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Abstract

The IF1 language has been chosen as the candidate intermediate form for a newly

proposed computer architecture, a Multithreaded Parallel Processor. This paper will

discuss the process of building the IF1 compiler with a brief description of the new

architecture. Additionally parallelism analysis tools were developed and are described. The

graphical viewer tools allow the data dependency graph to be displayed. Other tools

traverse the graph and calculate data that estimates the exploitable parallelism.
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1. Introduction

There are many programming languages to choose from, each with its own

capability, appeal, and look to the programmer. Some languages are particularly useful for

specific purposes or computers. One unique intermediate language is IF1[1].  IF1 is based

on directed acyclic graphs that depict inherent data dependencies. Unlike other languages,

IF1 code does not explicitly imply a sequence of instructions to be executed, rather, it

defines a data dependency graph which visually depicts the flow of data in a program.

This paper describes the construction of an IF1 compiler and associated analysis

tools. The IF1 graph viewer is discussed in one chapter for both Microsoft Windows1

system and X-Windows environment. Also a discussion on a multiprocessor for simulating

the scheduling of instructions based on a Multithreaded parallel processing

Architecture[3][4] will be presented. Finally, the conclusion and further possible

enhancements provided in the conclusion section.

1.1 Background

Although it is possible to write a program directly in IF1 code, the language was

designed to be a low level intermediate form generated by a high level language compiler.

As an example, the  Sisal (Streams and Iterations in a Single Assignment Language)[2]

compiler developed at Lawrence Livermore National Laboratory utilizes IF1 code. Sisal is

                                                  
1 Microsoft Windows is registered trademark of Microsoft Corporation.
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a functional language that takes advantage of parallelism in a program by compiling into a

data dependency graph represented by IF1. IF1 provides a convenient programming

medium for expressing large-scale scientific processes for execution on multiprocessor

systems comprising hundreds, even thousands, of processors. The Sisal programming

environment currently consists of a compiler, a debugger or interpreter, a profiler, and

other tools. It can automatically correct a variety of syntax errors and performs a number

of optimizations.

Unlike other languages, with Sisal, a programmer can indicate to the compiler

instructions to be executed in parallel. The Sisal compiler then utilizes this information to

generate IF1 code which is further translated to machine language.

To see the inherent parallelism in a program, it is convenient to view it visually by

plotting the number of concurrent executing instructions versus the current clock cycle. A

program that uses an IF1 graph to produce such a plot is included in the work described

here.

1.2 Motivation

The IF1 compiler development effort described here is part of an ongoing project

to develop a Multithreaded Parallel Processing Architecture. This project requires a data

structure that represents the data dependency in a program.  Thus, there is a need for a

compiler that will parse an IF1 code and generate such a data structure. In addition, an IF1

graph viewer is found to be helpful to assist the programmer in debugging a program and
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verifying results. Once the data structure has been created, graph traversal algorithms are

used to estimate parallelism and execution time parameters.

1.2.1 Multithreaded Parallel Processing Architecture

This architecture is designed to exploit available parallelism in a program.

Sections of code that are sequential may be scheduled as a single thread and sections of

the code that are rich in parallelism may be partitioned into many concurrent threads.

Figure 1.2.1.1 shows the diagram of the architecture.

The architecture uses two multiprocessor units, the graph engine (GE) and the

computation engine (CE), that communicate using a dynamically reconfigurable

interconnection network. One of the units is dedicated for instruction thread

synchronization and the other for execution of the parallel threads. The main purpose of

the graph engine is to enforce correct sequencing of parallel instructions based on

dependencies while maintaining a high degree of parallelism among the computation

threads.  The computation engine can be viewed as a pool of computation processing

elements (CPEs) which are allocated for executing various threads under the direction of

the graph engine.
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Figure 1.2.1.1. Conceptual Diagram of Proposed Architecture.

A program to be executed can be viewed as a graph with the vertices representing

computation threads and the edges representing data dependencies.  At program load

time, information is stored in the GE memory corresponding to the program graph
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interconnections while the CE memory contains the collection of instruction threads and

locations for storing data. During normal operation, a Graph Processing Element (GPE)

reads in a node structure from the program graph memory, updates pertinent fields in the

node structure, and schedules the execution of successor nodes who have all input

operands available. Any processor can execute any operation ready for execution.  The

graph engine simply places an entry into the ready to run queue and any available

processor is free to access and execute the available instruction.

The program graph which is a true data dependence graph can be generated from

any language. However, to maximally exploit parallelism, a functional parallel

programming language, SISAL[2],  has been used to generate the data dependence graph.

This graph is known as an IF1 graph.
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2. Compiler Construction

Unlike other compiler construction tasks whose objective is to produce executable

or object code, the IF1 compiler described here generates a data structure which is

intended to be loaded into the graph engine memory module of a decoupled, multithreaded

computer. Figure 2.1 shows the main block diagram of the overall program.

The front end of the IF1 compiler consists of a lexical analyzer and a parser.  The

lexical analyzer simply generates tokens from the IF1 source code and passes them to the

parser which generates a parse tree or Graph data structure.

The back end consists of the code generator, IF1 viewer, and simulator. The IF1

viewer displays the IF1 graph. The code generator reads the Graph data structure and

generates executable data structure. The simulator then simulates the multithreaded

computer to estimate the run time parameters and approximate the parallelism in a

program.

Parse r
Lexica l

Ana lyze r

IF1 I F 1  T o k e n s

C o d e
Genera to r

I F 1
Viewer

S imula to r

Executable
Data Structure

Fron t  End B a c k  E n d

G r a p h
D a t a  S t r u c t u r e

Figure 2.1. Block Diagram of IF1 Parser And Viewer
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After a discussion of the IF1 language, each of the components in the block diagram in

Figure 2.1 will be described.

2.1 Description of IF1 Code and IF1 Graph

IF1 is a language that describes directed acyclic graphs. There are four

components to the graph: nodes, edges, types and graph boundaries.  Nodes denote

operations, such as add, divide, and many others as listed in Appendix A of the IF1

manual[1].  Edges represent values or data that are passed from node to node, and types

can be attached to each edge or function. Graph boundaries surround groups of nodes and

edges.  A node can be executed as soon as all of its inputs are available. For example, a

graph that represents “(a + b) / 2” is shown in Figure 2.1.1.

Plus
Div

"2"

1

2
1

1
1

2

a

b
2

1

1

Figure 2.1.1. Graph of “(a + b) / 2”

The smaller boxes represent nodes. Currently, there are over fifty nodes defined in IF1.

Both of the above nodes, or operations, require two input values and return one result.  In

general, the number of inputs and outputs vary according to the operation.  The numbers

inside the graph nodes indicate port numbers, which are used to distinguish multiple inputs

and outputs. The arrows denote edges which represent data paths between nodes (or

between nodes and graph boundaries). The edges also carry type information, which is not
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shown in the picture. A special type of edge is used to describe literal constants. The

notation “2” in Figure 2.1.1, is an example of a literal constant. Types can be specified as

user-defined, or, by using the built-in types.  Comments may be used for any purpose.

IF1 files comprise a number of lines that contain only printable ASCII characters,

and are delimited by newline characters.  The first non-blank (non-tab) character on the

line distinguishes one component from the others.  The following shows the IF1 code of

the graph “(a + b) / 2” shown in Figure 2.1.1.

C Average
T 1 Basic Integer
X 0 “main”
N 1 Plus
N 2 Div
E 0 1 1 1 1
E 0 2 1 2 1
E 1 1 2 1
L 2 2 1 “2”
E 2 1 0 1 1

To be consistent with the convention of Sisal-generated IF1 code, a program must

have at most one main graph (global function denoted by token ‘X’). There can be any

number of local graphs (local function denoted by token ‘G’) and external graphs

(imported function denoted by token ‘I’). Some tokens may be represented by an integer

number.  For example, Basic, Integer, Plus, and Div, can be replaced with integer values

1, 3, 141, and 122, respectively. A line starting with token ‘C’ is a comment and anything

that  follows this character and precedes the newline is ignored. Note that comments

generated by a Sisal compiler may contain some useful information.
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To simplify and speed up the parsing stage, a sorting process is included. The

sorting routine will move all the type tokens to the beginning of the file.  Type is not

dependent on scope or which subgraph it is used for.  Some types are derived from

another type. For such types, they have to follow the type they are derived from. The

sorting process also moves all nodes or compound nodes within the subgraph to the

beginning of the subgraph, and the edges and literals to the end of the subgraph. Note that

a compound node itself is another subgraph.

A subgraph can be a function or a compound node.  As a function, it will be called

within another subgraph via a Call node. The following 5 cases are the compound nodes

implemented in the IF1 compiler:

1)  Select

Se lec to r

Al ternat ive  1 Alternat ive  2
Alternat ive

N

Se lec t

O u t p u t  P o r t s

Inpu t  Po r t s

Case  0

Case  1

C a s e  N

Figure 2.1.2. Select Compound Node

A Select compound node is used to implement a multi-way selection such as if-then-

else or switch-case expressions. The output of the Selector subgraph determines which
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Alternative subgraph is to be executed. Only one of all the possible alternative

subgraphs' output edges will connect to the output of the Select graph.

2)  Tag Case

The Tag Case compound node is not used very often. In Fact, of all 24 Livermore

Loops[5], none of them use Tag Case.  Thus the IF1 compiler does not generate a data

structure for this compound node since its function is currently undefined for the target

computer architecture. However, the IF1 viewer still recognizes this compound node.

3)  ForAll

Figure 2.1.3. ForAll Compound Node
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A ForAll compound node is used to denote independent execution of multiple instances

of an expression. The Generator subgraph determines how many instances of the body

subgraph are to be created.

4)  LoopA

Initialization

B o d y

T e s t

Re tu rns

T r u e False

O u t p u t  P o r t s

Inpu t  Po r t s

L o o p A

Figure 2.1.4. LoopA Compound Node

A LoopA compound node is used to implement iterative execution of an expression. It

is similar to the do-while expression in the C language, in that the Body subgraph must

execute at least once. The iteration is terminated when the output of Test subgraph

(Boolean value) is false.
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5)  LoopB

Initialization

T e s t

B o d y Re tu rns

FalseT r u e

Inpu t  Po r t s

O u t p u t  P o r t s

L o o p B

Figure 2.1.5. LoopB Compound Node

A LoopB compound node is used to implement an iterative execution of an expression.

