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A new method for the detection of ransomware in an infected host during the initiation

of its payload execution is proposed and evaluated. Data streams from on-board sensors

present in modern computing systems are monitored and appropriate criteria are used that

enable the sensor data to effectively detect the presence of ransomware infections. Encryp-

tion detection depends upon the use of small yet distinguishable changes in the physical state

of a system as reported through on-board sensor readings. A feature vector is formulated

consisting of various sensor outputs that is coupled with a detection criteria for the binary

states of ransomware present versus normal operation. An advantage of this approach is

that previously unknown or zero-day versions of ransomware are vulnerable to this detection

method since no a priori knowledge of the malware, such as a data signature, is required for

this method to be deployed and used. Experimental results from a system which underwent

testing with 18 different test configurations comprised of different simulated system loads

unknown to the model and different AES encryption methods used during a simulated ran-

somware attack showed an average precision of 95.27% and an average false positive rate of

1.57% for predictions made once every second about the state of the system under test.
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Chapter 1

INTRODUCTION

1.1. What is Ransomware

Malware is a term that is used to refer to malicious software and is used to refer to all

forms of software that can be used to compromise computer functions. This compromise

causes harm to the victim computer and ultimately to the user or owner of the host com-

puter. There are a large variety of types of malware including, viruses, worms, adware,

bots, rootkits, spyware, trojans, and the primary subject of this investigation, ransomware.

Ransomware is a form of malware that holds a victim’s computer system files hostage while

demanding a ransom to release access to those files back to their legitimate owner.

A typical ransomware attack scenario involves infection of victim computer through pene-

tration of an attack vector whereby the malware resulting from the attack contains a payload

that, unbeknownst to the victim, engages in rendering important files as unusable, through

their encryption with a key that is unknown to the victim. Upon completion of the initial

silent encryption phase, the original unencrypted files are deleted and the victim is alerted

that their files are now inaccessible and will remain so until a ransom is paid. It is also

often the case, that the attacker will demand ransom within some time period or otherwise

the encryption key will be destroyed resulting in permanent loss of the victims data. Figure

1.1 contains a high-level diagram of the chain of events characterizing a typical ransomware

attack from the point of view of the adversary.

The largest ransomware attack in history, WannaCry, occurred in May 2017 with 230,000

computers in over 150 countries being infected within a few days. The spread of WannaCry

was only halted by a web researcher in England who found a ”kill-switch” which was engaged

by registering a domain name found in the code [4]. Just one month later, in June 2017, a
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Figure 1.1. Typical Ransomware Attack

ransomware attack known as Petya infected around 16,500 computers globally. One reported

instance of the Petya attack requested 100 bitcoins, or about $250,000 dollars, in order to

provide the key for decryption [7]. The increase in ransomware attacks has also come with

decreased infection times as attackers create new and better methods of file encryption.

Testing performed by the cybersecurity company Barkley shows that many ransomware

variants complete their encryption phase in under one minute. For instance, Petya finished

encryption in 27 seconds and was still slower than Chimera which finished in only 18 seconds.

Barkley found that 54% of attacks notified the victim of the ransom within one hour of

infection [10]. More detailed information about well-known versions of ransomware, including

how they infect computers can be found in [1], [29] and [41].

1.2. How Do Ransomware Attacks Occur

Ransomware attacks can occur through a variety of means. As a more specific example,

a common attack vector is the use of email spear phishing where a victim receives an email

message that somehow causes the victim to click on an embedded link to a webpage that,

in turn, causes the victims browser to display the adversaries webpage to lure the victim

into downloading the malware. This malware could be present as a macro contained within

an Office document or some other executable. Once the executable is run, it proceeds to

encrypt the victims local files in a silent mode and upon completion of the encryption, it

then notifies the user that their files are now inaccessible due to the encryption. Next, the

exploitation of the victim occurs through a demand of payment. The typical form of ransom

payment is through an anonymous transfer of non-traceable funds through the darkweb using

electronic currency such as bitcoin. The victim is promised that, if the ransom is received
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within a prescribed timeframe, the key will be delivered allowing their encrypted files to be

decrypted. While this example scenario is based upon the premise of email phishing as the

attack vector penetration method, other means for delivering the malware payload are also

possible as well as other varieties of payload activity, victim exploitation, and vulnerability.

1.3. Current Defense Against Ransomware

Effective defense against a ransomware attack is generally considered to comprise a multi-

tiered or layered approach [26]. Detection of the malware during the time it is being down-

loaded to the victim computer is the outer defense, and if possible, can prevent the ran-

somware from ever entering the system. This defense approach targets prevention of the

attack vector from ever penetrating a victims host computer. Packet signature monitoring

via an intrusion detection system (IDS) or file signature monitoring via a local antivirus

software program can provide this capability, but only if these methods are capable of rec-

ognizing the malware through knowledge of the data signatures. While this is a desirable

defense, it is notoriously difficult to prevent infection with previously unknown ransomware

versions, or so-called zero-day attacks. In the case of zero-day ransomware, data signatures

and other corresponding characteristics are unknown by definition. Furthermore, the in-

creasing presence of polymorphic malware is causing signature-based approaches to become

less effective than they once were.

If malware penetration is not prevented and the malware manages to be downloaded

to the victim machine, the next line of defense is to detect its presence and halt its oper-

ation before or at least during the initial stages of victim host file encryption. Recently,

an approach has been developed that performs payload detection through monitoring the

integrity of victim host file system [37]. This method provides several metrics and indicators

that are used to detect the presence of data files that are in the process of being encrypted.

One of these metrics is the use of information entropy calculations. Information entropy is

a single-valued metric that indicates when a data set has less structure, determinism, and

redundancy. The idea underlying the use of an entropy metric is that an encrypted file is one
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that closely resembles a file of random data. This is due to the side effect that encryption

generally produces data that appear to be random in order to prevent unauthorized decryp-

tion through the exploitation of determinism or redundancy in the encrypted file. Therefore

an increase in entropy for a given file indicates the high likelihood that the file is being

encrypted.

1.4. Utilizing Sensors for Ransomware Detection

Instead of monitoring file system attributes, the victim host system behavior is mon-

itored by taking advantage of the increasingly large number of onboard sensors. In this

sense, this new method uses a physical side channel approach where the victims files are

not directly monitored, rather the behavior of the victim machine is monitored and onboard

sensor provided data is used as side channel information that can indicate when an encryp-

tion operation is occurring. This monitoring can be accomplished through a background

process that is loaded at boot time and thus continuously monitors the system for suspicious

behavior. Once this suspicious behavior is detected, the user can be alerted and the suspi-

cious processes can be suspended. The central difference between this approach and other

previous approaches is that this approach uses secondary effects to detect the presence of

malware rather than a direct effect, such as measuring increases in file entropy.

Another recent approach for malware detection involves using embedded hardware perfor-

mance counters that are present in most modern CPU architectures [14] [39]. This approach

uses machine learning to create detection models that monitor minor variations in malware

execution characteristics. This new approach differs from the use of hardware performance

counters in that it uses data being supplied from the suite of embedded sensors that are

also present in modern computing platforms rather than performance counter data. Fur-

thermore, this approach is designed to specifically detect ransomware since ransomware uses

encryption to enable the victims data files to be held hostage, and hence, allows them to be

recoverable when a ransom is supplied in exchange for the decryption key. This approach

uses data sources that are secondary to malware execution patterns and it does not rely
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upon the presence of performance counters. By targeting a specific class of malware, namely

ransomware using encryption in the payload, we can achieve high detection accuracy rates.

It is proposed that this new sensor-based detection methodology be used to complement

more traditional signature-based approaches that are intended to prevent attack vector pen-

etration. In contrast to prevention of attack vector penetration, the technique described here

is designed to detect the presence of ransomware when penetration has been achieved. The

side channel-based or sensor-based approach has an advantage in comparison to antivirus

or IDS systems in that zero-day versions of ransomware can be detected since previously

captured malware signatures are not required. Furthermore, it is not necessary to monitor

individual files and calculate entropy or other metrics that must be continually re-computed

and compared with one another as is the case in the solution provided in [37].

An experimental prototype system based on sensor monitoring has been implemented and

tested through the use of a variety of scenarios where simulated ransomware is undergoing

the silent phase of encrypting victim files. To evaluate this method, five different encryption

methods were used from the Python Cryptography Toolkit that have been reported to be

commonly used by adversaries during the development of ransomware [6]. Experimental

results from a system which underwent testing with 18 different test configurations comprised

of different simulated system loads unknown to the model and different AES encryption

methods used during a simulated ransomware attack showed an average precision of 95.27%

and an average false positive rate of 1.57% for predictions made once every second about

the state of the system under test.
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Chapter 2

BACKGROUND

2.1. Physical Sensors

Most modern computer systems are comprised of sensors that monitor the state of internal

hardware components. These sensors continuously gather and supply information that is

communicated with other devices and subsystems within the system for the intended purpose

of ensuring that the system stays within specific operating specifications. If sensor data

reveals that a system component is approaching a boundary for a recommended value of an

operational specification, safety mechanisms will typically be engaged in order to correct the

internal environment so that system malfunctions can be prevented. For example, when the

data from a temperature sensor of a computers central processing unit begins to increase, a

signal is sent to the CPU cooling fan. This signal causes the fan to either become active or to

increase the fan speed in order to cool the CPU. Additionally, there are sensors that provide

input to other subsystems such as internal power management units, PMUs, to conserve

power usage.

Figure 2.1. Computer Sensor Network
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Typically, computer system components are designed to be compact in size through the

use of transistors with feature sizing in the nanometer scale. As a direct result, whenever

computations become more complex, more stress in placed on a computers hardware compo-

nents. This increased stress occurs because a large number of transistors are simultaneously

switching in a circuit that correspondingly cause an increase in dynamic power consumption

resulting in more heat dissipation during heavy computational activity. Thus, monitoring

the side channels of a system with embedded sensors that measure temperature, power con-

sumption, and battery voltage levels can give insight into the type of processing that is

underway on a computer at a given time. With this thought in mind, it is hypothesized that

monitoring a computers side channels through periodic observations of sensor output data

could also indicate when a resource-heavy task, such as encryption, is occurring. Since ran-

somware utilizes encryption in its payload to deny its victims access to their files, analyzing

data from a computers side channel sensor data could allow trends to emerge in regard to

how a computer behaves while under ransomware attack.

A significant advantage of this approach as compared to other side channel methods is

that the sensors and a means for querying them are natively provided. Thus there are fewer

concerns in deploying and accessing sensors for the purpose of side channel exploitation.

Furthermore, the trend has been that an increasingly diverse number of sensors are provided

as integral components in modern computing devices. A typical smart phone has many

embedded sensors that could be used to support security applications including power mon-

itors, accelerometers, ambient light sensors, antennas (including GPS receivers), fingerprint

scanners, barometers, cameras, touchpad pressure sensors, and others. Even rack-mounted

industrial servers contain a significant number of sensors that measure subsystem power

consumption, temperature, and other environmental factors. All of these deployed sensors

in modern computing devices provide a rich set of data sources that may be used to pro-

vide internal side-channel information for the environment in which a computing device is

operating. Sensors have been used in other security-related applications in the past. As an

example, in [2], sensors present in mobile computing devices have been used to provide a
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user demographic classification capability for mobile devices with embedded touchscreens.

2.2. Machine Learning and Statistical Concepts

In the investigation reported here, prediction models were created using machine learning

(ML) algorithms. Models are trained using a large amount of data gathered and processed

from an experimental environment. It is hypothesized that the sensor data can be used

to form a feature vector that differentiates between the binary machine states of normal

operation versus ransomware payload execution (i.e., unauthorized encryption activity). The

model is trained to weigh the feature vector components with a goal of predicting the machine

state with high accuracy. For the implementation described here, several different prediction

models are tested which each implement different machine learning algorithms wherein the

goal is to discriminate between the binary states of normal operation versus ransomware

payload execution.

Figure 2.2. Basic Machine Learning Process Flow

The general process for implementing machine learning is displayed in figure 2.2. First,

training data is collected which is comprised of independent variable values, and may or

may not contain dependent variable values or class membership labels. Machine learning

algorithms are applied to the training data which process and fit the training data into a

regression or classification model. Once the model is generated, new data is provided which

is comprised of values for the same independent variables found in the training data. The

machine learning model processes the new input data and provides a real valued prediction
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for regression or a class membership label for classification.

2.2.1. Moving Average

Moving average is a calculation to analyze data points by creating a series of averages

of different subsets of the full data. One of the most common uses of moving averages

is to smooth out short-term changes and emphasize long-term trends in time series data.

The simple moving average (SMA) is the simplest implementation of moving average which

utilizes the unweighted mean of the previous n data points.

SMAM =
pM + pM−1 + ...+ pM−(n−1 )

n

Weighted moving average (WMA) gives different weights to data at different positions

in the sample window. WMA allows more recent data to have more impact than previously

seen data [15].

WMAM =
npM + (n − 1 )p(M−1 ) + ...+ 2p(M−n+2 ) + p(M−n+1 )

n + (n − 1 ) + ...+ 2 + 1

Moving averages are useful when dealing with real time prediction models such as the

ones used with sensor data. If a prediction model has been making false predictions for

an extended period of time it will take multiple true predictions before the moving average

becomes true. Utilizing a moving average may slow the response in reporting real attacks, or

true positive predictions. However, the reduction in incorrect attack reports, or false positive

predictions, is likely to have more of a positive impact on the prediction accuracy. Moving

averages allow the tradeoff between responsiveness and accuracy to be easily adjusted by a

user through increasing or decreasing the window size.

2.2.2. Supervised Learning

Supervised learning consists of training data with a set of labeled training examples.

Each example is a pair consisting of an input object and an output object. The input object
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is the feature vector which is a set of independent measurable properties. The output value is

the supervisory signal which is the dependent variable that is being predicted by the feature

vector. The supervised learning model generates an inferred function which is used to predict

unseen feature vectors. The goal of supervised learning is to make a model from the labeled

training set which can accurately predict the class membership of previously unseen feature

vectors [27].

2.2.3. Unsupervised Learning

Unsupervised learning consists of determining the hidden structure from a set of unlabeled

training data. Each example contains only an input object, or the feature vector, which

is a set of independent measurable properties. Unsupervised learning algorithms, such as

clustering, attempt to find patterns in the unlabeled data. Clustering creates groups, or

clusters, based on the discovered similarities in provided training data. New features vectors

can then be introduced into the model and assigned a cluster. This method of grouping

similar data may offer insight into useful patterns and relationships which were previously

unknown [27].

2.2.4. Model Fitting

Training data is used to fit a prediction model by exploiting relationships between the

features. The model should display a high level of accuracy when predicting the same data it

was trained with. However, it may be the case that a model is simply unable to capture the

relationship between the features in the training data. The model is said to be underfitting

when it is unable to perform well with the same data it was trained with. Often underfitting

is the product of an oversimplified approach. Conversely, models may be fitted such that they

almost perfectly predict the original training data they were presented with, but perform

very poorly when presented with new and unseen data. The model is said to be overfitting

in this situation. Overfitting is often the product of extreme complexity in an effort to

correctly model the original training data. Such complexity can result in highly similar test
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data being incorrectly predicted as it isn’t perfectly in line with the trends displayed in the

training data. Overfitted models essentially ”memorize” the training data and offer very

little in the way of predictive value for unseen data. Correctly fitting a predictive model

involves finding the right balance of complexity which results in relatively high performance

with the original training data and also with previously unseen data which is similar [27].

Figure 2.3. Predictive Model Fitting

2.2.5. Dimensionality Reduction

Dimensionality Reduction is the process of reducing the number of independent variables

under consideration by obtaining a set of principal variables. Generally, dimensionality re-

duction is divided into feature selection and feature extraction. Feature selection attempts to

find the optimal subset of the original independent variables. Feature extraction transforms

the data in the high-dimensional space to a space with fewer dimensions. Dimensionality

reduction is advantageous as it reduces the time and storage space requirements, removes

multi-collinearity improving the performance of the prediction model, and allows for easier

data visualization [23].

2.2.6. Hyperparameters

Hyperparameters are the machine learning algorithm parameters which must be set prior

to the learning process. When utilizing machine learning algorithms it is often the case that

hyperparameter tuning and optimization is implemented to improve the performance of the

11



algorithm and reduce overfitting. However, the process of optimization can be expensive

both in terms of time and computational resources. When tuning hyperparameters a new

prediction model must be generated each time a change is made as changes must occur prior

to the learning process. For this reason hyperparameter tuning and optimization should only

be carried out on algorithms which have shown the greatest promise for a given problem [18].

