for a CNOT

39

operation. As shown in Fig. 4.1, a SWAP is implemented with CNOT gates among physi-

cally connected qubits, as indicated by the coupling map, causing the interchange of quantum

information. SWAP operations continue to move the control qubit until the desired CNOT

operation can execute on the specified target. After the CNOT operation executes, the con-

trol qubit traverses the SWAP path in reverse to return to its original position in order to

preserve the original assignment of qubits in the circuit.

Figure 4.2. CNOT orientation reversal.

To find the SWAP path, CTR builds a tree data structure. The tree root node is

the control qubit, and edges leading to other qubit nodes are generated according to the

available coupling map configurations. Because of the transformation in Fig. 4.2, direction

of the natively available CNOT operation does not matter when building the connectivity

tree. In other words, if a qubit |ψ0〉 can act as either a control or target in a CNOT operation

with qubit |ψ1〉, the two qubits will be connected with an edge to form a potential SWAP

path. The tree describes all possible paths that the qubit can take, until the shortest path

to a position coupled with the target qubit is found. If a node is reached that is already

represented in the tree, the branch is terminated. Pseudocode describing the CTR algorithm

is found in Fig. 4.3.

An example of the CTR algorithm in action can be seen in Fig. 4.4. In this illustration,

the desired operation is a CNOT with q5 as the control and q10 as the target on the 16-

qubit ibmqx3 machine. According to the ibmqx3 coupling map, q5 and q10 cannot natively

perform a CNOT operation together. After implementing CTR, however, the operation is

performed after two SWAP operations of first, q5 with q12 and then second, q12 with q11.

40

Figure 4.3. Pseudocode CTR algorithm.

Since a connection between q11 and q10 exists on the coupling map, q11 acts as a control

for q10. After the desired CNOT operation executes, the information of the control qubit

transitions back to its original position, q5, on the QC.

Figure 4.4. CTR implementation on the ibmqx3 machine for a CNOT with q5 as control

and q10 as target.

41

4.2. Zero-suppressed Decision Diagram Technology Mapping

Another method to tackle the problem of having limited connectivity on a quantum ma-

chine involves assigning the qubits in a quantum circuit to their ideal placement on a chip

before performing any gate decomposition or transformation processes. Finding this ideal

assignment permutation, however, is an intractable problem because of the large combi-

national search space. Zero-surpressed decision diagrams (ZDDs) can be used in mapping

algorithms to combat combinational complexity as they are efficient at representing sparse

sets.

4.2.1. Problem Formulation with ZDD Mapping

The quantum circuit that will be mapped to a quantum device is modeled as a set of

pseudo qubits V = {v1, . . . , vn} and an ordered sequence of two-qubit gates Gj = g1, . . . , gn,

with gi ∈
(
V
2

)
. The one-qubit gates in the circuit can be ignored in this case since the

coupling constraints of the device do not affect their mapping. As a note the direction of

a gate (e.g., the position of control and target in a CNOT) is not taken into account as

unidirectional gates may be reversed, as seen in Fig. 4.2, with single qubit operations.

A quantum device is modeled by an undirected graph (P,E), where P = {p1, . . . , pm} is

a set of physical qubits and an edge {p, q} ∈ E ⊆
(
P
2

)
states that a 2-qubit operation can be

executed using the two physical qubits p and q. The goal is to find a mapping ϕ : V → P

of pseudo qubits into physical ones, such that all two-qubit operations in the circuit are

executed on adjacent qubits according to the device’s coupling constraints. It may not be

possible to find such mapping for the input circuit. However, by adding SWAP gates to

reorder pseudo qubits, a mapping can be achieved. A SWAP gate is a two-qubit operation

that can either be implemented with CNOT or single-qubit rotations and CZ.

The aim is to use a small number of SWAP gates when transforming an initial circuit to

a circuit that can be mapped into a target device. Finding the globally optimum mapping

and a transformed circuit using the fewest number of SWAP gates is a computationally

42

complex and time-consuming task (Botea et al., 2018). To address the problem of finding

maximal partitions for a circuit using ZDDs, partitions are used where

• there exists a (V,Gj) that is a subgraph of (P,E) for 1 ≤ j ≤ l,

• there is not a (V,Gj ∪ {gej+1}) that is a subgraph of (P,E) for 1 ≤ j < l.

Each partition has an associated set of mappings of pseudo to physical qubits Φj = {ϕ :

V 7→ P} where ϕ is a subgraph isomorphism of (V,Gj) to (P,E). If partition Gj starting

at gate gb cannot be extended, SWAP operations are inserted to merge the last gate of the

partition, ge with the adjacent gate, ge+1, in the circuit. These SWAP operations, referred

to as layers, exchange information on the adjacent physical qubits of the device and are

executable in parallel within a single time cycle. The best SWAP layer is chosen according

to a scoring metric. Once selected, the SWAP layer merges the gate gi with gi+1 by inserting

SWAP gates before gi+1, extending Gj.

Ideally, a single partition will cover the entire circuit, providing a set of mappings that

assign pseudo qubits to physical qubits on the device. In the case that multiple partitions

exist that are fully extended with inserted SWAP layers, a mapping for the circuit is

selected using the largest, and therefore maximal, partition. A maximal partition within a

quantum circuit is the largest subset of gates Gj that can be covered by a set of mappings of

pseudo to physical qubits, Φj. Maximal partitions are fully expanded with parallel SWAP

operations that exchange information between physical qubits.

4.2.2. Finding Maximal Partitions

In this section, how to use ZDDs and ZDD operations to find a maximal partition that

starts in some gate gi is described. The ZDDs are defined over the nm variables vp for each

v ∈ V and each p ∈ P . Each ZDD represents a family of finite subsets, and each subset α

represents a partial mapping ϕ : V → P , where ϕ(v) = p, if and only if vp ∈ α where α is a

mapping.

43

First, some general sets are defined, which are used throughout the following operations.

It is sufficient to initialize these sets once at the beginning of the algorithm. The set

from(v) =
⋃
p∈P

εvp (4.1)

contains all singleton mappings v 7→ p for some v ∈ V . Analogously, the set

to(p) =
⋃
v∈V

εvp (4.2)

contains all singleton mappings v 7→ p for some p ∈ P . Using the set in Eqn. 4.2, two other

helpful sets, valid and bad, are defined using the ZDD family algebra operations. The set

valid contains all two-element partial mappings that are feasible with respect to the coupling

constraints of the device such that

valid =
⋃

{p,q}∈E

to(p) t to(q). (4.3)

The set bad contains all two element sets of illegal partial mappings, because they either

contain an element with two images or two elements which map to the same image as

bad =
⋃
v∈V

(
from(v)

2

)
∪
⋃
p∈P

(
to(p)

2

)
. (4.4)

Last, the set map(i) is defined to represent all possible mappings of the pseudo qubits in

gate gi = {v, w} as

map(i) = (from(v) t from(w)) ∩ valid. (4.5)

In other words, all possible mappings of v with all possible mappings of w are joined before

the resulting two-element subsets to those which are valid with respect to the target device

are restricted. Finally, the possible mappings of two consecutive gates gi and gi+1 can be

computed using

(map(i) tmap(i+ 1)) ↘ bad. (4.6)

In some instances, Eqn. 4.6 results in the empty set, ∅, whenever the mappings of two

consecutive gates are combined. In this case, SWAP procedures must be performed on

physical qubits to exchange pseudo qubit information and extend the partition Gj.

44

Figure 4.5. Algorithm: Find maximal partitions.

Finding an ideal SWAP circuit during quantum circuit mapping is an intractable prob-

lem that works in an exponentially-growing state space. In this method, the search space is

narrowed by focusing on the implementation of all SWAP circuits that can be executed in

parallel during a single time cycle. This particular set of SWAP circuits is called layers,

and it is a combination set rather than permutation set of ordered SWAP operations. ZDDs

are a good data structure for combinatorial set representation, so a ZDD is implemented to

represent the layers set. Acceptable SWAP operations are determined by the topology of

the device, and the sets of operations that can be executed simultaneously within a time

cycle are desired. ZDDs are used to create a set of all “good” SWAP circuits, which are

those that interact with at least one qubit in the image of ϕ and the depth of the circuit

is one. In other words, a SWAP circuit may only contain multiple SWAP gates as long

as qubits between gates are not shared. The ZDDs for this task differ from those used to

enumerate all mappings, and they do not share any variables. The SWAP circuit ZDDs are

45

defined over the |E| variables e for each e ∈ E since SWAP gates can only be placed on

certain edges connecting physical qubits according to the quantum device operational char-

acteristics. The ZDD base, or the 1-terminal node, is initialized with the following ZDD. For

each p ∈ P , the ZDD

edges(p) =
⋃
{εe | e ∈ E s.t. p ∈ e} (4.7)

contains all SWAP operations that interact with qubit p. All possible subsets of SWAP

gates that can be executed in parallel (i.e., in depth 1) are described by the ZDD

layers = ℘ ↘
⋃
p∈P

(
edges(p)

2

)
. (4.8)

Not all combinations of SWAP gates in layers may be useful for extending a partition of

gates. For example, some SWAP circuits may allow the partition Gj to extend further and

have greater depth while others provide more mapping options within Φj. As a result, a

scoring function is calculated for each member of layers to determine the optimal SWAP

decision every time it is desired to extend a circuit partition. The function of

score = (Aα +Bβ)
γ

C
(4.9)

is used to select the optimal SWAP circuit according priority weights set by the user and

feature counts of the circuit being mapped. In Eqn. 4.9, α is depth weight and A is depth

count where depth count in this case describes how many additional two-qubit gates the

current partition could cover until the end of the partition is reached if a specific SWAP

circuit is implemented. The variable β is map weight and B is map count that describes

how many maps of pseudo to physical qubits, ϕ : V → P , will be available in Φj if a

specific SWAP circuit is implemented. Finally γ is SWAP weight and and C is SWAP

operation count of the implemented SWAP circuit. In Eqn. 4.9, SWAP count has an inverse

relationship with a layer’s score as lower overall gate counts, or gate volume, in a technology-

mapped implementation are preferred. The parameter γ, however, can be adjusted to make

the cost of an additional SWAP operations less severe. The weights of this function can

46

be tuned to prioritize the growth of the partition with respect to either gate coverage or

available mappings if a SWAP circuit layer in layers is implemented. In the case that score

for each layer is zero, the current partition cannot be extended and a new partition must

start to continue to map the circuit.

The algorithm in Fig. 4.5 implements ZDD data structures and the aforementioned ZDD

operations to compute maximal partitions of quantum circuits starting from the first gate.

A counter j indicates the current partition number as the algorithm parses through the

operators in the network. In m, a set of mappings are stored and updated as the current

partition increases in size. These maps are eventually stored in Φj. For each gate i, there

is an attempt to extend m by adding the gate using map(i), and storing the resulting

mappings in m′. If m′ is empty, layers will be used to determine if a SWAP operation can

be implemented in order to increase the current partition. The scores for all of the sets in

layers are calculated, and the SWAP circuit with the largest score is used to extend the

partition. After the SWAP is implemented, the topology of the device is updated, maximum

score m′ is calculated, and m is updated with m′. If the maximum score is zero, then the

then the current partition ends at i− 1, and a new partition j + 1 starts at gate i.

4.2.3. ZDD mapping in the Quantum Compilation Flow

The algorithm discussed in the Section 4.2.2 implements the mapping of pseudo qubits

in a quantum circuit specification to physical qubits on a real device. While the mapping

procedure is essential for for quantum compilation, additional optimization steps can further

improve the technology-mapped logic. For this reason, the incorporation of the ZDD map-

ping techniques into a larger logic synthesis flow is proposed. In this procedure, mapping

would occur after a circuit has been decomposed into one- and two-qubit operators and before

a specification is compiled by a device’s custom compilation tool. Completing synthesis with

available compilation tools allows the opportunity to take advantage of existing optimization

algorithms while the operators of the circuit are transformed into a platform’s native gate

47

library. Additionally, if the maximal partition found by the ZDD mapper does not cover

the entire circuit, the native compiler of the technology platform is required to ensure that

the placement of the two-qubit operators does not violate the coupling constraints of the

device. It should be noted that although the ZDD mapping algorithm was evaluated using

superconducting qubits as a target platform, the techniques described here are applicable to

other quantum technologies that have coupling restrictions.

4.2.4. Experimental Results

A subset of benchmarks from (Amy, 2019) were selected to evaluate the ZDD map-

ping methods. These benchmarks contain a variety of reversible arithmetic and quantum

algorithms such as a Grover’s algorithm oracle, a demonstration of the Quantum Fourier

Transform (QFT), and various Toffoli implementations. The benchmark set was chosen for

experimentation because they are functions commonly seen in quantum synthisis literature

and are publicly available for use. These benchmarks are originally specified in a .qc file

format with a gate set that contains physically unrealizable multi-qubit gates. Thus, the

specifications are transformed into the Clifford+T library of single- and two-qubit gates using

the “phasefold” pass of the Feynman toolkit (Amy, 2019) . After this procedure, the bench-

marks are in a technology-independent form that consists of elementary gates. Mapping to

a target quantum device may now begin.

A ring topology was chosen as the target device during synthesis. A ring structure was

chosen because this type of architecture is seen in commercial QPUs like in Rigetti’s Agave

and Aspen quantum machines. Additionally, the benefit of this structure is that it allows

for a homogeneous testing environment that is flexible in size while using benchmarks that

vary in number of pseudo qubits. Each benchmark was targeted to a device that contained

n physical qubits where n is the number of pseudo qubits in a quantum algorithm. In these

devices, all qubits are connected to their two adjacent neighbors, and the connections are

bidirectional with respect to the placement of the two-qubit CNOT gate. Once the circuit

48

and topology are selected, the algorithm of Fig. 4.5 is applied to map the pseudo qubits in

the design to physical qubits. The scoring operation of Eqn. 4.9 that chooses between the

SWAP circuits in layers to extend the partition is set to zero, one, and one for the depth,

map, and SWAP weights, respectively. If the benchmark can be covered by an entire par-

tition during the application of the algorithm of Fig. 4.5, then the resulting specification is

in a fully technology-mapped form and therefore compatible with the available connections

of the target device. If multiple partitions are needed for a benchmark, the resulting speci-

fication is mapped using a permutation of the largest partition, making additional SWAP

operations required for the design to be fully compatible with the target technology. This

additional circuit modification is accomplished by the custom compilers that are provided

with the Rigetti and IBM SDKs. Compiling the ZDD mapped circuits into the selected

device topology with the available Rigetti and IBM compilers is the final procedure in the

mapping flow. This step also ensures that all algorithm operations are translated into gates

appropriate for the target device. Note that such a translation cannot lead to any further

violations of the coupling constraints. After the final compilation step, the circuits are ready

for execution on their respective platform since they are in a technology-mapped and opti-

mized form. Details about the benchmarks along with experimental results of the mapping

and compilation procedures can be found in Table 4.1.

In Table 4.1, details about gate depth, gate volume, and two-qubit gate count have been

included for the ZDD mapped and compiled circuits. Metrics for the benchmarks after trans-

formation with just the ZDD mapping procedures are also shown for reference. It should be

noted that circuits transformed with only the ZDD mapper can include additional SWAP

circuitry to expand the mapping partitions, and only if the maximal partition covers the

entire benchmark is the resulting circuit fully mapped for the target technology. Because

it is often the case that multiple partitions cover a benchmark and the maximum partition

must be chosen for pseudo to physical qubit mapping, transformation by the native com-

piler is required. This synthesis procedure also confirms that the benchmark circuits use

49

the appropriate gate library for the targeted technology. The benchmarks were compiled

with and without preprocessing the circuit with the ZDD mapper. Circuits that improved

in metrics for a particular device and benchmark whenever ZDD mapping was implemented

are emphasized. On average, benchmarks mapped to a Rigetti ring topology saw a decrease

of around 10% with respect to gate depth, gate volume, and two-qubit gate count whenever

ZDD mapping was included in technology-dependent logic synthesis flow before compilation.

The IBM-compiled circuits, however, only saw an average decrease of 2.3% in gate depth,

gate volume, and two-qubit gate count whenever ZDD mapping was used. Individual im-

provements in circuit metrics of up to approximately a 50% decrease was seen in gate volume

on the Rigetti devices and up to approximately a 44% decrease was seen in depth on the

IBM devices. These findings demonstrate the potential that ZDD mapping techniques have

with respect to finding more optimal solutions whenever generating technology-dependent

forms of quantum circuits.

50

Table 4.1. Gate depth, gate volume, and two-qubit metrics of benchmarks after zdd mapping,

IBM compiling, and Rigetti compiling. Values that decreased whenever ZDD mapping was

implemented before compilation have been emphasized.

