
Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

n::.cc. ll\.l'\.."4.31"\L.llV!"4.:J vnr. 1....v1v1ri....: 11::.1\.-1"\UJC.U UI::..31Ut"4 vr U'l ll::.U"-./"\IC:.U Lll''LUIJ.:J /"\.!"tU .3 [.31C.1Yl->. V\..IL nr.v. 11. I,VVC:.1VlDC:.I'\. 177.J

Efficient Calculation of Spectral
Coefficients and Their Applications

Mitchell A. Thornton, Member, IEEE, and V. S. S. Nair, Member, IEEE

Abstract-Spectral methods for analysis and design of digital
logic circuits have been proposed and developed for several years.
The widespread use of these techniques has suffered due to
the associated computational complexity. This paper presents a
new approach for the computation of spectral coefficients with
polynomial complexity. Usually, the computation of the spectral
coefficients involves the evaluation of inner products of vectors
of exponential length. In the new approach, it is not necessary
to compute inner products, rather, each spectral coefficient is
expressed in terms of a measure of correlation between two
Boolean functions. This formulation coupled with compact BDD
representations of the functions reduces the overall complexity.
Further, some computer aided design applications are presented
that can make use of the new spectrum evaluation approach. In
particular, the basis for a synthesis method that allows spectral
coefficients to be computed in an iterative manner is outlined.
The proposed synthesis approach has the advantage that it can
accommodate a wide variety of constituent gates, including XOR
gates, and complex subfunctions for realizing the circuits.

I. INTRODUCTION

THE spectral information of a Boolean function yields
information regarding the correlation between the input

variables and the output of the function. The exploitation of
the spectral data provides a sound mathematical basis for logic
function synthesis [l l], [22]. However, the primary drawback
of spectral techniques is the large complexity associated with
the calculation of the spectrum of a Boolean function. The
results of the research discussed in this paper provide a
new method for computing the spectrum of a function based
upon its output probability. By computing the spectrum in
this manner, the complexity of the calculations are greatly
reduced since the coefficients are obtained without evaluating
inner products. The use of circuit output probabilities in
other endeavors in the field of digital systems engineering
have yielded encouraging results. Some of these areas are
verification [21], analysis [23], and testing [30].

Recent! y, some efficient spectral coefficient calculation
schemes have been developed by other researchers. In
particular, a method has been proposed that utilizes "integer
valued" binary decision diagrams (BDD's) to represent the
resulting spectral vector [6]-[8]. This technique requires the
particular transformation matrix to be recursively defined or

Manuscript received December 5, 1994; revised April 18, 1995. This work
was supported in part by the National Science Foundation under Grant MIP-
9410822. This paper was recommended by Associate Editor M. Fujita.

~- A: Thornton is with the Department of Computer Systems Engineering,
Umvers1ty of Arkansas, Fayetteville, AR 72701 USA.

V. S. S. Nair is with the Depanment of Computer Science and Engineering,
Southern Methodist University. Dallas, TX 75275 USA.

IEEE Log Number 9413203.

sparse in order to generate the matrix product as a series
of recursive computations. The complexity of the spectral
computation method presented here is comparable with the
integer valued BDD approach since a spectral coefficient
is computed in polynomially bounded time without the
requirement that the transformation matrix be recursively
defined or sparse to preserve the efficiency of the computation.

Further, by using the approach in [6]-[8], some resulting
integer valued BDD's may be very large, particularly those
with many different spectral coefficient values. This provides
the motivation for the development of algorithms to compute
a single coefficient. In [16], the method using integer valued
BDD's described above has been extended to allow for the
computation of a subset of coefficients. This technique al­
lows for individual rows of the transformation matrix to be
represented as integer valued BDD's and they are multiplied
using the method in [7] resulting in an integer valued BDD
representing the subset of coefficients corresponding to the
particular rows of the transformation matrix chosen. Our
method can be more efficient for the computation of a single
spectral coefficient since it is only necessary to compute the
output probabilities of two BDD's and then compute the
spectral coefficient directly instead of recursively building a
resultant integer valued BDD.

Another fairly recent methodology allows for the compu­
tation of transform coefficients directly from a representation
of a Boolean function as a set of disjoint cubes [14], [41].
Unfortunately, as the number of inputs to the Boolean function
grows, the corresponding set of disjoint cubes can become
extremely large. Our method has the advantage that the
function to be transformed is represented in a very compact
manner requiring no product terms in the representation.

In addition to the presentation of the new method for
computing the spectral coefficients, a discussion of some
applications using this method is provided. In particular, a
spectral based logic synthesis algorithm is outlined. This .
synthesis approach offers advantages in the synthesis of digital
logic circuits since it does not require a specific transformation
matrix to be used. As a result, the XOR gate is allowed
to be integrated into the resulting design as well as other
arbitrary gates or logic functions. In the past, most spectral
synthesis algorithms could only achieve this capability if
the circuit to be designed was partitioned into linear and
nonlinear subcircuits [41]. The synthesis approach presented
here is very general in that any set of subfunctions may be
used to realize the desired function. A constituent subfunction
may include simple gates or more complex functions such

0278-0070/95S04.00 & 1995 IEEE

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

as AND-OR-INVERT (AOI), multiplexors, and small look-up
tables.

Many synthesis systems provide only a minimized Boolean
function as output or utilize Boolean expressions in the inter­
mediate formation of the output netlist. The synthesis approach
that is outlined here differs in that no intermediate Boolean
expressions are utilized. Thus, this method does not rely on
symbolic algebraic manipulation algorithms. The computations
are performed using graph algorithms to manipulate BDD's
and floating point arithmetic to compute the circuit output
probabilities and spectral coefficients.

The remainder of this paper is organized as follows: Section
II will provide a brief review of circuit output probability
expressions (OPE's), and it will introduce a new algorithm for
the computation of a circuit output probability directly from
a BDD representation. Next, in Section III, the relationship
between circuit output probabilities and spectral coefficients
is mathematically derived. This derivation shows how the
spectral coefficients may be computed directly from the circuit
output probabilities thus eliminating the need to compute an
inner product. Following the derivation, some applications
of the use of spectral coefficients are described in Section
IV. In particular, a spectral-based synthesis algorithm is out­
lined and its relative merits are discussed. The complexity
of the spectral coefficient calculation method is analyzed in
Section V. The resulting impact on the complexity of other
spectral based applications is also discussed. Finally, Section
VI will provide experimental results obtained by using the
ISCAS85 benchmarks circuits as examples followed by some
conclusions.

I I. OUTPUT PROBABILITIES OF

COMBINATIONAL LOGIC CIRCUITS

This section provides a discussion of circuit output probabil­
ities by briefly reviewing two methods used to compute OPE
expressions described in (30). Following the review, a new
method is developed that computes a circuit output probability
using a BDD description as input. Also, an example of a BDD
for a specific logic function is presented. In the discussion
presented in the remainder of this paper, the following notation
is used:

• Small case variables such as xo, x 1. etc. denote Boolean
variables that have logic values of "l" or ''O."

• Upper case variables such as X 0 , X 1, etc., denote the
probability that the corresponding lower case Boolean
variables are equal to a logic "1" value. These quantities
are real and exist in the interval (0, 1].

• The operator symbol, "+" will refer to the Boolean OR
operation or the addition of real numbers depending upon
the context of the equation in which it is used.

• The operator symbol, "." will refer to the Boolean AND
operation. The absence of an operator between two adja­
cent variables in a Boolean equation implies the presence
of the · operator.

• The operator symbol, "x" will refer to the multiplication
of two real values. The absence of an operator between

TABLE I
RULES FOR TRANSFORMING BOOLEAN OPERATfONS TO PROBABILITY EXPRESSIONS

FUNCTION I BOOLEAN EXPRESSION I PROBABILITY EXPRESSION I
Inversion X1 I x,

·---OR X1 + X1 X1 +x, - (X1 xx,)
XOR Xt ffiX:;i X1 + x, - 2(X1 XX,)
AND XJ 'X~ X1 xX::z

Idempotence Property Xi• Xi x,

X3 Z2 z, f
0 0 0 0
0 0 1 0

0 1 0 0
0 1 1 I

0 0 0
0 1 0
1 0 1
1 l 1

Fig. I. Truth table of example function for OPE computation.

two adjacent values in a real-valued equation implies the
presence of the x operator.