2.2.7. Regression

Regression is a method of generating predictions based on the relationship between a set

of independent variables, also known as explanatory variables, and one or more dependent

variables, also known as the response variable or variables. Regression analysis attempts to

model how the dependent variables change when each of the independent variables is changed

and the other independent variables remain fixed. The product of regression analysis is a

regression function which is comprised of coefficients for each independent variable. Each

coefficient represents the mean change in the dependent variable for one unit of change in

the independent variable while holding all other independent variables in the model con-

stant. Once the regression equation has been found a feature vector of unseen independent

variables can be used to make a prediction for the value of the dependent variable. This is

accomplished by multiplying each independent variable measurement by its respective coef-

ficient and adding all of the products together. The resulting prediction value through the

use of regression analysis is a real valued number [33].

2.2.8. Classification

Classification is a statistical method of identifying which category an observation belongs

based on previously seen training data which contains observations with known category

membership. Classification, as it pertains to the application of sensor based prediction, will

receive a vector of sensor readings from a system. The sensor vector will be used to determine

which category the system currently falls under based on a prediction model. Prediction

models can be created using supervised training data which contains many different sensor
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vectors and their known category membership. Categories can number as few as two and as

many as seen fit to serve the purpose of the application. Therefore, in order for classification

to be a useful tool in predicting the state of a system an appropriate machine learning

algorithm must be selected, a proper number of categories must be defined, and training

data must be collected in a scientific and controlled manner. For the purposes of classifying

sensor vectors three different methods of classification will be used. Binary classification,

which predicts whether a sensor vector is a member of one of two different categories [33].

Figure 2.4. Binary Classification Prediction Model

Multiclass classification, which predicts whether a sensor vector is a member of one of

three or more different categories.

Figure 2.5. Multiclass Classification Prediction Model

Ensemble classification, which utilizes two or more different classification models and

determines a single class membership. The final classification prediction is determined by

a decision method which accounts for all the individual classification predictions of the

prediction models.

2.2.9. Clustering

Clustering is used in unsupervised learning in order to find a structure in a collection of

unlabeled data. Clusters can be determined based on a similarity criterion such as distance.
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Figure 2.6. Ensemble Classification Prediction Model

In the case of distance multiple objects that are close to one another will naturally form

a cluster. Clusters can also be conceptual where clusters are formed based on a common

concept among a group of objects. In conceptual clustering, groupings are made according to

descriptive concepts rather than simple similarity measures. The ultimate goal of clustering

is to determine the intrinsic grouping in the unlabeled data in order to find useful and

unusual data [21].

Clustering can be accomplished using several different types of algorithms. Hierarchical

clustering is based on the idea that objects located closer to each other are more related

than objects located farther apart from each other. Hierarchical algorithms do not generate

a single partition and instead generate a hierarchy from which the user still must choose

appropriate clusters. Another method of clustering is K-means clustering. In K-means

clustering the number of clusters is fixed at k. For each of the k clusters a center point is

assigned which is known as the centroid. Each object is assigned to the cluster in which the

centroid is closer to the object than any other cluster’s centroid [21].

In figure 2.7 the data points are represented in a two-dimensional feature space. The two

features, both of which are sensor values, are the independent input. The data points are

unlabeled in that they have no known dependent variable value or class associated with them.

In the example the number of clusters is set to four resulting in three clusters containing seven

data points and the fourth only containing three. Each cluster could potentially represent a

system state which was previously unknown or unrecognized.

2.3. Encryption
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Figure 2.7. Two-Dimensional Clustering Example

Encryption is a process of encoding a message or information in a way that only autho-

rized parties can access it. The message prior to encryption is known as plaintext and the

message after encryption is known as ciphertext. Encryption relies on an encryption key

which is usually pseudo-randomly generated by an algorithm. While it is possible to decrypt

ciphertext without possessing the key, considerable computational resources and a high level

of knowledge about encryption schemes are required. Conversely, an authorized recipient

can easily decrypt the ciphertext as they possess the encryption key.

Generally, encryption falls into one of two categories, symmetric key or public key. Sym-

metric key schemes use the same key for both encryption and decryption. The sender and

the receiver must both possess the key prior to secure communication. Public key encryption

schemes allow anyone to access the encryption key which may be used to encrypt messages.

However, only the receiver has access to the decryption key which enables encrypted messages

to be read [5].

2.3.1. Advanced Encryption Standard
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Figure 2.8. Symmetric Key Encryption Scheme

Figure 2.9. Public Key Encryption Scheme

The Advanced Encryption Standard (AES) is a specification for the encryption of elec-

tronic data established by the United States National Institute of Standards and Technology

(NIST). The AES is a subset of the Rijndael cipher which is a family of block ciphers with

different key and block sizes. The AES is comprised of three members of the Rijndael fam-

ily which each have block sizes of 128 bits, but have three different key lengths (128, 192,

and 256 bits). AES utilizes a symmetric-key encryption scheme meaning the same key is

utilized for encryption and decryption. The United States federal government adopted AES

as its standard on May 26, 2002, and it has been approved by the National Security Agency

(NSA). Most notably, AES is publicly accessible which allows anyone to utilize the advanced

encryption algorithms. AES applies a design principle known as a substitution-permutation

network which is a combination of both substitution and permutation [13].

AES operates using a 4x4 column-major matrix of bytes which is called the state. De-

pending on the size of the key, transformation rounds are repeated a certain number of times

which converts the plaintext to ciphertext. Prior to the transformation rounds Rijndaels key

schedule is used to expand the key into several different keys called the round keys. If the

key is 128 bits 10 rounds are required, if the key is 192 bits 12 rounds are required, and if
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the key is 256 bits 14 rounds are required. During each round a number of transformations

are performed on the data. First, substitution of data is performed using a fixed 8-bit sub-

stitution table. Second, the data rows are shifted cyclically to the left. Third, each column

is multiplied with a fixed polynomial. Finally, a simple XOR operation is performed on each

column using a different part of the encryption key [28].

Figure 2.10 shows the Southern Methodist University logo after being encrypted with

a very simple 16-byte XOR encryption, which is not AES. This encryption scheme is the

easiest to implement as it simply performs the XOR operation 16 bytes at a time using a

16-byte key. It is easy to see that the original data on the left could easily be recovered from

the encrypted data on the right even without the encryption key.

Figure 2.10. XOR Encryption Comparison

The same image encrypted with the Electronic Codebook (ECB) encryption scheme is

shown in figure 2.11. ECB encryption is the simplest AES implementation as each block of

data is encrypted independently which does little to hide the original pattern of the data.

It would still be possible to recover the original data on the left from the encrypted data on

the right even without the encryption key.

Figure 2.11. Electronic Codebook (ECB) Encryption Comparison

17



However, more advanced AES implementations like Cipher-Block Chaining (CBC) use

techniques which result in encryption that is nearly impossible to recover without the en-

cryption key and a block of bits used to randomize encryption known as the initialization

vector. CBC encrypts each block such that it is dependent on the blocks ahead of it. This

dependency results in equivalent plaintext blocks becoming different ciphertext blocks which

hides the original data pattern as illustrated in figure 2.12.

Figure 2.12. Cipher-Block Chain (CBC) Encryption Comparison

There are several AES implementations which result in very sophisticated encryption.

Cipher Feedback (CFB) utilizes similar techniques as the ones implemented in CBC to make

the block cipher into a self-synchronizing stream cipher. Without the encryption key and

the initialization vector recovery of the original data on the left from the encrypted data on

the right is almost impossible as can be seen in figure 2.13.

Figure 2.13. Cipher Feedback (CFB) Encryption Comparison

Finally, Output Feedback (OFB) mode makes a block cipher into a synchronous stream

cipher by generating keystream blocks which are XORed with the plaintext blocks to make

the cipher text. Similar to CBC and CFB, OFB mode block cipher operation depends on all

the previous blocks which makes equivalent plaintext blocks into different ciphertext hiding

the data pattern as illustrated in figure 2.14.
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Figure 2.14. Output Feedback (OFB) Encryption Comparison

AES is a popular choice for the encryption stage of ransomware due to its high level

of security, lack of known attacks, and wide availability. Many high level packages exist

which allow attackers with limited knowledge of encryption to carry out very sophisticated

encryption with only a few lines of code. One popular method of encryption is to encrypt a

victims files with AES and store the encryption key locally. However, the AES encryption

key is encrypted with a separately generated public key. When the victim pays the ransom

the attacker releases the private key which decrypts the AES encryption key stored on the

victims own computer. It is likely that attackers would implement CBC, CFB, or OFB

encryption mode as they are the least likely to be decrypted without the encryption key.

However, it is still useful to test simpler methods like ECB and XOR as well due to simple

IOT devices likely being encrypted with lightweight encryption methods.

‘
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Chapter 3

APPROACH

3.1. Preprocessing

3.1.1. Feature Standardization

Feature standardization is the process of setting each feature of the data to have zero-

mean and unit-variance.

X ′ =
X −

∑
X

N√∑
(X−X̄ )2

N

=
X −Mean(X )

Standard Deviation(X )

Every sample of a feature has the mean value of the feature subtracted from it after

which it is divided by the standard deviation of the feature. This causes the mean of each

feature to be 0 with a standard deviation of 1. It is important to distinguish that feature

standardization operates on individual feature columns of a data set [32].

3.1.2. Data Normalization

Data normalization is the process of rescaling each data instance independently such that

the L1 or L2 norm is equal to one.

L1 =
n∑

i=1

|yi − f (xi)| L2 =
n∑

i=1

(yi − f (xi))
2

Scaling the inputs to one, or unit norms, is a common operation when using classifica-

tion and clustering machine learning algorithms. It is important to distinguish that data

normalization operates on the rows of a data set which represent individual data sets of

independent variable values [32].
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3.1.3. Feature Min-Max Scaling

Feature min-max scaling is a method used to standardize the range of the independent

variables or features.

X ′ =
X −Min(X )

Max (X )−Min(X )

Min-max scaling places all data on the same scale, usually 0 to 1, which in turn allows

machine learning algorithms to weigh each feature equally. The standard deviations of the

features tend to be smaller with min-max scaling which can suppress the effect of outliers.

It is important to distinguish that min-max scaling operates on individual feature columns

of a data set [32].

3.1.4. Principal Component Analysis

Principal Component Analysis is a statistical technique utilized to transform a large

number of variables, which are possibly correlated, into a smaller number of linearly uncor-

related variables which are then called principal components. Reducing the data set from a

large number of variables to a small number of principal components often allows a user to

find trends and patterns which may have otherwise not been found [17]. The main goals of

Principal Component Analysis are to extract the most important information from a data

set, reduce the size of the data by only keeping the most significant information, simplify the

description of the data set, and analyze the structure of the observations and variables [35].

The variables in the data set are first standardized so they all utilize the same scale. The

covariance matrix is calculated for each variable pairing. The covariance of two variables

describes how the two variables move together. When two variables tend to fluctuate in

the same manner where their highest values and lowest values fall at the same points they

show a positive covariance. Conversely, when the fluctuation of one variable is opposite of

another variable where its highest values tend to occur at the other variables lowest values

and its lowest values occur at the other variables highest values the variables display a
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negative covariance. Eigenvalues and eigenvectors are found utilizing the covariance matrix.

The eigenvectors indicate the direction of the principal components thus the original data

is multiplied by the eigenvectors to reorient the data onto new axes transforming the data

according to the principal components [3].

3.1.5. Feature Selection

Feature selection involves selecting a subset of variables for use in predictive model con-

struction. Feature selection is generally performed in order to decrease the number of features

in order to reduce overfitting of the predictive model. Univariate feature selection determines

the strength of each individual feature with respect to the response variable. The strongest

features are kept for use in constructing the predictive model while the weaker features

are discarded. In this way the complexity of the predictive model is reduced and only the

strongest variables are used for predictions [34].

Univariate feature selection can be accomplished using several different methods. The

simplest method is the Pearson correlation coefficient which is used to measure linear corre-

lation between two variables. Pearson correlation coefficients range between -1 and 1 with

-1 being perfect negative correlation, 1 being perfect positive correlation, and 0 being no

correlation. The resulting value is found by dividing the covariance of the two variables

by the product of their standard deviations. The Pearson correlation coefficient is found

for each variable and the response variable. The resulting values are ranked based on their

absolute value. Either the top N features are selected or a threshold value is set where only

the variables with Pearson correlation coefficient values over the threshold are selected [34].

3.2. Machine Learning Algorithms

The ”no free lunch” (NFL) theorem, when applied to machine learning, explains that

when no assumptions are made about the data then there is no reason to prefer one algorithm

over any other. In other words there is no algorithm which is a priori guaranteed to work

better than all the rest. It is only possible to determine which algorithm is best by testing
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a wide range of algorithms [18]. In this experiment regression, classification, and clustering

machine learning algorithms are tested to determine which one most accurately predicts

ransomware attacks given sensor training data.

3.2.1. Regression

3.2.1.1. Linear Regression

Linear regression is a statistical method for modeling the relationship between scalar

dependent variables and one or more independent variables. The relationship between the

dependent and independent variables is modeled using linear predictor functions in which the

unknown model parameters are estimated from the data. Linear regression models are most

often fitted with the least squares approach which attempts to approximate the solution of

a set of equations in which there are more equations than unknowns [9].

Given a data set which contains a dependent variable, y, and a vector of regressors, xi,

linear regression will assume the relationship is linear. Mathematically the model can be

expressed as follows:

y = β0 + β1x0 + β2x1 + . . .+ βp+1xp + εi

In the above equation y can be labeled the regressand, response variable, or dependent

variable. The variable is modeled based on the presumption that the value is directly in-

fluenced by the other variables. The vector of independent variables, xi, can be labeled the

regressors, explanatory variables, or predictor variables. The vector of parameters, βi, can

be labeled the effects or regression coefficients. The first regression coefficient, β0, is the con-

stant offset term after which each element corresponds to a regressor variable. The regression

coefficients are the concentration of linear regression and each element can be interpreted as

the partial derivative of the regressand with respect to the corresponding regressor. These

coefficients are generated from provided training data, prior to making any predictions, in

a process which is beyond the scope of this experiment. Finally, the εi term is known as

the disturbance term which is an unobserved random variable that adds noise to the linear
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relationship between the regressand and the regressors. The disturbance term represents all

other factors which influence the regressand other than the regressors [16].

Once the model has been fitted and all parameters have been found, predictions in real

time are easily accomplished. A vector of regressor values is used as the input and each

element is placed in its respective position within the equation. Each coefficient and regressor

pair is multiplied and all the product terms in the equation are added together. The result

is a real valued prediction for the regressand variable with respect to the regressor vector

that was input.

3.2.1.2. Logistic Regression

Logistic regression is a statistical method for modeling the relationship between a binary

dependent variable and one or more independent variables. Logistic regression utilizes a

binary logistic model which estimates the probability of a binary response based on one

or more regressor variables. Logistic regression is used to represent situations in which the

dependent variable can have only two possible outcomes. It is useful when making predictions

of pass/fail, win/lose, or any other binary relationship. Logistic regression predicts the odds

of the outcome being true based on a vector of regressor variable values. The odds are defined

as the probability that an outcome is true divided by the probability that the outcome is

false.

Logistic regression can be viewed as a special case of linear regression. However, logistic

regression makes different assumptions about the relationship between the dependent vari-

able and the independent variables. In logistic regression the conditional distribution is a

Bernoulli distribution rather than a Gaussian distribution due to the dependent variable

being binary. Additionally, the values being predicted are probabilities and are therefore

restricted to a range between 0 and 1. The restriction in range occurs through the logistic

distribution function [17].

The logistic function is used in logistic regression for taking any real input, t, and always

outputting between 0 and 1.
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σ(t) = et

et+1
= 1

1+e−t

Figure 3.1. Logistic Function Output

The graph in figure 3.1 shows the outputs of the logistic function from -10 to 10. It can

clearly be seen that there is an asymptotic boundary at both y=0 and y=1. It is important

to note that once the value of t is greater than 5 it will be very close to an output of 1.

Conversely, once the value of t is less than -5 it will be very close to an output of 0.

The function for performing linear regression was previously established.

y = β0 + β1x0 + β2x1 + . . .+ βp+1xp + εi

Utilizing this linear function with the logistic function, the function for determining the

probability of success with logistic regression, F, can be found.