Benchmark No. Original ZDD Original Rigetti Original IBM ZDD Mapped/ ZDD Mapped/

Name Qubits Mapped Compiled Compiled Rigetti Compiled IBM Compiled

barenco tof 3 5 depth: 64 118 62 98 (-16.95%) 84 (+35.48%)

vol.: 95 446 180 221 (-50.45%) 165 (-8.33%)

2q gates: 73 68 67 58 (-14.71%) 63 (-5.97%)

barenco tof 4 7 depth: 94 230 131 155 (-32.6%) 130 (-0.76%)

vol: 190 763 462 449 (-41.15%) 335 (-27.49%)

2q gates: 152 123 177 117 (-4.88%) 132 (-25.42%)

barenco tof 5 9 depth: 94 231 121 155 (-32.9%) 130 (+7.44%)

vol.: 285 1136 528 682 (-39.96%) 505 (-4.36%)

2q gates: 231 184 201 177 (-3.8%) 201 (+0%)

gf2∧4 mult 12 depth: 46 337 251 361 (+7.12%) 354 (+41.03%)

vol: 232 2319 1450 2593 (+11.82%) 1511 (+4.21%)

2q gates: 145 363 557 430 (+18.46%) 587 (+5.39%)

gf2∧5 mult 15 depth: 64 422 259 504 (+19.43%) 342 (+32.05%)

vol: 363 3747 2212 4510 (+20.36%) 2351 (+6.28%)

2q gates: 230 596 842 775 (+30.03 %) 910 (+8.07%)

grover 5 9 depth: 210 968 989 872 (-9.92%) 552 (-44.19%)

vol: 777 4857 2909 4484 (-7.68%) 2590 (-10.97%)

2q gates: 441 781 1096 739 (-5.38%) 1011 (-7.76%)

hwb6 7 depth: 113 449 269 432 (-3.79%) 290 (+7.81 %)

vol: 303 2032 1049 2027 (-0.25%) 1101 (+4.96%)

2q gates: 185 332 404 338 (+1.81%) 422 (+4.46%)

mod mult 55 9 depth: 49 189 123 177 (-6.35 %) 144 (+17.07 %)

vol: 155 978 500 850 (-13.09 %) 469 (-6.2%)

2q gates: 88 151 193 143 (-5.3 %) 176 (-8.81%)

mod 5 4 5 depth: 60 115 94 95 (-17.4%) 92 (-2.13%)

vol: 121 459 229 308 (-32.9%) 239 (+4.37%)

2q gates: 98 73 88 79 (+8.21%) 92 (+4.55%)

qft 4 5 depth: 142 162 155 137 (-15.43%) 105 (-32.26%)

vol: 247 447 322 433 (-3.13%) 293 (-9.01%)

2q gates: 120 79 126 92 (+16.46%) 114 (-9.52%)

tof 3 5 depth: 39 98 62 72 (-26.53%) 61 (-1.61%)

vol.: 75 309 145 195 (-36.89%) 135 (-6.9%)

2q gates: 54 47 53 45 (-4.26%) 52 (-1.89%)

tof 4 7 depth: 46 117 98 88 (-24.79%) 62 (-36.73%)

vol: 125 505 326 327 (-35.25%) 218(-33.12%)

2q gates: 92 80 121 75 (-6.25%) 84 (-30.58%)

tof 5 9 depth: 46 118 68 89 (-24.58%) 62 (-8.82%)

vol: 175 707 335 459 (-35.08%) 308 (-8.06%)

2q gates: 130 112 132 106 (-5.36%) 118 (-10.61%)

vbe adder 3 10 depth: 67 216 165 197 (-8.8%) 232 (+40.61%)

vol: 162 1244 765 1131 (-9.08%) 835 (+9.15%)

2q gates: 122 190 294 195 (+2.63%) 329 (+11.9%)

51

Chapter 5

Formally-verified Synthesis Methods and Experiments

Figure 5.1. Synthesis and compilation tool architecture.

A complete flow chart describing the architecture for a quantum logic synthesis and

compilation tool is depicted in Fig. 5.1. This figure illustrates how information is processed to

create a final implementation-specific quantum circuit. The technology-dependent synthesis

and compilation techniques described in this work were developed into a prototype that acts

as the back-end of a quantum logic synthesis tool. This tool has been named Mustang-Q.

With respect to the formally-verified technology-dependent outputs, if the target tech-

nology is IBM, the final specification is in the form of QASM. Rigetti devices, on the other

hand, are described with Quil. Quantum compilation targeting both families of quantum

devices will be described in this section.

52

5.1. IBM

5.1.1. Methodology

Technology-dependent synthesis for the IBM machines followed the procedures outlined

in Fig. 5.1. Initially, the original circuit is parsed in as source code. Various file formats

are supported for the input specification depending on the type of logic. If the input circuit

is in the form of a classical switching function, the front-end will handle the initial parsing

and translation of the specification into a reversible cascade of NOT, CNOT, Toffoli, and

generalized Toffoli operators using the algorithm in (Fazel et al., 2007). The front-end result

is a reversible representation of the input circuit that is technology-independent. Reversible

code generated by the front-end as well as input circuits already implemented with quantum

logic and specified in a quantum instruction language (i.e. a .qasm, .qc, or .real file format)

are then processed by the back-end of the design tool. The back-end, the component of

focus in this work, performs transformations and optimizations needed for technology map-

ping to a specific physical quantum machine. Multi-qubit gate decomposition algorithms,

such as those given by Barenco et al. in (Barenco et al., 1995), are representative of some

of the transformations implemented in the back-end. However, additional optimizations

were devised and implemented to accommodate for device coupling maps that limit qubit

connections for two-qubit operations.

The back-end generates technology-dependent QASM specifications based upon two dis-

tinct objectives. The first objective is to produce QASM that conforms to the user-specified

target QC’s architectural constraints such as a fixed CNOT coupling map. The second ob-

jective is to determine a mapping that minimizes quantum cost. The quantum cost function

is defined in Eqn. 3.3. Results in this section are targeted to the IBM family of QCs as

well as machines inspired by the architecture of the IBM QCs, but custom transmon devices

with different coupling maps can be added to the tool to provide additional targets during

synthesis. While targeting the IBM machines, the quantum logic synthesis tool implements

53

the following mapping and optimization procedures:

1. CNOT operations placed in directions opposite of what is available in coupling map

may be reversed (Nielsen and Chuang, 2010). CNOT reversal can be seen in Fig. 4.2.

2. CNOT operations on qubits not coupled directly or in reverse on the coupling map

are rerouted with CTR.

3. Generalized Toffoli gates are decomposed into Toffoli cascades using (Barenco et al.,

1995).

4. Toffoli operations are decomposed into one- and two-qubit operators supported by the

transmon technology library using a transform from (Nielsen and Chuang, 2010).

5. Local optimizations based on removing partitions of gates that equal the identity func-

tion are implemented recursively until technology library cost function cannot be fur-

ther reduced.

6. Local optimizations based on removing partitions of gates that can be minimized with

an logically identical circuit identity are implemented recursively until technology li-

brary cost function cannot be further reduced.

It should be noted that all SWAP operations will have a maximum gate count of 7, including

four H operations and three CNOT operations, due to unidirectional transmon CNOT

operations and the identity pictured in Fig. 4.2.

After all synthesis and optimization procedures are complete, formal verification is in-

voked by the compiler. QMDDs are used in equivalence tests to formally verify all technology-

dependent compiler outputs. During this process, the original technology-independent spec-

ification is compared to the generated technology-dependent specification by building the

QMDD data structures. Since the QMDDs share isomorphic subgraphs, the pointers to the

original and technology-mapped specification will match if the two designs are functionally

54

identical. The final step of formal verification is critical as it is important that the algorithm’s

logic is unchanged by the synthesis tool’s transformations and optimizations.

5.1.2. Experimental Results

Back-end algorithms of the synthesis and compilation tool responsible for mapping and

optimizing algorithms for real QC architectures were developed in Python. The tool’s pur-

pose is to synthesize technology-dependent algorithms for execution on actual QCs using

classical computing methods. Design automation, including formal verification, was per-

formed on a laptop running macOS 10.13.6 with an Intel i5 processor at 2.9 GHz and 8 GB

of RAM. Although results in this section include the devices in Section 3.4.1 as well as an

example 96-qubit IBM-inspired layout, additional architectures can be targeted for synthesis

by adding the desired topology coupling map to the device library of the tool.

The first set of benchmarks used during experimentation were obtained from refer-

ence (rev, 2017). The technology-independent specifications, titled “Optimal Single-target

Gates,” range from 3 to 6 qubits in size. These circuits were chosen as benchmarks be-

cause they act as essential components for quantum logic synthesis based on lookup-table

approaches (Soeken et al., 2018). Complex reversible and quantum circuits decompose into

these functions, and in turn, the single-target gates can be decomposed into one and two qubit

operations. These benchmarks were input into the synthesis tool as technology-independent

.qc files that contained single qubit operations and CNOT gates. When mapped to the

simulator, the logic is referred to as technology-independent because is not restricted by

the layout of a physical device. The simulator synthesis resulted in technology-independent

circuits that match what is featured in (rev, 2017) with respect to T counts and total gate

counts because these generated circuits, like the original benchmarks, have no restrictions

with respect to where multi-qubit operations are placed. Cost function-based optimization

did not reduce the gate counts or the total Eqn. 3.3 cost of the benchmarks whenever they

were mapped to the simulator as the benchmark circuits are already in their most compact

55

and optimal form when qubit connections are unrestricted.

In reality, quantum circuit designers must be careful with gate placement on real QCs due

to architectural constraints. These architectural constraints limit what qubit pairs can couple

for multi-qubit transformations, and permitted qubit connections for a QC are described

in the form of a coupling map. When the single-target gate benchmarks are mapped to

real devices, unsupported gate placements must be decomposed or rerouted with SWAP

operations, as described in Section 4.1, that cause the circuits to expand. It was noted that

QCs with a lower coupling complexity usually required more gates to achieve a technology-

dependent mapping. After mapping finishes, the resulting circuit may be optimized using

built-in local optimizers. Synthesis results of the “Optimal Single-target Gates” mapped

to the IBM devices can be found in Table 5.7. This table includes both pre- and post-

optimization metrics for T-count, total gate count, and cost calculated using Eqn. 3.3 for

each of the generated designs. Technology-independent (i.e. the original, unmapped) metrics

for T-count, total gate count, and cost for the benchmarks for unoptimized and optimized

mappings were included as well for comparison. A comparison can be made here because

these benchmark circuits are already fully optimized in a gate library suitable for IBM that

includes one- and two-qubit gates when they are not constrained by any sort of connection

restrictions. When these circuits are mapped to a real machine, however, they expand in size

because the circuits must be reconfigured according to the coupling map to be executable.

After original mapping, optimizations help reduce the overall gate counts and cost.

A few observations can be made from analyzing Table 5.7. First, some designs were not

synthesizable, as indicated by N/A, if the target QC was too small for a circuit (i.e. 5 qubit

machines cannot support a circuit with n qubits where n > 5). Second, technology map-

ping processes during compilation caused circuits in most cases to expand. This expansion,

sometimes of order 101 in size, was caused by the need to reroute CNOT operations to

56

Table 5.1. Results of compilation using benchmarks from (rev, 2017) mapped to IBM devices.

qubits where they could execute. Fortunately, out of the 94 output technology-dependent

designs, 74, or approximately 79%, were improved when optimization algorithms based on

minimizing the transmon cost function were implemented. Designs that improved in cost

post-optimization are emphasized in Table 5.7. Information about the post-optimization

cost function improvement for the technology-dependent “Optimal Single-target Gates” is

found in Table 5.2. The greatest average percent decrease in cost was about 8.5% for the

circuits mapped to the ibmq 16 QC. The average post-optimization improvement for all of

the technology-dependent forms of the reference (rev, 2017) benchmarks was approximately

7%.

The second set of benchmarks tested on the automatic quantum logic synthesis tool

was a small set of Toffoli cascades from (rev). Toffoli cascade circuits are widely used to

describe technology-independent reversible and quantum logic algorithms in the form of

NOT, CNOT, Toffoli, and generalized Toffoli operations. These circuits were used with

the tool to demonstrate the Toffoli and general Toffoli decomposition techniques. In their

57

Table 5.2. Percent decrease of (rev, 2017) benchmark cost after optimization.

original form, these technology-independent Toffoli cascades include larger, multi-qubit gates

that are not supported by the IBM transmon gate library. The benchmarks may seem small

because of their gate count, but they are actually complex functions to implement because

of the required multi-qubit interaction. Synthesis results of the Toffoli cascade benchmarks

mapped to the IBM devices can be found in Table 5.8. It should be noted that these results

do not include a column for technology-independent, unoptimized and optimized mappings

as seen in Table 5.7 because the Toffoli gate is not present in the IBM gate library and is

therefore not a technology-ready gate, even when connections between the qubits on the

58

quantum device are disregarded.

In Table 5.8, circuits that could not synthesize because they were too large for an ar-

chitecture were once again indicated by N/A. These experiments demonstrated that Toffoli

decomposition followed by mapping procedures caused circuits to expand in gate count up

to orders of magnitude of 102 their original size. After optimization, 100% of the mapped

Toffoli cascades in Table 5.8 decreased in size. Information detailing the post-optimization

improvement of the Toffoli cascade benchmarks is found in Table 5.4. The greatest average

percent decrease in cost was nearly 30% for the circuits mapped to the ibmqx3 machine.

The average post-optimization improvement for all of the reference (rev, 2017) benchmarks

was approximately 17.4%.

Most technology-dependent specifications in Table 5.7 and Table 5.8 were generated in

approximately 10−2 seconds, but a few of the larger benchmarks with more multi-qubit gates

required a few seconds with none exceeding 5 seconds for synthesis procedures. All outputs

were confirmed to be the same function as their original technology-independent description

by building the QMDD data structure for each design and testing for equivalence.

Table 5.3. Results of compilation using benchmarks from (rev) mapped to IBM devices.

The size of quantum architectures is anticipated to increase, so it is important that design

tools are able to scale. To test the synthesis and compilation tool, a 96-qubit transmon-based

QC architecture was designed and loaded into the tool. The qubits of the machine ranged

from q0-q95, and the coupling map, pictured in Fig. 5.2, was inspired by the ibmqx5 machine.

59

Table 5.4. Percent decrease of (rev) benchmark cost after optimization.

Benchmarks containing more qubits were needed for the larger machine. Previous ex-

perimentation found that Toffoli circuits decomposed into large designs. Additionally, those

that included generalized Toffoli gates with more controls had a greater final gate volume.

With this in mind, benchmarks with the generalized Toffoli gates T6, T7, T8, T9, and T10

were designed for implementation on the 96-qubit architecture. For each of these Toffoli

operators, the subscript indicates the total number of qubits that are included in the multi-

qubit operation. Each circuit contained a cascade of four gates of each type, and they were

placed on the QC in such a manner that the gates shared at least a single qubit with another.

Information about the contents of the third set of benchmarks can be found in Table 5.5. In

this table, the controls and target for each Tn gate in the cascade are described.

All of the Table 5.5 benchmarks were mapped to the 96-qubit example QC of Fig. 5.2.

Although each circuit originally included four gates, the designs greatly increased in gate

volume to accommodate to the Fig. 5.2 coupling map as well as the one- and two-qubit

transmon gate library. Data concerning pre- and post-optimization T-counts, gate counts,

and cost is included in Table 5.6. A column for technology-independent data for unopti-

mized and optimized mapping was also omitted from this table for the same reasons as with

Table 5.8. The purpose of Table 5.6 is to not only demonstrate the generalized Toffoli de-

composition capabilities of our tool, but to also demonstrate that the tool is scalable. In

Table 5.6, optimization drastically improved the overall cost on the larger machine. On aver-

age, the large Toffoli cascade benchmarks improved in cost by 39.5%. Most of the resulting

60

Table 5.5. 96-qubit QC benchmark details.

Name Gates Controls Target

T6 b 1: T6 q1, q2, q3, q4, q5 q25

2: T6 q21, q22, q23, q24, q25 q45

3: T6 q41, q42, q43, q44, q45 q65

4: T6 q61, q62, q63, q64, q65 q85

T7 b 1: T7 q1, q2, q3, q4, q5, q6 q25

2: T7 q21, q22, q23, q24, q25, q26 q45

3: T7 q41, q42, q43, q44, q45, q46 q65

4: T7 q61, q62, q63, q64, q65, q66 q85

T8 b 1: T8 q1, q2, q3, q4, q5, q6, q7 q25

2: T8 q21, q22, q23, q24, q25, q26, q27 q45

3: T8 q41, q42, q43, q44, q45, q46, q47 q65

4: T8 q61, q62, q63, q64, q65, q66, q67 q85

T9 b 1: T9 q1, q2, q3, q4, q5, q6, q7, q8 q25

2: T9 q21, q22, q23, q24, q25, q26, q27, q28 q45

3: T9 q41, q42, q43, q44, q45, q46, q47, q48 q65

4: T9 q61, q62, q63, q64, q65, q66, q67, q68 q85

T10 b 1: T10 q1, q2, q3, q4, q5, q6, q7, q8, q9 q25

2: T10 q21, q22, q23, q24, q25, q26, q27, q28, q29 q45

3: T10 q41, q42, q43, q44, q45, q46, q47, q48, q49 q65

4: T10 q61, q62, q63, q64, q65, q66, q67, q68, q69 q85

61

Figure 5.2. Proposed 96-qubit machine used for experimentation.

Table 5.5 technology-dependent circuits took under a second to generate, with the largest

taking approximately 6.5 seconds. All of the output designs were verified for accuracy using

the QMDD equivalence test.

5.2. Rigetti

5.2.1. Methodology

The prototype of this work is capible of transforming technology-independent quantum

62

Table 5.6. 96-qubit QC benchmark compilation results.

Name Unoptimized Optimized Percent Cost

(T-count / gates / cost) (T-count / gates / cost) Decrease

T6 b 336/17312/19268 336/10156/11359 41.05

T7 b 448/20112/22400 448/12234/13694 38.87

T8 b 560/21264/23728 560/13134/14746 37.85

T9 b 672/17696/19784 672/11544/13002 34.28

T10 b 784/17792/19960 784/9518/10846 45.66

Average 39.54

circuits into technology-dependent Quil specifications for execution on a Rigetti machine.

Just as when IBM is the target technology, the original circuit is parsed in as source code, and

it contains a variety of operators that may or may not be supported by the target architecture.

The tool then performs transformations and optimizations needed for technology mapping

to a specific Rigetti QC. Multi-qubit gate decomposition algorithms, such as those given by

Barenco et al. in (Barenco et al., 1995), are representative of some of the transformations

implemented in this tool. Additional optimizations and algorithms were also developed

to accommodate for QC topological differences that limit qubit connections for two-qubit

operations.

As previously described, a significant drawback of solid-state qubit QCs is that the sta-

tionary qubits are limited to certain multi-qubit operations due to the layout and physical

properties of the device. For this reason, CTR was implemented for completing multi-qubit

operations over uncoupled qubits.

The CNOT gate is commonly used in technology-independent circuits, and as shown

in Fig. 4.1, three of the operators in series can form a SWAP operation among physically

connected qubits. Due to the simplicity of the SWAP implementation with CNOT, the

63

CTR algorithm in the quantum synthesis tool uses CNOT to automatically reroute two-

qubit operations that are not supported by a coupling map. Of course, as CNOT is not

a supported gate in the Rigetti library, these gates are eventually converted into CZ gates

using the transformation in Fig. 5.3 after reroute operations have completed.