• The operator symbol, "EB" will refer to the Boolean XOR
operation.

• The operator, "r1{ } " denotes the probability transform
operator whose argument is a Boolean function. It yields
the probability that its argument is a logic "1." Unless
otherwise noted, it is assumed that the input variables to
the Boolean function are equally likely to be "1" or "0."

The OPE of a combinational logic circuit is an algebraic
expression that expresses the probability that the circuit output
is a logic "l" given the probabilities that the input variables
have the value of logic "1." It is possible to compute the
OPE for a given circuit by transforming its Boolean equation
representation or by calculating the OPE from a schematic
diagram representation (30].

In [30), an algorithm is given to compute the OPE directly
from a Boolean expression. This method requires the function
to be expressed in a canonical sum-of-products (SOP) form
and then each product is replaced by an expression for the
probability that the product is at logic "I." The canonical
SOP form must be used since it is necessary for one and only
one product term to be at logic value "I" for a given input
to preserve independence. The rules in Table I are used to
determine the probability expression for each product in the
canonical SOP form.

This algorithm has a complexity that is exponential with
respect to the number of input variables since it requires
the formulation of the canonical SOP form of the Boolean
function. As an example of this method, consider the function
defined by the truth table in Fig. 1.

The canonical SOP form for this function is given in (I)

f(x) x3x2x1 +x3x2x1 +x3:r2:r,. (I)

The resulting OPE using the rules in Table I is given in (2)

F(X) = X2X1 + X3X2 - X:iX2X1. (2)

A more efficient algorithm for the computation of the OPE
of a Boolean function is also given in (30). This method

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

IJjU

:,=re}--~
_Jj .~ f(x)

ll CD-

Fig. 2. Logic diagram of the example circuit for OPE computation.

requires the function to be represented as a logic diagram.
In this technique, each primary input, each internal intercon­
nection, and the output is assigned a unique variable name.
Using the rules in Table I, each internal node is expressed as a
function of the primary inputs. This step is performed through
subsequent substitutions until an expression is derived for the
output variable in terms of the primary input variables thus
fom1ing the OPE. As an example. consider the logic diagram
illustrated in Fig. 2 that is a realization of (I).

Using the variables assigned to each interconnection and the
rules in Table I, the OPE can be derived.

First, apply the rule for the AND operator

D=AH

E=HC.

Next, using the rule for the OR operator

G = AB + BC - AB 2C.

Finally, the idempotence property rule is employed

G AB+BC ABC.

(3)

(4)

(5)

(6)

Notice that the idempotence property is particularly useful
since it allows all exponents to be dropped during the forma­
tion of the equations. Since (6) is an expression where the
output label is a function only of the primary input labels,
the OPE has been obtained. This technique has a complexity
of O(I), where I is the number of interconnections in the
logic diagram since each interconnection is visited once in the
formation of the OPE.

Although the OPE algorithm based upon circuit diagrams is
efficient with respect to the size of the circuit, many times it is
desirable to compute the spectral coefficients of a circuit before
it is realized. In particular, spectral based synthesis algorithms
typically use some compact representation of the function as
input. One compact way of describing a Boolean function is to
utilize its BOD, which provides the motivation for computing a
circuit output probability using a BDD description as input. For
the purposes of computing spectral coefficients, it is sufficient
to compute the output circuit probability for the case where
the input variables are all equally likely to be 'T' or "O." Thus
it is not necessary to compute the OPE and then evaluate it
for the case where all X; = 0.5 since this probability may be
computed directly from the BOD.

A BOD is a graphical representation of a Boolean logic
circuit that consists of nodes representing input variables
and function output values. These nodes are interconnected
by directed edges with the initial node and internal nodes
representing function input variables and the terminal nodes
representing function output values. Each internal node and
the initial node has two directed edges pointing to another

Fig. 3. Example of a binary decision diagram.

node, one of the edges is activated if the input variable is at
logic value "l" and the other is activated if the logic variable
is at logic value "0." A complete discussion of BDD's may be
found in I I]. 14], [25]. In [41, some restrictions were placed
upon the formation of BDD's that allowed several efticient
algorithms to be defined for their manipulation.

As an example of a BDD, consider the function defined in
(7)

f(:i:) =X1X3X6 -1- .r1:i'3X4X6 + .r1T:iTiX5

+ X1X2Y1T1, + X1X2X~1:-, + X1X2X5. (7)

This function would require a truth table with 26 entries
to be completely specified since there are 6 primary inputs.
However, the BOD representation of this function in Fig. 3
is quite compact.

The BOD-based algorithm for the calculation of the output
circuit probability does not have the exponential complexity
of the algebraic method mentioned above nor does it require a
circuit diagram description of the Boolean function. Only the
functionality of the circuit is required which can be expressed
in a very compact manner using BDD"s. In the remainder of
this paper, we will utilize the form of BOD as defined in [4]
and we will occasionally refer to some of the BDD algorithms
cited there as well.

The following lemma expresses an important result concern­
ing the BOD of a logic function.

Lemma I: For any one particular combination of input
variables, at most one path will be activated between the input
node and node j where j is any node in the BDD other than
an input node.

Proof: If possible. let there be more than one path
activated between the input node and node j. This implies
that at least one of the nodes between the input node and
j has both of its outgoing arcs activated for the given input
condition which is an impossibility in a BDD. Therefore, there
is at most one path activated for a given input condition. D

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

IMUl'll"1U1'1 ,'\1'11) l~l\.11(; crrl\..~l \..I\.L\..ULl\.llVI~ ur .:,n::::,\.,IJV\L \..Ur.rrl\..lr.J.~J~

:l:3 :r, Xt I
0 0 0 l

0 0 1 0
0 I 0 0
0 1 I 0
l 0 0 1
I 0 I I
I I 0 1
1 I I 1

Fig. 4. Truth table of example function for probability assignment algorithm.

It should be noted that a particular path may not exist
between the input node and j for some input conditions.

The algorithm for computing a circuit output probability
using the BOD of the function and assuming that all inputs
are likely to be "l" or "O'' is described by the following steps:

Probability Assignment Algorithm:

1) Assign probability = 1 for the input node.
2) If the probability of node j = Pj, assign a probability

of ½ P1 to each of the outgoing arcs from j.
3) The probability, Pk, of node k is the sum of the

probabilities of the incoming arcs.

Lemma 2: In the probability assignment algorithm, the
probability Pk is the probability that there exists a path from
the input node to the node k.

Proof: Consider a single parent node, j, and one of its
child nodes, k. Given that j has been reached initially, the
probability that an arc from j to k is activated for a given
set of input values is ½ since every input or internal node in
a BOD has two exiting arcs. The probability that the parent
node, j, has been reached is P;. Thus, the probability that
the node k has been reached given that j has been reached is
the conditional probability, Pkli = ½ P1. From Lemma 1, it
is shown that for a given set of input conditions there exists
only one path from the input node to the node, k. Therefore,
the overall probability that node k is reached, Pk, is the sum
of all conditional probabilities that the incoming arcs to k are
activated. □

During the traversal of the BOD, a probability is assigned to
each node. This is the probability that the node is reached for
a given set of input variable probabilities of the function. Each
node probability is a member of a probability space containing
2n experiments. The node probabilities have the desirable
feature of depending only upon their immediate predecessor
node probabilities.

As an example of the probability assignment algorithm,
consider the Boolean function expressed in (8)

(8)

The truth table for (8) is given in Fig. 4 and the correspond­
ing BOD is given in Fig. 5. It is easily seen from the truth
table tha~ the probability that the output is a "1" is !-Using
the algonthm above, each node in Fig. 5 is labeled with the
probability that it is reached, and it is seen that the terminal
"I" node does indeed have the value ! = 0.625.