F (x) = 1
1+e−x

= 1

1+e−(β0+β1x0+β2x1+...+βp+1xp+εi)

The input to the function, x, is a linear combination of multiple regressor variable values.

The output of the function can be interpreted as the probability of the dependent variable

equaling a success. The odds function can then be found by taking the logistic function and

dividing it by its complement. The result can be reduced so that it can be represented as e

raised to the power of the linear regression function.

ODDS (x) = F (x)
1−F (x)

=
1

1+e−x

1− 1
1+e−x

=
1

1+e−x
e−x

1+e−x
= 1

e−x
= ex = e(β0+β1x0+β2x1+...+βp+1xp+εi)
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When the odds ratio is greater than 1 the relationship is positive and a prediction of

true is most likely to be made. Odds ratio values often exceed 1 which can be interpreted

as the strength of the positive relationship where higher values indicated a greater strength.

Conversely, odds ratio values that are less than 1 indicate a negative relationship in which

case a prediction of false is most likely to be made. The strength of the negative relationship

is stronger the closer the odds ratio value is to 0.

3.2.2. Classification

3.2.2.1. Decision Tree Classification

Decision tree classification utilizes a decision tree structure to make predictions about

the class membership of a vector of independent variable values. The decision tree contains

leaves which represent class labels and branches which represent conjunctions of features.

When presented with an input vector of independent variable values, classification occurs by

following the branches based on what the respective independent variable values are until a

terminal classification leaf is reached [35].

In figure 3.2 a decision tree has been created which predicts whether a student will go

to school on a given day based on four binary features. The first branch asks whether the

date in question is a weekend. If the date is a weekend the student is most likely not to go

to school. If the date in question is not a weekend the decision reaches a second branch. If

the date in question is a holiday the student will most likely not go to school. If the date is

not a holiday the decision reaches a third branch. If the student is not sick the student is

most likely to go to school. If the student is sick on the date in question a fourth branch is

reached. If there is a test on the date in which a student is sick they will still most likely

go to school. However, if there is not a test on a date in which a student is sick they will

mostly likely not go to school.

It can be easily seen that the quality of a decision tree classifier is determined by the

training data which is provided. Decision trees are not likely to predict outcomes accurately
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Figure 3.2. Decision Tree Classifier Example

if test data has not previously been seen in the training data. However, if the training data

contains all or most of the behavior which will be seen in the testing data it is likely that

the decision tree classifier will be very accurate.

3.2.2.2. K-Nearest Neighbor Classification

The k-nearest neighbor algorithm is a non-parametric pattern recognition method used

for classification. The algorithm utilizes an n-dimensional feature space where n is the

number of features, or independent variables, being utilized. The provided training data

is used to determine a classification prediction based on the k nearest training data points

to the input vector of feature values. The k nearest data points are polled for their class

membership and the class with the majority of neighbors becomes the prediction [3].

In figure 3.3 circles, triangles, and crosses can all be seen. Each of the shapes represents

a distinct class which has been plotted in a three-dimensional feature space based on the

training data. Generally, the circles are on the bottom, the crosses are in the middle, and
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Figure 3.3. Three Class K-Nearest Neighbor Classification Example

the triangles are on top. There is a large black dot representing a test vector of three feature

values. In this instance the 6 closest neighbors are found and polled. Within the sphere of

nearest neighbors are one circle, two triangles, and three crosses. Based on the k-nearest

neighbor algorithm, when k is equal to 6, the classification prediction for the test point will

be the same class as the data points represented by crosses.

The k-nearest neighbor algorithm can utilize several different distance metrics for deter-

mining the k-nearest neighbors. The most commonly used distance metric is the Euclidean

distance.

d(p, q) =
√

(p1 − q1 )2 + (p2 − q2 )2 + ...+ (pn − qn)2 =

√√√√ n∑
i=1

(pi − qi)2

3.2.2.3. One-Vs-One Classification

The one-vs-one algorithm is an ensemble classification algorithm which utilizes multiple
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binary classification models to determine class membership of an input vector. Every possible

pairing of classes has a binary classification model which is trained to distinguish between

the two classes and select the one which most closely matches an input vector. After each

classification model has made a prediction the class with the most selections is determined

to be the classification prediction [32].

Figure 3.4. Four Class One-Vs-One Classifier Example

In figure 3.4 there are four distinct classes (A, B, C, and D). There exists a prediction

model for each combination of classes. There are exactly three models which could result

in each distinct class. Each model is provided the input feature vector which consists of

independent variable values. The models are trained to determine whether the input vector

most closely matches one class or the other. All of the models provide their prediction after

analyzing the input feature vector. It can be seen that the class C was positively predicted

at each of its prediction models and therefore has the most positive predictions overall. Class

C having the most positive predictions makes the final prediction class C.

3.2.2.4. One-Vs-Rest Classification

The one-vs-rest, or one-vs-all, algorithm is an ensemble classification algorithm which

trains a binary classification model for each class. When the classification model for a class

is trained all samples which are labeled as members of that class are labeled positive and
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all samples which are not members of that class are labeled negative. Rather than the

individual classification models producing a classification prediction they instead produce a

real-valued confidence score. The classification model which reports the highest confidence

score is determined to be the prediction for the input vector [32].

Figure 3.5. Six Class One-Vs-Rest Classifier Example

In figure 3.5 there are six distinct classes (A, B, C, D, E, and F). There exists a separate

prediction model for all six classes. For a given model every training data point which

belongs to that class is labeled true and every training data point which does not belong to

that class is labeled false. Every prediction model is provided the same input feature vector.

After analysis each prediction model outputs a real valued confidence score which represents

how likely it is that the input feature vector belongs to that particular class. It can be seen

that the prediction model for class C provided a confidence score of 0.93 which is the largest

of all the models. Therefore, the final class prediction for the input feature vector is class C.

3.2.2.5. Support Vector Machines

Support vector machine (SVMs) are supervised learning models which are capable of per-

forming classification and regression analysis. SVMs, when provided with a labeled training

data set, attempt to find a hyperplane in the n-dimensional feature space which maximizes

the margin between two classes. Test data is classified based on which side of the classifica-

tion hyperplane it is on which makes SVMs a non-parametric binary linear classifier [11].
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Figure 3.6 shows a two-dimensional feature space with two distinct groups. The black

boxes are located in the bottom left while the white boxes are located in the top right. The

dotted line shows how a hyperplane can be found that best separates the two groups. If new

data points were added to the feature space they could easily be classified based on which

side of the hyperplane they were on, bottom left or top right.

Figure 3.6. Binary Support Vector Machine Classification Example

SVMs can also be used for multiclass classification using techniques such as the one-

vs-one classification technique. In the one-vs-one classification technique an SVM will be

created for each class pairing. The hyperplane will be found for each SVM which optimally

separates the two classes. The class with the most positive predictions among all the SVM

models will be the final classification prediction.

3.2.2.6. Naive Bayes Classification

Naive Bayes is a supervised learning algorithm which utilizes Bayes Theorem and poste-

rior probability. Posterior probability is the probability of the parameter θ given the evidence

X and is expressed as p(θ|X).
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p(c|x ) =
p(x |c)p(c)

p(x )

In the above equation p(c|x) is the posterior probability of the class c given the predictor

feature x. The class c prior probability is represented by p(c) and the prior probability of

the predictor feature x is represented by p(x). The posterior probability of the predictor x

given the class c is represented by p(x|c). Naive Bayes operates under the assumption that

features are independent of one another.

The naive Bayes model is a conditional probability model. When an input vector is

provided with n different independent variable values, the naive Bayes model assigns prob-

abilities for each of the k possible class predictions in Ck.

p(Ck |x1 , x2 , ..., xn)

Using Bayes theorem, the conditional probability can be decomposed as follows where

the variable x represents the vector of feature values.

p(Ck |x ) =
p(x |Ck)p(Ck)

p(x )

The numerator of the function is the focus of the model due to the fact that the de-

nominator does not depend on Ck and the feature vector, x, is essentially constant. The

numerator in the above equation is equivalent to the joint probability model.

p(Ck , x1 , x2 , ..., xn)

Utilizing the chain rule, the joint probability model can be rewritten.

p(Ck , x1 , x2 , ..., xn) = p(x1 |x2 , ..., xn ,Ck)p(x2 |x3 , ..., xn ,Ck)...p(xn−1 |xn ,Ck)p(xn |Ck)p(Ck)

Naive Bayes classification is naive due to the fact that each feature is considered condi-
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tionally independent of every other feature.

p(xi |Ck) = p(xi+1 , ..., xn ,Ck)

With the application of conditional independence of the features the joint probability

model can once again be rewritten.

p(Ck |x1 , ..., xn) = p(Ck)
n∏

i=1

p(xi |Ck)

Finally, by taking the above joint probability model and combining it with a decision

rule, the naive Bayes classification model can be constructed. The most common decision

rule is to select the class which has the highest posterior probability.

ŷ = max
k∈(1 ,...,K )

p(Ck)
n∏

i=1

p(xi |Ck)

Naive Bayes is a relatively fast classification technique which makes it ideal for real time

predictions, such as those being made in this experiment [34].

3.2.2.7. Multilayer Perceptron Classification

The multilayer perceptron (MLP) is a type of artificial neural network (ANN). ANNs

are a computing system inspired by biological neural networks that comprise organic brains.

They are a collection of connected units called artificial neurons which are equivalent to

axons in the biological brain. Each connection between neurons, or synapse, can transmit

a signal to another neuron. The neuron that receives the signal, or the postsynapse, can

process the signal and then signal downstream neurons connected to it. Each neuron may

have a real value, typically between 0 and 1, which is called the neurons state. Each neuron

and synapses may also have a weight that varies as learning proceeds, which can increase

or decrease the strength of the signal that it sends downstream. Additionally, neurons may

have a threshold such that the aggregate signal must be either above or below, depending

on the implementation, in order for the neuron to propagate the signal downstream [36].
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Figure 3.7. Basic Artificial Neuron

The basic neuron in figure 3.7 consists of weights which are multiplied by their respective

inputs. All of the weighted inputs are added together at the transfer function, or summing

junction, to create the net input. The net input is then subjected to the activation function

which is essentially a simple mapping of the net input to the output of the neuron. The

activation function governs the threshold at which the neuron is activated and controls the

strength of the output signal [36].

Typically, neural networks are organized in layers. The input layer is where patterns

are presented which communicate to one or more hidden layers. Hidden layers are where

the actual processing is done through a system of weighted connections. Finally, the hidden

layers link to the output layer where the final classification is provided. Generally, ANNs

contain some kind of learning rule which modifies the weights of the connections.

Figure 3.8. Simple Artificial Neural Network
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MLPs are a feedforward ANN. All nodes in the model, except for the input nodes,

use a nonlinear activation function. Training is supervised and utilizes a technique called

backpropagation. In backpropagation the errors propagate backwards from the output nodes

to the hidden nodes which are then used to calculate the gradient of the error of the network

with respect to the networks modifiable weights. The gradient is then used to find weights

that minimize the error, often using simple stochastic gradient descent algorithms. This

process allows MLPs to learn from training data as they are constructed [38].

While building and training the MLP may take longer than many of the other prediction

models, once the neural network has been constructed and trained it can easily be used for

predictions. Inputting a feature vector and performing a forward-pass allows the MLP to

generate an output prediction. The MLP can easily be stored for future use by saving the

network topology and the final set of weights.

3.2.2.8. Random Forest Classification

Random forest classification is an ensemble classification method which uses multiple

instances of a decision tree classifier. The algorithm gets the prediction from each of the

decision tree models and selects the mode as the final output prediction. Random forest

classification is useful in combating the tendency of decision trees to overfit based on the

provided training data. Decision trees that grow very deep have a tendency to learn highly

irregular patterns. Random forests average multiple deep decision trees which have been

trained on different parts of the same training set. The goal of the random forest is to

reduce the variance which comes at the expense of a small increase in the bias and some loss

of interpretability [21].

Figure 3.9 shows a small random forest which contains three separate decision diagrams.

The decision diagrams are each different due to their being trained with a different subset

of the training data. Each decision tree is provided the input feature vector and arrives at

a classification prediction. The mode of the classification predictions is provided as the final

classification prediction.
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Figure 3.9. Random Forest Classifier Example

3.2.2.9. Extra-Trees Classification

Extra-trees stands for extremely randomized trees or alternately extremely randomized

forest. The extra trees method works very similar to a random forest in that it is an ensemble

method which utilizes multiple decision trees. However, when splits are determined in the

decision trees the thresholds are drawn at random for each candidate feature and the best

randomly generated threshold is picked as the splitting rule. Usually this leads to a reduction

in the variance of the model over the random forest model at the cost of a slight increase in

the bias [19].

3.2.3. Clustering

3.2.3.1. K-Means Clustering

K-means clustering processes unlabeled training data and separates it into K different

clusters. Once the previously unlabeled data is assigned a cluster and cluster centers are

found new data points can be classified based on their proximity to the cluster centers.

This technique is known as nearest centroid classification. The problem is computationally

difficult (NP-hard), but different heuristic algorithms are capable of quickly converging to a

local optimum [24].

3.3. Performance Evaluation
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In order to determine which machine learning algorithms most accurately predict ran-

somware attacks, metrics must be established and utilized. The desired outcome of a pre-

diction is a binary state which when false represent ”normal operating state” and when true

represents ”under attack”. Therefore, basic binary classification metrics are the simplest

method for expressing the effectiveness of each machine learning algorithm. Furthermore, as

the predictions are made at set time intervals time series plots and metrics offer additional

insight into the effectiveness of each algorithm.

3.3.1. Cross Validation

Cross validation is a technique which assesses how accurately a predictive model will

perform when presented with an independent data set. In machine learning, a model is

given a set of known data which is used for training and a set of unknown data which is

used for testing. Cross validation is used in an attempt to test the model during the training

phase in order to avoid problems such as overfitting. Cross validation will be performed on

each algorithm prior to presenting them with the testing data in order to provide an initial

idea of each algorithms effectiveness [36].

3.3.1.1. Holdout Method

The holdout method separates a data set out into two separate sets. One set is the

training set and the other set is the testing set. The predictive model is fit with the training

data and then the testing data is used to assess the accuracy of the model. This method

is the simplest form of cross validation and offers some insight into how well the model

performs, but is susceptible to inaccurate results based on how well the data is divided.

Figure 3.10. Holdout Cross Validation Method
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3.3.1.2. K-Folding Method

The k-fold method divides a data set into k subsets where during one of k different trials

each subset of data will serve as the training data while the other k -1 subsets are combined

together to form the test data set. When working with a classifier, stratified k-fold cross

validation, where each fold contains roughly the same proportions of the class labels, is

generally preferred. The average error across all k trials is computed and used to assess

the accuracy of the model. This method relies less on how well the data is divided as each

subset acts as a training set exactly once and acts as part of the test set exactly k -1 times.

However, it is computationally expensive due to the fact that k trials must be run.

Figure 3.11. K-Fold Cross Validation Method

3.3.1.3. Leave-One-Out Method

The most extreme method of cross validation is the leave-one-out method. In this method

if there are N data points in a data set there will be N different trials. During each trial

a training data set is comprised of every data point except for one. The resulting model is

then used to make a prediction for the left out data point. The average error across all N

trials is used to evaluate the effectiveness of the model [38].

Figure 3.12. Leave-One-Out Cross Validation Method
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3.3.2. Binary Classification Metrics

Binary classification predictions can either be positive or negative. Additionally, pre-

dictions are either true or false. Classification predictions fall into one of four different

categories. True positive predictions are positive predictions that are correctly predicted,

and false positive predictions are positive predictions which are incorrectly predicted. True

negative predictions are negative predictions that are correctly predicted, and false negative

predictions are negative predictions which are incorrectly predicted. These four category

values are capable of generating metrics which express the effectiveness of a binary classifier.

Figure 3.13. Binary Classification Evaluation

In figure 3.13 all of the data points to the left of the diagonal line are positive and all

of the data points to the right of the diagonal line are negative. All data points which are

located inside of the circle have been positively predicted. Data which is to the left of the

line and in the circle is positive and positively predicted making them true positive. Data

which is left of the line and out of the circle is positive and negatively predicted making

them false negative. Data which is to the right of the line and in the circle is negative and

positively predicted making them false positive. Data which is right of the line and out of

the circle is negative and negatively predicted making them true negative.

In the context of this study regression, classification, and clustering machine learning

algorithms are each used to make a prediction about the binary ransomware attack status

of a system. True positive predictions equate to periods of attack which are correctly identi-
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fied as being under attack. False negative predictions equate to periods of attack which are

incorrectly identified as not being under attack. True negative predictions equate to periods

of no attack which are correctly identified as not being under attack. False positive predic-

tions equate to periods of no attack which are incorrectly identified as being under attack.