It is similar to the for(;;) expression in the C language, where the Test subgraph is

evaluated as soon as Initialization finishes. If the result of the test is false, the Return

subgraph is executed next. If the result of the test is true, the Body subgraph will be

executed and continue on until the subsequent test result is false. With this type of

node, it is possible that the body may never execute.
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2.2 Compiler Front End

To build a compiler, one can use a tool such as YACC (Yet Another Compiler

Compiler) which generates a skeleton of the target compiler in the C language. However,

in order to do this, one must know the complete BNF rules of the language. Due to

inadequate documentation, some errors and incomplete BNF rules on the existing IF1

manual[1], and no prior experience in IF1 language, the author decided to build the

skeleton manually while learning the IF1 language. The skeleton still follows the YACC’s

style so that one can easily modify the program if needed.

Parsing refers to the process of having a program convert phrases in the language

into internal structures that can be easily processed by the code generator, which in this

case is the IF1 viewer and the executable data structure generator[8].

The IF1 compiler front end performs the following tasks:

1. Identify tokens (lexical analyzer).

The complete token definition of IF1 language is given in [1]. Not all features of the

IF1 language specification are recognized by the IF1 compiler; fibre formatted literal

types are not currently implemented since not all versions of IF1 are able to process

them[1]. Comments are not needed for the next stage, so they are ignored.

2. Parse each line according to BNF of IF1.

 The somewhat complete BNF rules of IF1 language can be found in Appendix A of

the IF1 manual[1]. The BNF rules turn out to be incomplete. Minor errors were also

found. Fortunately, there is Sisal compiler that generates presumably correct IF1 code,
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thus, the author ran several test programs and corrected or modified the BNF rules

based on the generated IF1 code.

3. Sort components.

This was explained earlier. The sorting phase simplified the parser operation.

4. Build the Symbol Table

There are two symbol tables: type and node symbol tables.

� The Type symbol table is very simple. Every type definition must have a unique

label no matter where it is defined. The graph boundary is ignored here.

� The Node symbol table is slightly more complex. All node type definitions must

have unique label within the graph boundary. There may be another graph, a

subgraph, within a graph with the same label as one used in another scope level. As

far as the node labeling task is concerned, each subgraph is independent of another

subgraph.

5.  Build Parse Tree.

The parse tree generated is a Graph data structure which is described in great detail in

Appendix A. This is not the executable data structure.

The result of the above processing steps is a Graph data structure The Graph data

structure is in the form of a linked list that contains all pertinent information about the

node, pointers to the successor nodes, and pointers to the predecessor nodes. All

information needed to reconstruct the IF1 graph can be found in this linked list. The
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Graph data structure also contains all the information to be used by the compiler back

end, IF1 viewer and the code generator.

2.3 Compiler Back End

In this section, we will discuss the Code Generator part in Figure 2.1. The

objective of the compiler is to generate an executable data structure that can be

understood by the Multithreaded Multiprocessors project[3][4].  As discussed earlier, the

executable program is constructed based upon IF1 code generated by a high level

language compiler. The executable program consists of a linked list of executable nodes.

Each executable node includes the operation to be performed, and state information of the

next node to be scheduled for execution upon completion. All this information is stored in

a data structure called a Node Template.  In Figure 2.3.1, the primary fields in the

structure and the type of the field are shown. As the architecture matures, more fields may

be required.

N o d e _ N a m e

Pred_In i t

P r e d _ N u m

P r e d _ P t r

S u c c _ N u m

S u c c _ P t r

poin ter  to  subrout ine

in teger

in teger

array  o f  in teger

in teger

array  o f  po in ter  to  Node  Templa te  s t ruc ture

T y p eNode  Templa te  s t ruc ture

Figure 2.3.1. Node Template Structure
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Node_Name identifies the type of operation, such as: Add, Sub, Div, etc. It contains

the address of the subroutine in computation memory required to

perform the actual operation.

Pred_Init indicates number of predecessor node templates or simply the number of

input operands. If all the input operands are available, then this node

template is ready to be scheduled for execution. The predecessor node

template must execute before this node template can be scheduled for

execution.

Pred_Num indicates the number of instances of this node template that can be

executed in parallel. This field may be updated during run time when the

ForAll compound node is encountered.

Pred_Ptr is an array where each of its elements holds a counter associated with

each instance of this node template.  This array is allocated dynamically

during run time and the number of elements to be allocated is Pred_Num.

Initially, each element is assigned a value of Pred_Init.

Succ_Num indicates the number of successor node templates.  The successor node

template needs the result of this operation before it can be scheduled for

execution. The Successor nodes execute after this node template.

Succ_Ptr is an array where each of element holds a pointer to the successor node

templates.  There are Succ_Num number of elements in the array.
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The values of all the fields are known during compiler time, except for Pred_Num and

Pred_Ptr which are computed during run time.

To build the executable data structure, the following steps are taken by the back

end of the compiler resulting in the data structure.

1)   The intermediate graph is traversed.

2a)  During the interval, create a node template every time a node or a literal is found and

update its predecessor node and successor node pointers.

2b)   If a compound node is found, expand the node; in other words, go to step 1, starting

from the beginning of each subgraph. When all subgraphs are built, relate all inputs

and outputs according to the implied dependency rules of the compound node.

2c)   If a function is called, expand the graph of the function.

The steps (2a and 2b) can go back to step 1. This is implemented as recursive function

call. At some point within a subgraph there should be a terminal condition, otherwise, a

stack overflow will result. Currently, this program does not support recursive function

calls in an IF1 program since it is based on a graph traversal.

The final result is a linked list that starts from the main function. This linked list

will be used by the IF1 viewer and the simulator which are discussed in Sections 3 and 4.
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2.4 IF1 Example Program Graph

Figure 2.4.1 shows how to represent the expression  “(a + b) / (-c)” in an IF1

graph.  The corresponding linked list of node templates, or the executable structure, is

shown in Figure 2.4.2.

A d d
1

2

1
1

2

a

b
1

N e g

Div1

2

1 1

1

1

2

1
c

Figure 2.4.1. IF1 Graph of “(a + b) / (-c)”

N o d e _ N a m e :  A d d

Pred_In i t :  2

P r e d _ N u m :  1

P red_P t r :

S u c c _ N u m :  1

S u c c _ P t r :

2

a b

N o d e _ N a m e :  D i v

Pred_In i t :  2

P r e d _ N u m :  1

P red_P t r :

S u c c _ N u m :  0

Succ_Pt r :  nu l l

N o d e _ N a m e :  N e g

Pred_In i t :  1

P r e d _ N u m :  1

P red_P t r :

S u c c _ N u m :  1

S u c c _ P t r :

2

1

c

Figure 2.4.2. Executable Structure of “(a + b) / (-c)”
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The Add node requires two operands before it can be scheduled for execution. The Neg

node needs only one operand. The Div node also requires two operands before it can

execute. Following the flow of the linked list, it is seen that the Div node must wait for the

Add and Neg nodes to finish before it can be scheduled for execution.  Alternatively, the

Add and Neg nodes are not linked to each other, thus they can execute in parallel.

The purpose of the fields Pred_Num and Pred_Ptr is better illustrated in an executable

program which contains the ForAll instruction.

A ForAll compound node is very important for the exploitation of parallelism in a

program. The following discussion refers to Figure 2.1.3 which shows the internal

subgraphs in a ForAll node and the implied dependencies among the subgraphs. ForAll

compound nodes consist of three subgraphs: generator, body, and result.  The generator

duplicates the body subgraph N times according to the computed range value.  Assuming

unlimited resources, all the duplicated subgraphs can be executed in parallel. The outputs

of these subgraphs are then input to the result subgraph which in turn outputs the final

result.  A ForAll compound node is commonly found in processing an aggregated data

type such as an array. For example, incrementing the value of each element in an array can

be done in parallel since each element is independent of the other.

The bounds of a ForAll node are computed during run time, thus, the fields

Pred_Num and Pred_Ptr can only be updated then. The reason for including these two

fields is to efficiently use the program graph memory which holds the node template linked
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list. Note that individual node template structures in each node contained in the body of

the ForAll node are not duplicated, instead, only one node template structure is created

and its field Pred_Ptr is expanded to N elements, where N is the number of instances.

The following example, Loop3, is taken from one of the Livermore Loops[5].

Loop3 calculates the inner product of X and Z. Loop3 takes  3 inputs n, X, and Z. n is the

number of elements in the arrays X and Z. It is clear that each multiplication operation is

independent of the next or previous one. Thus, a ForAll compound node is a good choice

here.

type double = double_real;
type OneD   = array[double];

function Loop3( n:integer; X,Z:OneD returns double )
  for i in 1,n
      Q := X[i] * Z[i]
  returns value of sum Q
  end for
end function

During normal operation, the first-level nodes are read from the program graph

memory. There may be more than one first-level node. The example in Figure 2.4.4 has

two first-level nodes, the Add and Neg nodes. These nodes are scheduled for execution

initially. Upon completion, we decrement the Pred_Init counts of all the successor nodes

of the just executed node. If the successor’s Pred_Init count is decremented to zero, this

signifies that all data are now available for the successor node to begin execution. If the

count is not zero, this signifies that  the successor node still has inputs pending and should

not be scheduled for execution. In the case of a ForAll node, each element in successor’s

PredPtr array is decremented only if that particular instance of the predecessor has

completed execution.
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R a n g e  G e n e r a t o r

Pred_In i t :  2

P r e d _ N u m :  1

P r e d _ P t r :
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Succ_P t r :

2

A E l e m e n t

Pred_In i t :  2
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P r e d _ P t r :
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Succ_P t r :

2

1

n

2
n
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A E l e m e n t

Pred_In i t :  2

P r e d _ N u m :  n

P r e d _ P t r :
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Succ_P t r :

2

2
n
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T i m e s

Pred_In i t :  2

P r e d _ N u m :  n

P r e d _ P t r :

S u c c _ N u m :  1

Succ_P t r :

2

2
n

R e d u c e

Pred_In i t :  3

P r e d _ N u m :  1

P r e d _ P t r :

S u c c _ N u m :  1

Succ_P t r :

3

X Z

Sum0.0d0

Return

G e n e r a t o r

B o d y

R e s u l t

Figure 2.4.4. Node Template Linked List of Loop 3
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3. Graphical Interface

A graphical display of the program graph was developed as a tool for further

architecture and compiler development efforts.  Although there already exists an IF1

browser, this browser is written in HyperCard and only runs on a Macintosh2 computer.

