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Abstract—Quantum mechanical phenomena such as phase
shifts, superposition, and entanglement show promise in use for
computation. Suitable technologies for the modeling and design
of quantum computers and other information processing tech-
niques that exploit quantum mechanical principles are in the
range of vision. Quantum algorithms that significantly speed up
the process of solving several important computation problems
have been proposed in the past. The most common representation
of quantum mechanical phenomena are transformation matrices.
However, the transformation matrices grow exponentially with
the size of a quantum system and, thus, pose significant chal-
lenges for efficient representation and manipulation of quantum
functionality. In order to address this problem, first approaches
for the representation of quantum systems in terms of decision
diagrams have been proposed. One very promising approach is
given by Quantum Multiple-Valued Decision Diagrams (QMDDs)
which are able to efficiently represent transformation matrices
and also inherently support multiple-valued basis states offered
by many physical quantum systems. However, the initial pro-
posal of QMDDs was lacking in a formal basis and did not allow,
e.g., the change of the variable order—an established core func-
tionality in decision diagrams which is crucial for determining
more compact representations. Because of this, the full poten-
tial of QMDDs or decision diagrams for quantum functionality
in general has not been fully exploited yet. In this paper, we
present a refined definition of QMDDs for the general quantum
case. Furthermore, we provide significantly improved computa-
tional methods for their use and manipulation and show that the
resulting representation satisfies important criteria for a deci-
sion diagram, i.e., compactness and canonicity. An experimental
evaluation confirms the efficiency of QMDDs.

Index Terms—Decision diagrams, function representation,
quantum computation, reversible logic.

I. INTRODUCTION

EXPLOITING quantum mechanical phenomena within a
quantum computer promises to solve important com-

putation problems significantly faster than on conventional
computers [1]. For instance, the superposition of basis states

Manuscript received December 20, 2014; revised April 25, 2015; accepted
May 29, 2015. Date of publication July 21, 2015; date of current ver-
sion December 18, 2015. This paper was recommended by Associate
Editor Y. Chen.

P. Niemann is with the University of Bremen, 28359 Bremen, Germany
(e-mail: pniemann@informatik.uni-bremen.de).

R. Wille and R. Drechsler are with the University of
Bremen, 28359 Bremen, Germany and also with DFKI GmbH,
28359 Bremen, Germany (e-mail: rwille@informatik.uni-bremen.de;
drechsle@informatik.uni-bremen.de).

D. M. Miller is with the University of Victoria, Victoria, BC V8P 5C2,
Canada (e-mail: mmiller@uvic.ca).

M. A. Thornton is with the Lyle School of Engineering, Southern Methodist
University, Dallas, TX 75205 USA (e-mail: mitch@lyle.smu.edu).

Digital Object Identifier 10.1109/TCAD.2015.2459034

and the use of entanglement enables massive parallelism
which has the potential to speed up tasks such as integer
factorization [2], [3] or database search [4].

A quantum system is composed of a collection of parti-
cles or other entities that have r characteristic basis states. If
the quantum system is composed of n such entities, the over-
all state of the system at some instant of time is represented
as a vector with rn complex-valued components. A change
in the state of the quantum system is described by a change
in the values of the quantum state vector components. The
state of a quantum system at two different instances of time
is represented by two corresponding state vectors and, when
the two state vectors differ, the system has changed its state
or evolved. Quantum system evolutions can be represented
by a linear transformation matrix relating two quantum state
vectors. For physical reasons, all such matrices are unitary.

Quantum algorithms or logic circuits can be expressed as
a specific evolution matrix that describes the transformation
of an initial quantum state vector to a desired output state
representing the result of the computation. In the design and
analysis of quantum systems, the availability of an efficient
representation of these matrices is essential. Many analysis and
synthesis tasks require that the overall transformation matrix
to be decomposed into a set of product matrices. For instance,
the synthesis problem can be considered as the decomposi-
tion of the overall matrix into a product of matrices where
each product term is in the form of a known transformation
matrix that represents a particular quantum computer instruc-
tion or logic gate [5]–[7]. The equivalence checking problem
can likewise be formulated by extracting the transformation
matrices from two different implementations of a quan-
tum circuit or algorithm and verifying that the matrices are
identical [8].

This viewpoint provides motivation for a compact and
unique means for the representation of unitary transformation
matrices as well as efficient operations like matrix multipli-
cation to be performed directly on these representations. As
the matrices grow exponentially with the size of the quan-
tum systems, dedicated representations that exploit structures
within the matrices have to be employed. For this purpose,
representations in the form of decision diagrams such as the
Quantum Information Decision Diagram (QuIDD [9]) or the
Quantum Decision Diagram (QDD [5]) have been proposed.
QuIDD and QDD are basically extensions of the well-known
Binary Decision Diagram (BDD [10]) with multiple terminals
and rotation matrices applied as edge weights, respectively.
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Because BDD vertices can be considered as a graphical rep-
resentation of a Shannon decomposition, they provide a very
efficient means for representing deterministic switching func-
tions such as the Boolean functions used to model conventional
digital logic circuitry. However, the Shannon decomposition
is not a basic decomposition for quantum mechanical phe-
nomena, thus, the use of BDD-based decision diagrams is not
the best choice for quantum circuits or algorithms. A decision
diagram based upon a decomposition that more naturally mod-
els quantum mechanical systems provides a better alternative
since it provides a compact representation while also allowing
for a more natural set of manipulation algorithms to be devel-
oped. As a consequence, QuIDD and QDD rather emulate
the representation of quantum functionality and, hence, show
their limitations when sophisticated quantum functionality is
considered on a larger scale [11].

As a complementary approach, Quantum Multiple-
valued Decision Diagrams (QMDDs; initially proposed
in [12] and [13]) have been considered. Here, the poten-
tially complex-valued matrix entries as well as the possible
multiple-valued basis states are explicitly supported. Moreover,
the resulting concepts allow for a canonic representation. All
this motivated the application of QMDDs for several pur-
poses such as simulation [14], equivalence checking [8], and
synthesis [6], [7].

However, the initial proposal for QMDDs had a major
shortcoming: local transformations such as those required for
adjacent variable swapping were not provided for the quan-
tum case. This is a significant issue since adjacent variable
interchange is a central approach for determining a variable
ordering that reduces the size of a decision diagram such as
sifting [15]. As a consequence, QMDDs, while effective for
classical reversible functions where sifting does work, have
seen limited use for complex quantum functionality. This situa-
tion has led to modifications and workarounds to the definition
of QMDD as e.g., done in [16]. But no comprehensive def-
inition and implementation addressing these drawbacks have
been proposed thus far.

In this paper, we provide new formulations and new con-
siderations of the foundations of QMDDs which allow for
overcoming the shortcomings mentioned above. Focusing
on the two central properties (compactness and canonicity),
a comprehensive description of the underlying basic con-
cepts is provided. Furthermore, we show that QMDDs indeed
provide a proper platform for efficient quantum function
manipulation. This explicitly includes the realization of matrix
operations directly on QMDDs as well as the construction of
QMDDs from circuit descriptions. Finally, how to efficiently
conduct local QMDD modifications is covered and, thus, the
main shortcoming of the initial proposal are addressed. This
allows for reducing the QMDD size by changing the vari-
able order and, hence, eventually allows for the consideration
of quantum functionality even on a larger scale. An experi-
mental evaluation confirms the applicability of QMDDs as an
efficient and compact representation of quantum functionality
to be applied for various purposes in this domain.