This study focuses mainly on the true positive and false positive predictions. Models which

predict a high rate of true positive predictions while maintaining a low rate of false positive

predictions are ideal. This would equate to a method which accurately flags instances of

ransomware attacks while minimizing flagging instances where no ransomware attack exists.

3.3.2.1. Sensitivity (Sen)

TP

TP + FN
=

TP

Positive Population

Sensitivity is also known as the true positive rate (TPR). This metric expresses the

ability of a binary prediction model to correctly identify as much positive conditioned data

as possible in a data set. Sensitivity alone is not a valid measure of a binary prediction

model’s effectiveness at positive prediction. Simply by predicting every instance as positive,

the model will achieve a sensitivity of 100%. Sensitivity must be weighed in conjunction

with a model’s ability to differentiate positive instances from negative instances, such as

precision.

In the context of this study sensitivity equates to the percentage of time intervals that

occurred during an attack which were correctly identified as being under attack. This is

one of the most important metrics as a high sensitivity means the ransomware attacks are

being caught and flagged. However, it is important to show that the model is not simply

predicting the system is always under attack in order to catch all instances.

3.3.2.2. Precision (Prec)

TP

TP + FP
=

TP

Predicted Condition Positive
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Precision is also known as the positive predictive value (PPV). This metric expresses

the ability of a binary prediction model to differentiate data of a positive condition from

that of a negative condition. Precision alone is not a valid measure of a binary prediction

model’s effectiveness at positive prediction. Precision can be very high by only positively

predicting instances with a very high confidence score. However, the model may miss a very

high number of positive instances which possess a lower, but still sufficient, confidence score.

Precision must be weighed in conjunction with a model’s ability to correctly predict the

largest number of positive instances in the data set, such as sensitivity.

In the context of this study precision equates to the percentage of time intervals that were

correctly predicted as being under attack out of all the time intervals which were predicted

as being under attack. High precision means the ransomware attacks are being caught and

flagged only at times when the system is actually under attack. However, it is important to

show that the model is not missing attacks by being too selective with positive predictions.

3.3.2.3. Specificity (Spec)

TN

TN + FP
=

TN

Negative Population

Specificity is also known as the true negative rate (TNR). This metric expresses the

ability of a binary prediction model to correctly identify as much negative conditioned data

as possible in a data set. Specificity alone is not a valid measure of a binary prediction

model’s effectiveness at negative prediction. Simply by predicting every instance is negative

the model will achieve a specificity of 100%. Specificity must be weighed in conjunction with

a model’s ability to correctly predict positive instances, such as the sensitivity value.

In the context of this study specificity equates to the percentage of time intervals that

occurred without an attack which were correctly identified as not being under attack. High

specificity means that periods of no attack are being correctly recognized. However, it is

important to show that the model is not simply predicting that the system is never under

attack in order to keep from issuing any false alarms.

41



3.3.2.4. Fallout (Fall)

FP

TN + FP
=

FP

Negative Population

Fallout is also known as the false positive rate (FPR). This metric expresses the rate at

which a binary prediction model incorrectly identifies negative conditioned data as positive

conditioned data. Fallout alone is not a valid measure of a binary prediction model’s ineffi-

ciency at positive prediction. Simply by predicting every instance is negative the model will

achieve a fallout of 0%. Fallout must be weighed in conjunction with a model’s ability to

correctly predict positive instances, such as the the sensitivity value.

In the context of this study fallout equates to the percentage of time intervals that

occurred without attacks which were incorrectly identified as being under attack. This is

one of the most important metrics as a low fallout means the periods of no attack are being

kept free from false alarms. However, it is important to show that the model is not simply

predicting the system is never under attack in order to keep from issuing any false alarms.

3.3.2.5. Accuracy (Acc)

TP + TN

TP + TN + FP + FN
=

TP + TN

Total Population

Accuracy is a metric which expresses the ability of a binary prediction model to correctly

identify as much data as possible in a data set. Accuracy may not always be a true repre-

sentation of the ability of the model to make correct classifications. For instance, if the data

set was negatively conditioned 95% of the time then always predicting negatively will results

in a high accuracy of 95%. However, the model has no predictive value as it is incapable

of making positive predictions. Accuracy should be weighed together with sensitivity and

specificity in order to show that both classes are being accurately predicted.

In the context of this study accuracy equates to the percentage of time intervals which

were correctly predicted as being under attack or not under attack. High accuracy means that
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the prediction model is correctly identifying the state of the system based on the provided

sensor data. However, it is important to ensure that the prediction model is not always

predicting the system is not under attack as attacks account for far less of the testing time.

3.3.2.6. F1 Score (F1)

2 ∗ 1
1

sensitivity + 1

Precision

The F1 score is an alternative measure of a binary classification model’s accuracy. Rather

than finding the percentage of true predictions over the total population of the data, the

harmonic mean of the precision and sensitivity are found. sensitivity measures the amount

of positive conditioned data correctly identified and precision measures the percentage of

positive predictions which were correct. Therefore, the F1 score weighs both the amount of

correct predictions and the predictive success of correct predictions in order to determine

the accuracy of the model.

In the context of this study the F1 score is a valuable measurement of the prediction

models ability to correctly predict as many intervals occurring during an attack while also

maintaining a high percentage of correct positive prediction. The F1 score, being a single

value, offers quick insight into the effectiveness of a prediction model.

3.3.2.7. Matthews Correlation Coefficient (MCC)

(TP ∗ TN )− (FP ∗ FN )√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

The Matthews correlation coefficient (MCC) takes into account true and false positives

and negatives and is generally regarded as a balanced measure which can be used even if

the classes are of very different sizes such as the data in this experiment. The MCC is

a correlation coefficient between the observed and predicted binary classifications. Values

range between -1 and +1. A coefficient of +1 represents a perfect predictor, 0 represents the
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same as random prediction, and -1 indicates total disagreement. The MCC is regarded as

being one of the best measures for describing the relationship between the four possible binary

classification outcomes in a single value. Thus, the MCC will be the most heavily weighed

metric in determining the optimal machine learning algorithm for the problem presented in

this experiment.

3.3.3. Time Series Metrics

3.3.3.1. Rate of Attack Recognition (RAR)

When testing, an actual attack time series exists which defines the actual time periods

during which there is an attack. Figure 3.14 displays an example time series plot with the

actual attack time series located on the far left. For each time interval occuring during

an attack in the actual attack time series, or every time interval after the rising edge and

before the falling edge, is checked in the corresponding prediction time series for positive

predictions. If a positive prediction exists then the attack instance is considered detected.

Ideally there should exist at least one positive prediction during each attack instance which

would result in a 1.0 or perfect rate of attack recognition. In the worst case scenario there

would exist no positive predictions during any attack instance which would result in a 0.

Unlike traditional binary classification metrics, such as sensitivity, rate of detection is not

concerned with the volume of correct positive predictions during an attack instance. Instead

it considers the application of the binary classifier in which one positive prediction would

perform the same as a high volume of positive predictions as the attack only has to be flagged

once. It should be noted that the rate of attack recognition will always be 1 if all predictions

are positive. Therefore, rate of attack recognition must be weighed in conjunction with a

binary classifiers ability to make correct positive predictions such as precision.

3.3.3.2. Mean Time to Attack Recognition (MTAR)

The rising edge of each attack instance in the actual attack time series represents the
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time interval at which the attack began. The first instance of a positive prediction at

or after the rising edge and before the falling edge in the corresponding prediction time

series represents the initial attack recognition. Ideally the rising edge itself would be a

positive prediction, but in practice it is more likely that the sensors would need a small

amount of time to reach the values at which positive prediction occurs. The number of

time intervals until the first positive prediction is recorded for every attack instance which

was successfully recognized. Afterwards all values are averaged to determine the mean time

to attack recognition. It should be noted that attack instances which were not successfully

recognized do not weigh negatively in this metric. Therefore, mean time to attack recognition

should be considered in conjunction with the rate of attack recognition to describe the

effectiveness of detecting attack instances both quickly and consistently. Furthermore, the

mean time to attack recognition will always be 0 if all predictions are positive. Thus, mean

time to attack recognition must also be weighed in conjunction with a binary classifiers

ability to make correct positive predictions such as precision.

3.3.4. Graphs and Diagrams

3.3.4.1. Time Series Plot

Predictions in this experiment are made at intervals in time. During the time interval

the system may either be under attack or not under attack. The machine learning algorithm

must make a prediction for each time interval based on the sensor data provided at that

time.

In figure 3.14 there is an example time series plot with the left most plot displaying the

actual periods of attack, the middle plot displaying the periods of predicted attack, and the

right most plot displaying the periods of predicted attack with a moving average applied.

When comparing the middle plot to the left plot there is obvious noise which is most often

single incorrect predictions. The right most graph removes most of the noise and is a very

close match to the plot on the left. However, simply looking at the statistics show that the
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Figure 3.14. Example Time Series Plot

middle plot has an accuracy of 99.4% and the right plot has an accuracy of 99.3%. The

moving average causes a small delay in the initial positive prediction and also in the initial

negative prediction of each attack instance. The time interval plots show that having more

inaccurate predictions can result in a better model when they are located strategically. This

conclusion would be much more difficult to draw from the statistics alone.
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Chapter 4

IMPLEMENTATION

4.1. Test Equipment

4.1.1. Hewlett Packard ENVY m4-1015dx

The Hewlett Packard m4-1015dx is the first system which will be analyzed in this exper-

iment. It can be seen in table 4.2 that when using Open Hardware Monitor the HP ENVY

laptop returns twenty two sensor values. The types of sensor values which are returned

include clock, data, load, power, and temperature. Desired sensor types where outlined in

chapter 2 and do not include clock, data, or load. Thus the HP ENVY laptop only contains

nine sensor values which are of use in this experiment. Furthermore, of the nine sensors that

are of use, eight measure aspects of the CPU making the predictive model nearly entirely de-

pendent on the CPU. Therefore, the HP ENVY laptop can be seen as a poor implementation

of the sensor based ransomware detection method presented in this experiment.

4.1.2. MacBook Air 13-Inch Mid 2013

The MacBook Air 13-inch mid-2013 model is the second system analyzed in this experi-

ment. It can be seen in table 4.4 that when using Hardware Monitor for Mac the MacBook

Air laptop returns sixty nine sensor values. There is only two sensor values reported which

do not fall under the desired sensor types outlined in chapter 2. Thus, the MacBook Air

contains sixty seven sensor values which are of use in this experiment. Unlike the Hewlett

Packard ENVY m4-1015dx, only seventeen of the available sixty seven sensors measure CPU

activity resulting in predictive models which are more robust. Therefore, the MacBook Air

laptop can be seen as a good implementation of the sensor based ransomware detection
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Product Name m4-1015dx

Product Number C2M81UA

Operating System Windows 10

Microprocessor 2.20GHz 3rd Generation Intel Core i7-3632QM

Microprocessor Cache 4MB L2 Cache

Memory 8GB DDR3 SDRAM (2 DIMM)

Video Graphics Intel HD graphics 4000

Hard Drive Corsair Force-LX 256GB SATA 3 6Gb/s SSD

Power 65W AC Adapter

Battery 6-cell 62WHr 2.8 Ah Lithium-Ion

Table 4.1. HP ENVY m4-1015dx Product Specifications

Name Type Name Type

1 BUS SPEED Clock 12 CPU TOTAL Load

2 CPU CORE #1 Clock 13 MEMORY Load

3 CPU CORE #2 Clock 14 CPU CORES Power

4 CPU CORE #4 Clock 15 CPU GRAPHICS Power

5 AVAILABLE MEMORY Data 16 CPU PACKAGE Power

6 TOTAL LBA WRITTEN Data 17 CPU CORE #1 Temp

7 USED MEMORY Data 18 CPU CORE #2 Temp

8 CPU CORE #1 Load 19 CPU CORE #3 Temp

9 CPU CORE #2 Load 20 CPU CORE #4 Temp

10 CPU CORE #3 Load 21 CPU PACKAGE Temp

11 CPU CORE #4 Load 22 TEMPERATURE Temp

Table 4.2. HP ENVY m4-1015dx Sensors
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method presented in this experiment.

Product Name MacBook Air

Operating System OSX 10.12.5

Microprocessor 1.3GHz Dual-Core Intel Core i5

Microprocessor Cache 3MB Shared L3 Cache

Memory 4GB of 1600MHz LPDDR3

Video Graphics Intel HD Graphics 5000

Hard Drive 128GB Flash Storage

Power 45W MagSafe2 Power Adapter

Battery 54WHr Lithium Polymer

Table 4.3. MacBook Air 13-Inch Mid 2013 Product Specifications

4.2. Data Acquisition and Model Creation

4.2.1. Sensor Data

Sensor data is the input required to make predictions about the binary state of a system

using machine learning algorithms. It is important that the methodology utilized in procur-

ing sensor data is both quick and reliable. Many tools exist which allow users to simply

monitor sensor data in a graphical user interface, but the experiment required the auto-

mated retrieval and parsing of sensor data at specific intervals in time. Both tools utilized

in this experiment can be used to either write data to a file for future analysis or provide a

feature vector of real-time sensor data to a prediction model. Writing data to a file allows

for the direct comparison of machine learning algorithms in as far as how they would have

predicted the state of the system given the same input data.

4.2.1.1. Open Hardware Monitor
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Name Type Name Type

1 SMART DISK APPLE SSD Temp 36 BATTERY CURRENT Current

2 AIR INLET Temp 37 CPU CORE Current

3 BATTERY Temp 38 CPU HIGH SIDE Current

4 BATTERY CHARGER Temp 39 CPU SUPPLY 1 Current

5 BATTERY POSITION 1 Temp 40 CPU/VRM SUPPLY 2 Current

6 BATTERY POSITION 2 Temp 41 DC INPUT Current

7 BATTERY POSITION 3 Temp 42 DDR3 MEM 1.35V LINE Current

8 BOTTOM SKIN Temp 43 DDR3 MEM S3 LINE Current

9 CAMERA PROXIMITY Temp 44 DISCRETE BATTERY Current

10 CHARGER PROXIMITY Temp 45 LCD PANEL Current

11 CPU A PROXIMITY Temp 46 PWR SUPPLY/BAT Current

12 CPU CORE 1 Temp 47 SSD SUPPLY Current

13 CPU CORE 2 Temp 48 WLAN CARD Current

14 LEFT PALM REST Temp 49 5V S0 LINE Power

15 MAIN HEAT SINK 2 Temp 50 BACKLIGHT Power

16 MAIN LOGIC BOARD Temp 51 CPU CORE Power

17 PLATFORM CONT HUB Temp 52 CPU HIGH SIDE Power

18 SSD BAY Temp 53 CPU PACKAGE CORE Power

19 SSD TEMPERATURE A Temp 54 CPU PACKAGE GPU Power

20 SSD TEMPERATURE B Temp 55 CPU PACKAGE TOTAL 1 Power

21 WLAN CARD Temp 56 CPU PACKAGE TOTAL 2 Power

22 SMART BATTERY 1 Temp 57 CPU SUPPLY 1 Power

23 SMART BATTERY 2 Temp 58 CPU/VRM SUPPLY 2 Power

24 BATTERY 1 CELL 1 Voltage 59 DC INPUT Power

25 BATTERY 1 CELL 2 Voltage 60 DDR3 MEM 1.35V LINE Power

26 BATTERY 1 VOLTAGE Voltage 61 DDR3 MEM S3 LINE Power

27 CPU CORE Voltage 62 LCD PANEL Power

28 CPU SUPPLY 1 Voltage 63 PWR SUPPLY/BAT Power

29 DC INPUT Voltage 64 SSD SUPPLY Power

30 PWR SUPPLY/BAT Voltage 65 TOTAL SYSTEM SUPPLY Power

31 SSD SUPPLY Voltage 66 WLAN CARD Power

32 WLAN CARD Voltage 67 BATTERY 1 CURRENT Capacity

33 BATTERY 1 CURRENT Current 68 BATTERY 1 TOTAL Capacity

34 5V S0 LINE Current 69 FAN EXHAUST RPMS RPMs

35 BACKLIGHT Current –

Table 4.4. MacBook Air 13-Inch Mid 2013 Sensors
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Open Hardware Monitor (OHM) is a free open source project that monitors temperature

sensors, fan speeds, voltages, load, and clock speeds of a Windows or Linux computer. OHM

is an especially powerful tool, in the context of this experiment, as it publishes all sensor

data to Windows Management Instrumentation (WMI) for accessibility from the command

line. Initially, OHM is capable of providing a comma separated list of the nomenclature

for each sensor and the corresponding sensor category. OHM is continuously given a second

command after a set time interval which returns a comma separated list of only sensor values

which are in the same order as the initial list of sensor nomenclatures.

