
Simulation and Implication Using a Transfer
Function Model for Switching Logic

Mitchell A. Thornton, Senior Member, IEEE

Abstract—Transfer functions are concise mathematical models representing the input/output behavior of a system and are widely
used in many areas of engineering including system theory and signal analysis. We develop a framework for the construction of
transfer function models for digital networks and demonstrate their application in simulation and implication. Rather than using a
traditional switching theory model, the transfer functions are defined over vector spaces,H. The derivation of the transfer function is
provided and it is applied to logic network simulation and implication.

Index Terms—Switching theory, logic design, simulation, modeling, computer-aided design

Ç

1 INTRODUCTION

SWITCHING theory provides a rich theoretical basis for
modeling digital logic circuits [1], [2]. Traditionally,

digital logic circuits are modeled using the axioms and
postulates of switching theory formulated in terms of a
binary-valued Boolean algebra over discrete scalar-valued
switching functions. The switching theory framework has
led to an extensive set of analysis and synthesis methods
that continue to be commonly used in all facets of modern
digital circuit design activities.

In the approach discussed here, we reformulate these
mathematical models in terms of linear transforms over
vector spaces. This result is not intended to serve as a
replacement for traditional switching theory, rather as an
alternative model that exhibits advantages for certain elec-
tronic design automation (EDA) tasks such as symbolic
simulation and implication that can be computationally
cumbersome within a switching theory framework.

The formulation of a linear algebraic model in place of a
switching theory model allows for alternative representa-
tions and corresponding analysis and synthesis techniques
to be investigated. Here, we focus upon digital logic network
modeling and representationwithin a linear algebraic frame-
work although these results can be applied to any system
of first-order propositional logic. The underlying computa-
tionally complex problems of logic network representation
and manipulation remain within the linear algebraic frame-
work; however, this alternative representation can allow
for new heuristic analysis and synthesis methods to be
developed that may prove advantageous as compared to
corresponding switching theoretical approaches.

Transfer functions describe the input-output behavior
of a system of interest and generally have the form of a

numerator representing the complete system output behav-
ior and a denominator representing the complete input
behavior [3]. The system response with respect to a particu-
lar input stimulus can then be obtained through a multipli-
cative operation among the stimulus and transfer function.
The inverse transfer function may be used to determine a
corresponding input stimulus given an output response;
also through the application of a multiplicative operation.
In terms of digital logic network operations, these tasks are
commonly referred to as simulation and implication respec-
tively. Because simulation and implication are core opera-
tions in many EDA tasks, the use of a transfer function
model can prove useful in various applications.

In order for the transfer function approach to be viable,
the extraction of the function representation must not be
excessively computationally complex and the representa-
tion must furthermore not require excessive storage require-
ments. EDA design tasks involve the transformation of a
high-level description of a logic network into a correspond-
ing low-level model while analysis tasks often require the
opposite situation; that of transforming a low-level model
to a higher one. For this reason, a means to efficiently extract
a transfer function from a high-level description as well as a
low-level description is required.

Here, we utilize truth tables as a representative high-
level description although modern EDA tools utilize more
concise representations such as binary decision diagrams
(BDD) or cube lists [4], [5]. Although truth table representa-
tions are exponentially complex, our techniques are easily
extended to the use of these more modern forms of high-
level representation and we use truth tables here only for
the sake of clarity in explanation of the concepts. Alterna-
tively, we use a netlist or interconnection of basic logic gates
as a representative low-level description and we refer to
this representation as a ‘logic network’.

As opposed to modeling the functionality of a logic net-
work with switching theory [1], [2], we model logic net-
works as operations over a vector space. This approach is
not without precedent and is commonly used in the fields
of quantum and reversible logic [6], [7], and the use of this
approach for classical logic networks was very briefly

! The author is with the Department of Computer Science and Engineering,
Southern Methodist University, Dallas, TX 75275.
E-mail: mitcht@ieee.org.

Manuscript received 25 July 2012; revised 10 Sept. 2013; accepted 19 Jan.
2015. Date of publication 5 Feb. 2015; date of current version 11 Nov. 2015.
Recommended for acceptance by M. Hsiao.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2401034

3580 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mentioned in [8] and investigated in terms of spectral
responses in [9]. By formulating logic network transfer func-
tions as transformations over vector spaces, the resulting
transfer function model of a logic network is easily derived
from both high-level and low-level specifications and is of
the form of a linear transformation matrix. Hence, we inter-
changeably refer to the network model as either a ‘transfer
function’ or a ‘transfer matrix’.

The use of the transfer function for determination of a
network response after stimulation with a test vector is
described and extended to provide a means for obtaining
multiple responses through a single evaluation of the
transfer function. This latter case is an instance of symbolic
simulation and has many applications in EDA forming the
basis for simulator, formal verification, and test generation
tools [10], [11].

The generalized inverse of the transfer function is also
presented and applied to the EDA task of implication where
a given digital network input stimulus is calculated based
upon a given output response and logic network model.
The key factors in implementing an implication method are
efficient extraction and representation of the logic network
inverse model, and efficiency in the actual implication com-
putation given the inverse model and the output response.

2 SWITCHING THEORY AND LINEAR ALGEBRA

CONCEPTS AND NOTATION

Switching theory is ubiquitous within the logic network
design community and basic concepts are well-known by
practitioners. An extremely brief review of switching theory
is provided for the purpose of specifying the notation used
in the development of the alternative vector space character-
ization of a logic network.

2.1 Switching Theory Algebra and Notation
Switching theory is the application of the principles of
binary-valued Boolean algebra for the purpose of modeling
switching or digital logic circuits. Because digital circuits
operate in two discrete states, it is convenient to model them
in terms of switched states. In keeping with practice, we use
the term ‘Boolean algebra’ to imply that that algebra is
defined for the set of constants {0, 1} denoted as B¼ {0,1} [12].

Boolean algebra can be specified in a variety of ways with
one of the most common being that of hB;þ; $; 0 ; 0; 1i, where
þ is the additive operation also known as the inclusive-OR, $
is the multiplicative operator also known as the two-oper-
and AND, ‘ is the unary multiplicative inverse also known
as the NOT, and 0 and 1 are the additive and multiplicative
identity elements respectively.