As mentioned before, this algorithm is applicable only to
BDD's that are formulated with restrictions on the variable
orderings similar to those first presented in [4]. The reason for

Fig. 5. Output probability calculation example.

this constraint is to ensure that no infeasible paths are utilized
in the node probability calculations. For example, if a node
corresponding to variable Xi is the input node and this node
is also present internally in the graph, the straight forward
application of the probability calculation would include the
possibility of assuming Xi is at logic "1" on the input node
and it is at logic "0" on the internal node. This is clearly
an infeasible path since it does not exist for a fixed set of
function inputs. To eliminate infeasible paths, it is sufficient
to constrain all parent nodes to have an input variable index
value less than that of their children nodes.

III. CALCULATION OF SPECTRAL COEFFICIENTS

By definition, the spectrum of a Boolean function is obtained
by multiplying a transformation matrix by the function's
output vector (20]. Although this is not necessarily the way
coefficients are calculated in practice, this definition is con­
venient for analyzing spectral transforms. The result of the
vector-matrix product is termed a spectral vector and it is com­
posed of elements that are referred to as spectral coefficients.

The type of information that the spectral coefficients yield
depends upon the form of the transformation matrix. One
way to interpret the meaning of each spectral coefficient is
to view it as a measure of correlation between two Boolean
functions. These two Boolean functions are the function being
transformed, f(x), and a constituent function, fc(x). With
this viewpoint, the constituent function is a Boolean function
whose output vector is identical to a row vector in the
transformation matrix that is used to generate a specific
spectral coefficient. Thus, a transformation matrix may be
represented as a collection of constituent functions each of
whose output vectors are identical to the various row vectors
of the transformation matrix.

The following example illustrates an example calculation of
a spectrum of a Boolean function. In this example, all logic
•• 1" values are replaced by the integer value, -1, and all logic
"O" values are replaced by the integer value, 1.

Example 1: Example of the calculation of the spectrum of
a Boolean function

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

1-'-'.! ICCC IIV"\!'l.31-\.\...IIV1'1.) Vl'I \..VNlrUICl\.-1\.IUCU UC.31U1"i vr U'IIC:.UI\.I\.ICU \....11"\...UIJ.) /·\l'IU .::,1.:,1c.1v1.:,, VVL. l"t, l'IV. 11, l'IVVC.IV.IDC.1' IT,;IJ

Zt Z2 Zs /

I I I -1
I 1 -1 1
1 -1 1 -1
1 -1 -1 -1

-1 1 1 1
-1 1 -1 -1
-1 -1 l -1
-1 -1 -1 1

Fig. 6. Truth table of the example function for spectrum computation.

l l l 1 1 1 1 l

Zt l 1 1 1 -1 -1 -1 -1

"'• 1 1 -1 -1 I 1 -1 -1
z 1 -1 l -1 1 -1 1 -1

.,,+z2 1 l -1 -1 -1 -1 -1 -1
x,+x 1 -I l -I -1 -1 -1 -1
x2+x 1 -1 -1 -1 1 -1 -1 -1

x1+x,+x 1 -1 -1 -1 -1 -1 -1 -1

Fig. 7. Transformation matrix for example spectrum calculation.

The truth table for this function is shown in Fig. 6 and the
transformation matrix to be used is shown in Fig. 7.

The resulting spectral vector is given in (IO)

sr = [-2, -2, 2. -2, 2, -2. 2, 2, -2]. (IO)

These spectral coefficient values may be interpreted as
correlation measures between the constituent functions shown
to the left of the transformation matrix and the transformed
function. For example, the last coefficient in the spectral
vector indicates that the constituent function, x 1 + x 2 + x3,

has a correlation measure of -2 with the function that was
transformed, x1x3 + x1x2x3 + x1x2 + x2x 3. The relationship
between a spectral coefficient and a coefficient of correlation
is formally developed in the following subsection. All of the
mathematical details of this formulation may be found in [37].

A. Relevant Properties of Spectral Coefficients

This section will develop some relevant properties of spec­
tral coefficients that are used in the derivation of the algorithm
presented in the following section. These definitions are used
in the remaining sections of this paper:

• n is the number of input variables of a Boolean function.
• Nm is a positive integer that has a value equal to the

number of outputs of f (x) that are identical to those of
fc(x) (number of matches) for all possible common input
combinations.

• Nmm is a positive integer that has a value equal to the
number of outputs of f(x) that differ from those of fc(x)
(number of mismatches) over all possible common input
combinations.

• S J[/c(x)] is the spectral coefficient associated with the
function, f(x), and the constituent function, fc(x).

• R1(x) is a real-valued function that maps the output of a
Boolean function, f(x), from logic value "l" to -1 and
logic value ··o-· to I for a given set of input values .. r.

• C is a coefficient of correlation between two real valued
discrete functions and is defined as

I n-1

C = 2n L [R1(x;) X Rjc(x;)]. (II)
i=D

• Pm is the percentage of matching outputs between a
constituent function and a function to be transformed.

• Pmo is the percentage of matching outputs between a
constituent function and a function to be transformed that
are at a logic "O" value.

• Pml is the percentage of matching outputs between a
constituent function and a function to be transformed that
are at a logic "I" value.

Two useful properties of spectral coefficients are provided
in the following two Lemmas that first appeared in [39].

Lemma 3: For a given function f(x) and a given con­
stituent function fc(x) the resulting spectral coefficient is
given by

Proof' The maximum possible absolute value of a spec­
tral coefficient occurs when a row of the matrix is equal to the
function output vector or when each component of the vector
is the negative of the corresponding entry in the transform
matrix row. Hence, the maximum possible absolute value of
the spectral coefficient is ISF[Fc(x)ll = 2n indicating IOO%
positive or negative correlation between F(x) and Fc(x).
Indeed in this case, either F(x) = Fc(x) or F(x) = Fc(x).
Each mismatch present in the function output vector and the
corresponding matrix row entry always produces a product
value of -1. Therefore, Nmm mismatches result in a negative
partial sum of -Nmm· The only other possibility is a match
which is the complement of mismatches and always produces
a product value of +1. Since the spectral coefficient for F(x)
and Fe (x) is the difference between the number of matches,
Nm, and the number of mismatches, Nmm

SF[Fc(x)] = Nm - Nmm

=Nm - [2" - Nm]

=2Nm - 2n.

Likewise, substituting Nmm

SF[Fc(x)] = Nm - N,,.m

= [2" - Nmm] - Nmm

= 2n - 2Nmm•

Hence, SF[F~(x)] = 2n - 2Nmm = 2Nm - 2n. D
Lemma 4: The following property of spectral coefficients

holds

S1[/c(.r.)] = -S1[/c(x)]. (13)

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

THORNTON AND NAIR: EFFICIENT CALCULATION OF SPECfRAL COEFFICIENTS 1333

Proof: Let the number of mismatches between the in­
verse of the constituent function, Fe(x), be denoted by N:,.m
and the corresponding matches denoted by N:,..

Thus, N:,. = Nmm• Using this fact and the results from
Lemma 3

SF[Fc{x)] =2n - 2Nmm

=2n - 2N:,.

= - (2N:,. - 2n)

= - SF[Fe(x)].

□

The following Lemma shows the relationship between a
spectral coefficient and the correlation between two functions.

Lemma 5: The spectral coefficient, S1[/e(x)] is directly
proportional to the coefficient of correlation between / (x)
and fe(x).

Proof: As given in the definition above, the coefficient
of correlation is given by (1) as

l n-1

C = 2n L [R1(xi) X R1e(Xi)] (14)
i=O

where, Xi, is the ith unique mintenn. Note that each product
in the summation of the series is either 1 or -1. Thus, we can
replace E~,,:-01 [/(xi) X fe(xi)] with Nm - Nmm• From the
results of Lemma 3, S1[/e(x)] = Nm - Nmm· Substituting
S1[/e(x)] into 11

1
C = 2n S1[/e(x)]. (15)

Hence, S1[fe(x)] is directly proportional to C with a
constant proportionality coefficient of 2n. D

Similar results can be proven for other definitions of spectral
coefficients. For instance, the Reed-Muller transform [17],
[38], can be defined as a vector of values where each compo­
nent is the number of matching logic "1" outputs (calculated
as Pmt x 2n) between the function to be transformed and a
constituent function.