Since the primary project development is on a Unix system, it is very inconvenient to have

to use two different systems.

The graphical interface written for Microsoft Windows utilized C++ with the help

of the MFC library from Microsoft. The compiler front end part is written in C so that it

can be easily ported to an X Windows system.  The graphical interface to the X Windows

system uses the Xt toolkit and the Athena Widget which are available for free on virtually

all X Windows systems. The look and feel may vary depending on the particular window

manager being used.

Figures 3.1 and 3.2 show screen views of the two different versions of the IF1

Viewer. The MS Windows version in Figure 3.1 has added menu support. The window on

the left is the primary window which will appear when the program runs. The window on

the right will appear when the user double clicks (or single click on the X Windows

version) one of the elements in the graph list.  The right side window displays the IF1

graph of the selected function, in this example, the main function. The input file is defined

via the File Menu on the MS Windows version. On the X Windows version, user must

specify the input file in the command line.

                                                  
2 Macintosh is a registered trademark of Apple Computer.



29

Figure 3.1. MS Windows Version of IF1 Viewer

Figure 3.2. X Windows Version of IF1 Viewer
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The graph list contains a list of all functions defined in the IF1 code. In this

example, there are only two functions for Loop3.if1. The upper box in the right window

defines the variable name associated with each input or output port. The variable names

are read from the IF1 code which may include special comments that specify the variable

name. If such comments are not found, the box will not appear.

As discussed in the previous section, a graph may contain one or more subgraphs

and the subgraph itself may contain more subgraphs.  If a node appears grayed or double-

framed, it indicates that it contains a subgraph.  If it is clicked, one or more subgraphs will

appear.  If the node is a call node to another function, only one subgraph will appear.  If

the node is a compound node such as ForAll, Select, LoopA, LoopB, or TagCase, n

subgraphs will appear where n depends on the property of the node.  For example, for a

ForAll node, there will be three subgraphs: Range Generator, Body, and Return

subgraphs.

Once an item in the Graph List (in the main window) is clicked or double-clicked,

a pointer to its corresponding Graph structure is passed on to the callback function. This

Graph structure is generated earlier by the compiler front end. Graph structure details are

included in Appendix A.

Before the graph is laid out, we need to determine the level of each node which is

done by traversing the subgraph. This traversing process determines the level of nodes

within a subgraph. A node that depends only on input ports is a level-one node. A node

whose inputs are all literals is also a level-one node. A node that depends on the output of
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n-level node is an (n + 1) level node. If the node depends on several nodes from different

level, then it is an (nj + 1) level node, where nj is the largest level of all predecessor nodes’

levels. Figure 3.3 shows an example of an IF1 graph with the nodes and their

corresponding levels.

Figure 3.3. Determining Node Level in IF1 Graph.

There are 5 main steps taken to lay out the nodes and the edges on a window

which are illustrated in Figure 3.4.
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Figure 3.3. Steps Showing How The Graph Is Constructed.

1)  Arrange all the input ports on the window.

2)  Arrange all the nodes in such a way that the first-level nodes come first and the

second-level nodes come next and so on. A compound node is identified by gray color

in MS Windows or double framed in X Windows.

3)  Position all the output ports after the last level nodes.

4)  Draw all the edges between input or output ports and the nodes.

5)  Position all the literals close to the pointed node and draw the edges.

Special care is taken to reduce number of overlapping lines. It  is not uncommon to have a

much larger IF1 graph than the one shown in Figure 2.4. In this case, the user needs to

resize the window or grab the picture and move it up and down to see obscured portion of

the graph.
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4. Parallelism Analysis

This section describes the simulation capability and program.  This program can be

used to estimate the parallelism in an IF1 program and to generate other information that

is of concern.

4.1 Methodology

The simulator does not actually simulate the running program. It simply does a

graph traversal on the executable data structure and decides which node can be executed

at every clock cycle. It is important to note that the simulator does not execute the node, it

simply decides if a node can be executed. The number of nodes ready for execution can be

more than one. This decision is based on the rules described below. The number of nodes

that can be executed in parallel is called “Parallelism.” Another result that is of interest is

the total number of clock cycles needed to execute the program. For simplicity, the

following assumptions are taken:

1)  There are an unlimited number of resources (memory and processors).

2)  Every simple node is executed in one clock cycle (including Noop).

3)  All the compound nodes and internal functions are replaced by their corresponding

subgraph.

4)  Memory latency is ignored.

5)  Communication delay between any two nodes is 0.
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The following rules are used to decide if a node can be executed and must be followed at

all times:

1)  A node can be scheduled for execution if and only if all the input operands are

available.  This is the paradigm of the dataflow model of computation.

2)  A literal is readily available at any time.

Figure 4.1.1 shows the flowchart of the simulator. This chart has been simplified

greatly.  In the case where there is a loop, additional steps must be taken which include

restoring Pred_Init of all nodes in the body subgraph.

The Execution pool holds all the nodes that are being executed and the Pending

pools hold the nodes that are to be executed if the above rules are satisfied. The simulation

is complete when the outputs of the program are reached.
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Sta r t

P repa re  Pend ing  poo l
and  Execu t ion  poo l .

C l o c k C o u n t  =  0

Move al l  input  var iables  of  main
func t ion  to  Execu t ion  poo l

Decrement  p redIn i t  o f  successor
nodes  of  a l l  nodes  in  Execut ion
pool  and  move  a l l  the  successor

nodes  to  Pend ing  poo l

Remove  a l l  nodes  f rom
Execu t ion  poo l

Check a l l  nodes  in  Pending  pool
for  those  wi th  predIn i t  =  zero

and  move  these  nodes  to
Execu t ion  poo l

Are al l  the
f inal  outputs  in  Execut ion

poo l?

C l o c k C o u n t  + +

D o n e
re tu rn  C lockCoun t

Star t ing  poin t  of  the  program.  I f
the  p rogram has  no  input ,  the

input  could be l i terals .

The pools  are  a  l inked l is t  of
node  t empla te  s t ruc tu re .

predIni t  i s  the  number  of  input
operands  o f  a  node  exc lud ing

the li terals.

Remove  the  nodes  tha t  have
been  "execu ted"

For  those  nodes  whose  a l l  input
operands  are  avai lable ,

scheduled  them for  execut ion .

Nex t  C lock  Cyc le

If  al l  the resul ts  have been
resolved ,  qui t .  Otherwise ,

con t inue  execu t ion

Y e s

N o

Figure 4.1.1. Flowchart of The Simulator



36

To run the simulator, it is necessary to build the executable data structure or the

so-called Node Template Structure. To build, select the Build menu item under the Action

main menu and you will be asked for the value of N, where N is the number of iterations in

every loop. The loop includes ForAll, LoopA, and LoopB compound nodes. In the case of

LoopA and LoopB compound nodes, the body subgraph is executed N times. In the case

of ForAll compound node, there are N body subgraphs to be executed in parallel. The

reason there is a need for N is that the simulator cannot figure out when to terminate a

loop since it does not actually execute the node. Thus, the result will not be the same as

the actual machine simulation which executes the node and decides when to terminate a

loop based on the result of execution.

Figure 4.1.2. Simulator Window
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Once the Node Template Structure has been built, the window in Figure 4.1.2 will

appear. The structure can then be simulated by clicking the Execute button. To see what

nodes are being executed at every clock cycle, check the Show Progress check box, and

the list box will list the executed nodes.

Some programs may have Select compound nodes which implies only one path will

be taken out of k paths. For the if-then-else equivalent statement, k = 2, because there are

only two paths to be chosen. Again, because the simulator does not compute the data

value to decide which path to be taken, decision is based on which path is part of the

critical path. If there are j number of Select compound nodes, there are 2j paths to be

decided; thus, the execution will take 2j passes before it can decide which path is the

longest path, thus, the ciritcal path. There could be more than one such path; in this case,

only the first one is chosen. The pass number will be announced above the list box.

Once the simulation has completed, the Parallelism graph can be viewed by

clicking the Graph button or it can be saved as a text file by clicking the Write to file

button. The text file has the following format:

Clock # Parallelism # of incoming arcs # of outgoing arcs

The first column is the clock number, the second column is the parallelism at that clock

cycle, the third column is the total number of incoming arcs at that clock cycle, and, the

fourth column contains the total number of outgoing arcs at that clock cycle.

For the X-Windows version, click on the Build button to build the structure. The

value of N is by default 10 but it can be changed via the command line. For example:

xif1viewer loop1.if1  25
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The above command will execute the if1viewer with the IF1 program loop1.if1 and N

value of 25. When building is complete, click on Execute button to execute. The result will

be stored to a text file which has the same format as that of MS Windows version.

4.2 Results

The Livermore Loops were used to test the simulator. The Livermore Loops are

FORTRAN loops from actual production codes that run at Lawrence Livermore National

Laboratory. They represent the type of computation kernels typically found in large-scale

scientific computing. They range from common mathematical operations, such as inner

product and matrix multiplication to searching and sorting algorithms. The loops provide

an excellent test bed to evaluate the appropriateness and expressive power of parallel

languages and architectures. The Sisal source codes of all the 24 Livermore loops are

listed in Appendix C.

Table 4.2.1. shows the value of N chosen for each loop. Any other value of N can

be used, however, it must be taken into account that some programs may have nested

loops which will drastically increase the size of the output and the parallelism graph may

look very packed as is shown in some of the results.