A Boolean algebra variable x can be represented as the
expression x ¼ a $ 0þ b $ 1 where a; b 2 f0; 1g: In this form, x
is written as function that depends upon the particular
assignment of constants to coefficients a and bwhere the par-
ticular assignment is considered to be unknown. The four
unary functions are the two constant functions, fðxÞ ¼ 0,
fðxÞ ¼ 1, the identity, fðxÞ ¼ x, and the inverse, fðxÞ ¼ x0.
Application of the unary inverse operation to a variable x
yields its complement, or functional inverse, and is denoted
as fðxÞ ¼ x0 ¼ b $ 0þ a $ 1. x’ is referred to as the ‘negative
polarity’ form of variable x, while x is the ‘positive polarity’

form. Both x and x’ are ‘literals’ since they represent the posi-
tive and negative polarity respectively of variable x.

Switching functions describe relationships between
multi-dimensioned finite sets of constants that represent
mappings between a domain set Bn to a range set Bm where
m and n are integers ' 1. The multi-dimensioned spaces Bn

and Bm are formed as Cartesian products of B, Bn ¼ B (
B($ $ $ (B ¼ P1)i)n Bið Þ. A switching function f that
depends upon n variables is denoted as f : Bn ! Bm, where
m denotes that the function range set contains elements
within Bm. A logic network with n inputs and m outputs is
modeled as a switching function f : Bn ! Bm.

2.2 Linear Algebra and Notation
Algebras can be formulated over sets of elements that are
not necessarily scalar values. Common non-scalar quantities
are one-dimensional arrays of scalars referred to as vectors
and two-dimensional arrays called matrices. The notion of
a tensor can be used to generalize scalar and non-scalar
quantities [13]. Different forms of tensors are denoted by an
integer that is their order or degree. The order of a tensor
refers to the number of indices required to specify a single
value within the tensor and the ‘dimension’ is the maximum
value of the index. In terms of notation, a zeroth-order ten-
sor is a scalar denoted by an italicized lower case character,
a, a first-order tensor is a vector denoted by a bold-font
lower case character, a, a second-order tensor is a matrix
denoted by a bold-font upper case character, A, and a third-
or higher ordered-tensor can be visualized as a geometrical
cube of scalars. In general, the tensor elements need not be
scalars and can actually be other tensors. A tensor is charac-
terized by a set of integral parameters, ki, referred to as the
‘dimension’. The dimension characterizes the maximum
number of elements within a given tensor. A 0th-order ten-
sor or scalar has dimension k ¼ 0, a first-order tensor or vec-
tor has dimension k ¼ 1, a matrix, k ¼ 2, and so on.

Vectors are expressed as a horizontal array of elements of
length k, referred to as ‘row vectors’ or as a column of ele-
ments of length k referred to as ‘column vectors.’ We denote
a column vector as a and the corresponding row vector as
aT where the superscript T denotes the transpose operation.

2.2.1 Vector Operations

The operation of addition among two tensors is defined
when the tensors have the same order and same dimension.
The addition of two vectors a and b result in the vector c ¼
a þ b where each component of c is the arithmetic sum of
the corresponding components of a and b. The resulting
vector c has the same dimension as that of a and b. Another
operation is that of ‘scaling’ which is the operation of multi-
plying each element of a tensor by a scalar quantity.

Another vector operation is that of norm. Many different
definitions of norms are possible and the used here is the
euclidean norm denoted as L2ðaÞ and given in Equation (2.1)

L2ðaÞ ¼ ak k2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i¼1

a2i

vuut : (2:1)

There exist several different definitions for multiplicative
operations over vectors including the inner product (dot

THORNTON: SIMULATION AND IMPLICATION USING A TRANSFER FUNCTION MODEL FOR SWITCHING LOGIC 3581

product) and the outer product (Kronecker or tensor prod-
uct). The inner product of two k-dimensional vectors a and
b results in a scalar value denoted by a $ b and is defined in
Equation (2.2)

a ! b ¼
Xk

i¼1

aibi: (2:2)

If a $ b ¼ 0, the vectors a and b are said to be linearly
independent. The inner product operator is related to the L2
norm as aT $ a ¼ ½L2ðaÞ+2 ¼ ½ ak k2+

2.
The outer product form of multiplication is the tensor, or

Kronecker, product operation denoted by a, b. This form
of multiplication can be applied to two tensors of any arbi-
trary order and if the two argument tensors are of the same
order, they need not be of the same dimension. The resul-
tant product is a tensor whose order and dimension is
dependent upon those of the multiplicand and multiplier
arguments. Unlike the inner product, the tensor product is
not commutative, that is, a, b 6¼ b, a. The tensor product
of two column vectors a and b of dimensions k and h results
in a product column vector of dimension kh where each
component is formed by scaling b with each component of
a as shown in Equation (2.3)

a, b ¼ a1b a2b . . . akb½ +: (2:3)

2.2.2 Matrix Operations

Matrices are denoted as A, B, C, D, etc. Two multiplicative
operators are the direct product and the tensor or outer
product described previously for vectors. Each component
of a matrix A is denoted by a pair of subscripts i,j where i
refers to the row location and j the column location. The
uppermost element to the left is element a11 and the bottom-
most element to the right is anm where the matrix dimen-
sions, n and m, are the total number of rows and columns
representing A. A useful notation for describing the matrix
A is A ¼ ½anm+ where aij represents a particular element of
A in row location i) n and column location j) m. The
matrix A is said to be ‘square’ when the number of rows
and columns is equal, n ¼ m. The transpose of a matrix A is

written as AT and is defined as AT ¼ ½aji+where A ¼ ½aij+.
Each column of matrix A is referred to as a ‘column

vector’ and the jth column vector is denoted as aj ¼ [a1j a2j
. . . anj]

T, likewise each row of matrix A is a ‘row vector’ and
may be denoted as ai ¼ ½ai1ai2 . . . aim +. Using the concept of
row and column vectors, matrix A may be formulated as a
row vector whose components are column vectors, A ¼
½a1 a2 . . . am+ or alternatively as a column vector whose com-

ponents are row vectors,A ¼ ½a1 a2 . . . an+T.
The direct matrix product is denoted by the absence of an

operator between the two matrices, AB. The direct matrix
product is non-commutative, AB 6¼ BA. AB ¼ ½anm+½bst+ is
only defined for the case where n ¼ t and m ¼ s. The direct
matrix product of AB is defined in terms of the inner prod-
uct of the row vectors of A, ai, and the column vectors of B,
bj as shown in Equation (2.4) or in terms of the outer prod-
uct of the column vectors of A with the row vectors of B as
given in Equation (2.5).