B. Relevance of OPE's to Spectral Coefficients

Since we can compute the spectral coefficients given the
value Nm or Nmm, an efficient way to compute these quan­
tities will in effect provide an efficient way to calculate the
spectral coefficients. Furthennore, if we know the percentage
of the matching outputs of a constituent function and the
function to be transformed (denoted by Pm), we can easily
compute Nm = Pm2n. This observation is the basis behind
the algorithm to compute the spectral coefficients.

In order to determine Pm, we need to use logic equations
that indicate when the outputs of the constituent function and
the function to be transformed match. It is trivial to show
that such logic equations can always be formed by using the
logical AND of these two functions for the case when both
output a "1," and, the logical NANO of these two functions
when both output a ''O." A formal definition of these types of
functions follows:

Definition 1: A function that is formed by taking the logical
AND or NANO of a constituent function and a function to be
transformed is called a "composite function" and is denoted
by feomp(x).

Therefore, in order to compute the value Pm we only need to
find the probability that both functions simultaneously output
a logic "l" value (pmi) and the probability that both functions
simultaneously output a logic "0" value (pmo). By forming the
BOD of the two feomp(x) functions, Pmo and Pml are simply
the probabilities that the terminal node of logic value "1" is
reached.

In Lemma 6, an important result is given relating the
spectral coefficients and the feomp(x) functions. This result
is presented by using the concepts of canonical sum-of­
products (SOP) and product-of-sum (POS) forms of Boolean
expressions.

Lemma 6: Nm = Nm1 + Nmo, where Nm1 = the number
of minterms terms in a canonical SOP form of f • fe and
Nmo = the number of maxterms terms in a canonical POS
form of fe + f

Proof: All Boolean expressions may be expressed by
indicating the output value corresponding to each of its 2n
minterms (this is in fact a truth table). A canonical SOP
form for a Boolean expression is the inclusive-OR of all
minterrns that produce a logic "l" output. Hence, the number
of minterms present in a canonical SOP expression represents
the number of times the function output is at logic value "l."

Likewise, Nmo is equal to the number of maxterms in a
canonical POS form of f + f e since this expression will be
at logic "O'' if and only if both f and /e output "0" for a
common set of inputs.

Since Nm is the number of times a constituent function,
le(x), and a function to be transformed, f(x), have identical
outputs for a common set of inputs

(16)

□

The relationship between the output probability of a com­
position function and Nm is established in Lemma 7.

Lemma 7:

(17)

Proof: p{f + le} yields the probability that the function
I+ le produces a logical "l." Therefore, 1- p{/ + le} is the
probability that f + le produces a logic ''O." Since I+ le will
output a "0" if and only if both / and le are at "0"

1
Pm0 = 1 - p{/ + /e} = 1 - 2n (Nm1). (18)

Likewise, p{/ • le} yields the percentage of minterms of
f • le that produce a logic "1" for the function, /·le• Since
f • le will output a "l" if and only if both/ and le are at "1"

1
Pml = p{/ • /e} = 2n (Nm1). (19)

Substituting (18) and (19) into (17) and observing that Pm =
Pml + Pm0

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

1334 lEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 14, NO. l l, NOVEMBER 1995

Thus, the definition of Nm is satisfied and the proof is
complete. D

Based on the results of the previous Lemmas, we can now
prove that a spectral coefficient may be calculated based upon
circuit output probabilities.

Theorem 1:

(21)

Proof- From Lemma 3

From Lemma 7

Substituting (23) into (22) and simplifying

St[fc(x)] = 2n[l + 2(p{J · Jc} - p{J +Jc})]. (24)

□

Corollary I.· A compact expression for S 1 [f, (x)] is

S1[fc(x)] = 2"[2Pm - l]. (25)

Proof- From Theorem 1

Substituting (18) and (19) into (26)

From the definition Pm

(28)

□

In order to use the governing relationship between the
circuit output probability and the spectral coefficients given
in (27) to formulate an algorithm, the following observations
are made. The value Pm is obtained by using the BDD
based output probability calculation algorithm presented in
the previous section. Pm is computed as the sum of Pmo and
p,,11 which are obtained by applying the output probability
calculation algorithm to the BDD's formed by two composi­
tion functions denoted by f lcomp (x) and f2comp (x). These
composition functions are given by flcomp(x) = fc(x) • f(x)

and f2comp(x) = fc(x) • f(x).
Thus, to form a spectral coefficient it is only necessary to

apply the output probability algorithm to the BDD's of the
composition functions and then compute the following:

PmI = p{J(x) · fc(x)} (29)

Pmo = p{f(:r) • fc(x)} (30)

S1[f,(x)] =2"[2(p,,,1 +Pmo) - l]. (31)

The algorithm for the efficient computation of spectral coef­
ficients is stated as the efficient spectral coefficient computation
algorithm.

I) Formulate the BDD's for the two composition functions
using the APPLY algorithm.

Fig. 8. BDD of the composition function, f(x) • fc(x).

2) Use the output probability calculation algorithm to form
the composition function BDD's.

3) Compute PmI = p{J(x) · J,.(x)} and Pmo = p{J(x) •
J,(x)}.

4) Compute S1[fc(.r)] = 2n[2(Pm1 + Pmn) - 1].
These results show that the calculation of spectral coef­

ficients is translated to the problem of output probability
calculations of composition functions. In most methods that
utilize spectral techniques for digital logic circuits, fc. (x)
is much less complex than the function to be transformed,
f(x). For example, in the synthesis algorithm described in
the following section, we present a method for synthesizing a
function by decomposing it into a collection of much simpler
constituent functions. The decomposition is accomplished by
using the information contained in the corresponding spectral
coefficients.

C. Example of the Efficient Spectral Coefficient
Computation Algorithm

This subsection will provide example of the application of
this algorithm to a 3-input logic function is given.

Example 2: Example of the efficient calculation of a spec­
tral coefficient using output probabilities and BDD's.

The function to be transformed, J(x), is given by (32)

(32)

The constituent function for this example, fc(x), is given as

(33)

The BDD for (32) is given in Fig. 5. The BDD for the
composition function, f(:r) • fc(x) is given in Fig. 8, and the
BDD for the composition function, J(x) • fc(x) is given in
Fig. 9.

In order to compute the spectral coefficient determined by
the constituent function given in (33), the values p,,, 1 and
Pmo are computed using the output probability algorithm. The
node probabilities are shown on the composition BDD's. These
values are

/Jml =0.5

f!mO =0.125.

Next, the spectral coefficient is computed as

(34)

(35)

Applying the definition of a transform to this problem would
have resulted in computing the dot-product of two vectors with

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

THORNTON AND NAIR: EFFICIENT CALCULATION OF SPECTRAL COEFFICIENTS 1335

Fig. 9. BDD of the composition function, /(z) • /c(x).

23 elements each. The use of "fast" algorithms proposed by
[9], [32] are prohibited since the inclusive-OR based transform
does not yield a sparse or recursively defined transformation
matrix (an example of this transformation matrix for 3-input
variables is given in Example 1). Further, the application of the
spectral calculation algorithm presented in [6]-[8], may result
in the formation of a very large "integer-valued" BDD since
the matrix is not sparse and cannot be recursively defined.

IV. APPLICATIONS OF SPECTRAL COEFFICIENTS

Many applications have been proposed and developed using
spectral methods for logic circuits. Some of these include logic
synthesis [13], [20], [22), [26), [31), [33], [39]-[41], testing
[10], [18), [29), [34], function classification [5], [12], [20),
and others. The application of spectral based methodologies
to digital logic analysis has been studied and developed since
the mid-1970's in an attempt to use the vast amount of results
that have been very effective in areas such as signal processing
and systems analysis.