Loop Name Value of N # of Levels # of Node
Templates

Loop 1 990 9 13
Loop 2 3 99 27
Loop 3 1001 4 5
Loop 4 35 16 109
Loop 5 25 103 8
Loop 6 10 93 15
Loop 7 995 13 34
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Loop 8 100 16 119
Loop 9 101 15 40

Loop 10 101 15 50
Loop 11 25 78 6
Loop 12 1000 6 7
Loop 13 3 141 162
Loop 15 101 24 160
Loop 19 5 74 28
Loop 20 5 132 69
Loop 21 10 12 16
Loop 22 101 13 18
Loop 24 10 62 10

Table 4.2.1.

The parallelism profiles are listed in Appendix D. There are two graphs associated

with each program. The first one is the plot of the number of incoming arcs and outgoing

arcs at every clock cycle. The other graph is the plot of parallelism at every clock cycle.

There is a similar simulation done by John T. Feo[6]. One similarity between the

two is that both respect data and logical dependencies among nodes. However, the results

of the simulation differ from the ones we have here because of the way a program is

simulated. The main difference is that Feo computed the parallelism based on the result of

Sisal interpreter and profiler which emulate execution of every operation based on the

input data and passes the data to the next node. Thus, the loops whose number of

iterations are dependent on a variable will terminate when the certain condition is met.

Similarly, when decision is needed to decide which path is to be taken when Select

compound node is found, the Sisal Interpreter actually computes the Selector subgraph

and chooses the path based on the result of computation. On the other hand, our simulator

iterates all loops N times where N is fixed. And when a Select compound node is found,
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only the path that contributes to the critical path is taken. No actual data computation is

performed.

Another difference that plays an important role is that our simulator associates one

node with one operation. Feo’s, on the other hand, also considers the scattering and

gathering latencies. This is better illustrated in a program that uses the ForAll compound

node as shown below, in fact, only in the ForAll node can this difference be noted.

G e n e r a t o r
subgraph

1s t  Ins tance  of
body  subgraph

2nd Ins tance  of
body  subgraph

n- th  Ins tance  of
body  subgraph

Resul t s
subgraph

Figure 4.2.1. ForAll Graph.

Assuming that Figure 4.2.1 is the overall IF1 graph and in each subgraph there is only  one

level node, then the following table shows the result based on Feo’s (left) and ours (right).

Clock # Sisal Interpreter Our Simulator
1 N 1
2 N * # of nodes N * # of nodes
3 N 1

At clock # 1, Feo assumes that N body subgraphs have been scattered, thus there

are N operations. At clock # 2, assuming the depth of the body subgraphs is only one and

there are k nodes, then there are (N * k) operations. At clock # 3, there are N results,
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which are gathered, so there are N operations. In contrast, our simulator only counts the

total number of nodes at each clock #.

The next example is one of the Livermore Loops, Loop 3. This IF1 program has

been stripped such that only the loop itself is present, the main function that calls the loop

is removed. The IF1 graph is shown in Figure 4.2.2. The result is shown in the following

table and plotted in Figure 4.2.3.

Clock # Sisal Interpreter Our Simulator
1 1001 1 �  Scatter
2 2002 2002
3 1001 1001
4 1001 1 �  Gather

Figure 4.2.2.  IF1 Graph of Loop 3

Note that the body subgraph is duplicated N times which is not shown here for efficiency

reasons. Recall that in the executable data structure, the body subgraph is not duplicated;
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instead, the field Pred_Ptr will grow to N elements and Pred_Num will be N resulting in

graph memory conservation in the target architecture.
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4.2.3. Parallelism Graph of Loop 3.

Figure 4.2.3 shows the plots of the parallelism based on the Sisal Interpreter and our

simulator. As can be clearly seen, only prior to and after the body subgraphs are the results

different because one takes into account the scattering and gathering latencies, whereas

the other does not. Within the body subgraphs, however, the results are exactly the same.

Appendix D shows the graphs of all the test programs as mentioned earlier. Both

parallelism and incoming or outgoing arcs are plotted for each test case. The Sisal source

codes of all these 24 Livermore Loops (including several that are not simulated) are

included in Appendix C. All these files and Sisal compiler are available at

http://sisal.llnl.gov/



43

5. Conclusion And Future Work

The objective of this project is to create a compiler that will parse an IF1 program

and generate an executable data structure to be used by a Multithreaded Parallel

Processing Architecture[3][4]. This objective has been achieved successfully. In addition,

several tools that are needed to support the ongoing research have also been developed.

These tools are the IF1 Viewer and the Simulator. The IF1 Viewer helps researchers to

see the IF1 graph visually, thus, enables them to quickly see the flow of data based on the

data dependence restrictions. The simulator enables researchers to estimate the number of

resources or processors required by a program given the desired input parameters. It does

this by computing the parallelism in a program, thus, shows what programs are or are not

rich in parallelism.

Several enhancements can be made to the compiler. Though it has successfully

generated the executable data structures for all 24 Livermore Loops, it may fail to do so

for other exceptional IF1 programs. This may due to new enhancement added to the IF1

language itself or the inability of IF1 compiler to recognize some tokens that are not

currently supported. The IF1 compiler also  does not support recursive function call due

to the graph traversal algorithm used. One thing that can certainly be improved is the user

interface. Though it plays little role in the whole project, it eases the interaction between

the user and the program. Lastly, new optimization methods have been identified that

should be incorporated into the compiler back end[7].

Future work is still needed to fully utilize the result generated by IF1 compiler.

There is a need to convert the executable data structure into graph engine memory image
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so that graph processing elements can efficiently read the graph information and process it

accordingly.  There is also a need for a template that associates a node with its

corresponding assembly instructions.  Processors with the same architecture or assembly

instructions can use a template created solely for them, and other processors with different

architecture can use different template created for them. Thus, it allows various processors

to exist and work together in one system.

Finally, more work may be needed as the architecture matures. The program has

been written and categorized into several files to allow other programmers to quickly find

and modify parts of the program as needed. Some platform independent codes are

separated into different files. It is the intention of the author to ease any future

enhancement to the program.
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Appendix A

Graph And Other Structures

The following data structures are defined in file compiler.h. Only those structures needed

to build minimal IF1 compiler are described here. The minimal IF1 compile, described in

Appendix B, reads IF1 source code and generate a node template linked list.

NODETEMPLATE structure

char *nodename currently points to a string that indicates the
name of the node.

int predInit is the number of predecessor. Only predecessors
with type = NT_NODE are counted.

int predNum indicates there are predNum elements in
predPtr array.

Int *predPtr is an array of size predNum. Each element has a
value of predInit. The size is currently one
element. More elements may need to be
allocated during run time. The number of
elements should correnpond to the number of
instances created for this node.

int succNum is the number of elements in succPtr array.

NODETEMPLATE **succPtr is an array of size succNum. Each element is a
pointer to successors.

NTTYPE type indicates the type of node: NT_NODE for
simple node; NT_LITERAL for literal.

int predecNum is similar to predInit but all predecessors are
counted, including literals.

NODETEMPLATE **predecPtr is similar to succPtr, but it holds pointers to all
predecessors, including literals. There are
predecNum elements in this array.

int level indicates the level of node.

int nCase Indicates that this node will be executed
depending on the output of predecessor node. If
nCase = 10, then this node is executed if only if
the output of predecessor node is FALSE. If
nCase = 20, then it is executed if the output of
predecessor node is TRUE. These two cases are
used to determine when to stop executing body
of LoopA or LoopB.
If 0 < nCase < 10, then this node is executed
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when the output of predecessor node is nCase.
This is used in switch-case or if-then-else
statement. Currently, only 10 cases are
supported.

SCOPING *scoping contains the scope information of the node.

NTREL *succType is an array of size succNum. Element no n
indicates relation between this node and the
successor no n,

int depthOfScope indicates the depth of the scope where this node
is in. Inner scope has larger depthOfScope than
outer scope: NTREL_DATADEP for true data
dependency; and NTREL_IMPLIEDDEP for
implied dependency.

NODE *n is a pointer to part of GRAPH data structure.

SCOPING structure

int cnId is a unique ID of the compound node where this node is in.

int gId is a unique ID of the graph where this node is in.

int gNo indicates what subgraph in a compound node this node is in.
If gNo = 0, then it is not in any compound node. If gNo = 1, then
it is the first subgraph of the compound node. The first subgraph
of ForAll compound node is “Range Generator”, that of LoopA
or LoopB compound node is “Initialization”, that of Select
compound node is “Selector.”

int inst is the number of instances to be generated for this node.

SCOPING *link is a pointer to outer scope.

NODE structure

COMPONENT *node points to IF1 information of the node, such as: name of
node, line no, input and output port numbers.

int noInPort is the number of input ports of this node.

int noOutPort is the number of output ports of this node.

PORT *outPort is an array of type PORT. If port no k connects to a
node, then output[k] contains pointer to the pointed
node. If it points to the output of a graph boundary,
output[k] is NULL.

GRAPH *graph is undefined if node is not a compound node. If the node
is a compound node, graph points to a GRAPH
structure of the compound node. Note that a compound
node is a subgraph.

NODE *next is a linked list of all nodes within the subgraph or graph
boundary.

int level is the level of the node within the subgraph.
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NODETEMPLATE *nt points to the corresponding node template structure.

NTYPE type is the type of the node: N_NODE for simple node;
N_FUNCTION for function call; and N_CNODE for
compound node.

COMPONENT structure

TOKEN *token indicates the type of token: opencurly, closecurly, quote,
number, literal, etc.

int lineNo indicates where this component is defined in the IF1 file.

COMPONENT *next points to the next component.

PORT structure

int portNo is the port number.

NODE *node points to a node where this port is connected to.

PORT *next is a linked list of PORT that points to all nodes that this
port connects to. Note that a port may connect to more
than one node. The end of list is reached when next is
NULL.

GRAPH structure

COMPONENT *graph is the IF1 information on this graph. Only components
with first tokens X and G are represented.

int noInPort is the number of input ports of this graph.

int noOutPort is the number of output ports of this graph.

PORT *inPort is an array of size (noInPort + 1) elements. Each
element points to a node. If the element points to the
output of the graph, the element is NULL.

GRAPH *next points to the next subgraph. This is only used by
compound node where there are several subgraphs in one
compound node. For example, ForAll has 3 subgraphs.

NODE *nodeLList is a linked list of all nodes in this subgraph.

LITERAL *literalLList is s linked list of all literals in this subgraph.