AB ¼ ½aTi ! bj+
""
1)i)n
1)j)m

(2:4)

AB ¼
Xn

i¼1

ai , bi: (2:5)

The outer product is applicable to matrices and is non-
commutative, A, B 6¼ B,A. The outer product, C ¼
A+ , B, of two matrices A ¼ ½anm+ and B ¼ ½bst+ results in a
ns (mt product matrix C ¼ ½cðnsÞ;ðmtÞ+. The outer product
can be expressed as a product matrix composed of elements
that are scaled matrices as in Equation (2.6)

A,B ¼

a11B a12B $ $ $ a1mB
a21B a22B $ $ $ a2mB

..

. ..
. . .

. ..
.

an1B an2B $ $ $ anmB

2

6664

3

7775: (2:6)

2.2.3 Dirac Notation

A commonly used vector notation is described in [14]. This
notation, called ‘bra-ket’ notation, was originally formu-
lated as a concise manner for describing the state of a quan-
tum system and to aid in quantum mechanical calculations.
Due to the conciseness of bra-ket notation, we use this nota-
tion in the formulation of transfer matrices that model digi-
tal logic networks in this paper.

A column vector a is referred to as ‘ket-a’ and denoted as
j ai. Likewise, the row vector aT is referred to as ‘bra-a’ and
denoted ha j . Using bra-ket notation, the multiplicative oper-
ations defined above can be expressed as shown in Table 1.

Values within bras and kets may be specified as digit
strings enclosed by parentheses and subscripted with the
number system radix for clarity. In particular, values speci-
fied as binary strings utilize digits bi 2 B ¼ f0; 1g and a cor-
responding four-bit value may be expressed as ðb3b2b1b0Þ2
representing the quantity, VALUE, where VALUE may be
computed using a radix polynomial, VALUE ¼ b3 $ 23 þ
b2 $ 22 þ b1 $ 21 þ b0 $ 20. As an example, a ket is specified
with a four-bit binary string, ðb3b2b1b0Þ2 is shown in Equa-
tion (2.8) and is expanded as an outer product

b3b2b1b0ð Þ2
"" #

¼ b3j i, b2j i, b1j i, b0j i: (2:8)

2.2.4 Vector Spaces

A particular set of first-order tensors that can be added
together and also scaled by 0th-order tensors is said to form
a ‘vector space’. Scaling is the arithmetic multiplication of a

TABLE 1
Linear Algebra and Bra-Ket Notation

OPERATION LIN. ALGEBRA BRA-KET

inner prod. a $ b ¼ b $ a hajbi ¼ hbjai
L2 norm L2(a) ¼ (a $ a)1/2 hajai1=2
outer prod. a , b jaihbj
direct prod. AB AB
outer prod. A , B jAihBj
vect/matrix prod. c ¼ Ab jci ¼ Ajbi
vect/matrix prod. cT ¼ bTA hcj ¼ hbjA

3582 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

given scalar with each element that forms the vector.
Because vector addition requires that every first-order ten-
sor in the vector space be composed of the same number
of elements, vector spaces are characterized by an integral
value called the ‘dimension’ that specifies the number of
elements that comprise a vector.

Definition 1 (Vector Space). A vector space consists of a set of
k-dimensional vectors and the operations of scaling and
addition.

Definition 2 (Hilbert Space). A vector space defined for an
arbitrary dimension k, including an infinite dimension, and
that has a norm and inner product associated with it is called a
Hilbert space.

A set of k-dimensional vectors is denoted by Hk. The
Hilbert spaces we are interested in here are k-dimensional
where k is limited to some finite positive integer and a set
of vectors, vi 2 Hk. Higher ordered Hilbert space spaces
of dimension k(h are formed using the outer product,
Hk(h ¼Hk ,Hh.

2.2.5 Linear Algebra

A linear algebra is an algebra defined over values that are sets
of first-order tensors or vectors with associated operations.
Algebras based on elements that are matrices or higher-order
tensors are generally referred to as tensor algebras.

In particular, we are interested in the algebra denoted as
hH; $; L2;,; j0i; j1ii with elements vi 2 Hk having dimension
k ¼ 2r and 0) r where H represents all vectors contained
within an two-dimensional Hilbert space, ! is the inner prod-
uct,L2 denotes the norm, and the vectors fj0i;j1ig 2 H define
or ‘span’ vector space and are defined as

0j i ¼ 1
0

$ %
¼ j1i ¼ 0

1

$ %
:

The basis vectors have particular significance since
they, along with the scaling and addition operations allow
for any arbitrary vector vi 2 H to be formed as shown in
Equation (2.9) where a and b are scalars

v ¼ a 0j iþ b 1j i: (2:9)

Although H is strictly defined to represent the set of
vector elements within a vector space, we shall use H to
also refer to a vector space with the understanding that
the set of vector elements have dimension k ¼ 2 and that
scaling, addition, and a norm is defined. Higher dimen-
sioned vector spaces may be denoted as Hi where i rep-
resents the ith outer product of the vectors within H as
described in Definition 2.