4.2.1.2. Hardware Monitor for Mac

Hardware Monitor is an application to read out hardware sensors in Macintosh computers.

Hardware Monitor allows sensor data to be accessed from the command line which in turn

allows automated scripts to work with real time sensor data [8]. Prior to reading any sensor

values a command can be sent to the command line which returns a comma separated list of

sensor names and categories which can then act as a header for future sensor data. In order

to access the sensor data a command is fed to the command line which returns a string of

comma separated sensor values in the same order as the header string.

4.2.2. CPU Load Simulation

Simulating a CPU load is necessary to test the ability of the prediction models to make

accurate predictions even when a user is placing additional stress on a system.

4.2.2.1. CPUSTRES

CPUSTRES is a program for the Windows operating system which allows threads to be

run creating a load on the CPU. Each thread can be set to one of four activity levels which

are low, medium, busy, and maximum. Using the Windows task manager in conjunction

with CPUSTRES a combination of threads at various activity levels can be found which

creates a desired load between 1% and 100%.
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4.2.2.2. Mac Yes Program

The Mac yes program is a terminal command which prints the word ”yes” at such a

speed that it consumes all the available processor resource available. Each instance of the

yes program will consume the resource of a single CPU core or a single hyperthread if the

system is hyperthreaded. Running a certain number of yes program instances can result in

a desired load on a CPU.

4.2.3. Python Test Packages

The Python programming language is a commonly used high level language which is

capable of supporting large projects in a greatly reduced time frame. Python was selected for

use in this experiment as several high level packages exist which allow for quick and efficient

implementation of the desired operation in both acquiring and analyzing the training and

test data. This experiment attempts a ”proof of concept” implementation of the sensor

based ransomware detection methodology. Python emphasizes high level readability which

is especially useful in allowing readers to quickly look at the implementation and grasp the

direction of the experiment.

4.2.3.1. Crypto

The Crypto python package is a high level encryption library which includes implemen-

tations of all five encryption modes discussed in chapter 2. Prior to encryption a cipher data

structure is created and the encryption mode, encryption key, initialization vector, and block

size are all defined. Plain text is provided to the cipher data structure in sizes equal to the

predefined block size. The cipher data structure then returns the appropriate cipher text.

Furthermore, the same cipher data structure can be used to decrypt cipher text. Cipher

text is provided in sizes equal to the predefined block size and the appropriate plain text is

returned. Entire files are encrypted and decrypted by reading them one block size at a time

until the end of the file.
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4.2.3.2. Windows Management Instrumentation (WMI)

Windows Management Instrumentation (WMI) consists of a set of extensions to the Win-

dows Driver Model, providing the operating system an interface through which instrumented

components can provide information and notification. WMI allows scripting languages to

manage Microsoft Windows personal computers and servers. In the context of this experi-

ment, WMI is used to provide real time sensor data to a program used to make predictions

about the binary state of a system. The WMI python package is a lightweight wrapper on

top of the extensions used to allow the python programming language to communicate with

the WMI API [20]. The WMI python package allows quick and simple WMI interface which

is used to read real-time sensor data provided by OHM.

4.2.3.3. NumPy

NumPy is a python package which adds support for a powerful N-dimensional array

object, tools for integrating C/C++ and Fortran code, and linear algebra capabilities. It is

also used as an efficient multi-dimensional container of generic data which allows arbitrarily

defined data types. This allows NumPy to seamlessly and quickly integrate with a wide

variety of databases [30]. The implementation of this experiment requires data to be stored

in both matrix and vector form and various linear algebra operations to be performed.

NumPy is a high level python wrapper around low level efficient linear algebra packages

such as BLAS and LAPACK. Internally, NumPy is implemented very similarly to MATLAB

which is an industry leading linear algebra package. However, NumPy is open-source and a

viable solution for this and future implementations.

4.2.3.4. Pandas

Pandas python package provides fast, flexible, and expressive data structures which is

aimed at being the fundamental high level building block for performing data analysis in

python. Pandas is well suited for tabular data similar to Excel spreadsheets, ordered and

unordered time series data, and arbitrary matrix data with row and column labels [40]. Pan-
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das is built on top of NumPy, allowing an even higher level implementation of its optimized

low level functionality. Pandas most useful functionality, in the context of this experiment,

is its ability to deal with time series data. The implementation of the tool will require a

vector of sensor data to be read at a fixed polling interval which creates a time series. It has

been stated that both the OHM tool and the Hardware Monitor for Mac initially outputs a

comma separated list of sensor nomenclatures. When this line is written to a file first it is

read by Pandas as the column labels in a time series matrix. Afterwards, each line of sensor

data is read as a discrete time interval with the rows being labeled sequentially to represent

their relative position in time. Once the time series data is constructed, Pandas allows the

data to be easily manipulated in ways such as extracting individual columns or a range of

columns, extracting individual rows or a range of rows, deleting individual columns or a

range of columns, and deleting individual rows or a range of rows. Pandas also allows sepa-

rate time series with the same column labels to be combined together effectively combining

separate test runs into a single testable time series.

4.2.3.5. Sci-Kit Learn

Sci-Kit Learn (Sklearn) is an open source machine learning library for Python. It features

various classification, regression, and clustering algorithms which can be implemented at a

very high level. Sklearn is designed to work with both the NumPy and Pandas python

packages [12]. Pandas is used to read in the time series data and separate the independent

data into a matrix and the dependent data into a vector. Generally, the sklearn models are

trained with an independent training matrix and a dependent training vector. After the

model is trained an independent matrix is used as an input to generate a dependent vector

of predictions. Additionally, Sklearn also includes high level implementations for the various

preprocessing techniques covered in chapter 3.

4.2.3.6. Matplotlib
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Matplotlib is an open source Python plotting library which produces publication quality

figures in a variety of hardcopy formats [22]. Matplotlib works directly with NumPy arrays

which are the product of Sklearn model predictions. This easily allows the test vector and

the prediction vector to be plotted in a time series for easy visualization.

4.2.3.7. Psutil

Psutil is a cross-platform Python library which is used for the retrieval of information

about running processes and system utilization. The library is utilized in this experiment to

log the current overall CPU load percentage during simulated load test data collection. The

CPU load is provided as a floating point number between 0.0 and 100.0 and represents the

collective percentage of CPU utilization for all the CPU cores in a system [25].

4.2.4. Ransomware Simulation Routine

The ransomware simulation routine follows the general ransomware attack phase method-

ology. The encryption mode is defined prior to running with the encryption key and initial-

ization vector being hard coded rather than randomly generated for safety. The routine only

encrypts very specific directories and file extensions which have been documented as targets

from previous ransomware attacks in an effort to target important data and complete the

encryption phase as fast as possible. When a file is found in the targeted directories and it is

determined it should be encrypted it is first opened and quickly scanned to determine if it has

already been encrypted by reading the first line of the file which the ransomware simulation

routine marks if it has already performed encryption. If it has not already been encrypted

a second temporary file is created in the same directory with a header containing the en-

cryption key, initialization vector, and encryption mode for further safety. The original file

is read 16 bytes at a time and encrypted. The encrypted data is written into the temporary

file. Once the file is completely read and the corresponding encrypted data has been written

to the temporary file both files are closed. The original file is cleared and the temporary

file data is copied over to it. After the temporary file data has been copied it is removed
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from the computer. Once all the files that were found in the targeted directories have been

encrypted the ransomware simulation completes. It should be noted that encrypted files can

easily be decrypted using the header of the file which contains the encryption mode used, the

encryption key, and the initialization vector. Additionally, all encryption methods use the

same hard coded encryption key and initialization vector on every file and the ransomware

simulation routine checks every file prior to encryption to ensure it is not encrypted twice

causing data loss.

4.2.5. Data Acquisition Routines

In this experiment data falls into one of two categories, training or testing. Training data

must be collected in a way which captures the behavior of the system in both the states

of ”normal operation” and ”under attack”. The training data should have a large enough

sample size of both states to generate an accurate model. However, test data should have

sample sizes of the states which more accurately reflects how they will be normally seen.

Furthermore, this experiment implements five different encryption modes which each require

training and testing data to be captured individually.

4.2.5.1. Initial Training Data

The initial training data set is collected with no additional user activity being performed.

Training data is collected in roughly two hour blocks. For each two hour block the training

routine starts by measuring how long the ransomware simulation takes to fully encrypt the

targeted files. After fully encrypting the system it is decrypted and returned to the initial

state. The routine then waits two minutes for the sensors to return to a normal state. Once

the two minute wait period has ended the routine starts measuring time towards the total

two hours of training. First, the system sits unattacked for the duration of the time it takes

to encrypt the system. Afterwards, the system is encrypted with the ransomware simulation

routine. Finally, the system sits unattacked for the duration of the time it takes to encrypt

the system. The routine stops measuring time towards the total two hours of training and
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decrypts the system returning it to its original state. The routine then waits two minutes

for the sensors to return to a normal state. If the total measured time is more than two

hours the routine stops. If the total measured time is less than two hours the three step wait-

attack-wait routine is run again. The wait-attack-wait method employed in the training data

collection keeps the ratio of ”normal operation” to ”under attack” at two to one. Generally,

if training data was collected in the way one would expect to see attacks there would not

be enough ”under attack” samples to create an accurate prediction model. Furthermore,

the Pandas python package allows time series to be combined together to form a single time

series which allows for the creation of a larger training time series out of the smaller ones.

For each of the five different encryption modes 12 two hour training sessions are carried out

allowing up to 24 hours of training data per encryption mode. Training data is collected in

this manner for future measurement of the effect of training time on model accuracy.

4.2.5.2. Initial Test Data

The initial test data is collected with no additional user activity being performed. Test

data is collected in roughly one hour blocks. For each one hour block one of the five encryp-

tion modes is used during a simulated ransomware attack. One attack occurs every hour

resulting in a much larger sample of ”normal operation” time intervals than ”under attack”

time intervals. After the one hour period the system is decrypted and returned to its original

state. For accuracy analysis, robustness analysis, and training time analysis 24 hours of test

data per encryption mode are recorded.

4.2.5.3. Simulated Load Training Data

Once the initial data has been processed and analyzed a determination will be made for

a reduced training duration. It is believed that training time analysis with the initial data

set of 24 hours per encryption method will reveal the point in time when there is no longer a

significant advantage to additional training. Using this reduced training time requirement,

new training data will be collected for the final test, simulated load analysis. Training data
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will be collected for all encryption methods with simulated CPU loads of 0%, 25%, 50%,

75%, and 100%.

4.2.5.4. Simulated Load Test Data

Test data will be collected for each encryption method with simulated CPU loads of

0%, 25%, and 50%. Simulated load test data will also include the current overall CPU

load percentage at the time of each collection. Each encryption method will have test data

collected at each simulated CPU load for a period of 6 hours. During a one hour period the

ransomware encryption phase will occur once at a randomly determined time. After each

one hour period the data collection will briefly stop while the encrypted data is decrypted

and time is allowed for the sensors to return to a normal state.

4.3. Algorithm Analysis

The collected training and testing data is used to assess the performance of the machine

learning algorithms previously outlined in chapter 3. Five tests have been created in order

to select the highest performing algorithm from the field of twelve, optimize the prediction

model to increase performance, and test the final prediction model with different simulated

CPU loads as a proof of concept.

Previously in section 3.3.2 it was established that no one metric fully encapsulates the

performance of a binary classifier. However, the Matthews correlation coefficient (MCC) was

shown to be the closest metric to a single value which expresses the performance of a model,

especially when there is a class imbalance like the one present in this case. Therefore, for all

testing the MCC value will be used to determine which machine learning algorithms perform

the best. Additionally, the sensitivity, precision, specificity, fallout, accuracy, F1 score, rate

of attack recognition, and mean time to attack recognition will all be reported along with

the MCC for further analysis and insight.

4.3.1. Stratified 10-Fold Cross Validation
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Stratified 10-fold cross validation is performed on each algorithm individually using only

CBC training data in order to determine how well various test configurations are likely to

perform when presented with new and unseen data. The test parameters include classifica-

tion method, data scaling method, dimensionality reduction method, and moving average

method. The classification method includes two options, binary and multiclass. Binary

classification models are trained with a dependent vector of binary values indicating true for

”under attack” and false for ”normal operation”. Multiclass classification is trained with a

dependent vector of values with 7 being the highest and representing the highest likelihood

of being ”under attack” and 0 being the lowest and representing the highest likelihood of

being in ”normal operation”. Whenever the predicted value is greater than 3 a prediction

of ”under attack” is made. Conversely, whenever the predicted value is less than or equal

to 3 a prediction of ”normal operation” is made. The data scaling methods include four

options, feature standardization, data normalization, feature min-max scaling, and no scal-

ing. Sklearn includes data structures which fit and transform the training data and are also

capable of transforming future test data as needed. The dimensionality reduction method

includes seven options which are variations of PCA, feature selection, and no dimensionality

reduction. Principal component analysis is performed such that the reduced dimension data

maintains at least 70%, 80%, or 90% of the original variance. Feature selection is performed

such that only the top 50%, 70%, or 90% of features are selected based on feature importance

metrics. Finally, the moving average method consists of five options including simple moving

average with window sizes of 2 and 4, weighted moving average with window sizes of 2 and

4, and no moving average.

There exists 280 different combinations of the test parameters which must all be tested

individually for each algorithm. For each combination the training data is separated into 10

equal sized subsets. The Matthews correlation coefficient (MCC) is used rather than simple

accuracy as it provides a better measure of the overall model performance where there is a

class imbalance. Ten different MCC values are found by ten different tests in which each

subset acts as the sole training data once and is part of the test data 9 times. The ten MCC
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values are averaged together to get the average MCC of the algorithm with the specific test

parameter combination. The 280 average MCC values are ordered from greatest to least

with the highest value belonging to the test parameter combination which is most likely to

result in the highest performance during testing. The highest performing test parameter

combination is used for the appropriate algorithm for the duration of analysis.

4.3.2. Accuracy Analysis

The accuracy analysis is performed for each of the twelve machine learning algorithms.

There exists five different encryption modes with each having separate training and testing

data. Every combination of encryption modes of every size from 1 to 5 has a prediction

model trained, and the same combination of testing data is used to assess how accurately the

model performs when making predictions for data it has been trained with. Accuracy, in the

context of this analysis, is used as a general term which refers to the ability of an algorithm

to perform well given test data it has been trained to predict. The actual accuracy metric

is only one of several metrics which is used to determine the highest performing algorithms.

The accuracy analysis is split into five parts with different combination selection sizes for

the models. The test procedure can be outlined as follows:

1. Select combinations of 1 encryption mode from 5 total encryption modes,
(
5
1

)
, resulting

in 5 models. Test each model with corresponding encryption mode test data.

2. Select combinations of 2 encryption modes from 5 total encryption modes,
(
5
2

)
, resulting

in 10 models. Test each model with corresponding encryption mode test data.

3. Select combinations of 3 encryption modes from 5 total encryption modes,
(
5
3

)
, resulting

in 10 models. Test each model with corresponding encryption mode test data.

4. Select combinations of 4 encryption modes from 5 total encryption modes,
(
5
4

)
, resulting

in 5 models. Test each model with corresponding encryption mode test data.

5. Select combinations of 5 encryption modes from 5 total encryption modes,
(
5
5

)
, resulting

in 1 model. Test the model with all encryption mode test data.
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There are 31 total models and tests for each algorithm during the accuracy analysis. For

each algorithm the scores are computed from the averages of the 31 different tests carried

out on the 31 different models.

4.3.3. Robustness Analysis

The robustness analysis is performed for each of the twelve machine learning algorithms.

The same 31 models generated during the accuracy analysis are then each tested individually

with each encryption mode test data. Robustness, in the context of this analysis, is used

to refer to the ability of an algorithm to perform well given test data it has been trained

to predict as well as test data it has not been directly trained to predict. This analysis will

convey whether models that have not been explicitly trained to detect certain encryption

modes can still detect them with relative success.