The remainder of this paper is structured along these contri-
butions. After a brief review on the background of reversible

and quantum logic in Section II, the new definition of QMDDs
is provided in Section III. Section IV covers the discussion
on efficient construction and manipulation of the resulting
QMDDs, while Section V deals with the implementation and
opportunities of local modifications. Finally, Section VI sum-
marizes our experimental evaluations and Section VII provides
our conclusions.

II. BACKGROUND

To make this paper self-contained, this section reviews the
basics of reversible and quantum functions with a particular
emphasis on matrix representations—the major representation
of quantum functionality thus far. The respective descriptions
are kept brief; readers wishing an in-depth introduction are
referred to the respective literature such as [1].

A. Reversible Logic

First, we consider the preliminaries on reversible functions.
Definition 1. A Boolean function is a mapping f : Bn → B

with n ∈ N. A function f is defined over its primary input
variables X = {x1, x2, . . . , xn} and hence is also denoted by
f (x1, x2, . . . , xn).

Definition 2. A multi-output Boolean function is a mapping
f : Bn → Bm with n, m ∈ N. More precisely, it is a system
of Boolean functions fi(x1, x2, . . . , xn) with 1 ≤ i ≤ m. The
respective functions fi are also denoted as primary outputs.

Multi-output functions can also be denoted as n-input,
m-output functions, or n × m functions. The mapping defining
a Boolean function or multi-output Boolean function can be
described by a truth table, as a Boolean expression, or as a
set of Boolean expressions.

Reversible Boolean functions are a subset of multi-output
Boolean functions defined as follows.

Definition 3. A multi-output function f : Bn → Bm is
reversible iff:

1) its number of inputs is equal to the number of outputs
(i.e., n = m);

2) it maps each input pattern to a unique output pattern.
In other words, a reversible Boolean function is a bijection

that performs a permutation of the set of input patterns.
Definition 4. A Boolean function that is not reversible is

termed irreversible.
Example 1. Table I(a) shows the truth table of a three-

input, two-output function representing a one-bit adder. This
function is irreversible, since n &= m. The function in Table I(b)
is also irreversible since, although the number n of inputs is
equal to the number m of outputs, the mapping is not a permu-
tation; e.g., both inputs 000 and 001 map to the output 000. In
contrast, the 3 × 3 function shown in Table I(c) is reversible,
since each input pattern maps to a unique output pattern.

Besides truth tables, permutation matrices are a common
representation for reversible Boolean functions.

Definition 5. A reversible Boolean function with n vari-
ables describes a permutation σ of the set {0, . . . , 2n − 1}.
This permutation can also be described using a permutation
matrix, i.e., a 2n × 2n matrix P = [pi, j]2n×2n with pi,j = 1
if i = σ ( j) and 0 otherwise, for all i, j = 0, . . . , 2n − 1.
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TABLE I
SAMPLE BOOLEAN FUNCTIONS

(a) One-bit adder (b) Irreversible function (c) Reversible function

Each column (row) of the matrix represents one possible input
pattern (output pattern) of the function. If pi,j = 1, then the
input pattern corresponding to column j maps to the output
pattern corresponding to row i.

Example 2. The reversible Boolean function defined by
the truth table from Table I(c) is also represented by the
permutation matrix as shown in Fig. 1.

The above concepts can readily be extended from the
Boolean domain to the multiple-valued case. Here, variables
can take values in {0, . . . , r − 1}, where r is called the
radix. Then, a truth table for a multiple-valued function over
n variables has rn rows. The concept of reversibility remains
the same, i.e., a multiple-output multiple-valued function is
reversible if it has the same number of inputs and outputs and
each input pattern maps to a unique output pattern. Such a
function can be represented by an rn × rn permutation matrix.
The entries of the matrix are 0’s and 1’s since they denote
correspondence in the mapping and not logical values.

B. Quantum Logic

Next we consider the preliminaries on quantum logic.
Again, we begin with the two-valued case. Quantum opera-
tions manipulate qubits rather than bits. A qubit can represent
0 or 1 as well as superpositions of the two. More formally,

Definition 6. A qubit is a two-level quantum system,
described by a two-dimensional complex Hilbert space. The
two orthogonal quantum states |0〉 ≡

(1
0

)
and |1〉 ≡

(0
1

)
are

used to represent the Boolean values 0 and 1. The state of a
qubit may be written as |x〉 = α|0〉+β|1〉, where α and β are
complex numbers with |α|2 + |β|2 = 1.

The quantum state of a single qubit is denoted by the vec-
tor

(α
β

)
. The state of a quantum system with n > 1 qubits is

given by an element of the tensor product of the respective
state spaces and can be represented as a normalized vector of
length 2n, called the state vector.

According to the postulates of quantum mechanics, the evo-
lution of a quantum system can be described by a series of
transformation operations satisfying the following.

Definition 7. A quantum operation over n qubits can be
represented by a unitary matrix, i.e., a 2n × 2n matrix
U = [ui,j]2n×2n with:

1) each entry ui,j assuming a complex value;
2) the inverse U−1 of U being the conjugate transpose

matrix (adjoint matrix) U† of U (i.e., U−1 = U†).
Every quantum operation is reversible since the matrix

defining any quantum operation is invertible. At the end of the
computation, a qubit can be measured causing it to collapse to

Fig. 1. Matrix representation of the reversible function from Table I(c).

a basis state. Then, depending on the current state of the qubit,
either a 0 (with probability of |α|2) or a 1 (with probability
of |β|2) results. The state of the qubit is destroyed by the act
of measuring it.

Example 3. Consider the quantum operation H defined by
the unitary matrix H = (1/

√
2)

( 1 1
1 −1

)
which is the well-

known Hadamard operation [1]. Applying H to the input
state |x〉 =

(1
0

)
, i.e., computing H × |x〉 yields a new quantum

state |x′〉 = (1/
√

2)
(1

1

)
. For |x′〉, α = β = 1/

√
2. Measuring

this qubit would either lead to a Boolean 0 or a Boolean 1 with
a probability of |1/

√
2|2 = 0.5 each. This computation repre-

sents one of the simplest quantum computers—a single-qubit
random number generator.

Complex quantum operations are usually realized by a set
of elementary quantum operations (e.g., represented in terms
of gates) that are performed in a predetermined serial fashion.
On the matrix level, a composition of gates (e.g., in terms of
a quantum circuit) can be expressed by a direct matrix multi-
plication of the corresponding gate matrices. This is addressed
in detail later in Section IV. Alternatively, this process can be
viewed as the implementation of a quantum algorithm in which
a series of low-level quantum operations or quantum computa-
tional instructions are represented as individual transformation
(i.e., gate) matrices.

The above concepts can readily be extended to the multiple-
valued case of so-called qudits where there are r states
|0〉, . . . , |r − 1〉 and the state of a qudit can be written as
|x〉 = $r−1

i=0 αi|i〉 with $r−1
i=0 |αi|2 = 1. The transformations

in this case are described by rn × rn unitary matrices. One
example of a multiple-valued qudit implementation is the use
of an ion with more than two energy levels that represent
basis states.

III. QUANTUM MULTIPLE-VALUED DECISION DIAGRAMS

In this section, we introduce QMDD which can represent
both binary and multiple-valued quantum functionality in a
compact and efficient manner. Note that this also includes
reversible functions, since transformation matrices for the
reversible case are permutation matrices which are a special
case of the unitary transformation matrices considered for the
quantum case.

We first intuitively motivate basic concepts of the QMDD
structure. Afterwards, we provide a formal definition and argue
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why QMDDs are not only a compact, but also a canonic
representation of quantum functionality.

A. Basic Concepts

As shown in the previous section, quantum operations are
commonly represented by unitary transformation matrices, i.e.,
complex-valued rn × rn matrices where r is the radix and n is
the number of variables (inputs and outputs). These matrices
exponentially grow in size which is why conventional matrix
representation and manipulation techniques are applicable for
rather small instances only. However, two observations can be
made which build the basis for a compact representation.