Figure 5.3. CNOT to CZ transformation.

Technology-dependent Quil specifications are generated based upon two distinct objec-

tives. The first objective is to produce a quantum algorithm that conforms to the user-

specified target QC’s architectural constraints. The second objective is to determine a map-

ping that minimizes quantum cost. The quantum cost function is defined in Eqn. 3.4, and

the quantum logic synthesis tool implements the following mapping and optimization pro-

cedures:

1. Generalized Toffoli gates are decomposed into Toffoli cascades using (Barenco et al., 1995).

2. Toffoli operations are decomposed into one and two-qubit operators using transforms from (Nielsen

and Chuang, 2010), unsupported two-qubit gate placements are rerouted, and CNOT to CZ

transformation occurs.

3. Local optimizations based on removing circuit partitions that equal the identity function are

implemented recursively until the cost function cannot be further reduced.

4. One-qubit operators are decomposed into gates that are native to the Rigetti operator library.

After all synthesis and optimization procedures are complete, the optimized technology-

dependent specification is formally verified by performing an equivalence checking test using

QMDDs.

64

5.2.2. Experimental Results

Quantum logic synthesis involving the mapping and optimization of algorithms for the

Rigetti QCs was completed with technology-independent benchmarks from a library titled

“Optimal Single-target Gates,” from (rev, 2017). These benchmarks were input into the

synthesis tool as technology-independent .qc files that contained single-qubit and CNOT

operations. Because of arbitrary single-qubit gates and two-qubit gate placement within the

benchmarks, transformation is required before the algorithms can be executed on the Rigetti

QPUs. The benchmarks of (rev, 2017) range from 3 to 6 qubits in size, and in the interest

of testing only the more complex and non-trival designs, the 6 qubit “Optimal Single-target

Gates” were used in experimentation.

When the single-target gate benchmarks were mapped to QCs, unsupported gate place-

ments were decomposed or rerouted with swapping operations that cause the circuits to

expand. After mapping finished, the resulting circuit could be optimized using built-in local

optimizers. Synthesis results of the “Optimal Single-target Gates” mapped to the Rigetti

QCs can be found in Table 5.7. This table includes both pre- and post-optimization metrics

for CZ operation count and cost calculated using Eqn. 3.4 for each of the generated designs.

Referring to Table 5.7, the synthesis results for Agave match those for Aspen. This

occurs since these devices have a similar style of ring topology. Acorn, characterized by a

grid topology, yields different synthesis results. Information about cost improvement when-

ever synthesis includes optimization processes is found in Table 5.8. On average, when

optimization was performed on a technology-dependent circuit, cost improved by approxi-

mately 17.7%. This improvement in cost is significant because a lower cost indicates that

a circuit uses fewer operations and thus executes faster with a decreased probability of de-

65

Table 5.7. Metrics for (CZ count/cost) after synthesis using benchmarks from (rev, 2017)

targeting the Rigetti QCs.

coherence. All outputs of the synthesis runs were verified to be equivalent to their original

technology-independent specifications using QMDDs.

66

Table 5.8. Percent decrease in cost from unoptimized to optimized synthesis targeting the

rigetti QCs.

67

Chapter 6

Higher Dimensioned Quantum Logic Synthesis

Conventional information processing technology is overwhelmingly based upon radix-2,

or binary, switching algebras, and the most commonly used measure of information is the

“bit.” It is well-known, however, that higher-radix systems offer more information content

per fundamental representational unit, or “digit” (Miller and Thornton, 2007). More pre-

cisely, an information processing system based upon a radix-r system allows for log2(r) bits

of information to be represented per digit. It is disputed which base of computation is most

ideal as computing resources have to be taken into consideration along with information

bandwidth, but even the introduction of another logic level in classical computing schemes

to implement ternary allows for the simplification of decision tree processes. For example,

rather than in a comparison of x and y that results in the binary answer to “is less than”

followed by an answer to “is equal,” ternary allows an answer of x “is less,” “is equal,” and

“is greater” than y in a single step (Hayes, 2001). Despite this higher-radix advantage, the

rapid size decrease in transistors has caused the binary radix to continue to prevail since

transistor-based information processing circuits are predominantly in the form of voltage-

mode devices. The increasingly smaller feature sizes and the corresponding and necessarily

smaller rail voltage levels result in noise margins that cause higher-valued radices to be im-

practical in modern electronic information processing circuits. This happens because the

benefits afforded by increasing the overall number of small transistors per unit of area in

conventional electronic central processing units (CPUs) outweighs those that could poten-

tially be realized through the use of larger transistors that are enabled to switch among

multiple voltage levels in a higher-radix implementation. For instance, an r = 3 ternary

68

system would require voltages corresponding to the digits {0, 1, 2}. From a practical point

of view, there would actually need to be voltage ranges specified, commonly characterized

as “noise margins,” that define how much a particular voltage can vary from a specified

nominal voltage that represents a particular valuation of information. Thus, implementing

higher-radix systems in conventional electronics is theoretically possible, but it is rarely done

in practice because the advantages of using extremely small, and therefore more transistors

per unit area, acting as binary switches outweighs the advantages that would be gained by

using larger transistors, and hence fewer per unit area, that implement switching among

r different voltages representing a higher-valued non-binary radix system. Smaller transis-

tors require smaller rail voltages to operate properly and subdividing these small rail-to-rail

voltage intervals into more than two discrete ranges would result in noise margins that are

impractical to implement. As a consequence, radix-2 or binary logic dominates in modern

electronic devices under the classical computational models.

Classical mechanics characterizes physical systems and how these systems interact with

their environment and each other on a large, often human-perceivable scale. If systems in

nature are heavily magnified, materials eventually break down to a discrete set of particles

that are influenced by discrete packets of energy. Relating mechanics to computation, QCs

are built of quantum mechanical elements in order to obey quantum mechanical laws. Due

to the nature of the technology being considered in QIS, the limitations that have caused

conventional electronic information processing systems to remain in the radix-2 or binary

realm, such as continuous values during measurement, are not necessarily relevant. Since

quantum mechanics utilizes quantized energy levels and particles, the use of higher-radix

systems for the representation and processing of information in QIS is potentially viable and

offers advantages in terms of the amount of information that can be represented per system

element.

The additional levels for basis representation exist for many technologies. Examples of

non-binary qudit-based QIP realizations based upon the photon include OAM (Gibson et al.,

69

2004), time-energy (Zhong et al., 2015), frequency (Lukens and Lougovski, 2017), time-phase

(Islam, 2018b), and location. Qudits implemented with superconducting solid-state technol-

ogy such as transmon circuits have also been reported (Liu et al., 2017) where existing

higher-energy levels are used for logic encoding. To accommodate to higher dimensioned

quantum systems, especially those that are compatable with radix-2 technology, methodolo-

gies for qudit control and readout have been developed (Randall et al., 2015, 2018).

Although higher-radix quantum implementations have been researched and demonstrated,

preexisting familiarity with computation techniques using a binary basis often causes addi-

tional energy levels beyond two to be left unused. Expanding the dimension of quantum

computation, however, offers advantages in terms of the amount of information that can be

represented per system element often without the strain of many additional resources. The

compression involving the number of radix-r qudits, M , required to express the information

of N qubits is described as

M =
N

log2 (r)
. (6.1)

Increasing the radix of a system greatly increases computation and communication band-

width. Although including more logic levels provides a certain level of computational ad-

vantage, an increase in dimension does increase system complexity because of the added

opportunity for introducing error (Gokhale et al., 2019). This presents the question of de-

termining the best radix for quantum computation. This value will be heavily influenced by

the number of clearly defined and manipulatable logic levels for a particular technology plat-

form. Regardless of the added opportunity for error with current technology, QIS research

groups have eagerly written about the advantages of implementing qudits rather than qubits

in QCs that could lead to more powerful quantum computation (Choi, 2017).

An important consideration when exploring the common information-theoretic justifica-

tions for using multiple-valued logic (MVL), such as enhanced information representation

efficiencies in wired and wireless transmission channels, is that, in QIS, no matter what

70

the radix, information content is much different than classical information due to super-

position. As a result of superposition, the Shannon models of information representation

for discrete information, or switching algebras, fall apart since, in QIS, multi-radix means a

higher-dimensioned Hilbert space. This means that the the cardinality of the basis vector set

increases. Higher radices in discrete switching theory have higher resolution in each discrete

dimension of the Boolean, or Post, vector spaces, but the vector spaces themselves do not

increase in dimensionality. Fig. 6.1 illustrates this difference by showing diagrams of the

discrete switching algebra spaces for conventional information models and the Hilbert vector

spaces for QIS models. This observation provides motivation for the development of QIS

systems that utilize quantum digits, or “qudits,” rather than the more commonly consid-

ered quantum bits, or “qubits.” Because higher-radix systems are under consideration, the

preparation of entangled qudit states must be investigated.

The technology-dependent synthesis techniques described in this work primarily focus on

systems that are base-2. These algorithms, however, are implemented in a modular manner

to accommodate for higher dimension QC compilation whenever devices and technology

libraries become available. Although a complete, physically-implementable gate library for

quantum MVL does not yet exist, methods and operators for synthesizing circuits that

generate higher-radix superposition and entanglement were studied in preparation for when

quantum devices become more robust.

6.1. Qudit Information

The most commonly used physical systems for quantum information are elements that

have two distinct basis states. Due to the fact that the carriers have two distinct basis states,

they carry information that is mathematically represented as a quantum bit, or qubit, by

assigning each of the basis states to one of two orthonormal vectors. Quantum information

can also be represented with carriers that exhibit quantum mechanical behavior over a non-

binary basis set (Choi, 2017). Mathematically, a higher-radix system can be characterized

71

Figure 6.1. Comparison of vector spaces for r = 2, 3.

with a set of basis vectors that span a Hilbert vector space of dimension r > 2 in terms of

qudits rather than the binary (r = 2) case of qubits. An example application for higher-radix

QIP is QKD (Almeida et al., 2005; Islam, 2018a; Rohit and Srinivas, 2016).

Qubits are the most commonly implemented units of information in QIP. As a result,

methods for automatically generating arbitrary radix-2 quantum state have been considered,

yet the general problem of logic synthesis to produce a cascade of known operators remains

a research problem. In terms of generating arbitrary quantum states, a recent method for

the binary case is given in (Niemann et al., 2016a), yet the result is in terms of controlled

rotation gates with arbitrary angles of rotation and not in terms of actual operators that are

known to be fabricated in some technology.

72

As an example of higher-radix QIP, a radix-3 system consists of qudits expressed mathe-

matically as a linear combination of three orthonormal basis vectors, |03〉, |13〉, and |23〉 where

the subscripts indicate the value of r to avoid consusion while discussing systems of different

values of r. In this case, the basis vectors span a three-dimensional Hilbert space. A general

radix-3 qudit, |φ3〉 may be expressed mathematically as |φ3〉 = a0 |03〉 + a1 |13〉 + a2 |23〉.

The set of radix-3 computational basis vectors are explicitly denoted as |03〉 =
[
1 0 0

]T
,

|13〉 =
[
0 1 0

]T
, and |23〉 =

[
0 0 1

]T
. A quantum information system comprised of two

radix-3 qudits is formulated in the same manner as that of a multi-qubit system through use

of the tensor product.

In general, the form of a single qudit for an arbitrary radix, r, is given by

|φr〉 =
r−1∑
i=0

ai |ir〉 . (6.2)

Additionally, it is also the case that the ai in Eqn. 6.3 are complex-valued quantities that

satisfy

r−1∑
i=0

|ai|2 = 1. (6.3)

6.2. Qudit Superposition

A QIP system of radix-r qudits can also exhibit superposition. Superposition enables the

processing of multiple valuations of information in a single quantum computation. Mathe-

matically, superposition is expressed by the presence of two or more basis vector coefficients,

seen as ai in Eqn. 6.3, having non-zero values.

When the probability amplitudes are all non-zero and the square of their magnitudes are

the same value, the qudit is said to be maximally superimposed or is in maximal superposition

with respect to some basis set. Practically, this means that the qudit is equally likely to be

measured as being in a state that is equivalent to any of the possible basis vectors. Multiple

73

qubits or qudits may demonstrate states of maximal superposition. Achieving maximal

superposition is an important operation and is one that is typically achieved as one of the

very first operations in many quantum computing algorithms or processing flows.

6.2.1. The Hadamard Gate

The Hadamard operator, pictured in Table 2.1 causes a qubit originally in a basis state

to evolve into a maximally superimposed state. It is denoted by the unitary transformation

matrix H. Each column, or row, vector comprising H is a discretized Walsh function with a

scalar normalization factor of 1√
2n

where n is the order of the matrix that corresponds to the

number of qubits comprising the quantum system. Since the Walsh functions are orthogonal

and the Hadamard transform matrix includes a scalar normalization factor, the overall H

matrix is comprised of an orthonormal column, or row, space. The first-order Hadamard

matrix, H, is expressed as

H =
1√
2

1 1

1 −1

 . (6.4)

H evolves a qubit, |φ2〉, initially in a basis state, into a state of maximal superposition so

that it has equal probability of being observed, or measured, as either |02〉 or |12〉. As an

example, consider the qubit |φ2〉 = |02〉 that is evolved in time through application of a

Hadamard operation, |φ2〉 = H |02〉 = (1/
√

2)(|0〉+ |1〉).

6.2.2. The Chrestenson Gate

Quantum operators exist for other computational bases, such as radix-3 and above, that

achieve equal superposition among the corresponding basis states. These operators are

referred to as “Chrestenson” gates. Since the Chrestenson operators can be formed for any

radix r > 2, we denote them as Cr to indicate the radix, and alternatively, that Cr is a square

matrix of dimension r × r. Chrestenson gates are characterized by transformation matrices

74

Figure 6.2. Radix-r Chrestenson gate, Cr evolving |φr〉.

that may be derived using the discrete Fourier transform over Abelian groups. The general

theory of the discrete Fourier transform over Abelian groups, referred to as the Chrestenson

transform, can be found in references (Chrestenson et al., 1955; Vilenkin, 1947). Many useful

applications of Chrestenson transforms in QIS have been demonstrated (Zilic and Radecka,

2002).

The graphical representation of the application of a Chrestenson gate, Cr, on a radix-r

qudit at time t0 is in Fig. 6.2 and illustrates the operation |φr(t1)〉 = Cr |φr(t0)〉. Because

the Chrestenson operator is a generalized version of the Hadamard operator wherein the

radix, r, is an integer greater than two, the resulting transformation matrix for a single qu-

dit is square with dimension r × r. The Chrestenson transform can likewise be applied to a

collection of n qudits with a resulting transformation matrix of dimension rn× rn. The cor-

responding transformation matrix can be formed using the tensor product of n Chrestenson

transformation matrices of dimension r × r and is denoted as

Cn
r =

n⊗
i=1

Cr = Cr ⊗Cr ⊗ · · · ⊗Cr. (6.5)

The structure of the Chrestenson transform matrix is in the form of a Vandermonde ma-

trix where each row vector consists of component, wk, raised to an integral power j. The

components within a Chrestenson transform matrix, wk, are one of the rth roots of unity

raised to some integral power (Chrestenson et al., 1955; Zilic and Radecka, 2007). The rth

roots of unity may be geometrically envisioned as r points that lie upon the unit circle in the

complex plane that are equiangular and that always include the (1, 0) point denoted as w0

75

Figure 6.3. Roots of unity in the complex plane for r = 2, 3, 4, and 5.

along the positive real axis. In general, for radix-r, the roots of unity of interest are denoted

as wk where k = 0, 1, . . . , (r− 1) and satisfy (wk)
r = 1 as roots of one. Fig. 6.3 contains the

plots for the rth roots of unity for r = 2, 3, 4, and 5. The closed form representation of the

rth roots of unity is

wk = ei
2π
r
×k. (6.6)

Regarding notation, each element of the matrix is some form of wjk where j is determined

by the column index and k is determined by the row index. In this indexing scheme, the

indices j and k begin with j = k = 0 and increase to j = k = (r−1). It is observed that, for

the case r = 2, the Hadamard matrix results. Thus, the Chrestenson transform matrices can

be considered as generalizations of the Hadamard transform for higher-dimensioned systems.

76

The generalized Chrestenson transform matrix, Cr, is

Cr =
1√
r

w0

0 w1
0 . . . w

(r−1)
0

w0
1 w1

1 . . . w
(r−1)
1

...
...

. . .
...

w0
(r−1) w1

(r−1) . . . w
(r−1)
(r−1)

. (6.7)

The transformation matrix of Eqn. 6.7 is comprised of a set of normalized orthogonal

Chrestenson functions as the column or row vectors (Chrestenson et al., 1955). As is similar

to the Hadamard gate acting on a qubit, the radix-r Chrestenson gate evolves a radix-r qudit

into a state of maximal superposition when the qudit is initialized to a basis state. Using

Eqn. 6.7, radix-3 the Chrestenson transformation matrix is calculated as

C3 =
1√
3

1 1 1

1 e
i2π
3
×1 e

i2π
3
×2

1 e
i2π
3
×2 e

i2π
3
×4

(6.8)

while the radix-4 the Chrestenson transformation matrix is calculated as

C4 =
1√
4

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

. (6.9)

The Chrestenson gate has been physically implemented. An example implementation

of the radix-4 Chrestenson gate can be found in references (Smith et al., 2018a,b) and in

Appendix A.

77

6.3. Single Qudit Basis Permutation

Many single qubit operators can be generalized into a higher-radix form to evolve qudit

state. An example of such an operator is the radix-2 X operation, or NOT operation, that

performs a Pauli-X rotation on a qubit. The quantum gate or operator for the Pauli-X is

represented with the transformation matrix

X =

0 1

1 0

 . (6.10)

Mathematically, the Pauli-X operation can be considered a modulo-2 addition-by-one opera-

tion as it transforms a qubit |02〉 to be |((0 + 1)mod 2)2〉 = |12〉 and |12〉 to |((1 + 1)mod 2)2〉 =

|02〉. In the case where |φ2〉 is in a state of superposition, |φ2(t0)〉 = a0 |02〉 + a1 |12〉, the

X operation exchanges the probability amplitude coefficients of the quantum state yielding

the qubit |φ2(t1)〉 = a1 |02〉 + a0 |12〉. Thus, the Pauli-X gate can be understood as a basis

permutation operation due to modulo-k addition with respect to modulus r = 2.