LITERAL structure

NODE *node points to node whose one of the inputs is this literal.

int portNo indicates which input port of a node that this literal
connects to.

COMPONENT *literal points to the IF1 information of this literal.

LITERAL *next is a linked list of all literals in this graph boundary.

NODETEMPLATE *nt points to a node template associated with this literal.
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Appendix B
File Description

Common Files for both MFC version and X Windows version of IF1 compiler:

compiler.h External function and variable definitions.
token.h List of all IF1 basic types and nodes.
keyword.h Tables containing strings and their numeric definitions.
token.cpp Lexical Analyzer.
parse.cpp IF1 Parser.
sort.cpp Component sorter.
symtab.cpp Symbol table builder.
Build.cpp Parse tree builder (generates Graph data structure).
nodetemp.cpp Node template linked list builder.
Common.cpp Common and basic functions (initialization, safe malloc, etc).
linklist.h
linklist.cpp

Link list class (used by IF1 Viewer only).

ptrarray.h
ptrarray.cpp

Dynamically rezisable array class.

ntclass.h
ntclass.cpp

Node Template class (used by node template builder).

wiretrac.h
wiretrac.cpp

Wire tracker class (used by IF1 Viewer to keep track of lines
from overlapping).

object.h
object.cpp

Basic class of all other classes. This is a base class for
LinkList, PtrArray, NTClass, WireTracker classes.

MFC-specific Files:

if1viewr.h
if1viewr.cpp

Constructor initialization (generated by Visual C++).

mainfrm.h
mainfrm.cpp

The main frame of the application (generated by Visual C++).

if1vidoc.h
if1vidoc.cpp

Document part of MFC’s Doc-View paradigm (generated by
Visual C++).

if1vivw.h
if1vivw.cpp

Viewer part of MFC’s Doc-View paradigm (generated by
Visual C++).

stdafx.h
stdafx.cpp

MFC header files.

subgraph.h
subgraph.cpp

A derived dialog class that displays IF1 graph.

dispnt.h
dispnt.cpp

A derived dialog class that displays Node Template linked list.



50

debugdia.h
debugdia.cpp

A simulator dialog box.

pargraph.h
pargraph.cpp

The parallelism graph viewer.

graphbtn.h
graphbtn.cpp

A derived button class to indicate a node with internal graph
(used to indicate compound nodes or function calls).

loopdlg.h
loopdlg.cpp

A dialog box asking the user for a value of N.

resource.h Windows resource definition.
if1viewr.rc Windows resource file.

X Windows-specific Files:

main.cpp Main function.
subgrapx.h
subgrapx.cpp

A class that displays IF1 graph

metafile.h
metafile.cpp

A metafile class used to emulate windows metafile on X
windows system.

msgbox.h
msgbox.cpp

A class that displays messages to user.

A minimal IF1 compiler will require these files:

compiler.h, token.h, keyword.h, token.cpp, parse.cpp, sort.cpp, symtab.cpp,
Build.cpp, nodetemp.cpp, Common.cpp, ptrarray.h, ptrarray.cpp, ntclass.h,
ntclass.cpp, object.h, object.cpp, and main.cpp file which contains the following code:

#include <stdio.h>
#include “compiler.h”

void main(int argc, char **argv) {
  nLoop = atoi(argv[2]); /* value of n */
  Filename = argv[1];

  InitializeVariables();  /* Initialize necessary variables */
  Parse();                /* parse IF1 */
  SortComponents();       /* sort components */
  BuildTypeSymbolTable(); /* build symbol tables */
  BuildGraphSymTab();     /* build graph symbol tables */
  BuildGraph();           /* build parse tree (Graph structure)*/
  TraverseGraph(rootGraphStructure.next);
                          /* Traversing Graph to calculate */
                          /*   level */
  BuildStructure();       /* build the Node Template linked list */
}

The node template linked list starts from variables input which is an array of pointers to
NODETEMPLATE structure.
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NODETEMPLATE **input;

There are k number of elements, where k is the number of input variables of the function.
For example, Loop1 which has the following function definition:

function Loop1( n:integer; Q,R,T:double; Y,Z:OneD returns OneD )

has 6 input variables: n, Q, R, T, Y, and Z

input[0] points to node template n.
input[1] points to node template Q.
input[2] points to node template R.
input[3] points to node template T.
input[4] points to node template Y.
input[5] points to node template Z.

input[0]->succPtr[0] points to the node that takes n as one of the inputs.
input[1]->succPtr[0] points to the node that takes Q as one of the inputs.

*
*
*

input[5]->succPtr[0] points to the node that takes Z as one of the inputs.

The number of input variables or k is equal to (mainGraph->noInPort + 1), where
mainGraph is of type GRAPH*. MainGraph points to the Loop1 GRAPH structure.

GRAPH *mainGraph;

The linked list could have more than one endpoints (where the linked list terminates).
These endpoints are reached when the traversal finds output[m] node templates, where m
is the number of return variables. For example, Loop1 has only one return value, thus, the
size of output is 1 element.

Output[0] points to node template OneD.

NODETEMPLATE **output;
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Appendix C
Sisal Source Codes of The 24 Livermore Loops

% LOOP 1
% Hydro Fragment
% Parallel Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];

function Loop1( n:integer; Q,R,T:double; Y,Z:OneD returns OneD )
   for K in 1,n
       X := Q + (Y[K] * (R * Z[K+10] + T * Z[K+11]))
   returns array of X
   end for
end function

function Main( rep,n:integer; Q,R,T:double; Y,Z:OneD returns OneD )
   for i in 1, rep
      X := Loop1( n, Q, R, T, Y, Z );
   returns value of X
   end for
end function

% LOOP 2
% ICCG Excerpt (Incomplete Cholesky - Conjugate Gradient)
% Sequential Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];

function Loop2( n:integer; V,Xin:OneD returns OneD )
  for initial
      IL    := n;
      IPNTP := 0;
      X     := Xin;
  while ( IL > 1 ) repeat
      IPNT  := old IPNTP;
      IPNTP := old IPNTP + old IL;
      IL    := old IL / 2;
      X     := for initial

            k  := IPNT+2;
            Xt := old X;
            i  := IPNTP;

               while ( k <= IPNTP ) repeat
            k  := old k + 2;
            i  := old i + 1;
            Xt := old Xt[i: old Xt[old k] -

           (V[old k]   * old Xt[old k-1]) +
           (V[old k+1] * old Xt[old k+1])];

               returns value of Xt
       end for;

  returns value of X
  end for
end function

function Main( rep,n:integer; V,Xin:OneD returns OneD )
   for initial
       i := 1;
       X := Xin;
   while ( i <= rep ) repeat
       i := old i + 1;
       X := Loop2( n, V, old X );
   returns value of X
   end for
end function

% LOOP 3
% Inner Product
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Define  Main

type double = double_real;
type OneD   = array[double];

function Loop3( n:integer; X,Z:OneD returns double )
  for i in 1,n
      Q := X[i] * Z[i]
  returns value of sum Q
  end for
end function

function Main( rep,n:integer; X,Z:OneD returns double )
   for i in 1, rep
      V := Loop3( n, X,Z );
   returns value of V
   end for
end function

% LOOP 4
% Banded Linear Equations
% Parallel Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];

function Loop4(n: integer; X, Y: OneD returns OneD )

  let
      steps := n / 5;

      T1, T2, T3 :=
          if steps < 6 then
             X[6] -    for i in 1, steps
                       returns value of sum
                           X[6 - 6 + i] * Y[5 * i]
                       end for,
             X[503] -  for i in 1, steps
                       returns value of sum
                           X[503 - 6 + i] * Y[5 * i]
                       end for,
             X[1000] - for i in 1, steps
                       returns value of sum
                           X[1000 - 6 + i] * Y[5 * i]
                       end for
          else
             ( (1.0d0 - Y[30]) *
               (X[6]  - for i in 1, 5
                        returns value of sum
                            X[6 - 6 + i] * Y[5 * i]
                         end for))
             - for i in 7, steps
               returns value of sum
                   X[6 - 6 + i] * Y[5 * i]
               end for,
             ( (1.0d0 - Y[30]) *
               (X[503] - for i in 1, 5
                         returns value of sum
                             X[503 - 6 + i] * Y[5 * i]
                          end for))
             - for i in 7, steps
               returns value of sum
                   X[503 - 6 + i] * Y[5 * i]
               end for,
             ( (1.0d0 - Y[30]) *
               (X[1000]  - for i in 1, 5
                           returns value of sum
                               X[1000 - 6 + i] * Y[5 * i]
                            end for))
             - for i in 7, steps
               returns value of sum
                   X[1000 - 6 + i] * Y[5 * i]
               end for
          end if
  in
      X[6: T1 * Y[5]; 503: T2 * Y[5]; 1000: T3 * Y[5]]
  end let
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end function

function Main( rep,n:integer; Xin,Y:OneD returns OneD )
   for initial
       i := 1;
       X := Xin;
   while ( i <= rep ) repeat
       i := old i + 1;
       X := Loop4( n, old X , Y );
   returns value of X
   end for
end function

% LOOP 5
% Tri-Diangonal Elimination, Below Diagonal
% Sequential Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];

function Loop5( n:integer; XIn,Y,Z: OneD returns OneD )
  for initial
      i := 2;
      X := XIn[1];
  while i <= n repeat
      i := old i + 1;
      X := Z[old i] * (Y[old i] - old X)
  returns array of X
  end for
end function

function Main( rep,n:integer; Xin,Y,Z:OneD returns OneD )
   for i in 1, rep
       X := Loop5( n, Xin, Y, Z );
   returns value of X
   end for
end function

% LOOP 6
% General Linear Recurrence Equations
% Parallel Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];
type TwoD   = array[OneD];

function Loop6( n:integer; B:TwoD; Win:OneD returns OneD )
  for initial
      i := 2;
      W := Win;
  while i <= n repeat
      i := old i + 1;
      V := for k in 1, old i - 1 returns

   value of sum B[old i,k] * old W[old i - k]
   end for;

      W := old W[old i: old W[old i] + V];
  returns value of W
  end for
end function

function Main( rep,n:integer; B:TwoD; Win:OneD returns OneD )
   for initial
      i := 1;
      W := Win;
   while ( i <= rep ) repeat
      i := old i + 1;
      W := Loop6( n, B, old W );
   returns value of W
   end for
end function