Observation 1. Elementary quantum operations typically
affect only a small number of the qubits of a quantum system.
The transformation matrix for the whole system, which is the
Kronecker product of the respective (smaller) operation matrix
and identity matrices, often contains the same pattern repeat-
edly throughout the matrix. These similar structures which may
be equal or equal up to a constant multiplier can be exploited
in reducing the representation of a matrix.

Observation 2. Transformation matrices are often sparse
with many zero entries frequently appearing in blocks. Blocks
of zeros can be represented very compactly leading to opera-
tion efficiencies particularly in matrix multiplication which is
central to dealing with reversible and quantum logic.

To make use of these possible reductions, the fundamen-
tal idea of QMDDs is to use a partitioning of the original
matrix into sub-matrices which in turn are partitioned in
the same manner. These decomposition steps are represented
by vertices eventually forming a decision diagram. Then,
the redundancies following from the observations above can
be avoided by using shared structures. More precisely, we
observe—starting with r = 2—that a 2n × 2n matrix can
be partitioned into 4 sub-matrices of dimension 2n−1 × 2n−1

as follows:

U =
[

U00 U01
U10 U11

]
. (1)

This partitioning is relative to the most significant row and
column variable.

Example 4. Consider again the matrix shown in Fig. 1.
This matrix is partitioned with respect to variable x1. The
sub-matrices are identified by subscripts giving the row (out-
put) and column (input) value for that variable identifying
the position of the sub-matrix within the matrix. For instance,
U10 corresponds to the top-right sub-matrix which describes
the mapping of the remaining variables when x1 is mapped
from input value 1 to output value 0. Using this partition, a
matrix can be represented as a graph with a vertex as shown in
Fig. 2. The vertex is labeled by the variable associated with
the partition and has directional edges pointing to vertices
corresponding to the sub-matrices.

The partitioning process can be applied recursively to each
of the sub-matrices and to each of the subsequent levels of
sub-matrices until one reaches the terminal case where each
sub-matrix is a single value. The result is that the initial matrix
is represented by a tree. By traversing the tree, one can access

Fig. 2. Vertex representing the matrix partitioning (for r = 2).

the successively partitioned sub-matrices of the original matrix
down to the individual elements.

The partitioning in (1) can readily be extended to the
multiple-valued case as follows:

U =





U00 U01 · · · U0,r−1
U10 U11 · · · U1,r−1
...

...
. . .

...

Ur−1,0 Ur−1,1 · · · Ur−1,r−1




(2)

where matrix U has dimension rn ×rn and the r2 sub-matrices
each have dimension rn−1 × rn−1.

This structure allows for representing equal sub-matrices
by shared parts of the diagram. However, further vertex shar-
ing and, thus, reduction is possible by extracting common
multipliers as illustrated in the following.

Example 5. Consider the matrix in Fig. 3(a). Applying the
recursive partitioning above would yield a tree as depicted in
Fig. 3(b): with a root labeled x1, three internal vertices labeled
x2 (the two zero blocks sharing the same vertex), and four ter-
minal vertices (one for each value 0, 1, i,−i). By extracting
common multipliers and using them as edge weights, we can
reduce the tree to the graph in Fig. 3(c). Then, the four termi-
nal vertices in the tree can be collapsed to a single terminal
vertex with value 1. The actual value of a matrix entry is the
product of the weights on the path corresponding to the sub-
matrix partitioning through the matrix that leads to the entry.
For example, the highlighted matrix entry −i in Fig. 3(a) cor-
responds to the path highlighted in bold in Fig. 3(c). Since
we are taking the product of weights, edges with 0 weight
can point directly to the terminal vertex. To avoid clutter in
the diagrams we show 0 weight edges as stubs and do extend
them to the terminal. Also, to avoid clutter, we do not explicitly
indicate the edge weight if it is 1.

However, even more reduction is possible: the matrix in
Fig. 3(a) has two structurally equivalent sub-matrices (high-
lighted in gray) which differ only by a common multiplier.
These correspond to the two vertices labeled x2 in Fig. 3(c).
By factoring out i from the lower left sub-matrix as a weight,
we can represent the two sub-matrices by one shared structure
as shown in Fig. 3(d).

Clearly, the choice of the edge weights is not unique,
though it is central for our objective to share common matrix
structures and to efficiently deal with sub-matrices entirely
composed of 0’s. To this end, we introduce the concept
normalizing a (sub)matrix.

1) To achieve an optimal structure sharing, we want to
store only normalized forms of the sub-matrices. For
this purpose, the normalized form M̂ of a matrix M
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Fig. 3. Representations of a two-qubit quantum operation.

shall be the same for any (nonzero) multiple of M,
that is

M̂ = α̂M for all α &= 0. (3)

2) Moreover, as the terminal vertex represents the
matrix [1]1×1, this matrix shall be the normalized form
of any 1 × 1 matrix, that is

[̂α]1×1 = [1]1×1 for all α ∈ C. (4)

To obtain normalized forms we need a normalization scheme
to determine which common multiplier N(M) (normalization
factor) is extracted from a matrix M, such that

M = N(M) · M̂. (5)

Formally, interpreting the normalization scheme as a map-
ping N from the set of matrices to the set of normaliza-
tion factors (complex numbers), we require the following
properties.

1) N(αM) = αN(M) for any complex-valued matrix M
and any complex-valued number α.

2) N([α]1×1) = α for any complex number α.
3) N(M) = 0 ⇔ all entries in M are zero.
Example 6. A very simple normalization scheme is

obtained by defining the normalization factor of a matrix to
be (1) the first nonzero entry of the matrix that is found when
scanning the matrix row by row and entry by entry or (2) zero
if no nonzero entry is found. It is readily observed that this
scheme indeed satisfies the required properties.

Note that property 3) allows us to directly compute the
normalized form of nonzero matrices from (5) as follows:

M̂ = 1
N(M)

· M (M &= 0) (6)

and one can easily check that this definition satisfies the
desired properties of normalized forms given in (3) and (4).
For M = [0]k×k, we could choose the normalized form

arbitrarily according to (5), but for consistency with k = 1
we set

[̂0]k×k = [1]k×k for any k. (7)

Recall that our aim was to identify structurally equiva-
lent sub-matrices and extract common multipliers in order to
obtain as much structure sharing as possible by using normal-
ized forms of the sub-matrices. For a formal description of
how the above normalization is integrated into the decompo-
sition process, we make use of the Khatri–Rao (KR) product
(introduced in [17] and [18]). The KR product provides for
a mathematical description of the QMDD vertex decomposi-
tion in analogy to the Shannon decomposition for BDDs and
other BDD-like structures such as the QuIDD and QDD. It is
defined as follows.

Definition 8. The KR product ∗ is a particular type of
matrix multiplication that operates over matrix partitions and
can be described in terms of the tensor product, denoted by ⊗,
as A ∗ B = [Aij ⊗ Bij]ij.

Example 7. Assume two matrices A and B are of the form

A =
[

A00 A01
A10 A11

]

2k×2k
B =

[
B00 B01
B10 B11

]

2l×2l
.

Then, the KR product A ∗ B becomes

A ∗ B =
[

A00 ⊗ B00 A01 ⊗ B01
A10 ⊗ B10 A11 ⊗ B11

]

2(k·l)×2(k·l)
.

Note that, according to the definition of the tensor product,
the block Aij ⊗ Bij has dimension k · l × k · l assuming that
Aij and Bij have dimensions k × k and l × l, respectively.