The robustness analysis is split into five parts with different combination selections sizes

for the models. The test procedure can be outlined as follows:

1. Select combinations of 1 encryption mode from 5 total encryption modes,
(
5
1

)
, resulting

in 5 models. Test each model with all five encryption mode test data sets individually.

2. Select combinations of 2 encryption modes from 5 total encryption modes,
(
5
2

)
, resulting

in 10 models. Test each model with all five encryption mode test data sets individually.

3. Select combinations of 3 encryption modes from 5 total encryption modes,
(
5
3

)
, resulting

in 10 models. Test each model with all five encryption mode test data sets individually.

4. Select combinations of 4 encryption modes from 5 total encryption modes,
(
5
4

)
, resulting

in 5 models. Test each model with all five encryption mode test data sets individually.

5. Select combinations of 5 encryption modes from 5 total encryption modes,
(
5
5

)
, resulting

in 1 model. Test each model with all five encryption mode test data sets individually.

There are 31 total models with each model requiring 5 tests for each encryption mode.

Therefore, 155 tests are required for each algorithm during the robustness analysis. The
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scores for each algorithm are found based on the averages of the 155 tests carried out on the

31 models. The algorithm with the highest MCC average in both the accuracy analysis and

robustness analysis is selected and used in the remainder of the tests.

4.3.4. Training Time Analysis

It was established that training data is collected for each encryption mode two hours

at a time up to twenty four hours. Therefore, models can be trained with data ranging

from two hours to 24 hours in intervals of two hours. Training time analysis will show how

well the selected highest performing algorithm performs when trained for various amounts

of time. Testing will require a single model trained with all 5 encryption modes at each

training time varying from 2 hours to 24 hours in 2 hour intervals. The 12 MCC scores

should offer insight into the effectiveness of the model as it is trained with different training

times. The ideal training time can be determined based on which time has the highest MCC

score. Furthermore, if the MCC scores are very close it can be concluded that training for

only 2 or less hours is a viable option for future models.

4.3.5. Simulated Load Analysis

All other testing conducted on the models is during a time when there is no additional

user activity and minimal background processes being performed. Therefore, it is reasonable

to assume periods of ransomware activity would be very easily distinguished from periods

with no ransomware activity resulting in very high MCC scores. For this reason it is necessary

to test with simulated CPU loads in order to determine if the machine learning algorithm

determined to provide the best results is capable of accurately predicting attack instances

with additional user activity. The simulated load training data is collected with 0%, 25%,

50%, 75%, and 100% simulated CPU loads. The simulated load test data is collected with 0%,

25%, and 50% simulated CPU loads and will additionally log the current overall CPU load

at the time of each data collection. The average overall CPU load caused by the encryption

process will be determined by analyzing the test data with 0% simulated CPU load during
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test intervals labeled ”under attack”. Separate predictive models will be generated with

the simulated load training data for 0%, 25%, 50%, 75%, and 100% simulated CPU loads.

Testing will be conducted with three different CPU loads, 0%, 25%, and 50%. For all CPU

loads each of the five encryption modes are run for six hours apiece. Each hour there is a

single simulated ransomware attack. After the one hour test has concluded the encrypted

data is unencrypted which restores the original state of the system.

During the simulated load analysis an ensemble predictive model will be used which is

comprised of the five models trained at 0%, 25%, 50%, 75%, and 100% simulated CPU loads.

Utilizing the logged overall system CPU load in the simulated load test data, a determination

will be made for which models to utilize in the prediction. The two models utilized during

prediction will account for the two possible scenarios of the current system state. In scenario

one the system can be ”operating normally” leading to the model with the closest trained

simulated CPU load to the current overall system CPU load to be selected as the model most

likely to result in an accurate ”normal operation” prediction. In scenario two the system

can be ”under attack” with the encryption process increasing the overall system CPU load

such that one of the models trained with a lower simulated load level than the current load

level will be the most likely model to accurately make an ”under attack” prediction. The

previously determined average CPU load added by the encryption process is subtracted from

the current overall system CPU load and the model with the closest trained simulated CPU

load to the adjusted value will be selected. Both models will generate a prediction confidence

score for both the ”normal operation” and ”under attack” states. The scenario one model’s

confidence score for ”normal operation” will be compared to the scenario 2 model’s confidence

score for ”under attack” and the highest confidence score will result in the current system

state prediction. This method essentially weighs whether the sensor signature more closely

resembles scenario 1 or scenario 2 as the reason for the current overall system CPU load

is unknown. Results for testing with 0%, 25%, and 50% simulated loads will be provided

for each of the individual encryption methods as well as an instance where all encryption

methods are combined.
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Figure 4.1. Simulated Load Analysis Ensemble Predictive Model

Figure 4.1 illustrates how the ensemble predictive model will be used during the simulated

load analysis. One important aspect to note is that the test data is collected first and then

analyzed according to the behavior which would have been seen if the predictions were made

in real time. Therefore, in the simulated load analysis it is most convenient for all models

to generate confidence scores for every prediction instance and then only the selected model

scores are used in the actual prediction. However, if the ensemble prediction model were

to be implemented in real-time the current system CPU load would be used to select the

models prior to confidence score calculation to reduce overall computational overhead by

only performing such computations with the two selected models.
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Chapter 5

EXPERIMENTAL RESULTS

5.1. HP ENVY m4-1015dx

5.1.1. Stratified 10-Fold Cross Validation

Table 5.1 shows that the logistic regression algorithm and multilayer perceptron algo-

rithm are the most likely algorithms to provide quality predictions with 0.9610 and 0.9600

MCC scores respectively. The logistic regression model trained as a binary classifier with

standardized scaling of data, no dimensionality reduction, and a weighted moving average

window size of 4 is the best performing configuration tested. The top performing configura-

tions for the one-vs-one, one-vs-rest, and SVC algorithms all resulted in an identical MCC

score of 0.9591. This is due to the fact that one-vs-one and one-vs-rest implement SVC

predictive models as an ensemble. When the models are trained as binary classifiers they

essentially all implement the same method for prediction. Since no configuration of the one-

vs-one and one-vs-rest algorithms trained as multiclass classifiers performed better than the

SVC model trained as a binary classifier there optimal performance, as determined by cross

validation, is equivalent. The three tree based algorithms performed almost equally as well

with the more complex random forest and extra tree algorithms performing only slightly

better than the simple decision tree algorithm. Linear regression was the only algorithm

which cross validation testing determined performed optimally when trained as a multiclass

classifier. Additionally, linear regression performed optimally with no data scaling and no

dimensionality reduction making its implementation the simplest out of all of the tested al-

gorithms. The k-means clustering method resulted in a significantly lower MCC score than

all of the other algorithms at 0.7074. This was expected as the clustering algorithm is the

65



Algorithm Highest
MCC

Configuration

Log Reg 0.9610 Binary Classification, Standardized Scaling, None, Weighted
Moving Average Window Size 4

MLP 0.9600 Binary Classification, Min-Max Scaling, None, Weighted
Moving Average Window Size 4

One-V-One 0.9591 Binary Classification, Min-Max Scaling, None, Weighted
Moving Average Window Size 4

One-V-Rest 0.9591 Binary Classification, Min-Max Scaling, None, Weighted
Moving Average Window Size 4

SVC 0.9591 Binary Classification, Min-Max Scaling, None, Weighted
Moving Average Window Size 4

Rand Forest 0.9570 Binary Classification, Min-Max Scaling, Feature Selection
Upper 70%, Weighted Moving Average Window Size 4

Extra Tree 0.9549 Binary Classification, Normalization Scaling, Feature Selec-
tion Upper 70%, Weighted Moving Average Window Size 4

Decision Tree 0.9528 Binary Classification, None, Feature Selection Upper 90%,
Weighted Moving Average Window Size 4

KNN 0.9311 Binary Classification, Standardized Scaling, None, Weighted
Moving Average Window Size 4

Lin Reg 0.9285 Multiclass Classification, None, None, Weighted Moving Av-
erage Window Size 2

N Bayes 0.9069 Binary Classification, None, Feature Selection Upper 50%,
Simple Moving Average Window Size 2

K-Means 0.7074 Binary Classification, Min-Max Scaling, Feature Selection
Upper 70%, Simple Moving Average Window Size 2

Table 5.1. HP ENVY m4-1015dx Stratified 10-Fold Cross Validation Results
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only unsupervised algorithm tested.

5.1.2. Accuracy Analysis

Algorithm MCC Sen Spec Prec Fall Acc F1 RAR MTAR

Log Reg 0.4928 0.2825 0.9981 0.9220 0.0019 0.9446 0.4319 1.0 61.99

Extra Tree 0.4882 0.2811 0.9977 0.9129 0.0022 0.9442 0.4288 1.0 53.03

One-V-One 0.4882 0.2803 0.9979 0.9129 0.0021 0.9440 0.4286 1.0 69.81

One-V-Rest 0.4882 0.2803 0.9979 0.9129 0.0021 0.9440 0.4286 1.0 69.81

SVC 0.4882 0.2803 0.9979 0.9129 0.0021 0.9440 0.4286 1.0 69.81

MLP 0.4717 0.2657 0.9977 0.9021 0.0023 0.9427 0.4101 1.0 69.47

Rand Forest 0.4707 0.2600 0.9982 0.9194 0.0018 0.9431 0.4038 1.0 59.60

Lin Reg 0.4414 0.2232 0.9988 0.9405 0.0012 0.9405 0.3598 1.0 70.97

KNN 0.4267 0.2689 0.9837 0.7961 0.0163 0.9303 0.3870 1.0 66.41

N Bayes 0.4137 0.2639 0.9598 0.8104 0.0402 0.9084 0.3771 1.0 65.08

Decision Tree 0.3922 0.2547 0.9884 0.7014 0.0116 0.9337 0.3679 1.0 48.10

K-Means 0.1355 0.3818 0.6773 0.5903 0.3226 0.6560 0.2716 0.9962 52.01

Table 5.2. HP ENVY m4-1015dx Accuracy Analysis Results

In general the accuracy analysis resulted in almost the same ranking as cross validation.

Logistic regression resulted in the highest MCC score at 0.4928. However, there was some

notable differences in results as indicated by the MCC scores and rankings of the extra

tree and MLP models. The MLP model resulted in almost the same MCC score as the

logistic regression model during cross validation, but resulted in only the sixth highest MCC

score during accuracy analysis. Table 5.2 shows exactly how deceptive the accuracy and

precision values can be while determining the performance of the different models. Logistic

regression resulted in an accuracy of 0.9446 and a precision of 0.9220. However, the sensitivity

of the logistic regression model was only 0.2825. These results show that periods of the

system being ”under attack” occur at a significantly lower frequency than than periods

of ”normal operation”. The model’s high precision and accuracy scores, but low sensitivity
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score, indicate it predicted ”normal operation” the majority of predictions resulting in a high

number of correct predictions. However, the model predicted the ”under attack” instances

incorrectly 71.75% of the time which is the most important aspect of this experiment.

Upon further investigation, figure 5.1 shows a very similar prediction time series to that

of the actual attack time series using the logistic regression model. The prediction time

series appears to show a small number of erroneous predictions between actual attacks and

a much larger number made during actual attacks. However, table 5.2 indicates that periods

of ”under attack” were only correctly predicted 28.25% of the time. Figure 5.2 shows a single

attack instance and gives a much clearer example of how predictions are actually made. The

red line represents the entire ”under attack” instance. The blue line shows many correct

”under attack” predictions were made during this time. It is most likely that the incorrect

predictions are occuring as a result of the test system containing only a small number of

sensors which are almost entirely comprised of CPU sensors. During instances labeled ”under

attack” the encryption process is walking through a user’s directories and encrypting only

files which are of a specific set of extensions. Only when such a file is found does actual

encryption occur which in turn greatly increases the load placed on the CPU. This is most

clearly indicated by the extended period of correctly made predictions at the end of the

”under attack” instance. It is most likely that the encryption process encountered a directory

with a high volume of target files resulting in an extended period of heavy CPU utilization.

The results in table 5.2 actually indicate that the logistic regression model made at least one

correct ”under attack” prediction during all attack instances resulting in all attacks being

caught. Additionally, the average time before each attack was caught was 61.99 seconds

most likely due to target files not being encountered by the encryption processes until that

point. These results indicate that measuring the performance of the predictive model based

on the rate at which ”under attack” instances are correctly predicted may not provide the

actual account of how well they perform. The results show that all algorithms, except for

k-means clustering, successfully caught all attack instances with average times between 48.10

and 70.97 seconds. The extra tree model could even be viewed as the superior model when

68



weighed in this manner as it had a comparable MCC score to the logistic regression model

and an average time of attack recognition that was 8.96 seconds faster.

Figure 5.1. HP ENVY m4-1015dx Logistic Regression CBC Trained and Tested Time Series

Figure 5.2. HP ENVY m4-1015dx Logistic Regression Single Attack Instance Time Series

5.1.3. Robustness Analysis

The robustness analysis shows results which are again very similar to the cross validation

and accuracy analyses. Logistic regression performed better than all the other machine

learning algorithms with an MCC score of 0.4952. One interesting result to note is that

several models, including logistic regression, had a higher MCC score for the robustness

analysis than the accuracy analysis. Additionally, those models which did not have higher

scores were in general not significantly lower. This would suggest that the prediction models

work for encryption methods they have not been trained for almost as well, if not equally

as well, as encryption methods they have been trained for. Furthermore, the average time
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Algorithm MCC Sen Spec Prec Fall Acc F1 RAR MTAR

Log Reg 0.4952 0.2864 0.9981 0.9246 0.0019 0.9443 0.4344 1.0 63.76

One-V-One 0.4885 0.2818 0.9979 0.9136 0.0021 0.9438 0.4290 1.0 70.3618

One-V-Rest 0.4885 0.2818 0.9979 0.9136 0.0021 0.9438 0.4290 1.0 70.3618

SVC 0.4885 0.2818 0.9979 0.9136 0.0021 0.9438 0.4290 1.0 70.3618

Extra Tree 0.4864 0.2834 0.9976 0.9054 0.0024 0.9436 0.4285 1.0 47.51

MLP 0.4747 0.2705 0.9976 0.9048 0.0024 0.9426 0.4136 1.0 70.83

Rand Forest 0.4707 0.2614 0.9981 0.9214 0.0019 0.9425 0.4036 1.0 63.97

KNN 0.4526 0.2736 0.9857 0.8575 0.0143 0.9324 0.4035 1.0 67.29

Lin Reg 0.4433 0.2263 0.9988 0.9463 0.0012 0.9403 0.3617 1.0 70.98

N Bayes 0.4125 0.2664 0.9583 0.8102 0.0417 0.9060 0.3733 1.0 68.17

Decision Tree 0.4013 0.2609 0.9884 0.7269 0.0116 0.9334 0.3709 1.0 52.63

K-Means 0.1363 0.3807 0.6780 0.6102 0.3220 0.6556 0.2700 0.9944 53.57

Table 5.3. HP ENVY m4-1015dx Robustness Analysis Results

to attack recognition was only slower in the logistic regression model by 1.77 seconds. Once

again the argument could be made that the extra tree model had the superior performance to

the logistic regression model as they had comparable MCC scores and the extra tree model

had an average attack recognition 16.25 seconds faster than the logistic regression model. In

fact, the extra tree model actually had an average attack recognition time 5.52 seconds faster

than it did during the accuracy analysis. This indicates the extra tree model performs very

well with encryption methods it has not been directly trained to detect. However, as the

determination for the most effective machine learning algorithm which will be used in the

training time and simulated load analyses was decided to be the MCC scores of the accuracy

and robustness analyses the logistic regression model must be selected as it had the highest

MCC score in both tests. Figure 5.3 illustrates the logistic regression model’s performance

when trained with one encryption method and tested with another.