A. Function Decomposition

One of the chief reasons that spectral techniques have not
found widespread use and acceptance is the large complexity
associated with the computation of the spectrum of a Boolean
function. For example, in the disjoint decomposition method
[41), the functions were limited to about 20 inputs in order
to keep the amount of computations manageable. The use
of alternative, more efficient spectral computation algorithms
such as the one presented in this paper could prove to be
applicable to this problem.

B. Fault Detection Using Spectral Coefficients

The fault detection problem for digital logic circuits is
becoming more important as the size of a typical circuit
increases. There have been several methods proposed using
spectral techniques. Most of these methods compute the spec­
tral coefficients by performing an inner-product calculation
using vectors with 2n components. If the method requires the
entire spectrum, 2n of these inner-products are computed.

In the work presented in [34], a methodology was described
where only 1 or 2 coefficients are used to determine the
presence of a fault. This simplification along with the use
of the efficient method for computing spectral coefficients
proposed here results in a very efficient method for fault
detection by verifying spectral coefficients. In fact, the method
proposed for computing the coefficients as described here has
the advantage that a single coefficient can be computed without
determining the remaining 2n - 1 coefficients. Even methods
that utilize the entire spectral vector such as the one in [29),
could benefit substantially if a more efficient way of computing
each coefficient is employed.

Another advantage is that the spectral coefficient computa­
tion method developed here could have used logic diagrams
instead of BDD's to represent the circuits. This is because an
efficient algorithm for computing circuit output probabilities
using logic diagrams was given in [30). The ideas presented in
the preceding section that are used to relate output probabilities
and spectral values were applied to structural representations
of digital logic circuits in [36). This could be a definite
advantage in this area since the logic diagram may be more
readily available than a BDD description of the circuit under
analysis.

C. Function Classification Using Spectral Coefficients

The use of spectral coefficients has been proven to uniquely
specify threshold functions. The work by Chow [5), resulted in
a formal proof that n + 1 spectral coefficients are sufficient to
define a specific threshold function. In terms of the definitions
used in this paper, the constituent functions that are used to
compute these coefficients are /c(x) = 0 and /c(x) = Xi,

where each Xi is a primary input to the circuit. Many times
this subset of spectral coefficients is referred to as the "Chow
parameters."

Unfortunately, the Chow parameters do not uniquely specify
the Boolean functions that are the subject of this paper.
However, the Chow parameters can used to classify all pos­
sible Boolean functions into various subsets. Many results
and further classification results have been developed based
upon studying the properties of the functions in a particular
subset [12]. Recently, it has been shown that some classes of
functions may be classified by using a small subset of 2n + 2
spectral coefficients [35). Clearly, before any of these functions
may be classified, it is necessary to compute their Chow
parameters. The use of an efficient means for performing this
computation would allow for faster classifications. As in the
case of the spectral-based testing algorithms discussed above,
the efficient means for computing the spectral coefficients
described here may be superior to other methods since it is
well-suited for computing a single coefficient at a time.

D. Spectral Based Logic Synthesis

Most spectral synthesis methods developed in the past uti­
lize orthogonal, recursively defined, transformation matrices.
The synthesis method outlined here is capable of using any
general transformation matrix and is dependent on the use of
error functions in an iterative fashion. Fig. 10 illustrates the

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

1336 IEEE TRANSACTIONS 01' COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 14, NO. 11, NOVEMBER 1995

(

START

Compute the
Composition

Function BDDs

Apply
Probability
Assignment
Algorithm
to BDDs

Compute the
Spectral

Coefficients

Choose Maximum
of Absolute
Value of the

Spectral Quantities

I YES
't'.

2-Level Synthesis Complete

NO

)
Fig. JO. Flowchan of two-level synthesis technique.

overall Stru(.'ture of the proposed synthesis methodology. Jn
fact, there are several ways that the use of spectral coefficients
may be applied to the combinational logic synthesis problem.
This paper will only outline the basic principles behind one
of these approaches; later papers will present results from this
method and others after they have been fully developed and
implemented.

User supplied input consists of the BDD representation of
the function to be synthesized and optionally, the maximum
number of inputs per gate, A';np• and preferences of the types
of gates, {G1 }. to be used. The two optional parameters, N;,,P

and the set {Gt} are used to determine the set of constituent
functions, { Fe (x)}. that are used to construct the spectral
vector.

The following list of procedural steps provides a detailed
description of logic synthesis process depicted in Fig. IO.
Input Circuitry Iterative Logic S\nthesis Algorithm:

l) Formulate the composition BDD's using {Fc(x)} and
F(x).

2) Apply the Probability Assignment Algorithm to the
composition BDD's.

3) Compute the spectral coefficients using (27).
4) Choose the largest (in magnitude) spectral coefficient.
5) Realize the function Fe (x) that corresponds to the cho­

sen coefficient in Sstep 4.
6) Compute the BDD representation of the error function,

f(Il F.11·) ~ F(.r1.

7) If 1:(:r) indicates that there are u• or fewer errors. go
to Step 8. Otherwise iterate on the synthesis by going
to Step I and use e(x) as the next function to be
synthesized.

8) Combine all the intermediate realizations of the various
chosen }~(x) functions using the operator and directly
realize the function e(x) for the remaining w or fewer
errors.

This technique generates two-level tree-type circuits. For
two-level realizations, each chosen Fc(:r) is realized in the
first stage of the circuit with one multi-input logic gate. The
second stage consists of a single combination gate that uses
the outputs of all of the chosen constituent functions as its
inputs. The circuits resulting from this synthesis technique
are completely fan-out free (CFOF) and have the desirable
property of requiring a set of test vectors equal to the number
of primary circuit inputs to test all possible single stuck­
at faults. As discussed in [13], the use of spectral design
techniques for logic synthesis is known for the ability to
produce easily tested circuits. The diagram in Fig. 11 indicates
how the two-level circuit is constructed with each iteration.

The following theorem states the properties necessary to
ensure the convergence of this synthesis algorithm.

Theorem 2: Any given Boolean function, F(x), may be
realized with the synthesis technique if the transformation
matrix formed by using the output vectors of the constituent
functions as row-vectors is of full-rank.

Proof" This proof is a statement that any N-vector can
be produced as a combination of a subset of vectors from the
set of vectors that are linearly independent over N -space. Each
Boolean function to be realized is viewed as a N-vector with
components from the binary field. The synthesis procedure
described in the preceding text "chooses" a matrix row in each
iteration (each row corresponds to a constituent function) to
be "combined" with an appropriate combining operator. This
process forms the output vector of the synthesized function as
a combination of row vectors from the transformation matrix.
Hence, if the transformation matrix contains at least N rows
that span N-space, any function output vector can be realized
by a finite number of combined transformation matrix row~.

0
As with any synthesis method, this one can not realize some

functions using a set of constituent functions that do not form
a functionally complete set since the resulting transformation
matrix will not be of full rank. For example, a function may
not be realized if all constituent functions use only the AND
operator.

E. Synthesis Method Example

In this section, an example of the synthesis technique
is given. In the example, it is assumed that there are no
restrictions on the number of inputs per constituent function
and that only XOR, AND, and the AND-OR-INVERT (AOJ)
functions may be used.

Consider the realization of the function as shown in Fig. 6.
Since a five input function is depicted, the set of constituent
functions is chosen according to the constraints discussed
above along with the knowledge that the function to be

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

THORNTON AND NAIR: EFFICIENT CALCULATION OF SPECTRAL COEFFICIENTS 1337

⇒

Fig. 11. Diagram of synthesis technique.

Fig. 12. BDD of function for synthesis example.

• • •

synthesized has five inputs. The set of constituent functions
always includes functions that are equal to each component
of the ~ vector and the Fc(x) = 0 function (i.e., the Chow
parameters). These values are especially useful since they
indicate the correlation between the output of the function
with respect to each of its inputs.

First, the composition function BDD's are computed. Next,
the spectral coefficients are computed using the probability
assignment algorithm and (27).