3 TRANSFER FUNCTIONS IN H FOR DIGITAL

NETWORKS

Switching circuit models for digital networks are based
upon an algebraic framework such as hB;þ; $;0 ; 0; 1i. An
alternative algebraic framework for modeling digital net-
works is based upon the algebra hH; $; L2;,; j0i; j1ii. Within
the algebra hB;þ; $; 0 ; 0; 1i, individual logic gates with n
inputs and a single output are characterized by switching
functions of the form f : Bn ! B, here we model logic gates

as a function F:Hn ! H, where F is a second order tensor
(or matrix) that maps vectors from the domain Hn to the
range H. Depending upon the specified interconnections
of the logic gates, an overall transfer function for the net-
work can be derived, Fcirc. In general, a logic network may
depend upon n inputs resulting inm outputs and the overall
transfer function model for the network is of the form
F:Hn ! Hm. Fig. 1 depicts the switching model and the cor-
responding transfer function model for a logic network
characterized as a function f in the switching theoretical
framework and as F in the transfer function framework.

The circuit inputs at the left side of Fig. 1 are denoted by n
Boolean variables, xi 2 B and the corresponding outputs are
denoted by fi 2 B. In the transfer function model at the right
of Fig. 1, the inputs are denoted by an n-dimensional vector,
jxii 2 Hn and the outputs by a vector jfii 2 Hn. The functional
behavior of the circuit is represented by the switching func-
tion fðx1; . . . ; xnÞ and the n (m transformation matrix F that
serves as the specification of the network transfer function.

One of the most common values used to augment B is
that of the unspecified or unknown value usually denoted
as X. Other common values are Z, used to represent a high-
impedance or open circuit value. If X and Z are used,
Bþ ¼ fB;X;Zg ¼ {0, 1, X, Z}. X is a value introduced for the
purpose of modeling and analysis only since it does not rep-
resent a model for a physical quantity such as the values 0,
1, and Z. In order to ensure interoperability among EDA
software produced by different vendors, different defini-
tions of Bþand the electrical interpretation of their elements
have been standardized [15], [16].

3.1 Constants Modeled as Elements ofH
In the linear algebraic model presented here, we model con-
stants as elements of H. We model the constant element

j0i 2 H as 0j i ¼ ½1; 0+T and 1j i ¼ ½0; 1+T: We also amend the
elements of H resulting in Hþ ¼ fH;!i; jtig. The additional
elements j!i and jt are not related to X;Z 2 Bþ, rather they
are included for the purpose of developing the transfer
function model for a logic network and their inclusion is
convenient in analysis of the modeled network. Qualita-
tively, the element j!i can be considered as the ‘absence’ of
either 0j i or 1j i, while the element tj i represents an element
that is simultaneously both 0j i and 1j i, tj i ¼ 0j iþ 1j i. In
using Hþ, a lattice algebra results that can be denoted by a
Hasse diagram where values closer to the upper portion of
the graph cover or contain values that appear closer to the
bottom of the graph [12]. Fig. 2 contains the Hasse diagram
for the elements of the setHþ.

3.2 Elements as Transfer Functions Over Hþ

Within the switching theory framework, two-place opera-
tors are represented by functions that map the domain
set of elements B2 ¼ {00, 01, 10, 11} to a range set B. The par-
ticular mapping defines the function and couples each

Fig. 1. Digital network models.

THORNTON: SIMULATION AND IMPLICATION USING A TRANSFER FUNCTION MODEL FOR SWITCHING LOGIC 3583

F
IJ.)
11.>

II.)

unique element of the domain with a corresponding range
element. Primitive two-input, single output logic gates
are modeled as functions, f : B2 ! B. The same concept is
applied for transfer function models of primitive logic gates
where F : H2 ! H represents the gate whose behavior is
specified by the matrix F. To illustrate this concept, Fig. 3
contains two diagrams where the leftmost diagram depicts
the mapping function of an exclusive-OR (XOR) gate using
elements of B while that on the right shows the correspond-
ing diagram using elements fromH.

The domain space H2 consists of a collection of four vec-
tors, 00j i, 01j i, 10j i, and 11j i. As an example, consider the case
of 10j i in the domain space. By application of Equation (2.8),

j10i ¼ j1i, j0i ¼ ½0; 1+T , ½1; 0+T ¼ ½0; 0; 1; 0+T.
A transfer function expresses an input-output relation-

ship in a manner such that when it is multiplied by a specific
input stimulus, the corresponding output response results.
Lemma 1 contains a property that is used in the derivation of
the form of a digital logic network transfer function.

Lemma 1. Vectors jxii 2 Hn representing logic network input
stimuli are linearly independent.

Proof. Consider the vectors x1 ¼ ðbnbn-1 . . . b2b1Þ2
"" #

2 Hn

and x2 ¼ ðbnbn-1 . . . b2b1Þ2
"" #

2 Hn where x1 6¼ x2. From
Equation (2.8), xi ¼ jbni, jbn-1i, $ $ $, jb1i which is of
the form of a vector whose components are all zero-val-
ued except for a single element that has value 1 at index
2i-1. Furthermore, L2ðxiÞ ¼ 1. Since x1 6¼ x2, each vector
must have a unity-valued element at a different index
location. These observations indicate that hx1jx2i ¼ 0. By
definition, two vectors with a non-zero norm and whose
inner product is zero are linearly independent. tu

Lemma 2. The output response of a logic network can be obtained
by multiplying the outer product xij i fih j with the transpose of
xij i where xij i represents a specific network stimulus input
and fij i represents the corresponding network output response.

Proof.

jxiið ÞT jxiihfijð Þ ¼ hxijxiihfij

From the proof of Lemma 1, it is observed that xij i is
of the form of a vector whose components are all zero-
valued except for a single element that has value 1 at
index 2i-1, thus xi xij i ¼ 1h .

xih jxii fih j ¼ 1ð Þ fih j:

tu
Theorem 1. The transfer function, T, representing the input-

output relationship of a logic network, F, is of the form in
Equation (3.3)

T ¼
X2n

i¼1

xij i fih j (3:3)

Proof. From Lemma 1,

hxijxii ¼
0 i 6¼ j
1 i ¼ j

&

thus, hxijT ¼ hfij. tu

The form of T in Equation (3.3) is of an n(m matrix
where log2(n) is the number of logic network inputs and
log2(m) is the number of network outputs. Since the transfer
function is in the form of a matrix, we interchangeably use
the terms ‘transfer function’ and ‘transfer matrix.’ As an
example of the application of Theorem 1, we calculate the
transfer matrix of the XOR gate modeled as a transfer func-
tion X : H2 ! H:

Example 1.