The single qudit modulo-addition operations are denoted as Mk for operators that cause

a modulo-k addition with respect to modulus r as was used in (Thornton et al., 2008). These

modulo-addition operators that cause a change of basis are also referred to in the literature

as Heisenberg-Weyl operators (Bertlmann and Krammer, 2008). Using the Mk notation,

the Pauli-X operator for qubits is M1. As a note, the modulo-0 operation for any r is

equal to the identity function, or M0 = Ir where Ir is the r × r identity matrix. Therefore,

the operation of M0 is considered trivial since no change of basis occurs for the probability

amplitudes within the quantum state. The notation of implementing M0 as the identity

transformation matrix may be used within equations rather than Ir to show patterns within

qudit transformation functions.

To demonstrate the non-trivial single qudit modulo-addition operations in the ternary,

r = 3, case, consider the transformation matrices

78

M1 =

0 0 1

1 0 0

0 1 0

 , M2 =

0 1 0

0 0 1

1 0 0

 . (6.11)

The M1 operator causes the evolutions |03〉 → |13〉, |13〉 → |23〉, and |23〉 → |03〉 to occur.

Likewise M2 results in |03〉 → |23〉, |13〉 → |03〉, and |23〉 → |13〉.

For higher-dimensional systems with radix-r, r > 2, there are r − 1 different single non-

trivial Mk operators. Thus, an r = 4 quantum system would have a total of three non-trivial

modulo-addition operations. The non-trivial Mk gates are

M1 =

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

, M2 =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

, M3 =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

. (6.12)

The radix-4 modulo-addition operation M1 causes the evolutions |04〉 → |14〉, |14〉 → |24〉,

|24〉 → |34〉, and |34〉 → |04〉 to occur. M2 results in |04〉 → |24〉, |14〉 → |34〉, |24〉 → |04〉,

and |34〉 → |14〉 to occur. Finally, M3 results in |04〉 → |34〉, |14〉 → |04〉, |24〉 → |14〉, and

|34〉 → |24〉.

6.4. Controlled Qudit Operators

Single qudit operators can all be implemented in controlled variations to make multi-qudit

quantum gates. For instance, the Mk operation discussed in Section 6.3 can be modified

to execute on a target qudit if and only if a control qudit has a probability amplitude for

a specific basis state. For example, the controlled version of the X gate is the “controlled-

X” or “controlled-NOT” gate denoted as CNOT. The controlled-NOT gate may also be

referred to by the somewhat unconventional name of “controlled-modulo-add by one” gate

as it acts as a controlled M1 operation. The CNOT gate is defined as

79

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

. (6.13)

and causes a Pauli-X operation on a target qubit if the control has a probability amplitude

for |12〉.

In the case of radix-2 systems, only two different modulo-2 additions are possible since

there are two computational basis vectors, |02〉 and |12〉. Furthermore, one of these is the

trivial case of modulo-2 addition-by-zero that results in the identity transformation matrix

and is not of interest. Thus, there is only one significant single-qubit modulo-2 addition

operation, the Pauli-X operation. Likewise, there is only one two-qubit controlled-modulo-

addition operation of interest, the controlled-X or CNOT. For the sake of completeness,

it is noted that the single r = 2 controlled modulo-addition operation of interest, CNOT,

could be considered to represent two different operations since the control qubit may cause

the target Pauli-X operation to occur when the control qubit is either |12〉 or |02〉. Most past

work in binary QIS consider only the single CNOT operator wherein the target is activated

when the control is |12〉. If the other case is of interest, it is represented as the CNOT with

the control qubit passing through a pair of Pauli-X operations, one before and one after the

CNOT, to cause the target to activate when the control has value |02〉. This is generally

the case to account for common calculations of quantum cost. However, for consistency,

these two cases for r = 2 are considered since the generalized controlled modulo-addition

operations for qudits where r > 2 that are discussed later do consider different values of the

control qudits that activate the target operation.

A controlled modulo-addition-by-k gate is a two-qudit gate specified as Ah,k. The target

modulo-addition-by-k operation occurs on the target qudit when, and only when, the control

qudit has the appropriate value as specified by the gate as h. The k value defines the modulo

80

addition operation to occur on the target. A single controlled modulo-addition operator is

permissible and non-trivial when the control value that activates the target modulo-addition

operator is any basis state |h〉 where h ∈ {0, . . . , (r − 1)} and the target modulo-addition-

by-k operation is restricted to non-zero values of k where k ∈ {1, . . . , (r − 1)}. Since the

modulo-r addition-by-zero operation results in the radix-r identity transformation matrix,

Ir, controlled modulo-r addition-by-zero gates are considered trivial. Controlled modulo-

addition gates with multiple control and addition-by-k values are composite controlled-mod-

add operators.

For higher-dimensional systems with radix-r, r > 2, there are r − 1 different single non-

trivial qudit modulo-r additions and, thus, r − 1 controlled-modulo-addition operations of

interest with respect to modulus r for a single basis control value. Considering all combina-

tions of control values, r, as well as the different moduli, r − 1, there are a total of r2 − r

different and non-trivial controlled-modulo-addition operators with all possible control val-

ues. Since the controlled-modulo-addition transformation matrices, Ah,k, operate over two

qudits of arbitrary radix r, they are of dimension r2 × r2.

In general, the radix-r controlled modulo-addition-k matrix, Ah,k, where h and k have a

single value, is in the form

Ah,k =

D0 0r · · · · · · · · · · · · 0r

0r D1 0r · · · · · · · · · 0r
... 0r

. . . 0r · · · · · · 0r
...

... 0r Dj 0r · · · 0r
...

...
... 0r

. . . 0r
...

...
...

...
... 0r

. . . 0r

0r 0r 0r 0r · · · 0r D(r−1)

, Di =

M0 = Ir, i 6= h

Mk, i = h.

(6.14)

The Ah,k matrix is banded with r− 1 non-zero super- and sub-diagonals. In Eqn. 6.14, each

submatrix along the diagonal is denoted as Di and is of dimension r × r. The two-qudit

81

controlled variation of the modulo-add gate, Ah,k, only allows the modulo-addition by k

operation to occur on the target whenever the control qudit is in state, |hr〉. The control

qudit can, in general, be in a superimposed state.

Considering radix-3 for an example, there are a total of six non-trivial variations of the

controlled modulo-add gate. These are denoted as A0,1, A0,2, A1,1, A1,2, A2,1, and A2,2.

The transformation matrices for these operations are

A0,1 =

0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

,A0,2 =

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

, (6.15)

A1,1 =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

,A1,2 =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

, (6.16)

82

Figure 6.4. Symbol of the controlled modulo-add gate, Ah,k.

A2,1 =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

,A2,2 =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

. (6.17)

After examining A0,1 from Eqn. 6.15, it is observed that the operation only allows M1 to

execute on the target if the control qudit has a value of |03〉. If the control qudit is either

|13〉 or |23〉, the target qudit remains unchanged. If another logic level is added and a radix-4

QIP system is considered, the available controlled-modulo add operations become A0,1, A0,2,

A0,3, A1,1, A1,2, A1,3, A2,1, A2,2, A2,3, A3,1, A3,2, and A3,3. The transformation matrices

for these two-qudit operators can be derived with Eqn. 6.14.

The symbol for the generalized circuit for controlled modulo-add gate can be seen in

Fig. 6.4. In this generalized symbol, the h for the control qudit |αr〉 is the active control

level that may have a value from the set {0, 1, . . . , (r − 1)}. Likewise, the target qudit |βr〉

will be transformed by Mk where k has a value from the set {1, 2, . . . , (r − 1)}.

83

Chapter 7

Higher Dimensioned Entanglement Generators

The benefits of QIS depend on entanglement, and without entanglement coupled with

superposition, QIS offers no benefit in comparison to Turing machines. There are very few

known and useable QC algorithms that do not employ entanglement in some form or fashion

because quantum entanglement is an enabling property in many algorithms and communica-

tions schemes. For example, many implementations of QKD are dependent on the ability to

generate entangled states. Furthermore, entanglement is a key phenomenon that is present

inside many well-known binary quantum algorithms such as in the QFT, Deutsch-Jouza,

Simon’s, Grover’s, Shor’s algorithms. Virtually none of the currently known binary QIS

methods can be extended to higher radices without entanglement generators. In addition,

entanglement is a key ingredient in all of the logical qubit and qudit formulation methods.

Thus, for higher-radix QIP to become viable, it is important to determine methods to gen-

erate entanglement for higher-radix systems. Here, a focus will be placed on generalizations

of the binary bipartite entanglement generators such as Bell generators and the multi-qubit

Greenberger–Horne–Zeilinger (GHZ) generators for the higher-radix case. Included results

provide a description of how higher-radix entanglement generators can be constructed from

realizable physical components including the Chrestenson and controlled-modulo-addition

operators.

Properties of maximum qudit entanglement have been studied in (Enŕıquez et al., 2016;

Thew et al., 2002). Qudit entangled states have also been experimentally demonstrated (Kues

et al., 2017). However, a general methodology for the synthesis of a state preparation al-

gorithm to yield a maximally entangled state has not been clearly defined until (Smith and

84

Thornton, 2019a,c). In this section, the single- and multi-qudit operators required to entan-

gle quantum states will be presented. The structure of the bipartite binary entanglement

generator provides inspiration for the development of this theory. The end result of this sec-

tion is a generalized circuit structure that can be implemented in QIP algorithms to create

varying degrees of higher-radix entanglement. To demonstrate the methods, r = 3 systems

will be used. Additional examples of entanglement generators for r = 4 are included in

reference (Smith and Thornton, 2019c).

7.1. Partial Entanglement of Qudit Pairs

The the maximally entangled states for two qubits are known as the Bell states, and as

seen in Section 2.7, entangled qubit pairs are generated with the Bell state generator. When

preparing entangled quantum states, there are two key transformations that must occur in

series. First, one of the quantum elements must be placed into a state of maximal super-

position with a radix-r Chrestenson gate. Next, the two quantum elements must interact

together via controlled modulo-addition operation or operations.

Transforming qubits with the Bell state generator creates maximal entanglement. The

resulting Bell states are entangled in the sense that the wavefunction vector does not contain

groups of separable basis states. Although they do not appear in binary systems, states of

partial entanglement exist when r > 2. A partially entangled state is one wherein some

subset of the basis states are entangled and the remaining set or sets are not. As a system’s

radix increases in size, greater degrees partial entanglement are possible.

Using the structure of the well-known radix-2 Bell state generator as motivation, quan-

tum generator circuits can be formulated as a cascade that includes a radix-r Chrestenson

operator followed by a controlled-modulo add-operator. This set of operations evolves a pair

of r > 2 qudits originally in a basis state into a partially, but not maximally, entangled qudit

pair. The general form of a particular radix-r partial entanglement generator is shown in

Fig. 7.1:a. There exist r2−r different partial entanglement generators with a single controlled

85

Figure 7.1. a) General circuit for radix-r two-qudit partial entanglement generator. b)

Specific example circuit for radix-3 two-qudit partial entanglement generator.

gate as any non-trivial Ah,k operator can be used.

To illustrate the concept of partial entanglement, consider the case where r = 3 and

a controlled-modulo add operator of the form A0,1 is utilized. Furthermore, assume that

the initial quantum state of the radix-3 qudit pair is |αβ3〉 = |003〉. The specific partial

entanglement generator is shown in Fig. 7.1:b. The resulting partially entangled quantum

state arising from the evolution of |003〉 through the radix-3 circuit of Fig. 7.1:b is calculated

as |αβ3〉 = Tpar |003〉 where Tpar is the transfer matrix of the partial entanglement generator.

The partially entangled state is calculated as

Tpar |003〉 = A0,1(C3 ⊗ I3) |003〉

=
1√
3

(|013〉+ |103〉+ |203〉)

=
1√
3

[
|013〉+ (|13〉+ |23〉)⊗ |03〉

]
.

(7.1)

Since the value |03〉 can be factored out of two of the three basis components in the evolved

quantum state, the state is not fully entangled. However, this state is referenced as “partially

entangled” since the basis |013〉 is present. |013〉 can be considered an entangled basis state

within the partially entangled output state in Eqn. 7.1 because measurement of either |α3〉

or |β3〉 gives insight to the state of the other qudit. Thus, there is a probability of 1
3

that an

observation or measurement of the evolved state will be this entangled state. However, if the

evolved form of qudit |β3〉 is observed to be |03〉, then the evolved qudit |α3〉 may be either

86

|13〉 or |23〉 with equal likelihood, thus violating the definition of maximal entanglement.

Mathematically, partial entanglement is present due to the fact that |03〉 can be factored out

of two of the components of the evolved state. In contrast, a maximally entangled state is

one where no such factoring of the basis values within the quantum state vector is possible.

Because the radix-3 quantum logic has three basis states that can act as active control

values for the controlled-mod-add operators and there are two non-trivial modulo-add gates

(i.e., Ah,1 and Ah,2 for h ∈ {0, 1, 2}), there are six different circuits that could be used to

create partial entanglement. The evolved states resulting from the radix-3 partial entangle-

ment circuit can be seen in Table 7.1 where |03〉 is the control basis value, Table 7.2 where

|13〉 is the control basis value, and Table 7.3 where |23〉 is the control basis value. In these

tables, the control level allows either the modulo-add by one or modulo-add by two function

to act upon the target qudit. All of the states provided in these tables are only partially

entangled because a qudit can be factored out of a subset of the final quantum state’s basis

values, violating the definition of maximal entanglement.

7.2. Maximal Entanglement Generators for Qudit Pairs

Many radix-2 QIP algorithms begin with initializing the qubits in a ground or other

basis state followed by placing them into states of full and maximal entanglement. This is

accomplished by using a quantum circuit that includes the Hadamard gate and the CNOT,

or radix-2 controlled-modulo-one, operator. If a QC is a higher-radix device, then the anal-

ogous operation would be instantiated. That is, to first initialize all qudits into basis states

and then to immediately perform a Chrestenson operation to evolve the control qudit into a

87

Table 7.1. Outputs of radix-3 partial entanglement generator circuit with |03〉 as control

level

Two-Qudit Gate in Generator

Input A0,1 A0,2

|003〉 1√
3
(|013〉+ |103〉+ |203〉) 1√

3
(|023〉+ |103〉+ |203〉)

|013〉 1√
3
(|023〉+ |113〉+ |213〉) 1√

3
(|003〉+ |113〉+ |213〉)

|023〉 1√
3
(|003〉+ |123〉+ |223〉) 1√

3
(|013〉+ |123〉+ |223〉)

|103〉 1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |203〉

)
1√
3

(
|023〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |203〉

)
|113〉 1√

3

(
|023〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |213〉

)
1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |213〉

)
|123〉 1√

3

(
|003〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |223〉

)
1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |223〉

)
|203〉 1√

3

(
|013〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |203〉

)
1√
3

(
|023〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |203〉

)
|213〉 1√

3

(
|023〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |213〉

)
1√
3

(
|003〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |213〉

)
|223〉 1√

3

(
|003〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |223〉

)
1√
3

(
|013〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |223〉

)

Table 7.2. Outputs of radix-3 partial entanglement generator circuit with |13〉 as control

level

Two-Qudit Gate in Generator

Input A1,1 A1,2

|003〉 1√
3
(|003〉+ |113〉+ |203〉) 1√

3
(|003〉+ |123〉+ |203〉)

|013〉 1√
3
(|013〉+ |123〉+ |213〉) 1√

3
(|013〉+ |103〉+ |213〉)

|023〉 1√
3
(|023〉+ |103〉+ |223〉) 1√

3
(|023〉+ |113〉+ |223〉)

|103〉 1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |203〉

)
1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |203〉

)
|113〉 1√

3

(
|013〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |213〉

)
1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |213〉

)
|123〉 1√

3

(
|023〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |223〉

)
1√
3

(
|023〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |223〉

)
|203〉 1√

3

(
|003〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |203〉

)
1√
3

(
|003〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |203〉

)
|213〉 1√

3

(
|013〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |213〉

)
1√
3

(
|013〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |213〉

)
|223〉 1√

3

(
|023〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |223〉

)
1√
3

(
|023〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |223〉

)

88

state of maximal superposition. Next, specific controlled operations may be implemented to

evolve the qudit pair into partial or maximal entanglement. Augmentations must be made

to the circuit in Fig. 7.1:a in order to produce maximally entangled radix-r qudit pairs. A

pair of radix-3 qudits can become maximally entangled when two controlled modulo-add

operations are utilized rather than a single operation.

Fully entangling a pair of radix-3 qudits requires one additional controlled operation

in the entanglement generator as compared to what is necessary for partial entanglement.

The two controlled gates needed for full entanglement must have different target activation

values, h, and they must have two different modulo-add by k operations on the target.

An example radix-3 full entanglement generator for two qudits can be seen in Fig. 7.2.