5.1.4. Training Time Analysis
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Figure 5.3. HP Laptop Logistic Regression CFB Trained XOR Tested Time Series

Training
Time
(Hours)

MCC Sen Spec Prec Fall Acc F1 RAR MTAR

2 0.5364 0.3250 0.9984 0.9419 0.0016 0.9478 0.4833 1.0 39.44

4 0.5785 0.3734 0.9984 0.9485 0.0016 0.9514 0.5359 1.0 14.23

6 0.5398 0.3291 0.9983 0.9417 0.0017 0.9480 0.4877 1.0 35.48

8 0.4911 0.2789 0.9982 0.9258 0.0018 0.9441 0.4287 1.0 69.52

10 0.5247 0.3131 0.9983 0.9373 0.0017 0.9468 0.4694 1.0 45.67

12 0.5122 0.2997 0.9983 0.9344 0.0017 0.9458 0.4538 1.0 57.73

14 0.4906 0.2782 0.9982 0.9261 0.0018 0.9441 0.4279 1.0 69.65

16 0.4993 0.2862 0.9983 0.9314 0.0017 0.9448 0.4378 1.0 66.75

18 0.4851 0.2764 0.9979 0.9135 0.0021 0.9436 0.4244 1.0 70.28

20 0.4854 0.2761 0.9979 0.9157 0.0021 0.9437 0.4242 1.0 70.35

22 0.4849 0.2760 0.9979 0.9141 0.0021 0.9436 0.4240 1.0 70.34

24 0.4898 0.2799 0.9980 0.9185 0.0020 0.9440 0.4291 1.0 70.07

Table 5.4. HP ENVY m4-1015dx Training Time Analysis Results
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The models tested in the accuracy and robustness analyses were trained with twenty

four hours of data for each encryption method. Table 5.4 shows the performance of twelve

models trained with increasing training times from two hours to twenty four hours in intervals

of two hours. Interestingly, the models tend to decrease in performance as the training

times increase. In order to determine if this behavior extended to even smaller training

times models were made and analyzed for training times from one minute to two hours in

increments of one minute. The results can be seen in figure 5.4 were the MCC scores were

generally comparable after one hour of training. Figure 5.5 shows the MCC scores for the

models trained from two hours to twenty four hours with the red line indicating the average

of the MCC scores from one hour to two hours of training. Interestingly, the MCC scores

tend to level out on the red line as they increase. Further testing showed the particular

two hour set of training data added for the testing at four hours performed much better

than any other single two hour training set which explains the increased performance at four

hours. This leads to the conclusion that four hours of training is not necessarily the optimal

training time, but only appears as such due to the high performance of the single set of two

hour training data. When utilizing the high performing two hour training data set first, the

MCC is actually brought down from the additional training data. Considering that the new

method presented in this experiment would require a user to allow time for training prior

to use the conclusion reached is that one to two hours of training per encryption method

is sufficient to create a predictive model comparable to the one used to achieve the results

reported in the accuracy and robustness analyses. For this reason the training time for each

encryption method during the simulated load training data collection will be two hours at

each simulated load level.

5.1.5. Simulated Load Analysis

Table 5.5 shows the results for the implementation of the ensemble prediction model with

no simulated load applied to the system. The MCC scores are slightly lower than the MCC

scores recorded during the accuracy and robustness analyses. The ensemble method uses the
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Figure 5.4. HP ENVY m4-1015dx 2 Hour Training Time Analysis

Figure 5.5. HP ENVY m4-1015dx 24 Hour Training Time Analysis
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Encryption MCC Sen Spec Prec Fall Acc F1 RAR MTAR

ECB 0.4724 0.2861 0.9961 0.8393 0.0039 0.9490 0.4267 1.0 31.334

CBC 0.3057 0.2696 0.9749 0.4328 0.0251 0.9280 0.3323 1.0 5.3334

CFB 0.3313 0.2740 0.9693 0.5409 0.0307 0.8883 0.3638 1.0 120.84

OFB 0.3921 0.1932 0.9976 0.8657 0.0024 0.9385 0.3159 1.0 50.167

XOR 0.5695 0.3540 0.9990 0.9620 0.0010 0.9569 0.5176 1.0 52.0

ALL 0.5076 0.2895 0.9987 0.9505 0.0013 0.9436 0.4439 1.0 57.467

Table 5.5. HP ENVY m4-1015dx Simulated Load Analysis Results 0% Load

Figure 5.6. HP ENVY m4-1015dx Simulated Load Analysis XOR Time Series Plot (0%

Load)

Encryption MCC Sen Spec Prec Fall Acc F1 RAR MTAR

ECB 0.2449 0.0649 1.0 1.0 0.0 0.9242 0.1220 0.6667 92.0

CBC 0.3168 0.1084 0.9999 0.9921 0.0001 0.9347 0.1955 0.6667 111.5

CFB 0.4219 0.2101 0.9985 0.9521 0.0015 0.9026 0.3442 1.0 142.83

OFB 0.3707 0.1802 0.9971 0.8413 0.0030 0.9322 0.2968 1.0 91.0

XOR 0.2344 0.3016 0.9424 0.2763 0.0575 0.8989 0.2885 1.0 36.334

ALL 0.4755 0.2596 0.9985 0.9403 0.0015 0.9358 0.4069 1.0 55.167

Table 5.6. HP ENVY m4-1015dx Simulated Load Analysis Results 25% Load
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Figure 5.7. HP ENVY m4-1015dx Simulated Load Analysis OFB Time Series Plot (25%

Load)

Encryption MCC Sen Spec Prec Fall Acc F1 RAR MTAR

ECB 0.3293 0.1476 0.9971 0.8203 0.0029 0.9274 0.2502 1.0 58.834

CBC 0.4789 0.2870 0.9963 0.8865 0.0037 0.9411 0.4313 1.0 63.667

CFB 0.5928 0.4170 0.9960 0.9528 0.0040 0.9020 0.5801 1.0 123.0

OFB 0.3576 0.2227 0.9904 0.6624 0.0096 0.9304 0.3334 1.0 77.334

XOR 0.3619 0.1458 0.9996 0.9634 0.0004 0.9383 0.2532 1.0 67.834

ALL 0.5148 0.3171 0.9968 0.9118 0.0032 0.9320 0.4705 1.0 78.667

Table 5.7. HP ENVY m4-1015dx Simulated Load Analysis Results 50% Load

Figure 5.8. HP ENVY m4-1015dx Simulated Load Analysis CFB Time Series Plot (50%

Load)
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current system CPU load to determine which models to use for prediction confidence scores.

Further analysis of the test files shows that the average CPU load placed on the system as a

direct result of the simulated ransomware process was 18.52%. Additionally, the average load

placed on the system CPU due to background processes was found to be 9.85%. The process

of selecting the models, given the accuracy of the previous calculations, likely resulted in

most predictions for both ”normal operation” and ”under attack” being performed by the

model trained with no simulated CPU load. However, there were occurrences were the

background processes reached as high as 23.1% likely resulting in a model being selected for

prediction which had been trained with a simulated load resulting in incorrect predictions.

The specificity of the tests were very high along with fallout values that were very low. When

the high precision values are also taken into account it shows that the ensemble prediction

model rarely made positive predictions. However, when positive predictions were made they

were mostly correct. Figure 5.6 illustrates how the majority of positive predictions occurred

during attack periods with several isolated false positive predictions also occuring.

Table 5.6 and table 5.7 show the results for the simulated load analysis at 25% and

50% respectively. They generally display the same trends found in the analysis performed

at 0%. The sensitivity and fallout are low, the specificity and precision are high, and the

MCC scores are slightly lower than the scores recorded during the accuracy and robustness

analyses. It would appear that most predictions were carried out by the model most closely

associated with the actual state of the system, but the models themselves have performance

limitations in this system. The limits of the ensemble prediction model’s success, when used

on this system, is most likely attributed to the very low number of reported sensor values, 9,

along with all but one of the sensors directly measuring CPU performance. Figures 5.7 and

5.8 illustrate how they predictions are made with some resemblance to the actual attacks,

but that the ensemble prediction models used on this system have notable false positive and

false negative prediction rates.

All configurations tested at 0%, 25%, and 50% simulated loads caught every attack in-

stance except for two, the ECB and CBC tests performed at 25%. The ECB and CBC
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ensemble prediction models only caught two thirds of the attacks in both instances. These

two instances also have exceptionally low sensitivity and fallout scores leading to the conclu-

sion that they were extremely conservative in making positive predictions. However, most

configurations caught all attack instances with average attack recognition times of as little

as 5.34 seconds and no more than 142.83 seconds and mostly displayed high precision with

low fallout. Despite this system’s limitations the ensemble prediction model did perform in

a manor which could be seen as successful. The system’s limitations, including the lack of

diversity among the reported sensors and the small number of reported sensors, is addressed

when testing the second system, a MacBook Air. The MacBook Air contains 67 reported

sensor values which are almost evenly distributed between the CPU, memory, hard drive,

battery, motherboard, and various other elements of the system. It is hypothesized that the

second system will be able to implement both simple predictive models and the simulated

load ensemble prediction model with a much higher level of success than the first system.

5.2. MacBook Air 13-Inch Mid 2013

5.2.1. Stratified 10-Fold Cross Validation

The results of the cross validation analysis for the MacBook Air 13-inch mid 2013, shown

in table 5.8, reinforce the hypothesis that the larger and more diverse number of sensors

result in better predictive models. Every machine learning algorithm, except for k-means

clustering, performed better than the highest performing machine learning algorithm tested

on the HP ENVY m4-1015dx. The more complex tree based algorithms, random forest and

extra tree, performed the best with MCC scores of 0.9987 and 0.9985 respectively. The

multilayer perceptron once again ranked high in the cross validation results at an MCC

score of 0.9984, which is very near the top two performers. Unlike the first system tested,

the one-vs-one algorithm top performing configuration was trained as a multiclass classifier

and scored an MCC of 0.9983 which is again very near the algorithms above it. However, the

one-vs-rest optimal configuration was once again trained as a binary classifier and matched
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Algorithm Highest
MCC

Configuration

Rand Forest 0.9987 Binary Classification, Min-Max Scaling, No Dimensionality
Reduction, No Moving Average

Extra Tree 0.9985 Binary Classification, No Scaling, Feature Selection Upper
90%, Weighted Moving Average Window Size 2

MLP 0.9984 Binary Classification, Standardized Scaling, Feature Selection
Upper 90%, Weighted Moving Average Window Size 2

One-V-One 0.9983 Multiclass Classification, Min-Max Scaling, No Dimensional-
ity Reduction, No Moving Average

Log Reg 0.9979 Binary Classification, Standardized Scaling, Feature Selection
Upper 50%, No Moving Average

One-V-Rest 0.9979 Binary Classification, Standardized Scaling, No Dimensional-
ity Reduction, No Moving Average

SVC 0.9979 Binary Classification, Standardized Scaling, No Dimensional-
ity Reduction, No Moving Average

KNN 0.9975 Binary Classification, Standardized Scaling, Feature Selection
Upper 70%, No Moving Average

Decision Tree 0.9970 Multiclass Classification, No Scaling, Feature Selection Upper
70%, No Moving Average

Lin Reg 0.9965 Binary Classification, No Scaling, No Dimensionality Reduc-
tion, No Moving Average

N Bayes 0.9917 Multiclass Classification, No Scaling, Feature Selection Upper
70%, Weighted Moving Average Window Size 2

K-Means 0.8327 Binary Classification, Normalization Scaling, No Dimension-
ality Reduction, No Moving Average

Table 5.8. MacBook Air Stratified 10-Fold Cross Validation Results
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the results of the simple SVC implementation. The logistic regression optimal model was

only ranked fifth unlike the previous system were it was ranked first. K-means clustering

once again scored the lowest MCC at 0.8327 which was the only algorithm to score lower

than 0.99. The optimal configurations of three different algorithms were trained as multiclass

classifiers where only one such optimal configuration was determined in the previous system.

Additionally, eight algorithm optimal configurations included no moving average where there

was no such optimal configurations determined in the previous system. This is likely due to

the models generating less isolated erroneous results which are accounted for by the moving

average. Implementing a moving average actually decreases the performance as the predictive

models become less responsive. The results of the cross validation lead to the conclusion

that there is a high likelihood that the predictive models in this system will perform at a

higher level than the predictive models in the previous system.

5.2.2. Accuracy Analysis

Algorithm MCC Sen Spec Prec Fall Acc F1 RAR MTAR

Extra Tree 0.9981 0.9983 0.9998 0.9985 0.0002 0.9996 0.9984 1.0 0.4794

KNN 0.9980 0.9978 0.9998 0.9986 0.0002 0.9995 0.9982 1.0 0.5812

Log Reg 0.9980 0.9983 0.9997 0.9983 0.0003 0.9995 0.9983 1.0 0.4924

Rand Forest 0.9980 0.9982 0.9997 0.9984 0.0003 0.9995 0.9983 1.0 0.4539

MLP 0.9970 0.9988 0.9993 0.9961 0.0007 0.9992 0.9975 1.0 0.3891

Lin Reg 0.9964 0.9967 0.9995 0.9971 0.0004 0.9992 0.9970 1.0 0.5600

One-V-Rest 0.9916 0.9988 0.9980 0.9871 0.0021 0.9980 0.9924 1.0 0.4044

SVC 0.9914 0.9988 0.9978 0.9868 0.0022 0.9979 0.9922 1.0 0.4050

N Bayes 0.9790 0.9939 0.9933 0.9737 0.0067 0.9933 0.9802 1.0 1.511

Decision Tree 0.9687 0.9929 0.9911 0.9564 0.0089 0.9913 0.9713 1.0 0.4113

One-V-One 0.9528 0.9604 0.9921 0.9599 0.0079 0.9881 0.9588 1.0 0.5700

K-Means 0.7743 0.5838 0.6380 0.5810 0.3620 0.6302 0.5448 0.9900 54.31

Table 5.9. MacBook Air Accuracy Analysis Results
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The accuracy analysis, shown in table 5.9, shows that the extra tree model performed

marginally better than the KNN, logistic regression, and random forest models. The extra

tree model scored an MCC of 0.9981 while the KNN, logistic regression, and random forest

models all scored 0.9980. When comparing the scores of the accuracy analysis in this system

to the scores in the previous system it can clearly be concluded that the models perform at

a much higher level. The extra tree model had an accuracy of 99.96%, a precision of 99.85%,

a sensitivity of 99.83%, and a fallout of 0.02% which indicate it is very nearly a perfect

prediction model. However, it must be noted that the scores in the analyses performed

prior to the simulated load analysis are performed with no additional user activity and

minimal background processes running with a predictive model trained under the same

conditions. This allows the predictive models to very easily differentiate between periods of

”no attack” and ”under attack”. However, the extremely high performance does indicate

the potential for high performance if implemented correctly with additional user activity.

One of the most promising results is that the extra tree model not only caught every attack

instance, but had an average attack recognition of 0.4794 seconds. The previous system

took around one minute to recognize an attack with almost entirely CPU related sensors. It

would appear that the sensor array in this system allows the predictive models to determine

an encryption sensor signature which is far more robust and responsive. In fact, the only

algorithm model which had an average attack recognition of over a second was the k-means

clustering algorithm. The predictive model must find a sensor signature for periods of ”under

attack” in which there are periods of time where the simulated ransomware process is walking

file directories looking for target files and periods of time where the simulated ransomware

process is actually encrypting. Therefore, the sensor values associated with such components

as the CPU, memory, hard drive, motherboard, and power supply may persist in such a

way during the entire simulated ransomware process that ”under attack” predictions are

made in both scenarios as evidenced by the sensitivity of the extra tree model being 0.9983.

Additionally, although there are minimal background processes running there are certain

OSX background processes, such as Spotlight indexing, which operate in a way that should
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cause a false positive result if the prediction models were using simple sensor signatures like

a rise in CPU sensor values or increased hard drive activity. However, the fallout of 0.0002

indicates that very rarely a false positive prediction was made which shows that essential

OSX background processes generally do not cause errors. Figure 5.9 shows the prediction

time series for the highest single encryption method tested, CFB. In this time series the

MCC score was 0.9994 with an accuracy of 0.9998, a precision of 0.9997, a sensitivity of

0.9999, a specificity of 0.9999, and a fallout of 0.0001. Only one instance of a false positive

prediction can be easily noticed prior to the fourth attack instance. Otherwise, the two time

series plots are very nearly identical. Figure 5.10 shows the prediction time series for the

lowest single encryption method tested, OFB. In this time series the MCC score was 0.9971

with an accuracy of 0.9993, a precision of 0.9983, a sensitivity of 0.9966, a specificity of

0.9997, and a fallout of 0.0002. In this time series only a few false positive predictions are

easily noticed along with some attack instances which appear to have some false negatives.