% LOOP 7
% Equation of State Fragment
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Define  Main

type double = double_real;
type OneD   = array[double];

function Loop7( n:integer; R,T:double; U,Y,Z: OneD; returns OneD )
  for k in 1,n returns
  array of U[k] + R * (Z[k]   + R * Y[k])
                + T * (U[k+3] + R * (U[k+2] + R * U[k+1])
                + T * (U[k+6] + R * (U[k+5] + R * U[k+4])))
  end for
end function

function Main( rep,n:integer; R,T:double; U,Y,Z: OneD; returns OneD )
   for i in 1, rep
       W := Loop7( n, R, T, U, Y, Z );
   returns value of W
   end for
end function

% LOOP 8
% A. D. I. Integration
% Parallel Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];
type TwoD   = array[OneD];
type ThreeD = array[TwoD];

function Loop8( n:integer; A11,A12,A13,A21,A22,A23:double;
               A31,A32,A33,SIG:double; U1,U2,U3:ThreeD;
               returns ThreeD, ThreeD, ThreeD )
  for kx in 2,3
    V1,
    V2,
    V3 := for ky in 2,n
            DU1 := U1[kx,1,ky+1] - U1[kx,1,ky-1];
            DU2 := U2[kx,1,ky+1] - U2[kx,1,ky-1];
            DU3 := U3[kx,1,ky+1] - U3[kx,1,ky-1];

            V1  := U1[kx,1,ky] + A11 * DU1 + A12 * DU2 + A13 * DU3 +
                     SIG * (U1[kx+1,1,ky] - 2.0d0 * U1[kx,1,ky] + U1[kx-1,1,ky]);

            V2  := U2[kx,1,ky] + A21 * DU1 + A22 * DU2 + A23 * DU3 +
                     SIG * (U2[kx+1,1,ky] - 2.0d0 * U2[kx,1,ky] + U2[kx-1,1,ky]);

            V3  := U3[kx,1,ky] + A31 * DU1 + A32 * DU2 + A33 * DU3 +
                     SIG * (U3[kx+1,1,ky] - 2.0d0 * U3[kx,1,ky] + U3[kx-1,1,ky]);

          returns array of V1
          array of V2
          array of V3

          end for;
    M1 := array [1: V1 ];
    M2 := array [1: V2 ];
    M3 := array [1: V3 ];
  returns array of M1

  array of M2
  array of M3

  end for
end function

function Main( rep,n:integer; A11,A12,A13,A21,A22,A23:double;
               A31,A32,A33,SIG:double; U1in,U2in,U3in:ThreeD;
               returns ThreeD, ThreeD, ThreeD )
   for i in 1, rep
       U1, U2, U3 := Loop8( n, A11, A12, A13, A21, A22, A23,

    A31, A32, A33, SIG, U1in, U2in, U3in );
   returns value of U1

   value of U2
   value of U3

   end for
end function

% LOOP 9
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% Integrate Predictors
% Parallel Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];
type TwoD   = array[OneD];

function Loop9( n:integer; CO,DM22,DM23,DM24,DM25:double;
               DM26,DM27,DM28:double; PX:TwoD returns OneD )
    for i in 1,n returns
    array of PX[3,i] +
             CO   * (PX[5,i]  +  PX[6,i])   +
             DM22 * PX[7,i]  + DM23 * PX[8,i]  +
             DM24 * PX[9,i]  + DM25 * PX[10,i] +
             DM26 * PX[11,i] + DM27 * PX[12,i] +
             DM28 * PX[13,i]
   end for
end function

function Main( rep,n:integer; CO,DM22,DM23,DM24,DM25:double;
               DM26,DM27,DM28:double; PXin:TwoD returns OneD )
   for i in 1,rep
     PXr := Loop9( n, CO, DM22, DM23, DM24, DM25, DM26, DM27, DM28, PXin )
   returns value of PXr
   end for
end function

% LOOP 10
% Difference Predictors
% Modified Parallel Algorithm
% SHOULD REWRITE FOR POINTER SWAP!!!

Define  Main

type double = double_real;
type OneD   = array[double];
type TwoD   = array[OneD];

function Loop10( rep,n:integer; CX,PXin:TwoD returns TwoD )
let
  PX6, PX7, PX8, PX9, PX10, PX11, PX12, PX13, PX14 :=
  for i in 1, n
     PX5 := CX[5,i];
     PX6 := PX5 - PXin[5,i];
     PX7 := PX6 - PXin[6,i];
     PX8 := PX7 - PXin[7,i];
     PX9 := PX8 - PXin[8,i];
     PX10 := PX9 - PXin[9,i];
     PX11 := PX10 - PXin[10,i];
     PX12 := PX11 - PXin[11,i];
     PX13 := PX12 - PXin[12,i];
     PX14 := PX13 - PXin[13,i];
  returns array of PX6

  array of PX7
  array of PX8
  array of PX9
  array of PX10
  array of PX11
  array of PX12
  array of PX13
  array of PX14

  end for
in
  PXin[5:CX[5], PX6, PX7, PX8, PX9, PX10, PX11, PX12, PX13, PX14]
end let
end function

function Main( rep,n:integer; CX,PXin:TwoD returns TwoD )
let
   NewPX := for initial
               i := 1;
               PX := PXin;
           while ( i <= rep ) repeat
               i := old i + 1;
               PX := Loop10( i, n, CX, old PX );
           returns value of PX
           end for
in
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  array_adjust( NewPX, 5, array_limh( NewPX ) )
end let
end function

% LOOP 11
% First Sum
% Sequential Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];

function Loop11( n:integer; Yin:OneD returns OneD )
  for initial
      i := 2;
      X := Yin[1];
  while ( i <= n ) repeat
      i := old i + 1;
      X := old X + Yin[old i];
  returns array of X
  end for
end function

function Main( rep,n:integer; Yin:OneD returns OneD )
  for i in 1,rep
    Y := Loop11( n, Yin );
  returns value of Y
  end for
end function

% LOOP 12
% First Difference

Define  Main

type double = double_real;
type OneD   = array[double];

function Loop12( n:integer; Y:OneD returns OneD )
  for i in 1,n returns
  array of Y[i+1] - Y[i]
  end for
end function

function Main( rep,n:integer; Yin:OneD returns OneD )
   for i in 1, rep
       Y := Loop12( n, Yin );
   returns value of Y
   end for
end function

% LOOP 13
% 2-D PIC  Particle In Cell

Define  Main

type double = double_real;
type IOneD  = array[integer];
type OneD   = array[double];
type TwoD   = array[OneD];

function MOD2N(i, j: integer  returns integer)
  if i < 0 then
     i - (i / j * j) + j / 2 + abs(j/2)
  else
     i - (i / j * j) + j / 2 - abs(j/2)
  end if
end function

function Loop13( n:integer;
                E,F:IOneD; B,C,Hin,Pin:TwoD;
                Y,Z:OneD returns TwoD,TwoD)
  for initial
      i := 0;
      H := Hin;
      P := Pin
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  while i < n repeat
      i := old i + 1;
      i1 := 1 + MOD2N(Trunc(old P[1,i]),64);
      j1 := 1 + MOD2N(Trunc(old P[2,i]),64);
      P1 := old P[4,i: old P[4,i] + C[i1,j1];
                  3,i: old P[3,i] + B[i1,j1];
                  2,i: old P[2,i] + old P[4,i] + C[i1,j1];
                  1,i: old P[1,i] + old P[3,i] + B[i1,j1]];
      i2 := MOD2N(Trunc(P1[1,i]),64);
      j2 := MOD2N(Trunc(P1[2,i]),64);
      i3 := i2 + E[i2+32];
      j3 := j2 + F[j2+32];
      P := P1[1,i: P1[1,i] + Y[i2+32];
              2,i: P1[2,i] + Z[j2+32]];
      H := old H[i3,j3: old H[i3,j3] + 1.0d0]
  returns
      value of H
      value of P
  end for
end function

function Main(  rep,n:integer;
                E,F:IOneD; B,C,Hin,Pin:TwoD;
                Y,Z:OneD returns TwoD,TwoD)
   for initial
       i := 1;
       H := Hin;
       P := Pin;
   while ( i <= rep ) repeat
       i := old i + 1;
       H,P := Loop13( n, E, F, B, C, old H, old P, Y, Z )
   returns value of H

   value of P
   end for
end function

% LOOP 14
% 1-D PIC  Particle in Cell

Define  Main

type double = double_real;
type IOneD  = array[integer];
type OneD   = array[double];

function MOD2N(i, j: integer  returns integer)
  if i < 0 then
     i - (i / j * j) + j / 2 + abs(j/2)
  else
     i - (i / j * j) + j / 2 - abs(j/2)
  end if
end function

function Loop14( rep,n:integer; FLX:double;
                DEXin,EXin,GRD,RHIn : OneD;
                returns OneD,OneD,IOneD,IOneD,
                        OneD,OneD,OneD,OneD,OneD )
  let DEX1,EX1,IR1,IX1,RX1,VX1,XI1,XX1 :=
        for i in 1,n
            j := Trunc(GRD[i]);
            EX := EXin[j];
            DEX := DEXin[j];
            XI := Double_Real(j);
            VX := EX - DEX * XI;
            k  := Trunc(VX + FLX);
            IR := MOD2N(k,512) + 1;
            RX := VX + FLX - Double_Real(k);
            XX := VX + FLX - Double_Real(k) + Double_Real(IR)
        returns array of DEX
                array of EX
                array of IR
                array of j
                array of RX
                array of VX
                array of XI
                array of XX
        end for
  in  DEX1,EX1,IR1,IX1,RX1,VX1,XI1,XX1,
      for initial
          i := 0;
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          RH := RHIn
      while i < n repeat
          i := old i + 1;
          RH := old RH[IR1[i]:
                       old RH[IR1[i]] - RX1[i] + 1.0d0,
                       old RH[IR1[i] + 1] + RX1[i]]
      returns value of RH
      end for
  end let
end function

function Main( rep,n:integer; FLX:double;
                DEX,EX,GRD, RHIn : OneD;
                returns OneD,OneD,IOneD,IOneD,
                        OneD,OneD,OneD,OneD,OneD )
   for initial
       i  := 1;
       v1 := array OneD  [];
       v3 := array IOneD [];
       v4 := v3; v2 := v1; v5 := v2; v6 := v2; v7 := v2; v8 := v2;
       RH := RHin;
   while ( i <= rep ) repeat
       i := old i + 1;
       v1,v2,v3,v4,v5,v6,v7,v8, RH :=