The transformation matrix for the controlled operations in the generator is derived by com-

bining the single-control modulo-add transformation functions, A1,1 in series with A2,2 using

a matrix product. For example,

A(1,2),(1,2) = A2,2 ×A1,1 =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

=

M0 0 0

0 M1 0

0 0 M2

 (7.2)

is created by combining A2,2 with A1,1, and it describes the evolution associated with the

entire controlled portion of Fig. 7.2. Since combining the controlled-mod-add operations

is commutative, the matrix products A2,2 × A1,1 = A(1,2),(1,2), A2,1 × A1,2 = A(1,2),(2,1),

A2,2×A0,1 = A(0,2),(1,2), A2,1×A0,2 = A(0,2),(2,1), A1,2×A0,1 = A(0,1),(1,2), and A1,1×A0,2 =

89

A(0,1),(2,1) describe all of the unique transformation functions that can be used as the multi-

qudit gates of a radix-3 maximal entanglement generator for two qudits. All of the outputs

created by these six different maximal entanglement generators are provided in Tables 7.4,

7.5, and 7.6. Table 7.4 contains information when |13〉 and |23〉 are the active control values,

Table 7.5 contains information when |03〉 and |23〉 are the active controls, and Table 7.6

contains information when |03〉 and |13〉 are the active controls. If these tables are examined,

it is clear that they contain maximally entangled quantum states since each qudit cannot

be described independently from the pair. For example, the evolved state resulting from an

initial state of |003〉 where the entanglement generator Tmax from Fig. 7.2 containing the

controlled modulo-add gate A(1,2),(1,2) = A2,2 × A1,1 is provided in Table 7.4. The output

qudit state corresponding to the input |003〉 for this maximum entanglement generator would

be calculated as

Tmax |003〉 = A(1,2),(1,2)(C3 ⊗ I3) |003〉 =
1√
3

(|003〉+ |113〉+ |223〉) . (7.3)

This generated state cannot be mathematically factored and can only be described as a sum-

mation of entangled basis states. Since the output of the two-qudit maximal entanglement

generator agrees with the definition of maximal entanglement, the pair of radix-3 qudits are

maximally entangled.

Fig. 7.2 illustrates the previously described maximal entanglement generator. In Fig. 7.2,

the two controlled-mod-add gates are shown in two ways: as a single symbol and as to two

separate symbols. Although these two graphical depictions are identical, it may be ad-

vantageous to implement them as a single operation in certain technologies. Additionally,

90

Table 7.3. Outputs of radix-3 partial entanglement generator circuit with |23〉 as control

level

Two-Qudit Gate in Generator

Input A2,1 A2,2

|003〉 1√
3
(|003〉+ |103〉+ |213〉) 1√

3
(|003〉+ |103〉+ |223〉)

|013〉 1√
3
(|013〉+ |113〉+ |223〉) 1√

3
(|013〉+ |113〉+ |203〉)

|023〉 1√
3
(|023〉+ |123〉+ |203〉) 1√

3
(|023〉+ |123〉+ |213〉)

|103〉 1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |213〉

)
1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |223〉

)
|113〉 1√

3

(
|013〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |223〉

)
1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |203〉

)
|123〉 1√

3

(
|023〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |203〉

)
1√
3

(
|023〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |213〉

)
|203〉 1√

3

(
|003〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |213〉

)
1√
3

(
|003〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |223〉

)
|213〉 1√

3

(
|013〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |223〉

)
1√
3

(
|013〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |203〉

)
|223〉 1√

3

(
|023〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |203〉

)
1√
3

(
|023〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |213〉

)

Table 7.4. Outputs of radix-3 maximal entanglement generator circuit with |13〉 and |23〉 as

control levels

Two-Qudit Gate in Generator

Input A2,2 ×A1,1 = A(1,2),(1,2) A2,1 ×A1,2 = A(1,2),(2,1)

|003〉 1√
3
(|003〉+ |113〉+ |223〉) 1√

3
(|003〉+ |123〉+ |213〉)

|013〉 1√
3
(|013〉+ |123〉+ |203〉) 1√

3
(|013〉+ |103〉+ |223〉)

|023〉 1√
3
(|023〉+ |103〉+ |213〉) 1√

3
(|023〉+ |113〉+ |203〉)

|103〉 1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |223〉

)
1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |213〉

)
|113〉 1√

3

(
|013〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |203〉

)
1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |223〉

)
|123〉 1√

3

(
|023〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |213〉

)
1√
3

(
|023〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |203〉

)
|203〉 1√

3

(
|003〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |223〉

)
1√
3

(
|003〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |213〉

)
|213〉 1√

3

(
|013〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |203〉

)
1√
3

(
|013〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |223〉

)
|223〉 1√

3

(
|023〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |213〉

)
1√
3

(
|023〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |203〉

)

91

Table 7.5. Outputs of radix-3 maximal entanglement generator circuit with |03〉 and |23〉 as

control levels

Two-Qudit Gate in Generator

Input A2,2 ×A0,1 = A(0,2),(1,2) A2,1 ×A0,2 = A(0,2),(2,1)

|003〉 1√
3
(|013〉+ |103〉+ |223〉) 1√

3
(|023〉+ |103〉+ |213〉)

|013〉 1√
3
(|023〉+ |113〉+ |203〉) 1√

3
(|003〉+ |113〉+ |223〉)

|023〉 1√
3
(|003〉+ |123〉+ |213〉) 1√

3
(|013〉+ |123〉+ |203〉)

|103〉 1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |223〉

)
1√
3

(
|023〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |213〉

)
|113〉 1√

3

(
|023〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |203〉

)
1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |223〉

)
|123〉 1√

3

(
|003〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |213〉

)
1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |203〉

)
|203〉 1√

3

(
|013〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |223〉

)
1√
3

(
|023〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |213〉

)
|213〉 1√

3

(
|023〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |203〉

)
1√
3

(
|003〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |223〉

)
|223〉 1√

3

(
|003〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |213〉

)
1√
3

(
|013〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |203〉

)

Table 7.6. Outputs of radix-3 maximal entanglement generator circuit with |03〉 and |13〉 as

control levels

Two-Qudit Gate in Generator

Input A1,2 ×A0,1 = A(0,1),(1,2) A1,1 ×A0,2 = A(0,1),(2,1)

|003〉 1√
3
(|013〉+ |123〉+ |203〉) 1√

3
(|023〉+ |113〉+ |203〉)

|013〉 1√
3
(|023〉+ |103〉+ |213〉) 1√

3
(|003〉+ |123〉+ |213〉)

|023〉 1√
3
(|003〉+ |113〉+ |223〉) 1√

3
(|013〉+ |103〉+ |223〉)

|103〉 1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |203〉

)
1√
3

(
|023〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |203〉

)
|113〉 1√

3

(
|023〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |213〉

)
1√
3

(
|003〉+ 1

2
(−1 + i

√
3) |123〉+ 1

2
(−1− i

√
3) |213〉

)
|123〉 1√

3

(
|003〉+ 1

2
(−1 + i

√
3) |113〉+ 1

2
(−1− i

√
3) |223〉

)
1√
3

(
|013〉+ 1

2
(−1 + i

√
3) |103〉+ 1

2
(−1− i

√
3) |223〉

)
|203〉 1√

3

(
|013〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |203〉

)
1√
3

(
|023〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |203〉

)
|213〉 1√

3

(
|023〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |213〉

)
1√
3

(
|003〉+ 1

2
(−1− i

√
3) |123〉+ 1

2
(−1 + i

√
3) |213〉

)
|223〉 1√

3

(
|003〉+ 1

2
(−1− i

√
3) |113〉+ 1

2
(−1 + i

√
3) |223〉

)
1√
3

(
|013〉+ 1

2
(−1− i

√
3) |103〉+ 1

2
(−1 + i

√
3) |223〉

)

92

combining the controlled-mod-add gates into a single symbol allows for more concise circuit

diagrams. The composite and single transformation matrix in Eqn. 7.2 characterizes the

controlled portion, A(1,2),(1,2), of Fig. 7.2. As previously discussed for a radix-3 two-qudit

maximal entanglement generator, there are 6 different composite controlled-mod-add oper-

ators that can be implemented. These are the A(0,1),(1,2), A(0,1),(2,1), A(1,2),(1,2), A(1,2),(2,1),

A(0,2),(1,2), and A(0,2),(1,2) operators.

Figure 7.2. Radix-3 two-qudit maximal entanglement generator implemented with A1,1 and

A2,2 that form the composite gate A(1,2),(1,2).

Observation of the radix-3 composite controlled-mod-add operators reveals a pattern. A

radix-3 maximal entanglement generator for two qudits can be formulated as a cascade of

a single qudit Chrestenson operator, C3, and a composite controlled modulo-add operator,

A(h1,h2),(k1,k2). The qudit that is transformed by the Chrestenson operator acts as the control

qudit . The generalized form of the composite controlled modulo-add operator, A(h1,h2),(k1,k2),

for r = 3 is defined as

A(h1,h2),(k1,k2) =

D0 03 03

03 D1 03

03 03 D2

 , Di =

M0, i 6= h1, h2

Mk1 , i = h1

Mk2 , i = h2

(7.4)

It is assumed that the entanglement generator evolves the quantum state |θφ3(t0)〉 =

|(i, j)3〉 where (i, j) = {0, 1, 2} × {0, 1, 2}. That is, the original quantum state is initialized

to a basis state. It is further assumed without loss of generality that the control qudit is

93

|θ3〉 and the target qudit is |φ3〉 when referring to the state evolution due to a controlled

modulo-add operator.

It is assumed that the control qudit |θ3〉 is in a state of maximal superposition before it

is applied to the controlled modulo-addition operators as is consistent with the architecture

of an entanglement generator. Thus, the control qudit |θ3〉 is mathematically in the form

|θ3〉 =
1√
3

(|03〉+ |13〉+ |23〉)

.

with each basis multiplied by a radix-3 root of unity raised to some integral power de-

pending on the control qudit’s original value. Therefore, due to the control value h1 of a

controlled modulo-add operator, partial entanglement occurs between the |(h1)3〉 component

of the control qudit |θ3〉 and the target qudit |φ3〉 due to the operation of Ah1,k1 wherein

the |[(h1), ((k1 + φ) mod 3)]3〉 term becomes entangled only as is shown in the results of

Tables 7.1, 7.2, 7.3. Thus, the remaining r − 1 = 3− 1 = 2 terms are not entangled.

To entangle the remaining r − 1 = 2 terms, it is necessary to apply another Ah2,k2

operator such that h2 6= h1 and k2 6= k1 to ensure that non-entangled elements of the

partially entangled quantum state are evolved. The result of this evolution causes the

|[(h2), ((k2 + φ) mod 3)]3〉 term to become entangled. Because two of the r = 3 terms

are now entangled, the only possibility for the third term is for it to be in a fully entangled

state also to satisfy Born’s rule in which the probability of observing a quantum system in a

particular state is equal to the magnitude squared of the probability amplitude of a specific

basis state in the wavefunction (Born, 1926).

Another result concerns the required number of controlled modulo-addition operators for

a general radix-r maximal entanglement generator for two qudits where r > 2. It is required

that r − 1 unique and permissible controlled-mod-add operators be utilized in a general

maximal entanglement generator for two qudits wherein the controlling qudit is provided

with a maximally superimposed state. To prove this statement, consider that it is well-

94

known that a Bell state generator can be formed with a single Hadamard gate and a single

CNOT gate that can be considered to be a controlled modulo-addition-1 gate. This result

indicates that maximal entanglement can be achieved for a system where r = 2 and the initial

quantum state is a basis state when applied to the Bell state generator with r−1 = 2−1 = 1

controlled modulo-addition operators.

For a radix-3 system, r− 1 = 3− 1 = 2 controlled-modulo-add operators are required to

achieve a state of maximal entanglement in an entanglement generator of the form wherein

the control qudit |θ3〉 is in a state of maximal superposition and the target qudit |φ3〉 is

initialized to a basis state.

By induction, it is the case that a maximal state generator for qudits of radix-r, re-

quire the use of r − 1 controlled modulo-addition operators wherein the r − 1 controlled

modulo-addition operators utilize control values that are mutually exclusive from the set

{0, 1, 2, . . . , (r − 1)}. Conditions for the the target modulo-addition operators, Mj are de-

scribed as a result of the requirements for Ah,k gates in a quantum entanglement circuit. A

given radix-r, two-qudit maximal entanglement generator is comprised in part of r − 1 con-

trolled modulo-addition operators wherein the operators are all non-trivial and permissible

and furthermore wherein none of the operators are identical. Consider the group G where

the group elements are all r× r permutation matrices Mi for i ∈ {0, 1, . . . , (r− 1)} and the

group operator is direct matrix multiplication. Because G is a group, closure holds, thus

Mi ×Mi = M(i+i)(mod r) = Mj, where, j = (i+ i)(mod r).

Consider an attempted maximal entanglement generator comprising in part r − 1 con-

trolled modulo-addition operators wherein two of the r − 1 operators are identical and of

the form Ah,k. Since the Mi permutation matrices in group G are identical to the modulo-

addition-by-i transformation matrices in a controlled modulo-addition operator, this result

indicates that the presence of two of the same Ah,k operators in a set of r − 1 operators

comprising an attempted maximal entanglement generator are equivalent to a set of r − 2

operators wherein the two identical Ah,k operators are equivalent to a single Ah,2k(mod r)

95

Figure 7.3. Generalized maximal entanglement circuit for a radix-r qudit pair.

operator.

It is proven in (Smith and Thornton, 2019a) that r−1 unique and permissible controlled-

mod-add operators be utilized within a maximum entanglement generator. This requirement

is violated when two identical controlled modulo-addition operators are present in the set of

size r − 1 since two identical operators of the form Ah,k are equivalent to a single operator

of the form Ah,2k(mod r).

The composite controlled mod-add operators in a radix-r maximal entanglement genera-

tors are a cascade of r− 1 permissible and unique controlled-mod-add operators of the form

Ah,k where h ∈ {0, . . . , (r − 1)} and k ∈ {1, . . . , (r − 1)}. This result leads to the definition

of the structure of a radix-r, two-qudit maximal entanglement generator. A radix-r maximal

entanglement generator for a radix-r qudit pair can be formed as a series of qudit evolu-

tions in time wherein the first evolution is that resulting from the application of a radix-r

Chrestenson gate to the first qudit. Then, the resulting evolved qudit controls the r − 1

control inputs of the r − 1 permissible and unique controlled modulo-addition gates where

the second qudit acts as the target qudit on the r − 1 controlled modulo-addition gates. To

verify this structure, consider a radix-r qudit initialized to a basis state is evolved to a state

of maximal superposition when a radix-r Chrestenson transform is applied. Thus, a qudit

in a basis state is maximally superimposed after it is evolved via a Cr Chrestenson gate.

96

Figure 7.4. Three-qubit GHZ state generator.

A generalized diagram of a radix-r maximal entanglement generator for two qudits is

given in Fig. 7.3.

7.3. Maximal Entanglement of Qudit Groups

The Bell state generator for radix-2 quantum logic can be expanded with an addi-

tional A1,1 = CNOT operator and qubit to produce GHZ states. These states, introduced

in (Greenberger et al., 1989), are examples of entanglement that involve three or more qubits.

A circuit structure for entangling three qubits is pictured in Fig 7.4. To demonstrate how

three-qubit entanglement is generated, consider the transformation of |0002〉 by the circuit

in Fig. 7.4 to produce the fully entangled state of

GHZ |0002〉 = (rev(CNOT)⊗ I2)(I2 ⊗CNOT) |0002〉

=
1√
2

(|0002〉+ |1112〉).
(7.5)

As a note, reversing the orientation of an operator causes an interchange of columns in the

transformation matrix. A quantum operator U in its reversed orientation is indicated by

rev(U). This notation is seen in Eqn. 7.5.

The higher-radix maximal entanglement generator in Fig. 7.3 is capable of entangling

three qudits if minor modifications are made. An example of a r = 3, three-qudit maximal

entanglement generator is pictured in Fig. 7.5. Many versions of the three-qudit generator

97

Figure 7.5. Radix-3 three-qudit maximal entanglement generator implemented with two

instances of A1,1 ×A2,2 = A(1,2),(1,2).

can be created depending on the set of permissible controlled modulo-addition operators

combined in a composite form to act on each target qudit. By applying an additional set of

Ah,k operators to an added qudit, the radix-3, two-qudit maximum entanglement generator

of Fig. 7.2 becomes the radix-3, three-qudit maximum entanglement generator pictured in

Fig. 7.5. In Fig. 7.5 after the C3 gate acts on |α3〉, the Ah,k operators acting on |α3〉 and |β3〉

are the same with respect to controls and modulo-adds as the operators acting on |α3〉 and

|γ3〉. The second set of gates acting on |α3〉 and |γ3〉, however, are in a reversed orientation

with the target qudit on the top qudit, |γ3〉, and control qudit on the bottom qudit, |α3〉. This

combination of gates causes |α3〉, |β3〉, and |γ3〉 to become entangled, as can be seen when

the state |γαβ3〉 = |0003〉 passes through the three-qudit maximal entanglement generator

to create the output

Tmax |0003〉 = (rev(A(1,2),(1,2))⊗ I3)(I3 ⊗A(1,2),(1,2))(I3 ⊗C3 ⊗ I3) |0003〉

=
1√
3

(|0003〉+ |1113〉+ |2223〉) .
(7.6)

All of the three-qudit maximal entanglement generator outputs for the circuit in Fig. 7.5 are

included in Table 7.7.