Combine F(x)

Combine F(x)

In the first iteration, the maximum absolute valued spectral
coefficient is 18 and corresponds to an AOI constituent
function. Since the AOI constituent function, Fe(x) =
x1x2 + X3X4 + xs, produced the largest spectral coefficient
(in magnitude), it is chosen and the first portion of the circuit
is realized as shown in Fig. 13.

The error function is computed with respect to an exclusive­
OR operator since it is the most robust in terms of the possible
operators available for providing the combining stage in the

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

1338 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. I I, NOVEMBER 1995

xi O AO!

,2--· , D
~ ·o:--··· ·7
x5 • _____ ,, • : ~l>-F(x)

xl-------1

x2------1
,1------1

,4------1
x5------l

e'(x)

.__ ____

Fig. 13. First neration of two-level synthesis of example' "function."

Fig. 14. BDD of the residual function after the first iteration.

circuit. This robustness is due the fact that an XOR can be
used to change a O to I error as well as a l to O error. The
following list describes the properties that determine which
gate type may be used as an error operator. Since the XOR is
capable of correcting all errors, it is used in this algorithm

l l XOR: .r '=: 1 = x, errors may be 1 - 0 or 0 - 1.
2) AND: :d = ;1: and :z:0 = 0, all errors must be I -+ 0.
3) OR: x + 1 = 1 and x + 0 = x, all errors must be 0 -+ 1.

After, the tiN iteration, the BOD of the error function is
computed by using the APPLY algorithm with F(x) and
.r1.r2 + x 3x 4 + .r~ as inputs. The resulting BDD is shown in
Fig. 14.

The synthesis algorithm requires 3 more iterations to com­
pletely realize the desired circuit. On the second iteration, the
con;,tituent function. Fc(x) = .1:1:1:zx3, produces the largest
spectral coefficient (SF[Fc(:r)] = 26) and is chosen as a
term in the final circuit. The next iteration indicates Fc(x) =
x 2x3 T:1 should be used since it has the highest valued spectral
coefficient (SF[f:.(x)] = 22). Finally, a single term remains,
T 1 .1:2:r.3x4x5 , and it is chosen to directly realize the circuit.
The complete circuit is given in Fig. 15.

V. COMPLEXITY ANALYSIS

This section provides a discussion of the complexity of
the various algorithms presented in this paper. First, the
nm1plexity of the probability assignment algorithm and spec-

AOI
,1 D
,2 ---++---H--1· , D
:! :o:--:·· •
x5 --++++<>+t-++++

'------~

Fig. 15. Final circuit using the design process.

tral coefficient calculation<, are presented followed by the
complexity of the synthesis approach.

A. Complexity of the Probability Assignment Algorithm

The BOD based algorithm for the computation of circuit
output probabilities involves the traversal of a BDD from the
input node to the terminal nodes. This enables the output
probability of the function represented by the BDD to be
computed with a complexity equal to O(IEI), where IEI is
the number of edges or interconnections in the BDD.

B. Complexity of the Spectral Computation Algorithm

The necessary information for the calculation of the spectral
coefficients is Pm• Pm can be conveniently determined as
the sum of /Jm0 and Pml• The values Pml and Prno are
obtained with a complexity of 0(IE comp I) where Ecomp is the
number of edges present in the BDD's of the two composition
functions.

If the algorithm APPLY proposed in 14] is used to form
the composition function BDD's, the resulting complexity is
O(IE1, I IE1 I), where IE1, I is the number of edges in the BDD
of the constituent function, fc(x), and JEtl is the number of
edges in the BDD of the function to be transformed, f (x). This
bound is very good since for most transforms the constituent
functions arc very small as compared to the function to be
transformed. In the general case however, constituent functions
may be as complex as the function to be transformed, or, even
more complex. Since the bounding operation in the spectral
coefficient calculation algorithm is the utilization of the APPLY
algorithm to form the composition function BDD's, the total
computational complexity is 0(IE JI x I BJ, I).

C. Complexity of the Logic Synthesis Algorithm

In order to analyze the complexity of the synthesis algorithm
it is convenient to consider the transformation matrix that
could be used in lieu of the more efficient method for comput­
ing spectral coefficients provided in the preceding section. The
matrix would consist of several row-vectors each of dimension
2n. Thus, the computation of a single spectral coefficient
would require 2n scalar multiplications. Clearly, this is an
exponentially bounded computation. However, if the output

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

THORNTON AND NAIR: EFFICIENT CALCULATION OF SPECTRAL COEFFICIENTS 1339

TABLED
A Fl.RsT ORDER SPECTRAL COEFFICIENT POR EACH JSCAS85 NETI.IST

Circuit Output n Z1 IIBDDll,fc = Z1 S(f.)/2"

I f • f.
c432 42lgat 36 4gat 3970 3963
c499 odO 41 idl3 3378 6307
c880 818gat 45 210gat 3101 2930
c1355 1324gat 41 92gat 3378 6307
cl908 66 33 952 71 63

c2670 308 122 69 219 219

c3540 409 49 213 36071 36071
c5315 658 67 248 66552 43486
c6288 4946gat 24 273gat 17058 14387
c7552 418 194 150 466 466

circuit probability technique is used, the complexity is reduced
from 0(2n) to O(IE10 I IE11) for each spectral coefficient.

Since there is a spectral coefficient computed for each
member of set {Fc(x)}, the overall algorithm complexity will
depend upon the set size. Suppose the constraint Ninp = 2
is imposed. This means that the resulting circuit must contain
only 2-input logic gates. If all 16 possible 2-variable logic
functions are present in the set {Fc(X)}, the total number of
rows in the transformation matrix can be easily computed as
shown in (37). This calculation simply considers all possible
combinations of the primary inputs for a two-input gate.
Since there are 16 total constituent functions, the number of
combinations is multiplied by eight. The reason eight is used
instead of 16 is because each member in the set of constituent
functions has an inverse that is also in the set. Thus, by Lemma
4 the 81[/c(x)] value for a particular le(x) is simply the
negative value of the spectral coefficient for le(x) so it is
not necessary to compute the spectral coefficient for both

8 (;) = 4(n)(n - 1) = 4n2 - 4n. (37)

Added to this value is n + 1 additional matrix rows for
the computation of the Chow parameters (19], yielding a total
number of rows equal to 4n 2 - 3n + 1 = O(n 2) in row-size
complexity of the matrix.

Therefore, the total complexity of the one iteration of the
synthesis algorithm is O[n2 (1E1. I IE11)]. A further observation
is that an efficient variable ordering of a BOD can result
in the number of edges being of order, O(n), [15], [28].
Thus the total complexity of an iteration of the synthesis
algorithm is O(n4) assuming efficient BOD orderings and
equal complexity of the BDD's used to express F(x) and
each member in the set {Fc(X)}.

VI. EXPERIMENTAL RESULTS FROM THE

SPECTRUM COMPUTATION ALGORITHM

The spectrum calculation algorithm was implemented using
a popular OBDD package and by implementing the probability
assignment algorithm using the C programming language. The
probability assignment algorithm is similar to a "breadth-first
search" approach except that instead of each node in the BOD
being visited once, each traversal (or arc) in the graph is visited
once. However, the complexity is still of the order of the

f +J. fc=0 fc = Z1

10 -7.068958 X 10-1 -2.852917 X 10-l

6307 -9.921875 X 10-l -8.437500 X 10-1

3100 -2.779270 X 10-l 2.411922 X 10-1

6307 -9.921875 X 10- 1 -8.437500 X 10-l

12 7.690430 X 10-l 4.923096 X 10-l

216 9.338531 X 10-l 3.890991 X 10-3

36099 -2.162547 X 10-l -7.837453 X 10-1

43485 -5.000000 X 10-l -7.827759 X 10-3

6722 -2.929688 X 10-3 -2.441406 X 10-3

1 -9.999999 X 10-l -1.257285 X 10-T

number of nodes in the BOD since every nonterminal node
has exactly two directed arcs leaving it.