   Loop14( i, n, FLX, DEX, EX, GRD, old RH );
   returns value of v1

   value of v2
   value of v3
   value of v4
   value of v5
   value of v6
   value of v7
   value of v8

           value of RH
   end for
end function

% LOOP 15
% Casual Fortran. Development Version

Define  Main

type double = double_real;
type OneD   = array[double];
type TwoD   = array[OneD];

% global fsqrt( x:double returns double )
global Sqrt( x:double returns double )

function Loop15( n:integer; VF,VG,VH:TwoD returns TwoD, TwoD )
let
  VS, VYc := for j in 2, 6
               VSrc,
               VYrc := for i in 2, n-1

                 VGj   := VG[j];
                 VGjm1 := VG[j-1];
                 VHj   := VH[j];
                 VHjp1 := VH[j+1];

                         S := if VF[j,i] >= VF[j-1,i] then
                                let
                                  R := Max(VGj[i],VGj[i+1]);
                                  S := VF[j,i];
                                  T := 0.053d0;
                                in
                                  sqrt(VHj[i] * VHj[i] + R*R) * T/S
                                end let
                              else
                                let
                                  R := Max(VGjm1[i],VGjm1[i+1]);
                                  S := VF[j-1,i];
                                  T := 0.073d0;
                                in
                                  sqrt(VHj[i] * VHj[i] + R*R) * T/S
                                end let
                              end if;

                         T := if VHjp1[i] > VHj[i] then
        0.053d0
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                              else
        0.073d0

                              end if;

                         Y := if VF[j,i] >= VF[j,i-1] then
                                let
                                  R := Max(VHj[i],VHjp1[i]);
                                  S := VF[j,i];
                                in
                                  sqrt(VGj[i] * VGj[i] + R*R) * T/S
                                end let
                              else
                                let
                                  R := Max(VHj[i-1], VHjp1[i-1]);
                                  S := VF[j,i-1];
                                in
                                  sqrt(VGj[i] * VGj[i] + R*R) * T/S
                                end let
                              end if;
                       returns array of S
                               array of Y
                       end for;

               T := if VH[j+1,n] > VH[j,n] then
      0.053d0

                    else
      0.073d0

                    end if;

               LastY := if VF[j,n] >= VF[j,n-1] then
                          let
                            R := Max(VH[j,n],VH[j+1,n]);
                            S := VF[j,n];
                          in
                            sqrt(VG[j,n] * VG[j,n] + R*R) * T/S
                          end let
                        else
                          let
                            R := Max(VH[j,n-1], VH[j+1,n-1]);
                            S := VF[j,n-1];
                          in
                            sqrt(VG[j,n] * VG[j,n] + R*R) * T/S
                          end let
                        end if;

               VSr := array_addh( VSrc, 0.0d0 );
               VYr := array_addh( VYrc, LastY );
             returns array of VSr
                     array of VYr
             end for;
in
  VS, array_addh( VYc, array_fill( 2,n,0.0d0 ) )
end let
end function

function Main( rep,n:integer; VF,VG,VH:TwoD returns TwoD, TwoD )
   for i in 1, rep
      v1,v2 := Loop15( n, VF, VG, VH );
   returns value of v1
           value of v2
   end for
end function

% LOOP 16
% Monte Carlo Search Loop
% Parallel Algorithm

Define  Main

type double = double_real;
type IOneD  = array[integer];
type OneD   = array[double];
type TwoD   = array[OneD];

function Loop16( n:integer; R,S,T:double; D,PLAN:OneD;
                ZONE:IOneD returns integer,integer)
   % interchanged
   let Y := for j in 1,n cross i in 1,ZONE[1]
              j4 := 2 * (n * (i-1) + j - 1) + 3;
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              j5 := ZONE[2 * (n * (i-1) + j - 1) + 3];
              C1 := if j5 < n/3 then
                       if PLAN[j5] < T then ZONE[j4-1]
                       elseif PLAN[j5] = T then 0
                       else -ZONE[j4-1]
                       end if
                    elseif j5 < 2*n/3 then
                       if PLAN[j5] < S then ZONE[j4-1]
                       elseif PLAN[j5] = S then 0
                       else -ZONE[j4-1]
                       end if
                    elseif j5 < n then
                       if PLAN[j5] < R then ZONE[j4-1]
                       elseif PLAN[j5] = R then 0
                       else -ZONE[j4-1]
                       end if
                    elseif j5 = n then 0
                    elseif let
                             test := D[j5] - (D[j5-1] * exp(T - D[j5-2], 2) +
                                     exp(S - D[j5-3], 2) + exp(R - D[j5-4], 2));

   in
             test < 0.0d0

   end let
   then ZONE[j4-1]

                    else -ZONE[j4-1]
                    end if
          returns value of least if C1 = 0 then j4
                                 else 2 * n * ZONE[1] + 2
                                 end if
          end for
   in  if Y = 2 * n * ZONE[1] + 2 then 1, 0
       else (Y - 3) / (2 * n) + 1, Y
       end if
   end let
end function

function Main( rep,n:integer; R,S,T:double; D,PLAN:OneD;
                ZONE:IOneD returns integer,integer)
   for initial
       i  := 1;
       v1 := 0;
       v2 := 0;
   while ( i <= rep ) repeat
       i := old i + 1;
       v1,v2 := Loop16( n, R, S, T, D, PLAN, ZONE );
   returns value of v1

   value of v2
   end for
end function

% LOOP 17
% Implicit, Conditional Computation

Define  Main

type double = double_real;
type IOneD  = array[integer];
type OneD   = array[double];

function Loop17( n:integer; VLIN,VLR,VSP,VSTP,VXNEin:OneD;
                returns OneD, OneD, OneD)
  for initial
      i := n;
      XNMt := 1.0d0 / 3.0d0;
      E6t := 1.03d0 / 3.07d0;

      E3 := XNMt * VLR[i] + VLIN[i];
      XNC := 5.0d0 / 3.0d0 * E3;
      XNEI := VXNEin[i];
      VXND := E6t;

      VE3, E6, VXNE, XNM :=
 if ( XNMt > XNC ) then
    let
       E6 := XNMt * VSP[i] + VSTP[i];
    in
       E6, E6, E6, E6
    end let
 elseif ( XNEI > XNC ) then
    let
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       E6 := XNMt * VSP[i] + VSTP[i];
    in
       E6, E6, E6, E6
    end let
 else
    E3, E3 + E3 - XNMt, E3 + E3 - XNEI, E3 + E3 - XNMt
 end if;

  while i > 2 repeat
      i := old i - 1;

      E3 := old XNM * VLR[i] + VLIN[i];
      XNC := 5.0d0 / 3.0d0 * E3;
      XNEI := VXNEin[i];
      VXND := old E6;

      VE3, E6, VXNE, XNM :=
 if ( old XNM > XNC ) then
    let
       E6 := old XNM * VSP[i] + VSTP[i];
    in
       E6, E6, E6, E6
    end let
 elseif ( XNEI > XNC ) then
    let
       E6 := old XNM * VSP[i] + VSTP[i];
    in
       E6, E6, E6, E6
    end let
 else
    E3, E3 + E3 - old XNM, E3 + E3 - XNEI, E3 + E3 - old XNM
 end if;

  returns array of VXNE
          array of VE3
          array of VXND
  end for
end function

function Main( rep,n:integer; VLIN,VLR,VSP,VSTP,VXNEin:OneD;
                returns OneD, OneD, OneD)
   for i in 1, rep
       v1,v2,v3 := Loop17( n, VLIN, VLR, VSP, VSTP, VXNEin );
   returns value of v1

   value of v2
   value of v3

   end for
end function

% LOOP 18
% 2-D Explicit Hydrodynamic Fragment
% Sequential and Parallel Algorithm

Define  Main

type double = double_real;
type IOneD  = array[integer];
type OneD   = array[double];
type TwoD   = array[OneD];

function acopy( lo,hi:integer; V:OneD returns OneD )
  for i in lo,hi returns array of V[i] end for
end function

function Loop18( n:integer; S,T:double;
                 ZA,ZB,ZM,ZP,ZQ,ZR,ZU,ZV,ZZ:TwoD
                 returns TwoD,TwoD )
  let ZAcore, ZBcore :=
      for j in 2,6
        ZArc,ZBrc :=

   for i in 2,n
   returns array of

                     (ZP[j+1,i-1] + ZQ[j+1,i-1] - ZP[j,i-1] - ZQ[j,i-1]) *
                     (ZR[j,i] + ZR[j,i-1]) / (ZM[j,i-1] + ZM[j+1,i-1])

   array of
                     (ZP[j,i-1] + ZQ[j,i-1] - ZP[j,i] - ZQ[j,i]) *
                     (ZR[j,i] + ZR[j-1,i]) / (ZM[j,i] + ZM[j,i-1])
           end for;
      returns array of array_addl( array_addh(ZArc, ZA[j,n+1]), ZA[j,1] )
              array of array_addl( array_addh(ZBrc, ZB[j,n+1]), ZB[j,1] )
      end for;
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      ZA1 := acopy(1,7,ZA[1]);
      ZB1 := acopy(1,7,ZB[1]);
      ZA7 := acopy(1,7,ZA[7]);
      ZB7 := acopy(1,7,ZB[7]);

      ZANew := array_addl( array_addh( ZAcore, ZA7), ZA1 );
      ZBNew := array_addl( array_addh( ZBcore, ZB7), ZB1 );