The generalized radix-r entanglement circuit that acts on n qudits includes an additional

98

Table 7.7. Outputs of radix-3 three-qudit maximal entanglement generator circuit in Fig. 7.5

Input Output

|0003〉 1√
3

(|0003〉+ |1113〉+ |2223〉)

|0013〉 1√
3

(|0013〉+ |1123〉+ |2203〉)

|0023〉 1√
3

(|0023〉+ |1103〉+ |2211〉)

|0103〉 1√
3

(
|0003〉+ 1

2(−1 + i
√

3) |1113〉+ 1
2(−1− i

√
3) |2223〉

)
|0113〉 1√

3

(
|0013〉+ 1

2(−1 + i
√

3) |1123〉+ 1
2(−1− i

√
3) |2203〉

)
|0123〉 1√

3

(
|0023〉+ 1

2(−1 + i
√

3) |1103〉+ 1
2(−1− i

√
3) |2213〉

)
|0203〉 1√

3

(
|0003〉+ 1

2(−1− i
√

3) |1113〉+ 1
2(−1 + i

√
3) |2223〉

)
|0213〉 1√

3

(
|0013〉+ 1

2(−1− i
√

3) |1123〉+ 1
2(−1 + i

√
3) |2203〉

)
|0223〉 1√

3

(
|0023〉+ 1

2(−1− i
√

3) |1103〉+ 1
2(−1 + i

√
3) |2213〉

)
|1003〉 1√

3
(|0223〉+ |1003〉+ |2113〉)

|1013〉 1√
3

(|0203〉+ |1013〉+ |2123〉)

|1023〉 1√
3

(|0213〉+ |1023〉+ |2103〉)

|1103〉 1√
3

(
1
2(−1− i

√
3) |0223〉+ |1003〉+ 1

2(−1 + i
√

3) |2113〉
)

|1113〉 1√
3

(
1
2(−1− i

√
3) |0203〉+ |1013〉+ 1

2(−1 + i
√

3) |2123〉
)

|1123〉 1√
3

(
1
2(−1− i

√
3) |0213〉+ |1023〉+ 1

2(−1 + i
√

3) |2103〉
)

|1203〉 1√
3

(
1
2(−1 + i

√
3) |0223〉+ |1003〉+ 1

2(−1− i
√

3) |2113〉
)

|1213〉 1√
3

(
1
2(−1 + i

√
3) |0203〉+ |1013〉+ 1

2(−1− i
√

3) |2123〉
)

|1223〉 1√
3

(
1
2(−1 + i

√
3) |0213〉+ |1023〉+ 1

2(−1− i
√

3) |2103〉
)

|2003〉 1√
3

(|0113〉+ |1223〉+ |2003〉)

|2013〉 1√
3

(|0123〉+ |1203〉+ |2013〉)

|2023〉 1√
3

(|0103〉+ |1213〉+ |2023〉)

|2103〉 1√
3

(
1
2(−1 + i

√
3) |0113〉+ 1

2(−1− i
√

3) |1223〉+ |2003〉
)

|2113〉 1√
3

(
1
2(−1 + i

√
3) |0123〉+ 1

2(−1− i
√

3) |1203〉+ |2013〉
)

|2123〉 1√
3

(
1
2(−1 + i

√
3) |0103〉+ 1

2(−1− i
√

3) |1213〉+ |2023〉
)

|2203〉 1√
3

(
1
2(−1− i

√
3) |0113〉+ 1

2(−1 + i
√

3) |1223〉+ |2003〉
)

|2213〉 1√
3

(
1
2(−1− i

√
3) |0123〉+ 1

2(−1 + i
√

3) |1203〉+ |2013〉
)

|2223〉 1√
3

(
1
2(−1− i

√
3) |0103〉+ 1

2(−1 + i
√

3) |1213〉+ |2023〉
)

99

Figure 7.6. Generalized structure of circuit needed for radix-r maximal entanglement among

n qudits where j = n− 1 and m = r − 1.

cascades of Ah,k operators that act on each introduced target. In these cascades, (Ah,k)i, the

rules for h and k values, as defined earlier, are followed. Each group presented as (Ah,k)i is

treated as an independent set where h and k values are appropriate and must not repeat. An

illustration of an n qudit maximal entanglement generator structure is included in Fig. 7.6.

This type of generator could be considered a higher-radix generalization of the circuitry

needed for the preparation of GHZ states whenever the number of involved qudits, n, is

greater than 2.

7.3.1. Synthesis of Qudit Entanglement States

It is common knowledge that the Bell state generator can be implemented for radix-2

entangled state preparation. As the dimension of a quantum system grows in size, however,

it becomes less intuitive what set of operators are required to prepare a entangled set of

basis states where r > 2. In addition, it may be necessary to generate a specific entangled

state using qudits that are initialized to fixed basis value. For example, many quantum

technologies initialize quantum information into a ground state, |000 . . . 00r〉, that must be

used as input to the state preparation generator circuit. For this reason, it is desirable to

develop a synthesis technique that derives the gate cascade required to evolve an arbitrary

quantum state into a targeted entangled state.

100

Here, we outline a methodology for determining the circuit structure needed to create

a maximally-entangled, radix-r state with a desired set of basis states from a particular

input of qudits. For radix-r, up to r qudits may become maximally entangled so that each

qubit index in each linearly-combined basis has a unique value ranging from [0 : r − 1].

For this reason, the state preparation circuits generated by this methodology can include

between two and r qudits. The entangled state generator algorithm, developed in Python as

a prototype synthesis tool within Mustang-Q, outputs the necessary cascade of Chrestenson

and controlled-modulo-add gates to act as the generator for the desired entangled quantum

state distribution. The pseudocode that finds the required generator circuit to transform a

fixed input basis state into an entangled state is included in Figure 7.7.

Figure 7.7. Algorithm: Find entangled state generator circuit.

Finding the entangled state generator circuit requires the input parameters of radix,

number of qudits, input state, and desired entangled basis states. The input basis state is

101

in the form of a list while the desired entangled state is a list of sublists that each represent

a basis state in the linear combination. For instance, an input of |φθr〉 = |003〉 is passed as

input = [0, 0] and an entangled state of |φθr〉 = 1√
3

(|003〉+ |113〉+ |223〉) would be passed

as basis = [[0, 0], [1, 1], [2, 2]]. It should be noted that the probability amplitude for each of

the entangled basis values is set by the column of the Cr matrix with an index equal to the

control level in the input qudit state. Therefore, each basis will be multiplied by a radix-r

root of unity along with the scale factor of 1√
r
. For example, if the output entangled state of

Tmax |003〉 = A(2,2)A(1,1)(C3 ⊗ I3) |003〉

=
1√
3

(|003〉+ |113〉+ |223〉)

is examined where the superimposed control qudit is |03〉, it is clear that each of the basis

states has a probability amplitude equal to an element from the 0th index column of the C3

transform.

Following the structure pictured in Fig. 7.6, if n total qudits are to be entangled, the first

qubit, indexed as |φ(0)r〉 will always be the superimposed qubit that acts as the control for

the Ah,k gates. Therefore, the Cr operator will act on this qubit before any other operators.

Next, n − 1 cascades of Ah,k gates with appropriate h and k values needed to target each

of the remaining qudits must be determined. As a note, to maximally entangle n qudits,

(n − 1)(r − 1) total Ah,k are required. These gates will always have qudit |φ(0)r〉 as the

control qudit and each of the remaining qudits will act as a target for an Ah,k cascade to

become entangled as a group. It is known that each cascade will contain r − 1 gates.

Preparing the desired entangled state requires the generation of n−1 Ah,k cascades. Each

qudit that will act as a target, the qudits ranging from |φ(1)r〉 to |φ(j)r〉, will be iterated

102

Table 7.8. Required generator circuit components for two-qudit maximally entangled state

preparation

Input Basis States of Maximally Cr Ah,k Operators

Entangled Output Operator (|φ(0)r〉 control and |φ(1)r〉 target)

|002〉 |002〉 , |112〉 C2 A1,1

|112〉 A0,1

|003〉 |003〉 , |113〉 , |223〉 C3 A1,1,A2,2

|113〉 A0,2,A2,1

|223〉 A0,1,A1,2

|004〉 |004〉 , |114〉 , |224〉 , |334〉 C4 A1,1,A2,2 , A3,3

|114〉 A0,3,A2,1,A3,2

|334〉 A0,1,A1,2 ,A2,3

|005〉 |005〉 , |115〉 , |225〉 , |335〉 , |445〉 C5 A1,1,A2,2 , A3,3 , A4,4

|225〉 A0,3,A1,4,A3,1,A4,2

|445〉 A0,1,A1,2 ,A2,3 , A3,4

|006〉 |006〉 , |116〉 , |226〉 , |336〉 , |446〉 , |556〉 C6 A1,1,A2,2 , A3,3 , A4,4, A5,5,

|226〉 A0,4,A1,5,A3,1,A4,2,A5,3

|556〉 A0,1,A1,2 ,A2,3 , A3,4, A4,5

|007〉 |007〉 , |117〉 , |227〉 , |337〉 , |447〉 , |557〉 , |667〉 C7 A1,1,A2,2 , A3,3 , A4,4, A5,5,A6,6

|337〉 A0,4,A1,5,A2,6,A4,1,A5,2,A6,3

|667〉 A0,1,A1,2 ,A2,3 , A3,4, A4,5,A5,6

|008〉 |008〉 , |118〉 , |228〉 , |338〉 , |448〉 , |558〉 , |668〉 , |778〉 C8 A1,1,A2,2 , A3,3 , A4,4, A5,5,A6,6,A7,7

|338〉 A0,5,A1,6,A2,7,A4,1,A5,2,A6,3,A7,4

|778〉 A0,1,A1,2 ,A2,3 , A3,4, A4,5,A5,6,A6,7

|009〉 |009〉 , |119〉 , |229〉 , |339〉 , |449〉 , |559〉 , |669〉 , |779〉 , |889〉 C9 A1,1,A2,2 , A3,3 , A4,4, A5,5,A6,6,A7,7,A8,8

|449〉 A0,5,A1,6 ,A2,7,A3,8,A5,1,A6,2,A7,3,A8,4

|889〉 A0,1,A1,2 ,A2,3 , A3,4, A4,5,A5,6,A6,7,A7,8

103

Table 7.9. Required generator circuit components for multi-qudit maximally entangled state

preparation

Input Basis States of Maximally Cr Target Qudit Ah,k Operators

Entangled Output Operator (|φ(0)r〉 control)

|0124〉 |0004〉 , |1114〉 , |2224〉 , |3334〉 C4 |φ(1)4〉 A0,3,A2,1,A3,2

|φ(2)4〉 A0,2,A1,3,,A3,1

|01234〉 |00004〉 , |11114〉 , |22224〉 , |33334〉 C4 |φ(1)4〉 A0,3,A2,1,A3,2

|φ(2)4〉 A0,2,A1,3,,A3,1

|φ(3)4〉 A0,1,A1,2,,A2,3

|0125〉 |0005〉 , |1115〉 , |2225〉 , |3335〉 , |4445〉 C5 |φ(1)5〉 A0,4,A2,1,A3,2,A4,3

|φ(2)5〉 A0,3,A1,4,A3,1,A4,2

|01235〉 |00005〉 , |11115〉 , |22225〉 , |33335〉 , |44445〉 C5 |φ(1)5〉 A0,4,A2,1,A3,2,A4,3

|φ(2)5〉 A0,3,A1,4,A3,1,A4,2

|φ(3)5〉 A0,2,A1,3,A2,4,A4,1

|012345〉 |000005〉 , |111115〉 , |222225〉 , |333335〉 , |444445〉 C5 |φ(1)5〉 A0,4,A2,1,A3,2,A4,3

|φ(2)5〉 A0,3,A1,4,A3,1,A4,2

|φ(3)5〉 A0,2,A1,3,A2,4,A4,1

|φ(4)5〉 A0,1,A1,2,A2,3,A3,4

sequentially where j = n− 1. As seen in the algorithm pseudocode, value of h is derived by

which basis in the output state becomes entangled. The value of k determines the extent of

entanglement because it controls what modulo-add-k operation is implemented.

A demonstration of generator circuit synthesis is included in Fig. 7.8. In this example,

the structure of the radix-3 maximal entanglement generator from Fig. 7.2 is determined

using the parameters of the circuit input, |003〉, and the desired entangled quantum state

basis values of |003〉 , |113〉 , |223〉. As mentioned previously, all of these basis states will have

a probability magnitude of 1√
3

because that is the value of each of the elements of the 0th

column of the C3 transform.

When generating a maximally-entangled qudit state, it may be necessary to begin with

a set of qudits that are initialized to a particular basis before transformation procedures.

Depending on the original quantum state, different cascades of Ah,k operations must be

implemented to achieve a targeted entangled output. To address this scenario, additional

104

Figure 7.8. Sample output of generator circuit synthesis to prepare 1√
3

(|003〉+ |113〉+ |223〉)
from ground state |003〉.

examples of synthesized circuit cascades for systems ranging from r = 2 to r = 9 can be

found in Table 7.8 for the two-qudit case. This table includes sample input circuit values,

found in column one, that target a set of maximally entangled basis states, found in column

two. The required Cr operator is in column three and the synthesized Ah,k cascade needed

to generate the desired linear combination of basis states is found in column four. Other

input qudit and Ah,k operator combinations also generate the Table 7.8 entangled outputs,

but Table 7.8 is not all inclusive in the interest of space. As a note, since only two qudits

become entangled only n−1 = 2−1 = 1 cascade is required. More examples of synthesis are

included in Table 7.9. In these results, entangled states including more than two qudits are

analyzed for radix-4 and radix-5 systems. These circuit descriptions would be constructed

using the form of Fig. 7.6.

105

Chapter 8

Conclusion

8.1. Summary

QIP has the potential to revolutionize modern computation. With a QC, many problems

that are intractable with a classical computer can be solved in a tractable fashion. This

improvement, however, is because the rules that govern quantum computation are vastly

different than those associated with classical models as the Turing model does not apply to

a QC. These differences in the computing paradigms, especially in information representation

and transformation, require different approaches for logic synthesis and state initialization.

This dissertation has the overarching theme of quantum logic synthesis and compilation,

and the work is developed in two parts: technology-dependent mapping for available radix-2

QCs and the generation of higher-dimensional circuitry for entangled state preparation.

Various types of quantum technology has emerged in recent years. These NISQ-era de-

vices, based on radix-2 number systems, are characterized by differing gate libraries and

topological constraints. Operational characteristics such as native gate sets and qubit con-

nectivity must be taken into consideration if a general quantum circuit is to be transformed

into a technology-compatible form. To accomodate to this need, methodologies for formally-

verified technology-dependent quantum logic synthesis were presented in this work. These

algorithms are intended for design automation and were prototyped in order to map and op-

timize quantum circuits to various types of QCs, including transmon and photonic devices.

The described synthesis tool shows great promise for simplifying the quantum algorithm

and design process whenever a real QC architecture is targeted for use. In addition to

106

the described methods targeting currently existing radix-2 devices, methods for sythesizing

higher-dimensioned quantum circuitry were also proposed.

Higher-dimensioned quantum systems are feasible and they may provide opportunities

for improvement over radix-2 QIP implementations. Along with presenting radix-2 quantum

circuit transformation and optimization, a synthesis algorithm that generates a description

of the circuitry required for higher-radix maximal entanglement was also described. These

higher-dimension synthesis procedures depend on superposition and controlled change-of-

base operations in order to produce entangled states, and these gates were generalized from

the components of the well-known Bell state generator from binary qubit-based QIS.

8.2. Future Work

In this work, methods for quantum logic synthesis and compilation for the radix-2 and

higher-dimensional cases were presented. There exist plans to expand the contributions

within this dissertation in the future. For example, as new quantum technologies emerge,

Mustang-Q will be expanded to include these platforms as back-end libraries. Each of these

libraries will have associated cost functions and sets of native gate operations, so the research

and development of new logic transformations and optimizations will be required.

Although the methods in this work include equivalence checking to verify results of syn-

thesis, formal verification does not detect errored logic within the original quantum pro-

grams. Thus, a logical continuation of this work includes the development and integration

algorithms for quantum debugging tools. Quantum debuggers would assist in pinpointing

errors in quantum algorithms that are commonly introduced during the development pro-

cess. Just as with compilation, methods for quantum program debugging will differ greatly

from classical program debugging. For example, because of the inability to clone or observe

qubit state without the collapes of superposition, classical debugging techniques cannot be

immediately applied to QCs. Past discussions of quantum debuggers include (Chong et al.,

2017; Huang and Martonosi, 2019).

107

As for the higher-radix entanglement generators, within the scope of quantum entangle-

ment of qudit groups, there are many additional topics that can be investigated to build on

the work described here. For instance, although maximal entanglement generator structures

capable of outputting Bell- and GHZ-inspired states were considered and synthesis proce-

dures were detailed, these methods can be generalized in the future so that they can output

higher-radix quantum states inspired by W states where the number of basis states in the

entanglement is greater than the system’s radix, r.

108

Appendix A

The Radix-4 Chrestenson Gate

Using the fourth roots of unity, w0 = exp[(i2π/4) ∗ 0] = 1, w1 = exp[(i2π/4) ∗ 1] = i,

w2 = exp[(i2π/4) ∗ 2] = −1, and w3 = exp[(i2π/4) ∗ 3] = −i, in Eqn. 6.7, the radix-4

Chrestenson gate transfer matrix becomes

C4 =
1√
4

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

. (A.1)

The radix-4 Chrestenson gate (C4), allows a radix-4 qudit originally in a basis to evolve

into a quantum state of equal superposition. The following example shows how the radix-4

qudit |a4〉 = |04〉 evolves to |b4〉 = 1
2
|04〉+ 1

2
|14〉+ 1

2
|24〉+ 1

2
|34〉, taking the value of the first

column of the radix-4 Chrestenson matrix, after passing through the C4 transform

C4 |a4〉 = |b4〉 ,

109

C4 |04〉 =
1√
4

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

1

0

0

0

=

1

2

1

1

1

1

,

C4 |04〉 =
1

2
[|04〉+ |14〉+ |24〉+ |34〉].

If |a4〉 = |34〉, the radix-4 qudit would evolve to |b4〉 = 1
2
|04〉− 1

2
i |14〉− 1

2
|24〉+ 1

2
i |34〉, taking

the value of the last column of the C4 transformation matrix.

C4 |3〉 =
1√
4

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

0

0

0

1

=

1

2

1

−i

−1

i

,

C4 |34〉 =
1

2
[|04〉 − i |14〉 − |24〉+ i |34〉].

A.0.1. Quantum Optics

Optical quantum implementations are among the more successful physical realizations

of quantum states. In these systems, orthogonal basis states can be encoded into photon

OAM states, polarization, or location, and the state can easily evolve by passing through

linear optical elements. The photon resists coupling to other objects in its environment,

allowing it to maintain its quantum state and not decohere for long periods of time (Kok

et al., 2007). Additionally, the ability to maintain coherence enables the photon to travel

110

great distances at room temperature, making it a good candidate for long-haul quantum

information transmission.

Although photons offer the benefit of state stability in QIP applications, their failure to

interact with their surroundings prevents them from coupling with each other. Photon-to-

photon interaction is difficult, limiting the development of reliable controlled multi-qubit or

multi-qudit gate implementations. Without operations such as the radix-2 CNOT gate or

the controlled-phase gate, a functional QC cannot exist.