The ISCAS85 benchmark circuits were used as inputs to
this implementation to provide the experimental results. The
netlists were parsed and an OBDD was created for each of
them. Table II contains spectral coefficients for a selected
output for each of the benchmark circuits. In addition to the
0th and 1st ordered coefficients, the sizes of the composite
OBDD's are given thus providing a direct representation of
the time complexity of this approach. The OBDD size columns
are labeled IIBDDII and the number of nodes is given for the
original circuit, f, and the composite functions, I · le, and
I+ le•

Table II also contains the number of inputs, n, and the netlist
label of the output that was used to create the OBDD. The
spectral coefficients 8(/c = 0) and 8(/c = x1) are scaled by
2n for convenience thus they lie in the interval [-1, 1]. The
two spectral coefficients are computed using the constituent
functions, le = 0 and le = x1. The specific netlist label for
the input chosen as x1 is also present in the table.

The set of spectral coefficients formed by using each pri­
mary input and the constant logic function, le = 0, are
commonly referred to as the Chow parameters. This subset
of the Walsh coefficients is particularly useful in many areas
of spectral based CAD applications. Tables III and IV contain
the complete set of Chow parameters for the benchmark circuit
c432.

Many of the applications discussed in the preceding portion
of this paper utilize constituent functions that are more com­
plex than a single primary input. In order to demonstrate that
this method is applicable for more complex and generalized
constituent functions, coefficients were computed for various
circuits and arbitrary constituent functions. Table V contains
the constituent functions, the spectral coefficients, and the sizes
of the resulting BDD's. Table VI gives the correspondence of
the inputs Xi with the labeled inputs of the ISCAS85 circuits.

VII. CONCLUSION

In this paper, we developed a new efficient method for com­
puting the spectrum of a Boolean function using BDD's. The
theoretical relationships between circuit output probabilities
and spectral coefficients of Boolean functions were developed.
BDD's were used to calculate the output probabilities which in

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

1340 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 11, NOVEMBER 1995

TABLE III
THE FIRST 19 CHOW PARAMETERS FOR ISCAS85 CIRCUITc432, OUTPUT 421gal

Constituent Function IIBDDII Chow Para.meter

f. f • f. f+f. S(lc)/2•

0 3970 3970 -7.068958 X 10-l
Z1 = 4gat 3963 10 -2,852917 X 10-1

Z2 = lgat 3589 3335 2.43366() X 10-1

.t3 = llgat 3779 3653 -2.318131 X 10-2

.t4 = 17gat 3647 1860 3.022123 X 10-2

Zs= 24gat 3780 3655 -2.318131 X 10-2

z 6 = 30gat 3650 1862 3.022123 X 10-2

.t1 = 37gat 3780 3659 -2.318131 X 10-2

z 8 = 43gat 3656 1866 3.022123 X 10-2

Z9 = 50gat 3780 3667 -2.318131 X 10-2

:i:1o = 56gat 3668 1874 3.022123 X 10-2

:i:u = 63gat 3780 3683 -2.318131 X 10-2

:i:12 = 69gat 3692 1890 3.022123 X 10-2

:Z:13 = 76gat 3780 3715 -2.318131 X 10-•
:i:14 = 82gat 3740 1922 3.022123 X 10-2

Z15 = 89gat 3780 3779 -2.318131 X 10-2

:Z:1e = 95gat 3836 1986 3.022123 X 10-2

Z17 = 102gat 3844 3969 -2.318131 X 10-2

:i:1a = 108gat 3963 1985 3.022123 X 10-2

TABLE IV
THE LAST 18 CHOW PARAMETERS FOR ISCAS85 CIRCUIT c432, OUTPUT 42Jgat

I (;onstituent Function IIBDDII Chow Parameter
f. f • f. J+J. S(/ 0)/2n

:i:19 = 8gat 2947 2947 1.474875 X 10-I
z-20 = 2lgat 3649 3649 1.422319 X 10-2

Z21 = 34gat 3648 3648 1.422319 X 10-2

Z22 = 47gat 3646 3646 1.422319 X 10-2

Z23 = 60gat 3642 3642 1.422319 X 10-2

Z24 = 73gat 3634 3634 1.422319 X 10-•
.t2s = 86gat 3618 3618 1.422319 X 10-2

Z26 = 99gat 3586 3586 1.422319 X 10-2

Z-r, = 112gat 3522 3522 1.422319 X 10-2

Z28 = 14gat 3971 1668 7.755330 X 10-2

Z29 = 21gat 2818 3074 - 7 .505239 X 10-3

Z30 = 40gat 2818 3010 - 7 .505239 X 10-3

Z31 = 53gat 2850 3010 - 7 .505239 X 10-3

Z32 = 66gat 2898 3042 -7.505239 X 10-3

Z33 = 79gat 2954 3090 - 7 .505239 X 10-3

Z34 = 92gat 3014 3146 -7.505239 X 10-3

Z35 = 105gat 3076 3206 -7.505239 X 10-3

Z3e = 115gat 3139 3268 -7.505239 X 10-3

TABLE V
SPECTRAL COEFFICIENTS FOR VARIOUS

CONSTITUENT FUNcn0NS AND ISCAS85 CIRCUITS

Constituent ISCAS85 IIBDDII Spectral
Function Circuit f • f. f+f. Coefficient

Z1 EB z, EB Z3 EB Z4 EB Z5 c432 3884 3821 4.859995 X 10-4

c880 3045 3022 1.455054 X 10-2

c7552 214 214 0.000000 X 10°
l'1:t"2zs + :i:,xs + z2:t"s c432 3659 3782 2.318131 X 10-2

c880 3039 3020 -5.577102 X 10-2

c7552 211 211 2.351379 X 10-2

%1 EB Z4 c432 1854 3654 -2.240873 X 10-2

c880 3038 3010 4.875052 X 10-2

c7552 208 208 1.250000 X 10-1

tum were used to compute the individual spectral coefficients.
The complexity of the new technique has been analyzed and
the method has been implemented with experimental results
given.

TABLE VI
CORRESPONDENCE OF LABELED INPUTS WITH

THOSE IN THE CONSTITUENT FUNcnONS

II Circuit I Output I z1 i z2 I za I Z4 i Zs

c432 42lgat 4gat lgat llgat 17gat 24gat

c880 878gat 210gat 268gat 219gat 8gat 138gat
c7552 276 4528 1496 38 1492 1486

The capability to compute individual spectral coefficients
expands the realm of applications of spectral-based CAD
techniques. As an example we outline a synthesis approach
that iteratively realizes various levels of the circuit based upon
the spectral coefficients of the partially realized subcircuit.
This type of approach for logic synthesis can be custom­
tuned for the inclusion of the XOR's and various optimization
parameters such as delay, area, testability, and power.

ACKNOWLEDGMENT

The authors would like to thank D. Long of AT&T Lab­
oratories for making his BOD library package available and
particularly for providing the program that converts the IS­
CAS85 netlists to OBDD's.

REFERENCES

[I] S. B. Akers, "Binary decision diagrams," IEEE Trans. Comput., vol.
C-27, pp. 509-516, June, 1978.

[2] R. L. Ashenhurst, 'The decomposition of switching functions," in Proc.
Int. Symp. Theory Switching, Apr. 1957, pp. 74-116.

(3] D. Bryan, "The ISCAS85 benchmark circuits and netlist fonnat," On­
Line Documentation, 1988.

[4] R. E. Bryant, "Graph-based algorithms for Boolean function manipula­
tion," IEEE Trans. Comput .. vol. C-35, pp. 667--691, Aug. 1986.

[5] C. K. Chow, "On the characterization of threshold functions," IEEE
Special Pub. S.134, pp. 34-38, 1961.

[6] E. M. Clarke, K. L. McMillian, X. Zhao, and M. Fujita, "Spectral
transfonns for extremely large Boolean function," in Proc. JF/P WG
10.5, Workshop Appl. Reed-Muller Expansion in Circuit Design, Sept.
1993, pp. 86-90.

[7] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang,
"Spectral transfonnations for large Boolean functions with applications
to technology mapping," in Proc. ACMREEE Design AutomaL Conf,
pp. 54--60, 1993.