      ZRNew, ZZNew :=
      for j in 2,6
        ZRr, ZZr :=
           for i in 2,n
             ZUNew := ZU[j,i] + S *
                      (ZANew[j,i]  * (ZZ[j,i] - ZZ[j,i+1]) -
                      ZANew[j,i-1] * (ZZ[j,i] - ZZ[j,i-1]) -
                      ZBNew[j,i]   * (ZZ[j,i] - ZZ[j-1,i]) +
                      ZBNew[j+1,i] * (ZZ[j,i] - ZZ[j+1,i]));
             ZVNew := ZV[j,i] + S *
                      (ZANew[j,i]  * (ZR[j,i] - ZR[j,i+1]) -
                      ZANew[j,i-1] * (ZR[j,i] - ZR[j,i-1]) -
                      ZBNew[j,i]   * (ZR[j,i] - ZR[j-1,i]) +
                      ZBNew[j+1,i] * (ZR[j,i] - ZR[j+1,i]))
           returns array of ZR[j,i] + T * ZUNew
                   array of ZZ[j,i] + T * ZVNew
           end for;
      returns array of ZRr
              array of ZZr
      end for;
  in
      ZRNew, ZZNew
  end let
end function

function Main( rep,n:integer; S,T:double;
                ZAin,ZBin,ZM,ZP,ZQ,ZRin,ZUin,ZVin,ZZin:TwoD
                returns TwoD,TwoD )
   for i in 1, rep
      ZR, ZZ :=

 Loop18( n, S, T, ZAin, ZBin, ZM, ZP, ZQ, ZRin, ZUin, ZVin, ZZin );
   returns value of ZR

   value of ZZ
   end for
end function

% LOOP 19
% General Linear Recurrence Equations
% Sequential Agorithm

Define  Main

type double = double_real;
type OneD   = array[double];

function Loop19( n:integer; STIn: double;
                SA, SB: OneD returns OneD, double  )
  let
      B5t, STB5t :=

 for initial
     k    := 1;
     B5   := SA[1] + STIn * SB[1];
     STB5 := B5 - STIn;
 while ( k < n ) repeat
     k    := old k + 1;
     B5   := SA[k] + old STB5 * SB[k];
     STB5 := B5 - old STB5;
 returns array of B5

 value of STB5
         end for
  in
     for initial
         i    := 1;
         B5   := B5t;
         STB5 := STB5t;
     while ( i <= n ) repeat

 k := n + 1 - old i;
         i := old i + 1;
         B5V := SA[k] + old STB5 * SB[k];
         B5  := old B5[k:B5V];
         STB5 := B5V - old STB5;
     returns value of B5
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             value of STB5
     end for
  end let
end function

function Main( rep,n:integer; STB5in: double;
                SA, SB: OneD returns OneD, double  )
   for initial
       i    := 1;
       B5   := array OneD [];
       STB5 := STB5in;
   while ( i <= rep ) repeat
       i := old i + 1;
       B5,STB5 := Loop19( n, old STB5, SA, SB );
   returns value of B5

   value of STB5
   end for
end function

% LOOP 20
% Discrete Ordinates Transport: Conditional Recurrence on XX

Define  Main

type double = double_real;
type OneD   = array[double];
type TwoD   = array[OneD];

function Loop20( n:integer; DK,S,T:double;
                XXin,G,U,V,VX,W,Y,Z:OneD returns OneD, OneD )
   for initial
       i := 1;
       DI := Y[1] - G[1] / (XXin[1] + DK);
       DN := if DI = 0.0d0 then 0.20d0
             else max(S, min(Z[1]/DI, T))
             end if;
       X  := (XXin[1] * (W[1] + DN * V[1]) + U[1]) / (VX[1] + DN * V[1]);
       XX := XXin[2: XXin[1] + DN * (X - XXin[1])];
   while i < n repeat
       i := old i + 1;
       DI := Y[i] - G[i] / (old XX[i] + DK);
       DN := if DI = 0.0d0 then 0.20d0
             else max(S, min(Z[i]/DI, T))
             end if;
       X  := (old XX[i] * (W[i] + DN * V[i]) + U[i]) / (VX[i] + DN * V[i]);
       XX := old XX[i+1: old XX[i] + DN * (X - old XX[i])];
   returns array of X
           value of XX
   end for
end function

function Main( rep,n:integer; DK,S,T:double;
                 XXin,G,U,V,VX,W,Y,Z:OneD returns OneD, OneD )
   for initial
       i  := 1;
       X  := array OneD [];
       XX := XXin;
   while ( i <= rep ) repeat
       i := old i + 1;
       X, XX := Loop20( n, DK, S, T, old XX, G, U, V, VX, W, Y, Z );
   returns value of X

   value of XX
   end for
end function

% LOOP 21
% Matrix * Matrix Product
% Assumes transpose(VY) to allow vectorization

Define  Main

type double = double_real;
type OneD   = array[double];
type TwoD   = array[OneD];

function Loop21( n:integer; CX,PX,VY:TwoD returns TwoD )
  for k in 1,25 cross j in 1,n returns
  array of PX[k,j] + for i in 1,25 returns
                     value of sum VY[i,k] * CX[k,j]
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                     end for
  end for
end function

function Main( rep,n:integer; CX,PXin,VY:TwoD returns TwoD )
   for i in 1, rep
       PX := Loop21( n, CX, PXin, VY );
   returns value of PX
   end for
end function

% LOOP 22
% Planckian Distribution

Define  Main

type double = double_real;
type OneD   = array[double];

global etothe( x:double returns double )
% global fexp( x:double returns double )

function Loop22( n:integer; U,V,X:OneD returns OneD, OneD )
  for k in 1,n
      Y := if ( U[k] < 20.0d0 * V[k] ) then

       U[k] / V[k]
   else
       20.0d0
   end if;

      W := X[k] / (etothe(Y) - 1.0d0);
  returns array of W
          array of Y
  end for
end function

function Main( rep,n:integer; U,V,X:OneD returns OneD, OneD )
   for i in 1, rep
       v1,v2 := Loop22( n, U,V,X );
   returns value of v1

   value of v2
   end for
end function

% LOOP 23
% 2-D Implicit Hydodynamics Fragment
% Sequential Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];
type TwoD   = array[OneD];

% transpose
function Loop23( n:integer; ZAin,ZB:TwoD;
                ZR,ZU,ZV,ZZ:TwoD returns TwoD )
  for initial
      j   := 1;
      ZAt := ZAin;
  while ( j < 6 ) repeat
      j := old j + 1;

      ZArc := for initial
k  := 1;
ZA := old ZAt[j,1];

              while ( k < n ) repeat
k := old k + 1;
QA := old ZAt[j+1,k] * ZR[j,k] + old ZAt[j-1,k] * ZB[j,k] +
      old ZAt[j,k+1] * ZU[j,k] + old ZA * ZV[j,k] +
      ZZ[j,k];
ZA := old ZAt[j,k] + 0.175d0 * (QA - old ZAt[j,k]);

      returns array of ZA
      end for;

      ZAt  := old ZAt[ j:array_addh( ZArc, old ZAt[j,n+1] ) ];
  returns value of ZAt
  end for
end function
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function Main(  rep,n:integer; ZAin,ZB:TwoD;
                ZR,ZU,ZV,ZZ:TwoD returns TwoD )
   for initial
       i := 1;
       ZA := ZAin;
   while ( i <= rep ) repeat
       i := old i + 1;
       ZA := Loop23( n, old ZA, ZB, ZR, ZU, ZV, ZZ );
   returns value of ZA
   end for
end function

% LOOP 24
% Find Location of First Minimum in Array
% Vectorizable on Alliant
% Parallel Algorithm

Define  Main

type double = double_real;
type OneD   = array[double];

function Loop24( n:integer; X:OneD returns integer )
  for initial
    max24 := 1;
    k := 2;
  while ( k <= n ) repeat
    k := old k + 1;
    max24 := if ( X[old k] < X[old max24] ) then

       old k
     else
       old max24
     end if;

  returns value of max24
  end for
end function

function Main( rep,n:integer; X:OneD returns integer )
   for i in 1, rep
      v1 := Loop24( n, X );
   returns value of v1
   end for
end function
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Appendix D
Simulation Result

Loop 1 - Hydrodynamic Fragment, n = 990
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Loop 2 - Incomplete Cholesky - Conjugate Gradient, n = 3
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Loop 3 - Inner Product, n = 1001
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Loop 4 - Banded Linear Equation, n = 35
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Loop 5 - Tri-Diagonal Elimination, n = 25
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Loop 6 - General Linear Recurrence Equations, n = 10
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Loop 6 - General Linear Recurrence Equations, n = 10
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Loop 7 - Equation of State Fragment, n = 995
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Loop 8 - D. I. Integration, n = 100
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Loop 9 - Integrate Predictors, n = 101

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Level #

#
 o

f 
A

rc
s

Incoming

Outgoing

Loop 9 - Integrate Predictors, n = 101

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Clock #

P
a

ra
ll

e
li

s
m



76

Loop 10 - Difference Predictors, n = 101

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Level #

#
 o

f 
A

rc
s

Incoming

Outgoing

Loop 10 - Difference Predictors, n = 101

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Clock #

P
a

ra
ll

e
li

s
m



77

Loop 11 - First Sum, n = 25
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Loop 12 - First Difference, n = 1000
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Loop 13 - 2-D Particle in Cell, n = 3
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Loop 15 - Casual Fortran, n = 101

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Level #

#
 o

f 
A

rc
s

Incoming

Outgoing

Loop 15 - Casual Fortran, n = 101

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Clock #

P
a

ra
ll

e
li

s
m



81

Loop 19 - General Linear Recurrence Equation, n = 5
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Loop 20 - Discrete Ordinates Transport, n = 5
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Loop 21 - Matrix Multiplication, n = 10
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Loop 22 - Planckian Distribution, n = 101
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Loop 24 - Location of First Minimum, n = 10
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Appendix E
Source Code and Executable Programs

The IF1 compiler, viewer, and parallelism analysis tools consist of approximately

10,000 lines of source code. Due to large size, the source code was not included in this

thesis. The source code and the executable programs for both Microsoft Windows version

and X Windows version may be obtained by contacting Dr. Mitchell A. Thornton.

Dr. Mitchell A. Thornton

Department of Computer System Engineering

313 Engineering Hall

University of Arkansas

Fayetteville, AR 72703

E-mail: mat1@engr.uark.edu