Conceptually, the proposed normalization from (5) is to be
applied to each sub-matrix separately in the course of the parti-
tioning and the extracted normalization factors (edge weights)
are to be applied only to the particular sub-matrix. This can
be formally described using the KR matrix product by the
following decomposition relationship:

M = W(M) ∗ M̂. (8)

In this central equation.
1) M is the original rn × rn matrix to be decomposed.
2) W(M) = [N(Mij)]0≤i,j<r is the r × r matrix containing

all scalar factors (weights) which are extracted from the
sub-matrices Mij.

3) M̂ has dimension rn × rn, partitioned into the r2 nor-
malized sub-matrices M̂ij of dimension rn−1 × rn−1.

Here, the KR product essentially ensures that the extracted
weights will be associated with the appropriate sub-matrix.

Example 8. For r = 2, the decomposition is given by the
equation

U =
[

N(U00) N(U01)

N(U10) N(U11)

]
∗

[
Û00 Û01

Û10 Û11

]

.

The decomposition is represented by a vertex labeled by the
corresponding partition variable and, as shown in Fig. 3(c),
the extracted normalization factors are attached to the edges
that point to the vertices representing the decomposition of the
corresponding sub-matrices. Note, however, that the diagram
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in Fig. 3(c) does not correspond to a proper decomposi-
tion since the same weight is extracted for the two nonzero
sub-matrices though they differ by a constant multiplier only.
Conversely, the diagram in Fig. 3(d) results from a proper
decomposition using normalized forms as they would result
from using the normalization scheme outlined in Example 6.

B. Formal Definition

Based on the concepts described above, we now present a
formal definition of QMDDs.

Definition 9. A QMDD is a representation of an rn × rn

complex matrix as a rooted directed acyclic graph with a
set V containing two types of vertices: a single terminal
vertex and zero or more non-terminal vertices. The termi-
nal vertex, labeled 1, represents the matrix [1]1×1. It has
no outgoing edges. Each non-terminal vertex is labeled by
an r-valued variable and has r2 outgoing edges, each point-
ing to a vertex in V. Each non-terminal vertex denotes the
partitioning of a matrix by the application of (8) and, thus,
has r2 outgoing edges ep, 0 ≤ p < r2, which are labeled
00, 01, . . . , r − 1 r − 1 and have associated complex weights
w(e00), w(e01), . . . , w(er−1,r−1). There is an initial edge with
no source vertex which points to the root vertex and has an
associated complex weight representing the normalization fac-
tor of the represented matrix according to (5). We term this the
root edge.

A QMDD has the following properties.
1) The non-terminal vertex labels (variables) are ordered

which means that if a non-terminal vertex with label xi
has an edge pointing to a non-terminal vertex labeled xj,
xi is the more significant variable in the row and column
labeling of the matrix represented by the QMDD.

2) A QMDD is reduced which means: a) there is no non-
terminal vertex where all outgoing edges point to the
same vertex and have the same weight and b) all vertices
are unique and no two non-terminal vertices represent
the same sub-matrix, i.e., are labeled by the same vari-
able and have all corresponding edges pointing to the
same vertex with the same weight.

3) Any constant (sub)matrix, regardless of its size, is rep-
resented as an edge pointing directly to the terminal
vertex.

It is important to note that a QMDD is a recursive repre-
sentation as every edge in the QMDD can be seen as the root
edge of the QMDD representation of a sub-matrix. This is a
key observation used to describe how matrix operations are
implemented with QMDDs.

Another key factor in interpreting QMDDs concerns the
variables labeling the non-terminal vertices. Each non-terminal
vertex is labeled by an r-valued variable and that variable
labels both the rows and columns of the matrix. The corre-
sponding matrix partitioning divides the rows into r sections
and the columns into r sections for a total of r2 sub-matrices
[see (8)].

The notion of variable ordering introduced in Definition 9
means that if the matrix row and column variables are ordered
by a function index() such that index(xi) < index(xj) iff

xi precedes xj, then the QMDD satisfies the following two
properties.

1) Each variable appears at most once on each path from
the root vertex to the terminal vertex.

2) An edge from a non-terminal vertex labeled xi points to
a non-terminal vertex labeled xj, index(xj) > index(xi)

or to the terminal vertex. Hence, the variable indices
along any path from the root to the terminal satisfy the
order imposed by index() and that order corresponds to
the variables order for the matrix and column labeling
from most to least significant.

Another important observation is that all edges with
weight 0 point directly to the terminal vertex. This is because
they represent the normalization factor 0 which, by definition,
may only occur if the edge represents a sub-matrix [0]k×k.
Consequently, the edge points to a vertex representing the
normalized form, which is [1]k×k by (7). However, since the
QMDD is reduced, there may not be a non-terminal vertex
representing this matrix, because all its outgoing edges would
point to the same vertex with the same weight. Similarly, any
constant sub-matrix is represented by an edge directly pointing
to the terminal vertex with the appropriate weight, as stated in
property 3) of Definition 9. In summary, these structural shar-
ing allow for a compact representation of the corresponding
reversible or quantum functionality.

C. Canonicity

In addition to the desired feature of allowing for a compact
representation of functionality, the uniqueness of a function
representation is also of interest. In particular, this is of
significant importance for many application areas such as
equivalence checking. QMDDs satisfy this criteria, i.e., any
normalized QMDD is canonic with respect to a given variable
order and normalization scheme as is proven in this section.

Theorem 1. Given a normalization scheme N, the corre-
sponding QMDD representation of any complex-valued rn×rn

matrix is unique up to variable order.
Proof: The proof is by contradiction, i.e., we assume that

there exists a matrix M that has two different QMDD repre-
sentations G1 and G2 which adhere to the same normalization
scheme and variable order, and show that such a matrix may
not exist. Recall that, according to the decomposition in (8),
any non-terminal vertex of a QMDD represents the normal-
ized form of the corresponding sub-matrix. Consequently, each
vertex in G1 has an equivalent in G2 and vice versa. Roughly
speaking, both representations employ the same set of ver-
tices. Since G1 and G2 are different, one representation must
include an edge e1 that is not present in the other represen-
tation. This edge must have a different weight or a different
target compared to the corresponding edge e2 in the other rep-
resentation. However, both cases may not happen as e1 and e2
have the same source and, thus, represent the same sub-
matrix for which the normalization factor (edge weight) and
normalized form (target vertex) are uniquely defined. This con-
tradicts the assumption that there are two representations for
matrix M.

Clearly, QMDD representations may be different for dif-
ferent variable orders. Moreover, even for a fixed order,
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the resulting QMDDs may differ for different normalization
schemes as well. However, the following theorem shows that
the resulting diagram structure is always the same.

Theorem 2. Given a complex-valued rn × rn matrix and a
fixed variable order, the corresponding QMDD representations
are isomorphic for any two normalization schemes.

Proof: Consider two QMDD representations of the same
matrix corresponding to different normalization schemes.
Again, the non-terminal vertices in both representations rep-
resent normalized forms of the corresponding sub-matrices.
Since QMDDs are reduced, a single vertex exists for each
of a sub-matrix and its multiples. Consequently, there is a
bijection between the vertex sets of both representations that
identifies vertices representing the same class of multiples of
a sub-matrix. We want to show that this map is indeed a graph
isomorphism, i.e., it also preserves edges. To do that, we have
to show that each pair of corresponding edges indeed point to
corresponding vertices. For this purpose, consider an arbitrary
pair of corresponding edges, i.e., two outgoing edges eij and e

′
ij

(both labeled ij) from corresponding vertices from both rep-
resentations. Since the source vertices correspond to the same
class of multiples of a sub-matrix M, both vertices represent a
multiple of M: its respective normalized form. Consequently,
both edges represent multiples of the same sub-matrix Mij
of M and, thus, point to corresponding vertices (representing
the respective normalized forms of Mij). Overall, the bijec-
tion between the vertex sets preserves edges and is, therefore,
a graph isomorphism.