X ¼ 00j i 0h jþ 01j i 1h jþ 10j i 1h jþ 11j i 0h j

X ¼

1 0

0 1

0 1

1 0

2

6664

3

7775:

The resulting transfer function matrix X is isomorphic
to the truth table representation of an XOR gate as shown
in Table 2. This observation implies that commonly used
methods for truth table representations of logic functions
may be employed to represent the transfer matrix such
as BDDs.

Fig. 4 contains common logic gate diagrams and their
associated transfer matrices.

Fig. 2. Hasse diagram forHþ.

Fig. 3. Function mappings for XOR operator. Fig. 4. Common logic gates and transfer matrices.

TABLE 2
XOR Truth Table Using Elements ofH

a b a. b a b a. b habj ¼haj, hbj a. b

h0j h0j h0j [1 0] [1 0] [1 0] [1 0 0 0] [1 0]
h0j h1j h1j [1 0] [0 1] [0 1] [0 1 0 0] [0 1]
h1j h0j h1j [0 1] [1 0] [0 1] [0 0 1 0] [0 1]
h1j h1j h0j [0 1] [0 1] [1 0] [0 0 0 1] [1 0]

3584 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

D- D- D- -t>-

A•[l n o-[i I] x-[~ I] 1·[~ n
=D--D- I>- -{>-

NA-[~ i l No-[I i l NX-[I ~ l m-[~ ~]

Negated output logic gates have transfer matrix charac-
terizations that may be directly computed using the rela-
tionship in Equation (3.6) where 1 denotes the matrix whose
elements are all 1

NT ¼ 1-T: (3:6)

Fig. 5 depicts several common three-input logic gates and
their associated transfer matrices.

For the purposes of analysis, it is necessary to represent a
conducting path, a fanout node, and a fanin node in terms
of transfer matrices. Fig. 6 depicts these circuit structures
and their associated transfer matrices.

3.3 Logic Network Transfer Matrices
The construction of a transfer function for a logic network can
be accomplished through the application of Equation (3.3)
when the input and output responses are all known. This is
typically the case for applications such as logic network syn-
thesis where the desired network behavior is known but a
detailed low-level network is not yet available.

Analysis tasks generally involve having access to the
structure of a logic network but with the overall input/out-
put response unknown. Deriving the transfer matrix using
Equation (3.3) is exponentially complex since it involves the
determination of 2n terms through the use of a simulation
tool or some other means. Fortunately, the transfer matrix
of a given logic network can be determined through the use
of transfer matrices of individual network elements and
their corresponding interconnections.

3.4 Transfer Matrix from Switching Specification
Consider the example logic network shown in Fig. 7. A
switching specification of this circuit is given in Table 3 in
the form of a truth table.

The corresponding transfer matrix, T, can be computed
using the relationship in Equation (3.3). However, as illus-
trated in Table 2, the transfer function has a structure that
consists of row vectors identical to the truth table output
vectors expressed as elements of H. Using this observation,

the T can be directly written from the truth table specifica-
tion in Table 3. Example 2 illustrates how T can be derived
using both approaches

Example 2.

T ¼

10h j
10h j
10h j
01h j

2

6664

3

7775 ¼

1h j, 0h j
1h j, 0h j
1h j, 0h j
0h j, 1h j

2

6664

3

7775 ¼

0 1½ + , 1 0½ +
0 1½ + , 1 0½ +
0 1½ + , 1 0½ +
1 0½ + , 0 1½ +

2

6664

3

7775

¼

0 0 1 0½ +
0 0 1 0½ +
0 0 1 0½ +
0 1 0 0½ +

2

6664

3

7775:

T ¼
X2n-1

i¼0

ij ihfij ¼
X3

i¼0

jii fih j

¼ 0j i 2h jþ 1j i 2h jþ 2j i 2h jþ 3j i 1h j

¼

0 0 1 0

0 0 1 0

0 0 1 0

0 1 0 0

2

6664

3

7775:

(3:11)

3.5 Transfer Matrix from Logic Network
The technique for deriving a transfer matrix directly from a
logic network involves partitioning the network into a series
or cascade of subcircuits, computing the transfer matrix
for each partition, and then computing the overall transfer
matrix as the direct matrix product of each cascade stage
transfer matrix. The individual cascades are determined by
forming partition cuts such that all components within the
cascade stage are in a parallel arrangement. Fig. 7 shows the
example circuit with partitions indicated by dashed lines.

The partitioning process results in three partitions
labeled f1, f2, and f3. Fanout and fanin points are treated as
network elements since these structures have differing
numbers of inputs and outputs. The process of partitioning
is easily implemented by levelizing the circuit

The next step is to compute the transfer matrices for each
partition. Because each partition is composed of a set of
parallel elements, the signals on each parallel line must be

Fig. 5. Common three-input logic gates and transfer matrices.

Fig. 6. Common circuit structures and transfer matrices.

Fig. 7. Example logic network and partitions.

TABLE 3
Truth Table of Example Circuit

x1 x2 f1 f2

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

THORNTON: SIMULATION AND IMPLICATION USING A TRANSFER FUNCTION MODEL FOR SWITCHING LOGIC 3585

D- D- D- I, I,
I 0 I 0 I 0

x, x,
I, I 0 0 0 I . .., I, x, I 0 0 0 I

I 0 o,- 0 I x.- I 0

~ ~ I 0 0 I 0 I
I 0 0 I I 0
I 0 0 I I 0
0 I 0 I 0 I

D- :D- D>-
0 I 0 I
0 0 I 0
0 0 I 0

!IA,- I 0 NO,• I 0 l<X,- 0 I
0 I 0 I 0
0 0 0 I

I 0 0 0 I
0 I 0 I 0

combined into a single element inHw where log2(w) denotes
the number of parallel network signals in a partition. The
expansion is performed using the outer product operation
among each parallel line.

During the process of partitioning, signals that pass
through a stage unmodified are modeled with the identity
transformation matrix, I2. The identity matrix I2 also serves
as the transfer matrix for a non-inverting buffer since both
elements pass signals through the stage unaltered.