It was once thought that photonic quantum computation was unachievable without non-

linear optical elements, but the presentation of the KLM protocol in reference (Knill et al.,

2001) improved the outlook for quantum optics. In that work, a methodology for implement-

ing photonic multi-qubit operations using linear optics was introduced. These multi-qubit

photonic gates, however, are unfortunately limited by probabilistic operation. Currently, the

two-qubit CNOT operation can only work 1/4 of the time when implemented with linear

optical elements in the optimal case (Eisert, 2005).

The subject of this section is a photonic radix-4 Chrestenson gate. Since this quantum

operator is formed from linear optical elements and transforms a single qudit at a time, the

gate is theoretically deterministic in nature.

A.1. The Four-port Coupler

The four-port coupler is an optical component introduced and described in reference

(MacFarlane et al., 2004). This device is composed of four inputs and four outputs where

the input and output are referred to by their orientation on the component of either W, N,

E, or S. When a single beam is sent into one of the coupler inputs, the component routes

a fraction of the original signal to each of the four outputs. This beam division is caused

by the transmission and reflection of signals within the coupler. Each fraction of the input

beam seen at an output corresponds to one of the following components of the original signal:

a reflected component ρ, a transmitted component τ , a right-directed component α, and a

111

Figure A.1. Signal flow for four-port coupler with input at W.

left-directed component β. An illustration of signal flow of the four-port coupler can be seen

in Fig. A.1. This image is recreated from a figure included in reference (MacFarlane et al.,

2004).

Fig. A.1 demonstrates in blue a signal entering the four-port coupler from the W port

and exiting the component from the W, N, E, and S ports. The output signals are generated

by ρW , βW , τW , and αW , respectively. Whenever a single input enters the component, all

four coupling coefficients are generated to produce four outputs. The coupling coefficients

produced with a particular port input can be derived with the coupling coefficient matrix,

112

ρW αN τE βS

βW ρN αE τS

τW βN ρE αS

αW τN βE ρS

. (A.2)

To produce the outputs, an input vector taking the form of [WNES]T is multiplied by the

matrix in Eqn. A.2 to create a column vector of coupling coefficients. The produced output

column vector also takes the form of [WNES]T. The composition of the output vector in

terms of coupling coefficients indicates what portion of the input signal contributes to an

output from a port.

The four-port coupler does not consume nor dissipate any of the energy that is input into

the component. Therefore, to conserve energy, all of the energy entering the element must be

equal to the energy leaving the element. This concept leads to the creation of equations that

act as conditions that must hold true for energy conservation. The 10 energy conservation

equations of Eqns. A.3-A.12, first derived in reference (MacFarlane et al., 2004), use the

coupling coefficients found in the matrix of Eqn. A.2. These equations are:

ρ∗WρW + β∗WβW + τ ∗W τW + α∗WαW = 1, (A.3)

ρ∗NρN + β∗NβN + τ ∗NτN + α∗NαN = 1, (A.4)

ρ∗EρE + β∗EβE + τ ∗EτE + α∗EαE = 1, (A.5)

ρ∗SρS + β∗SβS + τ ∗SτS + α∗SαS = 1, (A.6)

113

ρ∗W τE + β∗WαE + τ ∗WρE + α∗WβE = 0, (A.7)

α∗NβS + ρ∗NτS + β∗NαS + τ ∗NρS = 0, (A.8)

ρ∗WαN + β∗WρN + τ ∗WβN + α∗W τN = 0, (A.9)

α∗NτE + ρ∗NαE + β∗NρE + τ ∗NβE = 0, (A.10)

τ ∗EβS + α∗EτS + ρ∗EαS + β∗EρS = 0, (A.11)

and

ρ∗WβS + β∗W τS + τ ∗WαS + α∗WρS = 0. (A.12)

The first four conditions seen in Eqns. A.3-A.6 exist since the inner product of each

produced field vector from a single input, W, N, E, and S, with itself must sum to one for

energy conservation. The last six conditions seen in Eqns. A.7-A.12 exist due to energy

conservation that occurs whenever two inputs are present in the component. Since the

coefficient vectors are orthogonal, the inner product between the two produced coupling

coefficient vectors corresponding to inputs at two different ports must equal zero. There are

only 6 constraints produced from sending two inputs to the four-port coupler because the

input combinations are commutative (i.e. AB = BA). The cases of three inputs and four

inputs into the four-port coupler do not create additional constraints, so they are omitted

(MacFarlane et al., 2004).

114

A.2. Physical Realizations of the Four-port Coupler

A macroscopic realization of a four-port coupler is shown in Fig. A.2. Whereas a popular

implementation of a radix-2 Hadamard gate is an optical beam splitter, polarizing or not,

the macroscopic four-port coupler is a unitary extension of a two-prism beam splitting cube.

Here, the macroscopic four-port coupler is comprised of four right angle prisms, coated with

an appropriate thin film, cemented together with care given to the precise mating of the

four prism corners. This component has been used to demonstrate novel, four leg Michelson

interferometers designed in reference (Sultana et al., 2009).

Figure A.2. Macroscopic realization of a four-port coupler.

Integrated photonic four-port couplers were previously demonstrated for applications in

optical signal processing as part of a two-dimensional array of waveguides in a multi-quantum

well (MQW) GaInAsP indium phosphide (InP) architecture (MacFarlane et al., 2011a,b).

Fig. A.3 shows an electron micrograph of a coupler fabricated at the intersection of two ridge

115

waveguides.

Figure A.3. Cross sectional scanning electron microscope image of a four-port coupler in

MQW-InP.

The optical behavior of the four-port coupler depends on frustrated total internal reflec-

tion (Gale, 1972). The evanescent field of light incident on the coupler is transfered across

the width of the component that may be an air gap or a thin slice of dielectric. Provided

the barrier width is small enough, a part of the exponentially decaying optical power of the

incident light is transmitted across while the remaining optical power is reflected. Thus, a

fraction of light incident on a four-port coupler may be transmitted to the ongoing waveguide,

reflected to both perpendicular waveguides, or reflected back into the originating waveguide.

The fractions of light in outbound waveguides are determined by the refractive indices of the

waveguide and coupler materials in addition to the width of the coupler.

116

A.2.1. Fabrication

Fabrication of the coupler was performed in several steps using nanoelectronic processing

techniques. First, coupler regions of 180 nm widths and 7 µm lengths were defined by

patterning a thin metallic chromium mask layer atop the waveguides by focused ion beam

(FIB) lithography. Precision alignment and orientation of the coupler to the waveguides

during FIB processing was achieved with alignment markers fabricated beforehand with the

waveguides using conventional microelectronic processing steps. High aspect ratio trenches

were then etched using a hydrogen bromine (HBr) based (Sultana et al., 2009) inductively

coupled plasma (ICP) to a depth of 3.9 µm. This depth allows the coupler to fully cover

optical modes confined to the quantum well region of the waveguides.

The optimal air gap width for 25% power on all output waveguides of about 90 nm was

slightly smaller than the processing capability of the ICP dry etch tool for the required

high-aspect ratio etch. Consequently, to meet this requirement for a wavelength of 1550 nm,

alumina (Al2O3), with a refractive index of n = 1.71, was back-filled into the trench using

atomic layer deposition (ALD). The resulting alumina-filled trench is shown in the composite

cross-sectional transmission electron micrographs in Fig. A.4.

A.2.2. Characterization

A 1550 nm laser was coupled into the waveguides using a tapered lens fiber at one

input port. The near-field modes of light were coupled out of the device and into another

tapered lens fiber for optical power measurement to characterize the coupling efficiency of

the four-port coupler. The measured average power coefficients were α = 0.156, β = 0.140,

ρ = 0.302, and τ = 0.220 for a measured total average coupling efficiency of 82% for the

four-port coupler (MacFarlane et al., 2011b).

117

A.3. Implementing Qudit Quantum Operations with the Coupler

It is known that the Hadamard gate meant for use with a quantum qubit can be con-

structed from a beam splitter (Kok et al., 2007). The radix-4 Chrestenson operation, an

operation that acts on a quantum encoding using four basis states, transforms a radix-4

qudit, and the four-port coupler is a physical realization of this gate. In the realization of

the radix-4 Chrestenson gate, the ports of the four-port coupler must be encoded in order to

represent the four qudit basis states. Here, the following encoding has been chosen for the

location-based scheme: port W is the |04〉 rail, port N is the |14〉 rail, port E is the |24〉 rail,

and port S is the |34〉 rail.

The four-port coupler follows 10 energy conservation equations, Eqns. A.3-A.12, that

are algebraically nonlinear. If the radix-4 Chrestenson matrix values are substituted for

the values of the coupling coefficients in Eqn. A.2, the energy conservation constraints are

satisfied and the following matrix is generated:

ρW =
1

2
αN =

1

2
τE =

1

2
βS =

1

2

βW =
1

2
ρN =

1

2
i αE = −1

2
τS = −1

2
i

τW =
1

2
βN = −1

2
ρE =

1

2
αS = −1

2

αW =
1

2
τN = −1

2
i βE = −1

2
ρS =

1

2
i

.

When a single photon, representing a qudit, is applied to one of the inputs the four-port

coupler, either W, N, E, or S, energy is conserved and the radix-4 Chrestenson transform is

achieved. The photon leaves the gate with equal superposition of all basis states. In other

118

words, the photon has a 25% probability of being located in any of the output ports W, N,

E, or S representing the basis states |04〉, |14〉, |24〉, or |34〉, respectively:

ρ∗WρW + β∗WβW + τ ∗W τW + α∗WαW = 1,(
1

2

)(
1

2

)
+

(
1

2

)(
1

2

)
+

(
1

2

)(
1

2

)
+

(
1

2

)(
1

2

)
= 1,

ρ∗NρN + β∗NβN + τ ∗NτN + α∗NαN = 1,(
−1

2
i

)(
1

2
i

)
+

(
−1

2

)(
−1

2

)
+

(
1

2
i

)(
−1

2
i

)
+

(
1

2

)(
1

2

)
= 1,

ρ∗EρE + β∗EβE + τ ∗EτE + α∗EαE = 1,(
1

2

)(
1

2

)
+

(
−1

2

)(
−1

2

)
+

(
1

2

)(
1

2

)
+

(
−1

2

)(
−1

2

)
= 1,

ρ∗SρS + β∗SβS + τ ∗SτS + α∗SαS = 1,(
−1

2
i

)(
1

2
i

)
+

(
1

2

)(
1

2

)
+

(
1

2
i

)(
−1

2
i

)
+

(
−1

2

)(
−1

2

)
= 1.

If two signals are input into the four-port coupler Chrestenson gate, the conservation of

energy causes the inner product of the two produced vectors of coupling coefficients to be

zero:

ρ∗W τE + β∗WαE + τ ∗WρE + α∗WβE = 0,(
1

2

)(
1

2

)
+

(
1

2

)(
−1

2

)
+

(
1

2

)(
1

2

)
+

(
1

2

)(
−1

2

)
= 0,

α∗NβS + ρ∗NτS + β∗NαS + τ ∗NρS = 0,(
1

2

)(
1

2

)
+

(
−1

2
i

)(
−1

2
i

)
+

(
−1

2

)(
−1

2

)
+

(
1

2
i

)(
1

2
i

)
= 0,

ρ∗WαN + β∗WρN + τ ∗WβN + α∗W τN = 0,(
1

2

)(
1

2

)
+

(
1

2

)(
1

2
i

)
+

(
1

2

)(
−1

2

)
+

(
1

2

)(
−1

2
i

)
,

α∗NτE + ρ∗NαE + β∗NρE + τ ∗NβE = 0,

119

(
1

2

)(
1

2

)
+

(
−1

2
i

)(
−1

2

)
+

(
−1

2

)(
1

2

)
+

(
1

2
i

)(
−1

2

)
= 0,

τ ∗EβS + α∗EτS + ρ∗EαS + β∗EρS = 0,(
1

2

)(
1

2

)
+

(
−1

2

)(
−1

2
i

)
+

(
1

2

)(
−1

2

)
+

(
−1

2

)(
1

2
i

)
= 0,

ρ∗WβS + β∗W τS + τ ∗WαS + α∗WρS = 0,(
1

2

)(
1

2

)
+

(
1

2

)(
−1

2
i

)
+

(
1

2

)(
−1

2

)
+

(
1

2

)(
1

2
i

)
= 0.

Since these equations are satisfied with the elements of the derived radix-4 Chrestenson

transform matrix, the four-port coupler proves to act as an effective radix-4 Chrestenson

gate.

120

Figure A.4. Cross sectional transmission electron micrograph of a four-port coupler backfilled

with alumina using atomic layer deposition.

121

REFERENCES

Revlib. URL http://www.revlib.org/.

Reversible logic synthesis and quantum computing benchmarks. http://quantumlib.

stationq.com/, 2017.

MP Almeida, SP Walborn, and PH Ribeiro. Four-dimensional quantum key distribution

using position-momentum and polarization correlations. arXiv preprint quant-ph/0510087,

2005.

Matthew Amy. Feynman, 2019. URL https://github.com/meamy/feynman.

Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time t-depth optimization

of clifford+ t circuits via matroid partitioning. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 33(10):1476–1489, 2014.

Sam Bader. The transmon qubit. 2013.

Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margo-

lus, Peter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. Elementary gates

for quantum computation. Physical review A, 52(5):3457, 1995.

Charles H Bennett. Logical reversibility of computation. IBM journal of Research and

Development, 17(6):525–532, 1973.

Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and

William K Wootters. Teleporting an unknown quantum state via dual classical and

einstein-podolsky-rosen channels. Physical review letters, 70(13):1895, 1993.

H Bennett Ch and G Brassard. Quantum cryptography: public key distribution and coin

tossing int. In Conf. on Computers, Systems and Signal Processing (Bangalore, India,

Dec. 1984), pages 175–9, 1984.

122

http://www.revlib.org/
http://quantumlib.stationq.com/
http://quantumlib.stationq.com/
https://github.com/meamy/feynman

Reinhold A Bertlmann and Philipp Krammer. Bloch vectors for qudits. Journal of Physics

A: Mathematical and Theoretical, 41(23):235303, 2008.

Felix Bloch. Nuclear induction. Physical review, 70(7-8):460, 1946.

Max Born. Quantum mechanics of collision processes. Zeit fur Phys, 38:803, 1926.

Adi Botea, Akihiro Kishimoto, and Radu Marinescu. On the complexity of quantum cir-

cuit compilation. pages 138–142, 2018. URL https://aaai.org/ocs/index.php/SOCS/

SOCS18/paper/view/17959.

Charles Q. Choi. Qudits: The real future of quantum computing? IEEE Spectrum Magazine,

2017.

Frederic T Chong, Diana Franklin, and Margaret Martonosi. Programming languages and

compiler design for realistic quantum hardware. Nature, 549(7671):180, 2017.

Jerry M Chow, Jay M Gambetta, Easwar Magesan, David W Abraham, Andrew W Cross,

BR Johnson, Nicholas A Masluk, Colm A Ryan, John A Smolin, Srikanth J Srinivasan,

et al. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nature

Communications, 5, 2014a.

Jerry M Chow, Jay M Gambetta, Easwar Magesan, David W Abraham, Andrew W Cross,

BR Johnson, Nicholas A Masluk, Colm A Ryan, John A Smolin, Srikanth J Srinivasan,

et al. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nature

communications, 5:4015, 2014b.

HE Chrestenson et al. A class of generalized walsh functions. Pacific Journal of Mathematics,

5(1):17–31, 1955.

Antonio D Córcoles, Easwar Magesan, Srikanth J Srinivasan, Andrew W Cross, Matthias

Steffen, Jay M Gambetta, and Jerry M Chow. Demonstration of a quantum error detection

code using a square lattice of four superconducting qubits. Nature communications, 6,

2015.

123

https://aaai.org/ocs/index.php/SOCS/SOCS18/paper/view/17959
https://aaai.org/ocs/index.php/SOCS/SOCS18/paper/view/17959

D. Deutsch. Quantum theory, the church-turing principle and the universal quantum com-

puter. In Proceedings of the Royal Society of London A 400, pages 97–117, 1985.

M. H. Devoret and R. J. Schoelkopf. Superconducting circuits for quantum information: An

outlook. Science, 339:1169–1174, 2013.

Nicolas Didier, Eyob A Sete, Marcus P da Silva, and Chad Rigetti. Analytical modeling of

parametrically modulated transmon qubits. Physical Review A, 97(2):022330, 2018.

Paul Adrien Maurice Dirac. The principles of quantum mechanics. Oxford university press,

1958.

David P. DiVincenzo. The physical implementation of quantum computation. Fortschritte

der Physik, 2010.

Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description

of physical reality be considered complete? Physical review, 47(10):777, 1935.

Jens Eisert. Optimizing linear optics quantum gates. Physical review letters, 95(4):040502,

2005.

Artur K Ekert. Quantum cryptography based on bell’s theorem. Physical review letters, 67

(6):661, 1991.

M Enŕıquez, I Wintrowicz, and Karol Życzkowski. Maximally entangled multipartite states:

a brief survey. In Journal of Physics: Conference Series, volume 698, page 012003. IOP

Publishing, 2016.

Daphna G Enzer, Phillip G Hadley, Richard J Hughes, Charles G Peterson, and Paul G

Kwiat. Entangled-photon six-state quantum cryptography. New Journal of Physics, 4(1):

45, 2002.

K Fazel, MA Thornton, and JE Rice. Esop-based toffoli gate cascade generation. In Com-

munications, Computers and Signal Processing, 2007. PacRim 2007. IEEE Pacific Rim

Conference on, pages 206–209. IEEE, 2007.

124

Richard P Feynman. Simulating physics with computers. International journal of theoretical

physics, 21(6):467–488, 1982.

Erik Gabrielson and Mitchell A Thornton. Minimizing ancilla and garbage qubits in re-

versible function specifications. Technical report, Southern Methodist University, Darwin

Deason Institute for Cyber Security, 2018a.

Erik Gabrielson and Mitchell A Thornton. Minimizing ancilla and garbage qubits in re-

versible function specifications (to appear, poster). In Southwest Quantum Information

and Technology 20th Annual SQuInT Workshop (SQuInT), 2018b.

Douglas S Gale. Frustrated total internal reflection. American Journal of Physics, 40(7):

1038–1039, 1972.