The two theorems proven in this section indeed show that
QMDDs provide unique representations (up to variable order)
while the resulting structure does not depend on which nor-
malization scheme is actually used. This is beneficial since
it ensures the highest possible structure sharing and, hence,
the most compact representation regardless of how exactly
the weights are determined. Thus, even simple normalization
schemes as the one discussed in Example 6 are sufficient. This
is even more important as it is infeasible for large matrices
to compute sophisticated normalization factors in a top-down
fashion and, as a consequence, normalization of QMDDs is
practically performed in a bottom-up fashion as we will see
in the following section.

IV. CONSTRUCTION AND MANIPULATION OF QMDDS

Thus far, we showed that the proposed QMDDs provide
a compact and canonic representation of arbitrary reversible
and quantum functionality. However, to be of practical use,
QMDDs must additionally allow for an efficient construction
and manipulation. These issues are covered in this section.
More precisely, we will discuss how essential matrix opera-
tions can efficiently be performed on QMDDs and show that
QMDD representations for elementary quantum operations can
easily be derived. These issues are exemplarily illustrated by
means of constructing a QMDD for a given quantum circuit.

A. Normalization

Before we describe how essential matrix operations can
efficiently be performed directly on the QMDD structure,

Fig. 4. Normalizing a vertex.

we first need to consider how normalization, the key for
QMDDs being canonic representations, is achieved in prac-
tice. For larger matrices, it is infeasible to determine the edge
weights, i.e., the normalization factors as they arise from the
partitioning of a matrix as given in (8), in a top-down fashion.
As the QMDD is rather built bottom-up, the edge weights also
have to be determined this way. More precisely, by perform-
ing vertex normalization of each non-terminal vertex when it is
constructed, edge weights are determined subsequently, finally
making the QMDD a canonic representation.

Consider a QMDD non-terminal vertex v with outgoing
edges ep, 0 ≤ p ≤ rn − 1 that are pointing to sub-matrices
U00, U01, . . . , Ur−1,r−1, respectively, and let w(ep) denote the
weight on edge ep.

Definition 10. The non-terminal vertex v is normalized if
w(ej) = 1 for the lowest j for which w(ej) &= 0.

It is straightforward to normalize a given QMDD non-
terminal vertex v according to the above definition: a single
normalization factor equal to the w(ej) for the lowest j for
which w(ej) &= 0 is identified and the weights on all edges
leading from the vertex are divided by that factor. Note that
the existence of at least one edge with nonzero weight is
for sure as we have shown earlier that edges with weight 0
point directly to the terminal vertex and, since the QMDD is
reduced, there may not be a vertex with all edges pointing to
the same vertex with the same weight.

The vertices that v points to are not affected, but the edges
pointing to v have to be adjusted by multiplying their weights
by the normalization factor. An example for the binary case is
shown in Fig. 4. The vertex on the left is normalized as shown
on the right. In this case, the normalization factor is −i.

Note that, as QMDDs are built and normalized bottom-up,
this propagation of normalization factors to the top can easily
be performed without possibly destroying the normalization
of existing vertices. Finally, note that this procedure indeed
establishes a normalization scheme similar to the one defined
in Example 6, though now the matrix is scanned for nonzero
entries in a more elaborate fashion.

Example 9. For a 4 × 4 matrix, the order in which the
matrix is being scanned for nonzero entries is given by





1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16





for vertex normalization. In contrast, we obtain




1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16





for the normalization scheme from Example 6.
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B. Matrix Operations

Knowing how a normalized representation is actually
achieved, we can now describe how matrix operations can be
computed directly on a QMDD. We will do this for the three
common operations addition, direct multiplication, and tensor
or Kronecker multiplication. It is noted that the calculation
of the tensor product and the Kronecker product are identi-
cal multiplicative operations over the class of unitary matrices
used to represent quantum system evolutions. Other operations
are readily implemented using the methods described in the
following text.

Implementing these operations uses the fact that a QMDD is
a recursive representation that represents a matrix as a compo-
sition of sub-matrices which are in turn represented by smaller
sub-matrices. This allows the operations to be expressed in
terms of operations on sub-matrices. For example, matrix addi-
tion for the binary case can be expressed as the addition of
sub-matrices, that is
[

A00 A01
A10 A11

]
+

[
B00 B01
B10 B11

]
=

[
A00 + B00 A01 + B01
A10 + B10 A11 + B11

]
.

Matrix multiplication for the binary case is expressible
as follows:

[
A00 A01
A10 A11

][
B00 B01
B10 B11

]
=

[
C00 C01
C10 C11

]

with

C00 = A00B00 + A01B10

C01 = A00B01 + A01B11

C10 = A10B00 + A11B10

C11 = A10B01 + A11B11.

In order to formalize these operations on the QMDD, the
following definitions are applied.

Definition 11. Given an edge e, we use w(e) to denote the
weight on e, v(e) to denote the vertex e points to, x(e) to denote
the variable that labels the vertex e points to (not defined for
the terminal vertex), Ei(e) to denote the ith edge out of the
vertex that e points to, and T(e) to denote a Boolean test that
is true if e points to the terminal vertex.

Furthermore, we assume that the variables adhere to the
same order in all considered QMDDs and we shall use ≺ to
denote the fact that one variable precedes another and, hence,
appears closer to the terminal vertex in the QMDD. For gen-
erality, we consider the multiple-valued case where r is the
radix, i.e., every non-terminal vertex has r2 outgoing edges
(for the Boolean case, r can simply be set to r = 2).

Having that, matrix operations can be conducted on
QMDDs as follows noting that a matrix is uniquely identified
by the root edge for the QMDD.

1) Matrix Addition: Let e0 and e1 be the root edges of two
QMDDs (matrices) to be added. The procedure is recursive
and involves the following steps.

a) If T(e1), swap e0 and e1.
b) If T(e0):

i) if w(e0) = 0, the result is e1;

ii) if T(e1), the result is an edge pointing to the
terminal vertex with weight w(e0) + w(e1).

c) If x(e0) ≺ x(e1), swap e0 and e1.
d) For i = 0, 1, . . . , r2 − 1.

i) Create an edge p pointing to v(Ei(e0)) with weight
w(e0) × w(Ei(e0)).

ii) If x(e0) = x(e1), create an edge q pointing to
v(Ei(e1)) with weight w(e1) × w(Ei(e1)), else set
q = e1.

iii) Recursively invoke this procedure to add p and q
giving zi.

e) The result is an edge pointing to a vertex labeled x(e0)

with outgoing edges zi, i = 0, 1, . . . , r2 − 1. This vertex
and the edge pointing to it are normalized.

2) Matrix Multiplication: Let e0 and e1 be the root edges
of two QMDD (matrices) to be multiplied. The procedure is
recursive and involves the following steps.

a) If T(e1), swap e0 and e1.
b) If T(e0) then:

i) if w(e0) = 0, the result is e0;
ii) if w(e0) = 1, the result is e1;

iii) otherwise, the result is an edge pointing to v(e1)

with weight w(e0) × w(e1).
c) If x(e0) ≺ x(e1), swap e0 and e1.
d) For i = 0, r, 2r, . . . , (r − 1)r.