Partition f1 consists of two signal paths with the upper-
most path through an inverter and the bottom path through
a conductor. The transfer matrix, Tf1 , is computed as shown
in Equation (3.12)

Tf1 ¼ NI, I ¼

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

2

664

3

775: (3:12)

The transfer matrix for partition f3 is obtained from
Fig. 4 resulting in Tf3 ¼ A and, for partition f2, Tf2 ¼ FO.

The overall logic network transfer matrix, T, is formed
through the use of the direct matrix product

T ¼ Tf3Tf2Tf1 ¼ Að Þ FOð Þ NI, Ið Þ:

¼

0 0 1 0

0 0 1 0

0 0 1 0

0 1 0 0

2

6664

3

7775:
(3:13)

Both the outer and direct matrix product operations are
non-commutative, thus a convention is followed as to the
order of the multiplicands when performing the multiplica-
tion operation. Here we use the convention of combining
parallel gates in given cascade stages by using the topmost
gate matrix as the leftmost operand. For the direct product,
we use the stage closest to the circuit input as the leftmost
multiplicand.

4 DIGITAL NETWORK ANALYSIS

Simulation and implication are formulated within the con-
text of the linear algebraic circuit model.

4.1 Output Response
The output response may be determined through a vector-
matrix direct product as shown in Theorem 2.

Theorem 2. The output response of a logic network stimulated by
input hxqj and modeled by transfer matrix T is denoted by hfqj
and is computed using Equation (4.1)

fq
' "" ¼ xq

' ""T: (4:1)

Proof.Multiplying Equation (3.2)-2 by hxqj,

xq

' ""T ¼ xq
' ""

X2n

i¼1

xij i fih j

!

xq
' ""T ¼

X2n

i¼1

xq

'
xij i fih j:

from Lemma 1,

xih jxj

#
¼ 0; i 6¼ j

1; i ¼ j:

&

therefore

xq

' ""T ¼ fq
' "":

tu

The individual input signals specified as vectors hxij 2 H
are combined using the relationship in Equation (2.8) to form
the vector xh j. Fig. 8 depicts the example logic network in
Fig. 7 with an input stimulus specified as signals hxij 22 on
the left and the corresponding network when the input stim-
ulus is specified as the single vector hxj 2 H2.

Employing Equation (4.1), the output response hf j is cal-
culated in Equation (4.3)

fh j ¼ xh jT ¼ 0 1 0 0½ +: (4:3)

The output response can be decomposed to determine
individual output elements. This is easily accomplished
through expressing the output response in terms of a bra
and then converting the value to a binary string. In the
case of the network in Fig. 8, the output response is
hf j ¼ ½ 0 1 0 0 + ¼ hð1Þ10j ¼ hð01Þ2j ¼ h0j , h1j. Thus, in
keeping with the convention of combining outer prod-
ucts from top to bottom, we have hfj ¼ hf1j , f2j ¼ h0j ,
h1j yielding hf1j ¼ h0j and hf2j ¼ h1j.

It is advantageous to model the input signals as elements
hxij 2 Hþ ¼ fj0i; j1i; j!i; jtig rather than restricting them to
hxij 2 H since an output response vector corresponding to
more than one stimuli can be obtained through a single
multiplication.

As an example, we use the input stimulus vector hxj ¼
httj ¼ htj, htj ¼ 1 1 1 1½ +. The corresponding output
response is calculated in Equation (4.4)

fh j ¼ tth jT ¼ 0 1 3 0½ +: (4:4)

The resulting output response is decomposed as ½ 0
1 3 0+ ¼ ½ 0 1 0 0 + þ 3½ 0 0 1 0 + ¼ hð1Þ10jþ3hð2Þ10j ¼
hð01Þ2jþ 3hð10Þ2j. Thus, for all possible inputs, only two dis-
tinct outputs occur; either hf1j ¼ h0j and hf2j ¼ h1j occur
once, or, hf1j ¼ h1j and hf2j ¼ h0j occur for three different
input values. The results also indicate the case hf1j ¼ h0j
and hf2j ¼ h0j, or, hf1j ¼ h1j and hf2j ¼ h1j can never occur.

The technique can also be used with only a subset of the
inputs set to value htj. As an example of determining the
output response for all values of input hx1j but restricting
hx2jh0j in a single calculation, consider Equation (4.5)

fh j ¼ t0h jT ¼ 0 0 2 0½ +: (4:5)

Fig. 8. Example network input and output.

3586 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

The obtained output response is decomposed as ½ 0
0 2 0+ ¼ 2½ 0 0 1 0 + ¼ 2hð2Þ10j ¼ 2hð10Þ2j indicating that
for all possible input values of hx1j while restricting hx2jh0j,
the only possible output that can occur is hf1f2j ¼ h10j.

The use of htj as an input value is an advantage of the lin-
ear algebraic method of analysis since it allows multiple
input-output analysis pairs to be formulated in a single cal-
culation. Applications of this principle for formal verifica-
tion and simulation are described in [10], [11] where more
cumbersome symbolic methods are used.

4.2 Implication
Implication is the inverse problem of simulation. In this
case, an output response and the characterization of a
logic network are known and it is desired to compute the
corresponding input stimuli. To formulate a method for
implication within the linear algebraic framework, we
solve Equation (4.1) for the input vector hxj resulting in
Equation (4.6)

xh j ¼ fh jT-1: (4:6)

Equation (4.2)-1 is easily employed when the transfer
matrix T is square and full rank. When this special case
occurs, the logic network is said to be logically ‘reversible’.
Important classes of logic networks exhibit reversibility
including classical logic technologies [17], [18] and emerg-
ing technologies such as quantum logic [6].

It is generally the case that the transfer matrices for clas-
sical digital logic networks are non-square, and when the
matrices are square, they may not necessarily be invertible
or of full rank as is the case for the transfer matrix represent-
ing the example circuit in Fig. 7. The T matrix in this case is
square; however, it is not of full rank since the first and
fourth column vectors have a norm of zero. This fact does
not affect output response calculations but it does have ram-
ifications in employing the relationship in Equation (4.6) for
implication computations.