Figure 5.9. MacBook Air Extra Tree CFB Trained and Tested Time Series

5.2.3. Robustness Analysis

The extra tree model and the logistic regression model both scored the highest MCC

with 0.9980 as shown in table 5.10. However, the extra tree model had an average attack

recognition of 0.4667 seconds to the logistic regression model’s 0.4733 seconds. The random

forest model had an MCC score of 0.9979, nearly identical to the top two models, and only

had an average attack recognition time of 0.4530 seconds. However, the random forest model
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Figure 5.10. MacBook Air Extra Tree OFB Trained and Tested Time Series

Algorithm MCC Sen Spec Prec Fall Acc F1 RAR MTAR

Extra Tree 0.9980 0.9982 0.9998 0.9983 0.0002 0.9996 0.9983 1.0 0.4667

Log Reg 0.9980 0.9983 0.9997 0.9982 0.0003 0.9995 0.9983 1.0 0.4733

Rand Forest 0.9979 0.9981 0.9997 0.9982 0.0003 0.9995 0.9982 1.0 0.4530

KNN 0.9978 0.9978 0.9998 0.9985 0.0002 0.9995 0.9981 1.0 0.5739

Lin Reg 0.9960 0.9959 0.9996 0.9971 0.0004 0.9991 0.9965 1.0 0.5613

One-V-Rest 0.9958 0.9987 0.9990 0.9938 0.0010 0.9990 0.9960 1.0 0.4070

SVC 0.9958 0.9987 0.9990 0.9938 0.0010 0.9990 0.9960 1.0 0.4078

N Bayes 0.9839 0.9936 0.9958 0.9801 0.0042 0.9956 0.9856 1.0 1.520

Decision Tree 0.9559 0.9942 0.9786 0.9428 0.0214 0.9810 0.9593 1.0 0.4010

MLP 0.9378 0.9818 0.9732 0.9317 0.0268 0.9743 0.9405 1.0 0.4207

One-V-One 0.9040 0.9504 0.9706 0.9008 0.0294 0.9681 0.9135 1.0 0.6223

K-Means 0.7681 0.5649 0.6405 0.5943 0.3595 0.6303 0.5333 1.0 55.73

Table 5.10. MacBook Air Robustness Analysis Results
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had a slightly higher fallout score which in the context of this experiment is more detrimental

than the advantage of catching attack instances 0.0137 seconds faster. The extra tree model

only had an MCC score decrease of 0.0001 under the robustness analysis. Additionally, the

average time to attack recognition dropped 0.0127 seconds under the robustness analysis from

0.4794 under the accuracy analysis. Therefore, the extra tree model works for encryption

methods that it has not been trained for almost as well, if not equally as well, as encryption

methods it has been trained for. Considering the extra tree model performed the best under

the accuracy analysis and the robustness analysis it was made the selection for the training

time and simulated load analyses. Figure 5.11 shows the prediction time series for the highest

performing extra tree model which was trained with a single encryption method and tested

with a different single encryption method, ECB and CFB respectively. In this time series

the MCC score was 0.9991 with an accuracy of 0.9996, a precision of 0.9994, a sensitivity of

0.9991, a specificity of 0.9998, and a fallout of 0.0002. Only a few false positive instances can

be easily seen as well as a small number of attack instances with noticeable false negatives.

It is also important to note that the extra tree model performed the best overall for the first

system when using rate of attack recognition and average time to attack recognition as the

primary metrics of performance.

Figure 5.11. MacBook Air Extra Tree ECB Trained CFB Tested Time Series

5.2.4. Training Time Analysis
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Training
Time
(Hours)

MCC Sen Spec Prec Fall Acc F1 RAR MTAR

2 0.9972 0.9964 0.9998 0.9989 0.0002 0.9993 0.9976 1.0 0.6667

4 0.9982 0.9982 0.9998 0.9987 0.0002 0.9996 0.9985 1.0 0.5083

6 0.9984 0.9984 0.9998 0.9988 0.0002 0.9996 0.9986 1.0 0.4833

8 0.9984 0.9984 0.9998 0.9988 0.0002 0.9996 0.9986 1.0 0.4583

10 0.9984 0.9985 0.9998 0.9987 0.0002 0.9996 0.9986 1.0 0.5083

12 0.9984 0.9987 0.9998 0.9986 0.0002 0.9996 0.9986 1.0 0.4500

14 0.9985 0.9987 0.9998 0.9987 0.0002 0.9996 0.9987 1.0 0.4083

16 0.9984 0.9985 0.9998 0.9988 0.0002 0.9996 0.9987 1.0 0.4833

18 0.9983 0.9987 0.9997 0.9985 0.0003 0.9996 0.9986 1.0 0.4333

20 0.9985 0.9988 0.9998 0.9986 0.0002 0.9996 0.9987 1.0 0.3917

22 0.9984 0.9987 0.9998 0.9986 0.0002 0.9996 0.9987 1.0 0.4417

24 0.9984 0.9985 0.9998 0.9988 0.0002 0.9996 0.9987 1.0 0.4833

Table 5.11. MacBook Air Training Time Analysis Results
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The training time analysis for this system fluctuated very little from two hours of training

to twenty four hours of training. In fact, it can be seen in table 5.11 seven of the twelve time

intervals had the same MCC score of 0.9984. Figure 5.12 shows the training time results along

with a red line indicating the average MCC score for all models trained between one and two

hours in intervals of one minute. There is a noticeable difference between the location of the

red line and the score of the model trained at twenty four hours. Thus, two hours would once

again be the minimum time needed to generate a model which performed at a comparable

level to the model trained at twenty four hours used in the accuracy and robustness analyses.

In the same way as the first system the training time for each encryption method during the

simulated load training data collection will be two hours at each simulated load level.

Figure 5.12. MacBook Air 24 Hour Training Time Analysis

5.2.5. Simulated Load Analysis

Early in the simulated load testing for the second system it was found that many isolated

erroneous predictions were occuring with the ensemble predictive model. In order to smooth

out isolated errors the window size for the weighted moving average calculation was increased

until a reasonable reduction in isolated errors was reported. The original prediction model

implemented a weighted moving average with a window size of 2. It was found that the

isolated occurrences of both false positives and false negatives were greatly reduced with
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Encryption MCC Sen Spec Prec Fall Acc F1 RAR MTAR

ECB 0.9410 0.9776 0.9833 0.9265 0.0167 0.9823 0.9514 1.0 8.6667

CBC 0.9561 0.9483 0.9956 0.9797 0.0043 0.9421 0.8061 1.0 3.1667

CFB 0.7238 0.5743 0.9996 0.9971 0.0004 0.9240 0.7288 1.0 6.6667

OFB 0.8430 0.8172 0.9854 0.9239 0.0145 0.9555 0.8673 1.0 1.3334

XOR 0.6985 0.5337 0.9999 0.9992 0.0001 0.9226 0.6957 1.0 5.8334

ALL 0.6098 0.4207 0.9996 0.9960 0.0003 0.8966 0.5916 1.0 9.0

Table 5.12. MacBook Air Simulated Load Analysis Results 0% Load

Figure 5.13. MacBook Air Simulated Load Analysis ECB Time Series Plot (0% Load)

Encryption MCC Sen Spec Prec Fall Acc F1 RAR MTAR

ECB 0.9368 0.9568 0.9867 0.9395 0.0132 0.9814 0.9480 1.0 13.0

CBC 0.9267 0.9856 0.9751 0.8972 0.0248 0.9770 0.9393 1.0 6.0

CFB 0.9134 0.9343 0.9748 0.9545 0.0252 0.9601 0.9443 1.0 10.834

OFB 0.9303 0.9810 0.9776 0.9073 0.0224 0.9782 0.9427 1.0 8.0

XOR 0.9237 0.8808 0.9989 0.9944 0.0011 0.9784 0.9342 1.0 10.167

ALL 0.9132 0.8844 0.9949 0.9794 0.0051 0.9711 0.9295 1.0 11.867

Table 5.13. MacBook Air Simulated Load Analysis Results 25% Load
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Figure 5.14. MacBook Air Simulated Load Analysis ECB Time Series Plot (25% Load)

Encryption MCC Sen Spec Prec Fall Acc F1 RAR MTAR

ECB 0.9693 0.9776 0.9939 0.9720 0.0060 0.9910 0.9748 1.0 8.8334

CBC 0.9590 0.9875 0.9838 0.9509 0.0162 0.9847 0.9847 1.0 7.0

CFB 0.9164 0.9925 0.9546 0.8897 0.0454 0.9648 0.9383 1.0 7.75

OFB 0.9408 0.9874 0.9739 0.9249 0.0261 0.9772 0.9551 1.0 7.1667

XOR 0.9745 0.9855 0.9927 0.9749 0.0073 0.9911 0.9802 1.0 7.5

ALL 0.9518 0.9855 0.9820 0.9405 0.0180 0.9828 0.9625 1.0 7.5

Table 5.14. MacBook Air Simulated Load Analysis Results 50% Load

Figure 5.15. MacBook Air Simulated Load Analysis XOR Time Series Plot (50% Load)
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a weighted moving average of window size 30. This resulted in a much more conservative

prediction model which resulted in a great decrease in false positive and false negative pre-

dictions. However, the more conservative model came at the cost of a potential decrease

in sensitivity and specificity and a high probability of the average attack detection time

increasing.

Table 5.12 shows the results for the implementation of the ensemble prediction model

with no simulated load applied to the system. The MCC scores are noticeably lower than the

MCC scores recorded in both the accuracy and robustness analyses. This reduced score is

due to the ensemble method having to determine whether the current CPU load of the system

is due to background processes and additional user load or the actual simulated ransomware

process where previously it was known that no additional load was being applied to the

system. Analysis of the test files with a 0% simulated load show that background processes

resulted in an average CPU load of 5.2021% with a peak load of 46.3%. It can easily be seen

that the ensemble prediction model, when tested with no simulated load, generally results

in a very high specificity and a very low fallout. Additionally, the sensitivity is generally at

or higher than 50%, but because it is much lower than in previous tests the MCC score is

also relatively much lower. This leads to the conclusion that the ensemble prediction model

makes positive predictions very conservatively when tested with no additional system CPU

load. However, when positive predictions are made they tend to be correct as evidenced by

the very high precision scores. Each test configuration at a simulated load of 0% caught every

attack with an average attack recognition time as low as 1.3334 seconds and no higher than

9.0 seconds. This is a major improvement upon the ensemble prediction model implemented

in the first system. Figure 5.15 illustrates the way the ensemble predictive model has a high

level of precision and a low level of fallout at 0% simulated load. Analysis of the test results

for a simulated load level of 0% can be interpreted to mean the ensemble prediction model

is a competent detector of the simulated ransomware process at and around that particular

additional user load level.
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Table 5.13 shows the results for the analysis with a simulated load level of 25%. The MCC

scores are noticeably higher than they were at a simulated load of 0%. When comparing the

results from the two different load levels it can be seen that the sensitivity is much higher at

25%. Additionally, the fallout is also relatively higher at 25%, but is still very low as most

test configurations were between 0% and 3%. The much higher specificity scores at the cost

of a slightly higher fallout score resulted in the increased MCC scores. Figure 5.13 illustrates

the way the ensemble predictive model has a high level of sensitivity at 25% simulated load

as the periods of attack are correctly predicted at a high rate. However, the instances of

false positive predictions can easily be seen which are the result of increased sensitivity at

the cost of slightly increased fallout. Analysis of the test results for a simulated load level of

25% can be interpreted to mean the ensemble prediction model is a competent detector of

the simulated ransomware process at and around that particular additional user load level.

Table 5.14 shows the results for the simulated load analysis at 50%. The MCC score

at 50% are even higher than the MCC scores at 25%. The sensitivity scores are about

the same as the scores at 25%, but the fallout scores are considerably lower at 50%. This

means that the ensemble predictive model performed at a very high level when tested with

a 50% simulated load. Figure 5.15 illustrates just how well the ensemble prediction model

performed when trained and tested to detect the simulated ransomware process using XOR

encryption. There is only one noticeable period in which false positive predictions were

made. Analysis of the test results for a simulated load level of 50% can be interpreted to

mean the ensemble prediction model is a competent detector of the simulated ransomware

process at and around that particular additional user load level.

The average CPU load placed on the system which is a direct result of the simulated

ransomware process averaged 34%. The model closest to the current CPU system load and

the model closest to the current CPU system load after subtracting 34% must act together to

determine if the current sensor signature more closely matches a state of ”normal operation”

or a state of ”under attack”. The results indicate that, as predicted, the majority of the time

the same predictive model is selected to provide both the ”normal operation” and ”under
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attack” confidence scores as the unaccounted for background processes in this test generally

only placed a load of 5% on the CPU. The observation that background processes play a

very small role in determining the prediction models selected shows that the most important

variable in determining which models most accurately make predictions of ”normal opera-

tion” and ”under attack” for a given system state are the processes created through user

interaction. This analysis showed that an ensemble of models trained at different simulated

load levels which represent user generated processes through interaction is effective at pre-

dicting the simulated ransomware process when the additional load on the system is within

about 5% to 10% of the load level one of the models was trained to interpret. Training

models at more frequent intervals from 0% to 100% simulated load is most likely to result

in the ensemble prediction model performing as intended with a user present who is capable

of placing a varying degree of additional load on the system.

The presence of a large and diverse array of sensors likely caused the high level of pre-

dictive performance seen in the MacBook Air system. Machine learning algorithms, when

provided with good training data, are able to find and exploit patterns in the data which we

as humans are not able to easily understand. In this system the feature importance values

were ranked in an effort to determine which sensors were most valued in accurately predict-

ing the presence of the simulated ransomware process. The highest ranking sensor value by a

large margin, as determined by the extra tree predictive models, was the WLAN card power

sensor. In all likelihood even a seasoned engineer or computer scientist would not suspect

the WLAN card power to serve a purpose when modeling ransomware attacks much less be

the most important. The six sensors appearing the highest in the ranking were all power

sensors. The top six sensors in order of importance were WLAN card power (0.1920), system

supply power (0.1488), DDR3 memory line power (0.1004), CPU total package power core 1

(0.0998), CPU high side power (0.0994), and CPU total package power core 2 (0.0805). The

WLAN card temperature ranked tenth at a score of 0.0356 which was the highest ranked

temperature sensor. Additionally, the WLAN card current ranked fifteenth at 0.0019 which

made three of the four WLAN card sensors rank in the top fifteen. However, the WLAN card
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voltage sensor tied for the least important with an importance score of 0. It would appear

that the large array of sensors allows the predictive model to exploit some collective power

signature in the system which is the most accurate method for predicting the presence of

the simulated ransomware process in both its file walking state and actual encryption state.
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Chapter 6

CONCLUSION

System side channel data has commonly been used to attack systems in which an attacker

has knowledge of how a process is physically carried out on a machine. Instead of attacking

a system with side channel data it has been shown in this experiment that it is possible to

defend a system by training machine learning algorithms to detect intricate patterns in the

physical behavior of a system which correlate to a malicious process. Additionally, once the

machine learning algorithms have been trained and a predictive model has been generated,

predictions about the state of a system are calculated quickly and with a low computational

overhead.

Perhaps the most important aspect of this experiment is the speed in which an attack

may be detected. In experimental testing, the highest performing system had an average

time to attack recognition which was as little as 1.3 seconds and never exceeded 12 seconds in

even the lowest performing models. However, it has been found that even the best predictive

models generate some false positive predictions. For this reason it is believed that the most

effective method for implementing this technique would occur when more detailed analysis

follows the indication of a positive prediction. When the quick acting predictive model

indicates a positive prediction a suspected process may then be checked against a list of

known good processes which act in a similar manner as ransomware, but with non-malicious

intentions. If the targeted process is not on the list more detailed data signature analysis may

be performed to determine if the process is in fact malicious. In this way the computational

overhead of having a background process constantly performing the in-depth data signature

analysis is avoided and only performed when the physical state of the system indicates a

ransomware like process is currently running.
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The performance of the method presented in this experiment may also be augmented

by creating an ensemble predictive model which includes a higher number of individual

models which have been trained at various simulated loads. It has been shown that the

ransomware process generally consumes a predictable amount of the system’s CPU resources.

Additionally, it has been shown that the typical combination of background processes utilize

CPU resources at a low enough level that models trained at a certain simulated CPU load

are capable of making accurate predictions for a small range of total system CPU loads.

It is highly likely that implementing an ensemble predictive model with individual models

trained from a simulated load of 0% to a simulated load of 100% at increments of 5% to

10% will result in an ensemble model capable of accounting for the highly dynamic nature

of additional user load due to interaction.

While this experiment focused on detecting ransomware attacks with side channel data it

may be possible to apply this method in a more broad manner to detect different processes

which have predictable behavior. The predictive models only require training data which

demonstrates the behavior of the system in a ”normal” state and also demonstrates the

behavior of the system when the target process is active. This idea opens up the possibility

for advanced sensor based monitoring of a system which could include sensors that have

been added to the system for the sole purpose of augmenting its ability to physically model

a computational process.
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