For j = 0, 1, . . . , r − 1.
Set zi+j to be an edge with weight 0 pointing to the
terminal vertex.
For k = 0, 1, . . . , r − 1.

i) Create an edge p pointing to v(Ei+k(e0)) with
weight w(e0) × w(Ei+k(e0)).

ii) If x(e0) = x(e1), create an edge q pointing to
v(Ej+r×k(e1)) with weight w(e1) × w(Ej+r×k(e1)),
else set q = e1.

iii) Recursively invoke this procedure to multiply the
QMDD pointed to by p and q and then use the
procedure above to add the result to the QMDD
pointed to by zi+j. The result of the addition
replaces zi+j.

e) The result is an edge pointing to a vertex labeled x(e0)

with outgoing edges zi, i = 0, 1, . . . , r2 − 1. This vertex
and the edge pointing to it are normalized.

3) Kronecker Product: Let e0 and e1 be the root edges of
two QMDD (matrices) for which we want to compute the
Kronecker product A⊗B (note that this operation is not com-
mutative). For the application considered here, the selection
variables for B precede the selection variables for A. This
greatly reduces the complexity of the algorithm for computing
the Kronecker product of two QMDD.

The procedure is recursive and involves the following
steps.

a) If T(e0) then:
i) if w(e0) = 0, the result is e0;

ii) if w(e0) = 1, the result is e1;
iii) otherwise, the result is an edge pointing to v(e1)

with weight w(e0) × w(e1).
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Fig. 5. Quantum circuit built from elementary quantum gates.

b) For i = 0, 1, . . . , r2 − 1.
Recursively invoke this procedure to find the Kronecker
product of Ei(e0) and e1 setting zi to the result.

c) The result is an edge pointing to a vertex labeled x(e0)

with outgoing edges zi, i = 0, 1, . . . , r2 − 1. This vertex
and the edge pointing to it are normalized.

Performing these matrix operations directly on the QMDD
structure makes them very effective which we will exemplarily
illustrate in the next section by means of constructing a QMDD
for a given quantum circuit.

C. Construction

For many applications, it is a very important task to effi-
ciently construct a representation of quantum circuits, i.e.,
cascades of elementary quantum operations that form a more
complex operation.

Example 10. Consider the quantum circuit shown in
Fig. 5(a) which realizes a quantum operation on three qubits
using two elementary quantum gates. The qubits are repre-
sented by horizontal lines and the gates are applied to the
qubits successively from left to right. The first gate is a
Hadamard gate realizing the Hadamard operation H intro-
duced in Example 3. The gate operates on the target qubit
x3 only and does not affect any other qubit. The second gate
is a controlled NOT gate. That means it performs the NOT
operation—defined by the matrix X =

(
0 1
1 0

)
, on the target

qubit (here: x2) if and only if all the control qubits (here: x3)
are in the activating state (here: 〈1|). If at least one control is
not in the appropriate state, the gate has no effect on the tar-
get. Controls and unconnected qubits are not affected in any
case. For the Hadamard gate, the resulting matrix is I⊗I⊗H.
The controlled NOT is represented by I⊗C(X) where C(X) is

the 4×4 matrix
( 1 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0

)
. The corresponding QMDD

representations are shown in Fig. 5(b) and (c), respectively.
The representation for the whole quantum circuit is suc-

cessively built from representations for single quantum gates.
More precisely, for a cascade or series of gates G0G1 . . . Gt−1
where the transformation for gate Gi is defined by matrix Mi,
the transformation for the complete circuit is given by the
direct matrix product Mt−1 × Mt−2 × . . . × M0. Note that the
order of the matrices has to be reversed to achieve the correct
order of applying the gates (first G0, then G1, etc.).

To construct this matrix product, the QMDDs for the single
gates simply have to be multiplied using the algorithm pre-
sented in the previous section. Consequently, for the remainder

of this section we will focus on how the QMDD repre-
sentations for elementary quantum gates can be constructed
efficiently.

Again for generality, we consider the multiple-valued case.
Assume, as above, the variable order x1 1 x2 1 . . . 1 xn from
the root vertex toward the terminal vertex. A gate G is specified
by the r × r base transition matrix M, the target qubit xt and a
possible empty set of control qubits C. Though it is possible
to construct the QMDD for the gate in one step, for a better
understanding we will construct two QMDDs representing the
cases that the gate is active (all controls have the required
value) or inactive (nothing is done). By adding these QMDDs,
the actual QMDD for the gate results.

Example 11. Consider the QMDD in Fig. 5(b) which rep-
resents the first gate of the quantum circuit examined in
Example 10. Recall that, in terms of matrix representations,
the unconnected qubits correspond to identity matrices that
are applied to the Hadamard gate matrix via Kronecker prod-
ucts. On the QMDD level, this is done by connecting vertices
labeled x1 and x2 (representing the identity) to the x3-vertex
that represents the Hadamard matrix. Note that normalization
propagates the common multiplier 1/

√
2 of this matrix to the

root edge.
The QMDD of the circuit’s second gate is shown in

Fig. 5(c). The two vertices labeled x3 represent the active
and inactive part of the gate, respectively. For the left vertex
which represents the inactive part, only the edge represent-
ing the input/output mapping |0〉 → |0〉 has nonzero weight.
Similarly, for the active part this is true for the |1〉 → |1〉
edge. These parts are put together at the x2-level. The inac-
tive part which shall leave x2 untouched is connected to the
|0〉 → |0〉 and |1〉 → |1〉 edge. The active part which shall
perform the NOT operation, i.e., interchange |0〉 and |1〉, is
connected to the |0〉 → |1〉 and |1〉 → |0〉 edge. Finally, the
unconnected qubit x1 is connected as for the first gate.

This procedure for constructing QMDDs for quantum gates
from the terminal vertex toward the root vertex can be
generalized as follows. It has three phases.

1) Variables Below Target: For these variables, r2 sep-
arate QMDD is constructed for the active case. The
(i × r + j)th QMDD has a path following the active
values, i.e., the values required to activate the con-
trols, for the control variables to the terminal value Mi,j
with all other paths leading to 0. Noncontrol variables
(unconnected lines) are taken into account through cer-
tain identity matrices combined with the active part of
the QMDD using Kronecker products.
For the inactive case, only one QMDD has to be con-
structed since the gate action is the identity matrix which
only has nonzero entries on the diagonal which are all
equal to 1. The off-diagonal QMDDs are simply edges
to the terminal vertex with weight 0. The QMDD for
the diagonal is build recursively (bottom-up) starting
with an edge to the terminal with weight 1. Noncontrol
variables are again taken into account through certain
identity matrices combined with the already constructed
part of the QMDD using Kronecker products. For con-
trol variables, we create a vertex that points: a) to the
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already constructed part for the active value; b) to an
identity matrix of appropriate dimension for the inactive
values; and c) to 0 otherwise.

2) Target Variable: A single QMDD is formed with the
source vertex labeled by the target variable and the edges
from that vertex leading to the QMDDs constructed in
the first phase.

3) Variables Above Target: For the active case, the upper
part of the QMDD has a path following the active val-
ues for the control variables with all other paths leading
to 0. Again, noncontrol variables are taken into account
through appropriate identity matrices and Kronecker
products.
For the inactive case, the variables above the target are
treated equally as variables below the target.

Space here only allows us to outline the procedure and
a detailed understanding is best derived from the C code
implementation available from the authors. However, the most
important aspect of this procedure is that it builds the QMDD
corresponding to a gate from terminal to root vertex in a single
pass by iterating from xn to x1 with no backtracking or recur-
sion. It is thus quite efficient and, to a large extent, the time
required is independent of the complexity of the gate under
consideration.

Overall, by employing matrix multiplication as outlined
above, QMDD representations for quantum circuits as well
as other quantum logic representations can be build from the
gate representations very efficiently.