There are numerous techniques available for the general
solution of Equation (4.6) when the matrix T is non-square
or when it is not of full rank based on the use of generalized
inverses [19]. In [9], the Moore-Penrose pseudoinverse is
described as a means for computing T-1 so that the implica-
tion relation in Equation (4.6) may be used. There are three
situations for determining T-1.

1) T is square and of full rank: A unique solution is pos-
sible and the logic network is reversible.

2) T has fewer linearly independent row vectors than
columns: A unique solution is not possible since the
system is under-specified.

3) T has more linearly independent row vectors than
columns: The system is over-specified and has multi-
ple solutions.

For case 2), the pseudoinverse provides a best-fit solution
based upon an L2 norm for error measurement and for case
3), a solution is provided that has a minimal error in the
sense of the L2 norm. The pseudoinverse is thus unique and
exists for either case 2) or 3).

The pseudoinverse of a matrix T is denoted as Tþ and
may be computed in two ways depending on whether case
2) or case 3) arises. The notation T/ indicates the Hermitian

transpose of T. The formulas for computation of the pseu-
doinverse are provided in Equations (4.7) and (4.8)

Tþ ¼ T/Tð Þ-1T/ (4:7)

Tþ ¼ T/ T/Tð Þ-1: (4:8)

In the case of digital logic networks, the elements of T are
always real, thus the Hermitian transpose is simply the
transpose of T, T/ ¼ TT. Substituting this observation into
Equations (4.7) and (4.8) yields the following:

Tþ ¼ TTT
()-1

TT (4:9)

Tþ ¼ TT TTT
()-1

: (4:10)

Employing Equations (4.9) and (4.10) leads to the follow-
ing Lemma.

Lemma 3. The pseudoinverse of the transfer matrix of a single-
output logic network is proportional to its transpose with a
proportionality constant P where P is a 2 (2 diagonal matrix.

Proof. n-input, single-output logic gate transfer matrices
where n ' 2 are non-square and are comprised of two
column vectors and 2n row vectors. Furthermore, the
two column vectors ta and tb are always related as
1- c2 ¼ c1. Using this observation,

T ¼

ta1 tb1
ta2 tb2
..
. ..

.

ta2n tb2n

2

6664

3

7775 ¼

1- tb1 tb1
1- tb2 tb2

..

. ..
.

1- tb2n tb2n

2

6664

3

7775:

Computing the term TTT in Equations (4.2)-(4.4) and
(4.2)-(4.5) results in,

TTT ¼ P ¼
1- tb1 1- tb2 $ $ $ 1- tb2n

tb1 tb2 $ $ $ tb2n

$ %
1- tb1 tb1

1- tb2 tb2

..

. ..
.

1- tb2n tb2n

2

66664

3

77775

¼
2n - tbh jtbi 0

0 tbh jtbi

$ %
¼

2n -Nmin 0

0 Nmin

$ %
;

where Nmin denotes the number of minterms for the logic
gate. Using this result with Equations (4.2)-(4.4) results in

Tþ ¼ TTT
()-1

TT ¼
1

2n-Nmin
0

0 1
Nmin

" #

TT ¼ PTT:

tu
The number of mintermsNmin is a characterizing constant

that is well known for all basic logic gates. Hence, basic logic
gates and their pseudoinverses are easily obtained and given
in Fig. 9. The buffer and single pass-through conductor both
have self-inverses since their transfer matrix is I. The fanout
and fanin transfer matrices are pseudoinverses of each other,
FOþ ¼ FI.

As is the case for construction of T for a given logic net-
work, the same procedure involving partitioning, outer
products within each partition, and direct products of each
stage can be employed to compute the overall Tþ. To

THORNTON: SIMULATION AND IMPLICATION USING A TRANSFER FUNCTION MODEL FOR SWITCHING LOGIC 3587

illustrate this procedure, we compute the implication matrix
Tþ for the example logic network in Fig. 7.

Using the construction method in conjunction with the
result of Lemma 3, pseudoinverses can be computed for entire
logic networks without resorting to the use of more computa-
tionally complex numerical linear algebra algorithms.

Example 3. As an example of the use of pseudoinverses,
consider the logic network depicted in Fig. 7. Table 4 is
used to obtain basic Tþ matrices

Tþ
f1

¼ Aþ ¼ 1=3 1=3 1=3 0
0 0 0 1

$ %

Tþ
f2

¼ FOþ ¼ FI ¼

1 0
0 0
0 0
0 1

2

664

3

775

Tþ
f3

¼ NIþ , Iþ ¼

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

2

664

3

775

Tþ ¼ Tþ
f3
Tþ

f2
Tþ

f1
¼

0 0 0 0
0 0 0 1

1=3 1=3 1=3 0
0 0 0 0

2

664

3

775:

Equation (4.6) is used to compute the implication of
the logic network. The following example contains impli-
cation calculations for each of the cases hf1f2j ¼ h00j;
hf1f2j ¼ h01j; hf1f2j ¼ h10j, and hf1f2j ¼ h11j.

Example 4.

00h jTþ ¼ 1 0 0 0½ +Tþ ¼ 0 0 0 0½ + ¼ !!h j

01h jTþ ¼ 0 1 0 0½ +Tþ ¼ 0 0 0 1½ + ¼ 11h j

10h jTþ ¼ 0 0 1 0½ +Tþ ¼ 1=3 1=3 1=3 0½ +

11h jTþ ¼ 0 0 0 1½ +Tþ ¼ 0 0 0 0½ + ¼ !!h j:

The results of the implication calculations indicate that it
is not possible for the example circuit to ever have output
values hf1f2j ¼ h00j or hf1f2j ¼ h11j since the implication is
that both input values are hx1x2j ¼ h!!j. The qualitative

interpretation of h!j is a signal that is neither h0j nor h1j
which is clearly a physical impossibility for conventional
digital electronic circuitry. The implication results also indi-
cate that the logic network response hf1f2j ¼ h01j can only
occur if hx1x2j ¼ h11j; however hf1f2j ¼ h10j can occur when-
ever hx1x2j ¼ h00j, hx1x2j ¼ h01j, or hx1x2j ¼ h10j.