Juan Carlos Garćıa-Escart́ın and Pedro Chamorro-Posada. Quantum multiplexing with the

orbital angular momentum of light. Physical Review A, 78(6):062320, 2008.

Graham Gibson, Johannes Courtial, Miles J Padgett, Mikhail Vasnetsov, Valeriy Pas’ko,

Stephen M Barnett, and Sonja Franke-Arnold. Free-space information transfer using light

beams carrying orbital angular momentum. Optics express, 12(22):5448–5456, 2004.

Pranav Gokhale, Jonathan M Baker, Casey Duckering, Natalie C Brown, Kenneth R Brown,

and Frederic T Chong. Asymptotic improvements to quantum circuits via qutrits. In

ACM/IEEE International Symposium on Computer Architecture (ISCA). IEEE, 2019.

Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. Going beyond bell’s theorem.

In Bell’s theorem, quantum theory and conceptions of the universe, pages 69–72. Springer,

1989.

David J. Griffiths. Introduction to Quantum Mechanics. Prentice-Hall, Inc., 1995.

Brian Hayes. Computing science: Third base. American scientist, 89(6):490–494, 2001.

125

Yipeng Huang and Margaret Martonosi. Statistical assertions for validating patterns and

finding bugs in quantum programs. In Proceedings of the 46th International Symposium

on Computer Architecture, pages 541–553. ACM, 2019.

IBM Q team. IBM Q 5 Yorktown backend specification V1.1.0. https://ibm.biz/

qiskit-yorktown, 2018a. Accessed: Dec. 2018.

IBM Q team. IBM Q 5 Tenerife backend specification V1.3.0. https://ibm.biz/

qiskit-tenerife, 2018b. Accessed: Dec. 2018.

IBM Q team. IBM Q 16 Rueschlikon backend specification V1.1.0. https://ibm.biz/

qiskit-rueschlikon, 2018c. Accessed: Dec. 2018.

IBM Q team. IBM Q 16 ibmqx3 backend specification V1.0.0. https://ibm.biz/

qiskit-rueschlikon, 2018d. Accessed: Dec. 2018.

IBM Q team. IBM Q 16 Melbourne backend specification V1.1.0. https://ibm.biz/

qiskit-melbourne, 2018e. Accessed: Dec. 2018.

Nurul Islam. High-rate, high-dimensional quantum key distribution systems. PhD thesis,

2018a.

Nurul T Islam. High-Rate, High-Dimensional Quantum Key Distribution Systems. Springer,

2018b.

E Knill, R Laflamme, and Milburn G. J. A scheme for efficient quantum computation with

linear optics. Nature, 409:46–52, 2001.

Emanuel Knill. Quantum gates using linear optics and postselection. Physical Review A, 66

(5):052306, 2002.

Donald Ervin Knuth. The Art of Computer Programming, Volume 4A. Addison-Wesley,

2011.

126

 https://ibm.biz/qiskit-yorktown
 https://ibm.biz/qiskit-yorktown
https://ibm.biz/qiskit-tenerife
https://ibm.biz/qiskit-tenerife
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-melbourne
https://ibm.biz/qiskit-melbourne

Jens Koch, M Yu Terri, Jay Gambetta, Andrew A Houck, DI Schuster, J Majer, Alexandre

Blais, Michel H Devoret, Steven M Girvin, and Robert J Schoelkopf. Charge-insensitive

qubit design derived from the cooper pair box. Physical Review A, 76(4):042319, 2007.

P Kok, W. J. Munro, K Nemoto, C. Ralph, T, J. P. Dowling, and G. J. Milburn. Linear

optical quantum computing with photonic qubits. Reviews of Modern Physics, 11, 2007.

Michael Kues, Christian Reimer, Piotr Roztocki, Luis Romero Cortés, Stefania Sciara, Ben-

jamin Wetzel, Yanbing Zhang, Alfonso Cino, Sai T Chu, Brent E Little, et al. On-chip

generation of high-dimensional entangled quantum states and their coherent control. Na-

ture, 546(7660):622, 2017.

Rolf Landauer. Irreversibility and heat generation in the computing process. IBM journal

of research and development, 5(3):183–191, 1961.

Marco Lanzagorta. Quantum radar. Synthesis Lectures on Quantum Computing, 3(1):1–139,

2011.

Karel Lemr, Karol Bartkiewicz, and Antońın Černoch. Scheme for a linear-optical controlled-

phase gate with programmable phase shift. Journal of Optics, 17(12):125202, 2015.

Tong Liu, Qi-Ping Su, Jin-Hu Yang, Yu Zhang, Shao-Jie Xiong, Jin-Ming Liu, and Chui-

Ping Yang. Transferring arbitrary d-dimensional quantum states of a superconducting

transmon qudit in circuit qed. Scientific reports, 7(1):7039, 2017.

Joseph M Lukens and Pavel Lougovski. Frequency-encoded photonic qubits for scalable

quantum information processing. Optica, 4(1):8–16, 2017.

Duncan L MacFarlane, Jian Tong, Chintan Fafadia, Vishnupriya Govindan, L Roberts Hunt,

and Issa Panahi. Extended lattice filters enabled by four-directional couplers. Applied

optics, 43(33):6124–6133, 2004.

Duncan L MacFarlane, Marc P Christensen, Amr El Nagdi, Gary A Evans, Louis R Hunt,

Nathan Huntoon, Jiyoung Kim, Tae W Kim, Jay Kirk, Tim P LaFave, et al. Experiment

127

and theory of an active optical filter. IEEE Journal of Quantum Electronics, 48(3):307–

317, 2011a.

Duncan L MacFarlane, Marc P Christensen, Ke Liu, Tim P LaFave, Gary A Evans, Nahid

Sultana, TW Kim, Jiyoung Kim, Jay B Kirk, Nathan Huntoon, et al. Four-port nanopho-

tonic frustrated total internal reflection coupler. IEEE Photonics Technology Letters, 24

(1):58–60, 2011b.

D Michael Miller and Mitchell A Thornton. Qmdd: A decision diagram structure for re-

versible and quantum circuits. In Multiple-Valued Logic, 2006. ISMVL 2006. 36th Inter-

national Symposium on, pages 30–30. IEEE, 2006.

D Michael Miller and Mitchell A Thornton. Multiple valued logic: Concepts and represen-

tations. Synthesis lectures on digital circuits and systems, 2(1):1–127, 2007.

Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems.

pages 272–277, 1993. doi: 10.1145/157485.164890. URL https://doi.org/10.1145/

157485.164890.

C. R. Myers and R. Laflamme. Linear optics quantum computation: an overview. In

Proceedings of the International School of Physics ”Enrico Fermi”, pages 45–93, 2006.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, 2010.

Philipp Niemann, Rhitam Datta, and Robert Wille. Logic synthesis for quantum state

generation. In Multiple-Valued Logic (ISMVL), 2016 IEEE 46th International Symposium

on, pages 247–252. IEEE, 2016a.

Philipp Niemann, Robert Wille, David Michael Miller, Mitchell A Thornton, and Rolf Drech-

sler. Qmdds: Efficient quantum function representation and manipulation. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 35(1):86–99, 2016b.

128

https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/157485.164890

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning. Demonstration of

an all-optical quantum controlled-not gate. Nature, 426, 2003.

JS Otterbach, R Manenti, N Alidoust, A Bestwick, M Block, B Bloom, S Caldwell, N Didier,

E Schuyler Fried, S Hong, et al. Unsupervised machine learning on a hybrid quantum

computer. arXiv preprint arXiv:1712.05771, 2017.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

J Randall, S Weidt, ED Standing, K Lake, SC Webster, DF Murgia, T Navickas, K Roth,

and WK Hensinger. Efficient preparation and detection of microwave dressed-state qubits

and qutrits with trapped ions. Physical Review A, 91(1):012322, 2015.

J Randall, AM Lawrence, SC Webster, S Weidt, NV Vitanov, and WK Hensinger. Generation

of high-fidelity quantum control methods for multilevel systems. Physical Review A, 98

(4):043414, 2018.

Matthew Reagor, Christopher B Osborn, Nikolas Tezak, Alexa Staley, Guenevere Prawiroat-

modjo, Michael Scheer, Nasser Alidoust, Eyob A Sete, Nicolas Didier, Marcus P da Silva,

et al. Demonstration of universal parametric entangling gates on a multi-qubit lattice.

Science advances, 4(2):eaao3603, 2018.

Rigetti Computing. QPU Specifications. https://rigetti.com/qpu, 2019a. Accessed: 5

Feb. 2019.

Rigetti Computing. pyQuil Documentation Release 2.4.0. https://media.readthedocs.

org/pdf/pyquil/stable/pyquil.pdf, 2019b. Accessed: 5 Feb. 2019.

KR Rohit and Talabattula Srinivas. High dimensional quantum key distribution: Bb84

protocol using qudits. In International Conference on Fibre Optics and Photonics, pages

Th3A–77. Optical Society of America, 2016.

Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In

129

https://rigetti.com/qpu
https://media.readthedocs.org/pdf/pyquil/stable/pyquil.pdf
https://media.readthedocs.org/pdf/pyquil/stable/pyquil.pdf

Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages

124–134. IEEE, 1994.

Pallavi Singh, Devendra Kr Tripathi, Shikha Jaiswal, and HK Dixit. All-optical logic gates:

designs, classification, and comparison. Advances in Optical Technologies, 2014, 2014.

Kaitlin N Smith and Mitchell A Thornton. A multiple-valued logic synthesis tool for optical

computing elements. In Circuits and Systems Conference (DCAS), 2015 IEEE Dallas,

pages 1–4. IEEE, 2015.

Kaitlin N Smith and Mitchell A Thornton. Mustang-q: A technology dependent quantum

logic synthesis and compilation tool (poster). In Design Automation for Quantum Com-

puters Workshop, IEEE International Conference on Computer Aided Design (ICCAD),

2017.

Kaitlin N Smith and Mitchell A Thornton. Automated mapping methods for the ibm trans-

mon devices. In International Workshop on Post-Binary ULSI Systems (ULSI-WS), 2018.

Kaitlin N Smith and Mitchell A Thornton. Higher dimension quantum entanglement gener-

ators. Journal on Emerging Technologies in Computing (to appear), 2019a.

Kaitlin N Smith and Mitchell A Thornton. An open-source general compiler for quantum

computers (poster). In Free and Open Source Developers European Meeting (FOSDEM),

2019b.

Kaitlin N Smith and Mitchell A Thornton. Entanglement in higher-radix quantum systems.

In Symposium on Multiple-Valued Logic (ISMVL), 2019 IEEE International, pages 162–

167. IEEE, 2019c.

Kaitlin N Smith and Mitchell A Thornton. Entangled state preparation for non-binary

quantum computing. In International Conference on Rebooting Computing (ICRC). IEEE,

2019d.

130

Kaitlin N Smith and Mitchell A Thornton. A quantum computational compiler and design

tool for technology-specific targets. In International Symposium on Computer Architecture

(ISCA). ACM, 2019e.

Kaitlin N Smith and Mitchell A Thornton. Quantum logic synthesis with formal verification.

In IEEE Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2019f.

Kaitlin N Smith and Mitchell A Thornton. Fixed polarity pascal transforms with computer

algebra applications. In 2019 Reed-Muller Workshop (RM 2019), 2019g.

Kaitlin N Smith and Mitchell A Thornton. Fixed polarity pascal transforms with symbolic

computer algebra applications. In IEEE Pacific Rim Conference on Communications,

Computers, and Signal Processing (PACRIM). IEEE, 2019h.

Kaitlin N Smith, Michael A Taylor, Anna A Carroll, Theodore W Manikas, and Mitchell A

Thornton. Automated markov-chain based analysis for large state spaces. In Systems

Conference (SysCon), 2017 Annual IEEE International, pages 1–8. IEEE, 2017.

Kaitlin N Smith, Timothy P LaFave, Jr., Duncan L MacFarlane, and Mitchell A Thorn-

ton. Higher-radix chrestenson gates for optical quantum computation. Journal of Applied

Logics, 5:1781–1798, 2018a.

Kaitlin N Smith, Timothy P LaFave, Jr., Duncan L MacFarlane, and Mitchell A Thornton.

A radix-4 chrestenson gate for optical quantum computation. In Symposium on Multiple-

Valued Logic (ISMVL), 2018 IEEE International, pages 260–265. IEEE, 2018b.

Kaitlin N Smith, Mitchell A Thornton, Duncan L MacFarlane, Timothy P LaFave, Jr.,

and William V Oxford. Single qubit quantum ring structures and applications (poster).

In Southwest Quantum Information and Technology 20th Annual SQuInT Workshop

(SQuInT), 2018c.

Kaitlin N. Smith, Mathias Soeken, Bruno Schmitt, Giovanni De Micheli, and Mitchell A

Thornton. Using zdds in the mapping of quantum circuits. In Proceedings of 2019 Quantum

Physics snd Logic (QPL), 2019.

131

Robert S Smith, Michael J Curtis, and William J Zeng. A practical quantum instruction set

architecture. arXiv preprint arXiv:1608.03355, 2016.

Mathias Soeken, Stefan Frehse, Robert Wille, and Rolf Drechsler. Revkit: A toolkit for

reversible circuit design. Multiple-Valued Logic and Soft Computing, 18(1):55–65, 2012.

Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli. Lut-based

hierarchical reversible logic synthesis. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2018.

N Sultana, Wei Zhou, Tim P LaFave Jr, and Duncan L MacFarlane. Hbr based inductively

coupled plasma etching of high aspect ratio nanoscale trenches in inp: Considerations for

photonic applications. Journal of Vacuum Science & Technology B: Microelectronics and

Nanometer Structures Processing, Measurement, and Phenomena, 27(6):2351–2356, 2009.

Maika Takita, Andrew W Cross, AD Córcoles, Jerry M Chow, and Jay M Gambetta. Ex-

perimental demonstration of fault-tolerant state preparation with superconducting qubits.

arXiv preprint arXiv:1705.09259, 2017.

Michael A Taylor, Kaitlin N Smith, and Mitchell A Thornton. Sensor-based ransomware

detection. In Future Technologies Conference (FTC), pages 794–801, 2017.

RT Thew, Kae Nemoto, Andrew G White, and William J Munro. Qudit quantum-state

tomography. Physical Review A, 66(1):012303, 2002.

Mitchell A Thornton, David W Matula, Laura Spenner, and D Michael Miller. Quantum

logic implementation of unary arithmetic operations. In Multiple Valued Logic, 2008.

ISMVL 2008. 38th International Symposium on, pages 202–207. IEEE, 2008.

Vinay Tripathi, Mostafa Khezri, and Alexander N. Korotkov. Operation and intrinsic error

budget of a two-qubit cross-resonance gate. Phys. Rev. A, 100:012301, Jul 2019. doi:

10.1103/PhysRevA.100.012301. URL https://link.aps.org/doi/10.1103/PhysRevA.

100.012301.

132

https://link.aps.org/doi/10.1103/PhysRevA.100.012301
https://link.aps.org/doi/10.1103/PhysRevA.100.012301

N Ya Vilenkin. Concerning a class of complete orthogonal systems. In Dokl. Akad. Nauk

SSSR, Ser. Math, number 11, 1947.

Juan Yin, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Liang Zhang, Ji-Gang Ren, Wen-Qi Cai,

Wei-Yue Liu, Bo Li, Hui Dai, et al. Satellite-based entanglement distribution over 1200

kilometers. Science, 356(6343):1140–1144, 2017.

Tian Zhong, Hongchao Zhou, Robert D Horansky, Catherine Lee, Varun B Verma, Adri-

ana E Lita, Alessandro Restelli, Joshua C Bienfang, Richard P Mirin, Thomas Gerrits,

et al. Photon-efficient quantum key distribution using time–energy entanglement with

high-dimensional encoding. New Journal of Physics, 17(2):022002, 2015.

Zeljko Zilic and Katarzyna Radecka. The role of super-fast transforms in speeding up quan-

tum computations. In Multiple-Valued Logic, 2002. ISMVL 2002. Proceedings 32nd IEEE

International Symposium on, pages 129–135. IEEE, 2002.

Zeljko Zilic and Katarzyna Radecka. Scaling and better approximating quantum fourier

transform by higher radices. IEEE Transactions on computers, 56(2):202–207, 2007.

133

	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	Introduction
	Classical Computation and Limitations
	Contribution

	Quantum Information
	The Qubit
	Physical Quantum Implementations
	Transmons
	Photonics

	The Superposition Principle
	The Wavefunction and Quantum Computing
	Quantum Operations
	Requirements for Quantum Computation
	Entanglement

	Quantum Logic Synthesis Considerations
	No-Cloning Theorem
	Reversible Logic
	Gate Libraries and Coupling Constraints
	Current Physical Quantum Technology
	IBM Q
	Rigetti
	Quantum with Photonic Devices

	Quantum Cost
	Quantum Multiple-valued Decision Diagrams
	Zero-supressed Decision Diagrams

	Technology Mapping Algorithms
	Connectivity Tree Reroute
	Zero-suppressed Decision Diagram Technology Mapping
	Problem Formulation with ZDD Mapping
	Finding Maximal Partitions
	ZDD mapping in the Quantum Compilation Flow
	Experimental Results

	 Formally-verified Synthesis Methods and Experiments
	IBM
	Methodology
	Experimental Results

	Rigetti
	Methodology
	Experimental Results

	Higher Dimensioned Quantum Logic Synthesis
	Qudit Information
	Qudit Superposition
	The Hadamard Gate
	The Chrestenson Gate

	Single Qudit Basis Permutation
	Controlled Qudit Operators

	Higher Dimensioned Entanglement Generators
	Partial Entanglement of Qudit Pairs
	Maximal Entanglement Generators for Qudit Pairs
	Maximal Entanglement of Qudit Groups
	Synthesis of Qudit Entanglement States

	Conclusion
	Summary
	Future Work

	The Radix-4 Chrestenson Gate
	Quantum Optics
	The Four-port Coupler
	Physical Realizations of the Four-port Coupler
	Fabrication
	Characterization

	Implementing Qudit Quantum Operations with the Coupler