V. CHANGING THE VARIABLE ORDER

As we have seen so far, QMDDs offer a compact and
canonic representation of reversible and quantum logic and
promise an efficient handling and manipulation of quantum
functionality. However, it is a common observation for deci-
sion diagrams that the variable order may have a large impact
on the size of the representation and, hence, is crucial for
the overall efficiency. In this section, we will first analyze in
which way variable reordering can possibly reduce the vertex
count of QMDDs. After that, we illustrate which obstacles
arise when performing local modifications (like variable inter-
changes) on QMDDs, provide a solution to this problem and,
finally, present the resulting interchange scheme for adjacent
variables in QMDDs. This scheme enables to use many estab-
lished reordering techniques for decision diagrams that rely on
interchanges of adjacent variables like, e.g., sifting or window
permutation [15]. An experimental evaluation how variable
reordering affects the diagram size will be presented later in
Section VI.

A. Shared Vertices and Skipped Variables

Changing the variable order of a QMDD can be interpreted
as permuting rows and columns of the corresponding matrix.
In fact, this change can have a significant impact on structural
equivalence and, hence, on shared vertices. In some cases,
it allows the joining of identical blocks which leads to redundant
vertices for which all outgoing edges would point to the same
vertex with the same weight. However, redundant vertices are,

Fig. 6. Variable interchange: structural equivalence and skipped variables.

by definition, not allowed in QMDDs and will be represented
by an edge that skips the particular variable (say xj) and points
to a vertex which is labeled by a variable that succeeds xj in the
variable order. Both are illustrated by means of the following.

Example 12. Consider the matrices in Fig. 6. Suppose
A, . . . , G are mutually different sub-matrices of the same size
2k×2k. Both matrices represent the same functionality (though
employing a different variable order where x1 and x2 change
places) and each matrix can be obtained from the other by
variable interchange, i.e., by swapping the 01 and 10 rows
and columns. The matrix on the left has three identical blocks
which can be represented by a shared x2-vertex. The matrix
on the right does not offer shared vertex compression, but the
top-right sub-matrix consists of four identical blocks which
gives rise to a skipped variable.

A special case of skipped variables are blocks of zero which
result in a 0-edge that directly points to the terminal ver-
tex and skips all succeeding variables. It can be shown that
0-edges are the only type of skipped variables that can occur
for QMDDs which represent a reversible function (permutation
matrix) [19]. This is because skipped variables always indi-
cate identical sub-matrices and since in permutation matrices
there is a single nonzero entry in each row and column, the
identical sub-matrices can only be blocks of zeros.

From this perspective, the aim of QMDD minimization for
reversible operations can hence be described as changing the
position of the non-terminal vertices such that those vertices
that have more outgoing 0-edges are closer to the root ver-
tex. Corresponding metrics for guiding the reordering process,
based upon the ratio of the number of nonzero weight edges
versus the total number of vertices, are reported in [20].

However, in quantum computation there are also functions
whose transformation matrices are completely populated, i.e.,
which do not contain a single zero entry. For instance, this
is the case for Quantum Fourier Transforms (QFT) which
occur as part of Shor’s factorization algorithm [2], [3]. In
fact, these illustrate nicely how skipped variables and a high
rate of shared vertices can reduce the QMDD size. More pre-
cisely, the corresponding QMDD representations do not show
any shared vertices in standard variable order as there are no
structurally equivalent sub-matrices and, hence, have the max-
imum QMDD size with respect to the matrix size. However,
when applying the inverse variable order as shown in Fig. 7,
the QMDD size is reduced significantly, e.g., from 21 to 8
non-terminal vertices for n = 3.
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Fig. 7. QFT for n = 3 qubits and inverse variable order.

(a) Given QMDD (b) W/ interchanged variables

Fig. 8. Variable interchange in a QMDD.

The existence of skipped variables, excluding the special
case of 0-edges, seems to be a rare phenomenon for unitary
matrices representing arbitrary quantum operations. However,
it is possible to construct such matrices with edges that skip
an arbitrary number of variable levels [21]. Therefore, skipped
variables have to be taken into account carefully in each
QMDD algorithm.

B. Local Modifications and Vertex Weights

We have already seen that large effort is put on nor-
malization (of edge weights) in order to ensure canonical
representations. Local modifications within a QMDD, e.g.,
due to a variable interchange, may lead to changes of edge
weights which destroy normalization and, hence, require a
rework of a large part of the QMDD in order to restore the
normalization.

Example 13. Consider the QMDD shown in Fig. 8 which
was built using vertex normalization. Assume that, as part
of a reordering process, we interchange variables x2 and x3.
This leads to a QMDD structure as shown in Fig. 8, i.e., the
weight of the leftmost edge of the x1-vertex changes from 1 to i.
Thus, this vertex is not normalized anymore according to
Definition 10. In the worst case, changes like this propagate
through the entire QMDD structure. As a result, variable inter-
changes (and local modifications in general) are no longer
local operations which can have a significant effect on the
overall efficiency.

The basic idea to overcome this problem is to store weight
changes (as they result from local modifications) within the
vertices as vertex weights instead of propagating them to
incoming edges. The advantage of this approach is that we
easily maintain a normalized structure. More precisely, ver-
tex weights can be interpreted as the normalization factors

of the respective (sub)matrices. So far, these were aimed to
be equal to 1, i.e., all vertices were supposed to represent a
normalized matrix with a normalization factor of 1. In this
case, vertex weights do not have any effect. Otherwise, they
can be removed by simply applying them to the weights of
all outgoing edges and then performing vertex normalization.
However, we are not actually performing these multiplications.
This is because they would only affect the weights of certain
edges, but the whole QMDD would still be normalized—w.r.t.
a slightly different normalization scheme, for which the nor-
malization factor of that particular sub-matrix is adjusted.
In short, the change or introduction of vertex weights is
just a small change to the applied normalization scheme,
but maintains the normalized structure. Consequently, the use
of vertex weights preserves the (optimal) structure sharing
according to Theorem 2 and, hence, enables local opera-
tions to be performed efficiently. This will be outlined in
detail in the following section for the purpose of variable
interchange.

C. Variable Interchange Scheme for QMDDs

As discussed above, achieving normalization can be a severe
obstacle when performing modifications on QMDDs such as
adjacent variable interchanges. However, using the concept of
vertex weights, this problem is solved, i.e., a local modifica-
tion such as a variable interchange can be performed without
ramifications to other parts of the QMDD structure. The par-
ticular way of employing vertex weights is demonstrated in
this section.

We use an interchange scheme which is similarly applied
in other decision diagram types, e.g., BDDs: consider a BDD
where two adjacent variables x1 and x2 shall be interchanged.
Then, each x1-vertex is replaced by an x2-vertex which shall
represent the same Boolean function in order to make the
swap a local operation. This is done by interchanging the
labels of the vertices and permuting the subtrees representing
the respective cofactors [10]. Analogously, for QMDDs each
x1-vertex is replaced by an x2-vertex which shall represent
the same functionality. By doing so, an interchange of
variables x1 and x2 for a given matrix leads to a permutation
of sub-matrices as illustrated in Fig. 9(a), i.e., the swapping
of certain rows and columns. This accordingly needs to be
conducted in the QMDD structure in which each of the
affected sub-matrices is represented by a vertex as well as
weighted edges.

That is, to interchange two adjacent variables x1 and x2 in a
QMDD (where x1 precedes x2 in the variable order), we pro-
cess all vertices that are labeled x1. We skip all such vertices
that do not point to any x2-vertex. For each of the remaining
x1-vertices V with outgoing edges eV

i (i = 0, . . . , r2 −1), from
which at least one edge points to a v2-vertex, we perform the
following three steps.