[8] E. M. Clarke, X. Zhao, M. Fujita, Y. Matsunaga, R. McGeer, and J. Yan,
"Fast Walsh transform computation with binary decision diagram," in
Proc. /FIP WG 10.5 Workshop Appl. Reed-Muller Expansion in Circuit
Design, Sept 1993, pp. 82-85.

[9] J. W. Cooley and J. W. Tukey. "An algorithm for the machine calcula­
tion of complex Fourier series," Math Computat., vol. 19, pp. 297-301,
1965.

[IO] T. Damarla, "Generalized transforms for multiple valued circuits and
their fault detection," IEEE Trans. Comput., vol. 41, pp. 1101-1109,
Sept. 1992.

[ll] M. Davio, J.-P. Deschamps, and A. Thayse, Discrete and Switching
Functions. New York: McGraw-Hill, 1978.

[12] C. R. Edwards, "The application of the Rademacher-Walsh transfonn
to Boolean function classification and threshold logic synthesis," IEEE
Trans. Comput . ., vol. C-24, pp. 48--62, 1975.

[13] --, 'The design of easily tested circuits using mapping and spectral
techniques," Radio Electron. Eng., vol. 47, no. 7, pp. 321-342, 1977.

[14] B. J. Falkowski, I. Schafer, and M. A. Perkowski, ''Calculation of the
Rademacher-Walsh spectrum from a reduced representation of Boolean
functions," in Proc. Europ. Design Automat. Conf, Sept. 1992, pp.
181-186.

[)SJ M. Fujita, H. Fujisawa, and N. Kawato, "Evaluation and improvements
of Boolean comparison method based on binary decision diagrams,"
Proc. ICCAD, pp. 2-5, 1988.

[16] M. Fujita, J. Yang, E. M. Clarke, X. Zhao, and P. McGeer, "Fast spec­
trum computation for logic functions using binary decision diagrams,"
in Proc. Int. Conf Circuits Syst.. I 994.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 16:23:33 UTC from IEEE Xplore. Restrictions apply.

THORNI'ON AND NAIR: EmCIENT CALCULATION OF SPECTRAL COEmCIENTS 1341

[17] D. Green, Modem Logic Design. Reading, MA: Addison-Wesley,
1986.

[181 T. C. Hsiao and S. C. Seth, "An analysis of the use of
Rademacher-Walsh spectrum in compact testing," IEEE Trans.
Comput., vol. C-33, pp. 934-937, Oct. 1984.

[19] S. L Hurst, ''The application of chow parameters and
Rademacher-Walsh matrices in the synthesis of binary functions,"
Comput. J., vol. 16, no. 2, 1973.

[20] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in
Digital Logic. Orlando, FL: Academic Press, 1985.

(21] J. Jain, J. Bitner, D.S. Fussel, and J. A. Abraham, "Probabilistic design
verification," Tech. Rep., Univ. Texas, Austin, UT-CERC-TR-JAA91-
0l, Apr. 1991.

[22] M. G. Karpovsky, Finite Orthogonal Series in the Design of Digital
Devices. New York: Wiley, 1976.

(23] S. K. Kumar and M. A. Breuer, "Probabilistic aspectS of Boolean
switching functions via a new transform," Journal ACM, vol. 28, no. 3,
pp. 502-520, July 1981.

(24] R. Lechner, "Harmonic analysis of switching functions," In Recent
Developments in Switching Theory, pp. 121-228, 1971.

(25] C. Y. Lee, "Representation of switching circuits by binary-decision
programs," Bell Syst. Tech. I., vol. 38, pp. 985-999, July 1959.

(26] A. M. Lloyd, "A consideration of orthogonal matrices, other than the
Rademacher-Walsh types, for the synthesis of digital networks," /.
Electron., vol. 47, no. 3, pp. 205-212, 1979.

[27] M. Mano, Digital Design. Englewood Cliffs, NJ: Prentice-Hall, 1984.
[28] S. Milak, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli,

"Logic verification using binary decision diagrams in a logic synthesis
environment," Proc. ICCAD, pp. 6-9, 1988.

(29] D. M. Miller and J. C. Muzio, "Spectral fault signatures for single stuck­
at faults in combinational networks," IEEE Trans. Comput., vol. C-33,
pp. 765-768, Aug. 1984.

[30] K. P. Parker and E. J. McCluskey, "Probabilistic treatment of general
combinational networks," IEEE Trans. Comput., vol. C-24, pp. 66~70,
June 1975.

[31] M. A. Perkowski, M. Driscoll, J. Liu, D. Smith, J. Brown et al.,
"Integration of logic synthesis and high-level synthesis into the DIADES
design automation system," in Proc. 22nd IEEE Int. Symp. Circuits Syst.,
1989, pp. 748-751.

(32] J. L. Shanks, "Computation of the Fast Walsh-Fourier transform," IEEE
Trans. Comput., vol. C-18, pp. 457-459, May 1969.

[33] M. Stankovic, Z. To~ic, and S. Nikolic, "Synthesis of Maitra cacades
by means of spectral coefficients," IEE Proc., vol. 130, Pt. E, no. 4, pp.
101-108, July 1983.

[34] A. K. Susskind, "Testing by verifying Walsh coefficients," IEEE Trans.
Comput., vol. C-32, pp. 198-201, Feb. 1983.

[35] M. A. Thornton and V. S. S. Nair, ''The analysis and classification of
parity functions using a small subset of Walsh coefficient," 1995 IEEE
Int. Symp. Multiple Valued Logic, to appear.

[36] __ , ''1be computation of a Boolean function spectrum using a
structural input," Tech. Rep., 94-CSE-40, 1994.

{37] __ , "Applications and efficient computation of spectral coefficients
for digital logic," Tuch. Rep., 94-CSE-13, Feb. 1994.

[38} __ , "A numerical method for Reed-Muller circuit synthesis," in
Proc. IFIP WG 10.5 Workshop Appl. Reed-Muller Expansion in Circuit
Design, Sept. 1993, pp. 69-74.

(39] __ , "An iterative combinational logic synthesis technique using
spectral information," in Proc. Europ. Design Automat. Conf., Sept.
1993, pp. 358-363.

(40] V. M. Tokmen, "Disjoint decomposability of multiple valued functions
by spectral means," in Proc. IEEE 10th Int. Symp. Mult. Valued Logic,
1980, pp. 88-93.

[41] D. Varma and E. A. Trachtenberg, "Design automation tools for efficient
implementation of logic functions by decomposition," IEEE Trans.
Computer-Aided Design. vol. 8, pp. 901-916, Aug. 1989.

Mitchell A. Thornton (S'81-M'85) received the
B.S. in electrical engineering and from Oklahoma
State University, Stillwater, the M.S. degree in
electrical engineering from the University of Texas,
Arlington, the M.S. degree in computer science
and the Ph.D. degree in computer engineering from
Southern Methodist University, Dallas, TX, in 1985,
1991, 1993, and 1995, respectively.

From 1985 to 1990, he was employed at E­
Systems, Inc., where he left as a Senior Electronic
Systems Engineer. Currently, he is an Assistant

Professor in the Computer Systems Engineering Department, University of
Arkansas, in Fayetteville, AR. His research interests include logic synthesis,
design verification, and computer arithmetic.

Mr. Thornton is a registered Professional Engineer in Texas and is a member
of Eta Kappa Nu.

V. S. S. Nair (M'95) received the B.Sc.Engg. in
electronics and communications from the University
of Kerala. He received the M.S. and Ph.D. degrees
in electrical and computer engineering from the
University of Illinois, Urbana, in 1988 and 1990,
respectively.

Currently, he is an Assistant Professor in the
Computer Science and Engineering Department at
Southern Methodist University, Dallas, TX, where
he holds a J. Lindsey Embrey Trustee Professor­
ship in Engineering. His research interests include

fault-tolerant computing and communication, VLSI systems, and software
engineering.

Dr. Nair is a member of the ACM.