1) Create an r2 ×r2 square matrix T = (tij) and set tij to be
the jth outgoing edge of the x2-vertex pointed to by eV

i
and multiply the weight of tij with the weight of eV

i and
the (vertex) weight of the v2-vertex. If the destination of
eV

i is not labeled with x2, set tij = eV
i instead.
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Fig. 9. Sketch of the variable interchange procedure for binary QMDDs (r = 2).

2) From each column j of T create a vertex labeled x1 with
outgoing edges ei = tij and let eV

j point to this vertex.
Relabel V to x2.

3) Apply the normalization scheme and store the normal-
ization factor of V by multiplying it to the current vertex
weight τV .

This procedure is illustrated by the following example.
Example 14. Consider the case of a binary QMDD (r = 2)

in which two adjacent variables x1 and x2 are to be inter-
changed. On matrix level, this corresponds to a permutation
of rows and columns as illustrated in Fig. 9(a). According to
step 1, a matrix containing all subtrees representing the sub-
matrices m0 until m15 is created first [see Fig. 9(b)]. Then,
these subtrees are rearranged in step 2 eventually leading to
the structure shown in Fig. 9(c). Finally, the respective ver-
tices are normalized in step 3. This is illustrated in Fig. 9(d)
for the subtree m8. First, this subtree is relocated (according
to the previous steps). Then, the product of the correspond-
ing edge and vertex weights is concentrated at the bottom
level. The final factorization of this product (highlighted in
gray) is achieved by applying vertex normalization to the new
structure.

The interchange procedure operates in the same fashion
on each sub-matrix of the particular partitioning level that
corresponds to the interchanged variables. Thus, it preserves
structural equivalence. This guarantees that (an optimal) vertex
sharing is maintained and we will not create vertices that
only differ by their vertex weight. By using vertex weights,
a normalized structure can be achieved without the need to cor-
rect ramifications in possibly large parts of the QMDD. The
potentially expensive transformation to a QMDD with trivial
vertex weights (canonical representation) has to be performed
at most once, after we have arrived at the final variable order.
However, most effective vertex weights ( &= 1) vanish by further
variable interchanges.

Overall, this enables us to perform variable interchanges
efficiently as local operations and to use these interchanges as
building blocks for variable reordering techniques. The effec-
tiveness of using variable reordering for reducing the QMDD
size will be evaluated next.

VI. EVALUATION

In this section, we provide an evaluation of the overall
efficiency of QMDDs. In a first step, we build the QMDD
representations for a set of important quantum algorithms to
demonstrate (a) the compactness that is achieved by QMDD

representations as well as (b) the efficiency of construct-
ing and manipulation these representations. In a second step,
we consider the scheme for modifying the applied variable
order of QMDDs by interchanging adjacent variables which
was proposed in the previous section. This scheme explicitly
overcomes the limitation of the initial proposal of QMDDs
(as introduced in [12] and [13]) and allows for determining an
even more efficient representation of quantum functionality.

Our experimental results are summarized in Table II. Here,
the respective QMDD sizes (i.e., the number of non-terminal
vertices; denoted by size) are presented for a selection of
benchmark functions. We distinguish between: 1) the original
approach (according to [12] and [13]) in which the variable
order (given from the initial description of the quantum func-
tionality) cannot be modified during the construction of the
QMDD; 2) an improved approach which allows changes in
the variable order based on sifting; and 3) an exact method
which establishes the optimal variable order with respect to the
size of the resulting QMDD. In addition to the absolute size
values, we also provide the percentaged improvements w.r.t.
the number of nodes (denoted by Impr.) as well as the run-time
(in CPU seconds) required to generate the QMDDs (denoted
by time). As benchmarks we applied circuits realizing Grover
algorithms (Grover-N), error correction functionality (k-qubit-
code, taken from [22]), and Quantum Fourier Transforms
(QFT-N) where N denotes the number of qubits. All exper-
iments have been conducted on a 2.8 GHz Intel Core i7
machine with 8 GB of main memory running Linux.

It can be seen that the initial representations (according
to [12] and [13]) are already rather compact—given the
fact that the corresponding transformation matrices are of
dimension 2N × 2N . Moreover, these representations can be
established in negligible run-time. But much better results can
be achieved when changes in the variable order are allowed.
Then, reductions of up to two orders of magnitude can be
observed. A comparison of the sifting and the exact approach
shows that near-to-optimal results can already be achieved in
almost no run-time by the heuristic. Note that this efficiency
mainly results from the improvements on local modifications
introduced in this paper and would not be possible when using
the initial QMDD definition from [12] and [13].

Overall, these evaluations show that QMDDs offer a very
compact representation of quantum functionality which—in
contrast to alternatives such as QuIDDs [9] or QDDs [5] —do
not rely on Shannon decomposition, but rather on a decompo-
sition scheme that more naturally models quantum mechanical
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TABLE II
EVALUATION

systems. The proposed concepts allow for an efficient con-
struction and manipulation of practically relevant quantum
circuits. Due to the fundamental improvements presented in
this paper, different variable orders can efficiently be applied
which has a significant impact on the resulting QMDD size
and, thus, on the overall efficiency of the representation.

VII. CONCLUSION

In this paper, we considered QMDDs, a compact, and
canonic representation of quantum functionality which has ini-
tially been proposed in [12] and [13]. While the basic ideas
of QMDDs are already around for a while, significant short-
comings limited their applicability thus far. As a consequence,
the full potential of QMDDs or decision diagrams for quan-
tum functionality in general has hardly been exploited yet. In
order to address these problems, we presented a comprehen-
sive definition of QMDDs for the first time. Furthermore, we
showed that, based on this definition, QMDDs indeed provide
a proper platform for an efficient quantum function manipula-
tion and additionally proposed a solution that allows for local
modifications. This provides the basis for a more sophisticated
application of decision diagrams in the domain of quantum
computation including solutions for synthesis, simulation, and
verification. An implementation of QMDDs is publicly avail-
able at http://www.informatik.uni-bremen.de/
agra/eng/qmdd.php.

In future work, we plan to further substantiate this by study-
ing the formal complexity of the QMDD (matrix) operations
as well as QMDD sizes for different classes of quantum
functionality.
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Benchmark Original [12], [13] Sifting Exact 
Name I #Qubits Size I Time Size I lmpr. over Original I Time Size I lmpr. over Original I . . . over Sifting I Time 

Grover-7 7 187 0.01 36 -81% <0.01 35 -81% -3% 0.37 
Grover-9 9 722 0.02 52 -93% 0.01 51 -93% -2% 29.14 
Grover-11 11 2817 0.15 67 -98% 0.02 66 -97% -1% 3709 
5-qubit-code 9 90 0.01 57 -37% 0.01 43 -52% -25% 24.73 
7-qubit-code 7 44 <0.01 26 -41% <0.01 26 -41% - 0.35 
9-qubit-code 9 40 <0.01 22 -45% 0.01 22 -45% - 24.47 
9-qubit-code 17 1172 0.01 60 -95% 0.04 (84)* (-93%) (+40%) >7200 
QFT-3 3 22 <0.01 9 -59% <0.01 9 -59% - <0.01 
QFT-4 4 86 <0.01 24 -72% <0.01 24 -72% - 0.01 
QFT-5 5 342 <0.01 40 -88% <0.01 40 -88% - 0.01 
QFT-6 6 1366 <0.01 103 -92% <0.01 103 -92% - 0.1 
QFT-7 7 5462 0.02 167 -97% 0.02 167 -97% - 1.2 

* The exact approach did not terminate within the limit of 7200 CPU seconds. At that time, the best result achieved so far was a QMDD size of 84 vertices. 
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