As is the case with output response calculations, the
value htj may be used in implication calculations. Consider
the example where we first search for input stimuli such
that hf2j ¼ h1j and hf1j is allowed to be either h0j or h1j
followed by the case where hf2j ¼ h0j and hf1j is allowed to
be either h0j or h1j. This condition is imposed by using
hf1j ¼ htj in both implication calculations.

Example 5:

t0h jTþ ¼ 1 0 1 0½ +Tþ ¼ 1=3 1=3 1=3 0½ +
¼ 1=3 00h jþ 1=3 01h jþ 1=3 10h j

t1h jTþ ¼ 0 1 0 1½ +Tþ ¼ 0 0 0 1½ + ¼ 11h j:

The pseudoinverse matrices for a logic network have the
same form as the transpose of the transfer matrix with an
additional row vector constant scaling value included. The
scaling value is a function of the number of minterms of the
overall logic network. To further ease the computational
task in performing implication calculations, we define the
‘implication matrix’ to be equivalent to the transpose of the
transfer matrix.

Definition 6 (Implication Matrix). The implication matrix, TI,
is defined to be the transpose of the transfer matrix, TI ¼ TT.

The use of TI in performing implication analyses allows
for determination of Nmin to be avoided. Furthermore, after
the transfer matrix of a logic network has been obtained,
no further preprocessing is required to perform implication
analysis when TI is used. Consider the implication calcula-

tions in Example 4, where TI is used in place of the pseu-
doinverse, Tþ.

Example 7:

00h jTI ¼ 1 0 0 0½ +TI ¼ 0 0 0 0½ + ¼ !!h j

TABLE 4
Results Using Explicit Matrix Structures

NAME IN/OUT STAGES
PARTITION
TIME (ms)

MATRIX
TIME (ms)

i3 2/3 3 3.00 5.505
test1 3/3 6 7.28 4.794
xor5 5/1 4 1.73 6.882
majority 5/1 6 11.8 17.71
C17 5/2 7 5.00 22.75
rd53 5/3 6 5.32 10.10
squar5 5/8 9 19.5 922.1
con1 7/2 6 7.09 546.1
rd73 7/3 8 5.01 37.33
radd 8/5 11 12.3 1107
x2 10/7 9 11.4 846.2
cm85a 11/3 11 9.78 1,586.2
alu1 12/8 5 8.88 521.9

Fig. 9. Basic logic gate pseudoinverses.

3588 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

D- D- D- -t>-
A'•[l/31/11/1 O]

0 0 0 I
[I O O O]

O'• 0 1/1 "' "'
•[y2 o o 1/2] r 0l/21/20 r-(! n

D- D- D- -{>-
·[0001]

11A • v, 1/J v, 0 NO"•[o v, v, "'] ia-•[o V2 y2 o]
1000 1/2001/2

NI'•[~ !]

01h jTI ¼ 0 1 0 0½ +TI ¼ 0 0 0 1½ + ¼ 11h j

10h jTI ¼ 0 0 1 0½ +TI ¼ 1 1 1 0½ +
¼ 00h jþ 01h jþ 10h j

11h jTI ¼ 0 0 0 1½ +TI ¼ 0 0 0 0½ + ¼ !!h j:

Implication calculations require the same amount of
computational complexity as output response determination
when the linear algebraicmodel is used for logic networks.

5 IMPLEMENTATION AND RESULTS

To demonstrate the method, a set of benchmark circuits are
used. The two-level benchmark netlists are converted into
multi-level combinational logic circuits in the form a Verilog
structural netlist before the technique is applied to them.
This initial conversion process is accomplished by convert-
ing the native .pla files into corresponding Verilog files
using Synopsys Design Compiler. The converted files are
then in the form of a set of two-level Boolean equations
expressed in Verilog syntax. To convert these into multi-
level structural circuits, the Design Compiler tool is next
used to synthesize the two-level form with a simple cell
library consisting of basic logic gates. The multi-level net-
lists are then saved as structural Verilog descriptions and
used as input to the prototype program that computes the
corresponding transfer matrix for each circuit.

The prototype we developed first performs a levelization
operation by parsing the topological Verilog descriptions
and assigning a level number to each net as is commonly
accomplished in netlist simulation algorithms. Serial parti-
tions are identified by finding cuts through all nets that have
identical levelization indices. This process requires two
passes through the netlist and is thus of temporal complexity
O(N) where N is the number of nets. The spatial complexity
is also O(N) as the structural Verilog netlist is parsed into an
internal graph memory structure where nodes represent
gates and primary circuit inputs and outputs. Graph edges
correspond to the topological nets in the circuit.

After partitioning has occurred, the overall transfer
matrix is computed by forming partition transfer matrices
and then multiplying them. To reduce memory require-
ments for the intermediate matrix computations, we initial-
ize the overall transfer matrix to the transfer matrix for the
leftmost partition. Next, the transfer matrix for the second
partition is computed and then multiplied with the overall
transfer matrix structure. This process repeats by subse-
quently forming the next intermediate partition transfer
matrix and updating the overall matrix structure through
a multiplication. In this manner, it is only necessary to uti-
lize memory for two transfers matrices at any instant in
time, the overall circuit transfer matrix structure and the
intermediate partition transfer matrix that is being formed.
In the final step of the process, the transfer matrix for the
rightmost partition is formed and multiplied with the
overall transfer matrix structure that represents the direct
product of all partition matrices except the rightmost one.

After this final multiplication, the overall transfer matrix is
fully formed.

In terms of complexity, each partition transfer matrix
requires W outer product operations where W is the width
or number of parallel elements within a partition. A total
of L direct matrix products are performed where L is the
length or number of partitions identified in the levelization
procedure. In addition to the storage required for the
graphical form of the topological netlist, the method also
requires storage for at most two transfer matrices; one for
the intermediate partition transfer matrix being processed
at the current time and another to hold the partially
formed overall circuit transfer matrix. By forming the
overall transfer matrix iteratively in processing each parti-
tion sequentially, we reduce memory usage by not storing
all intermediate partition transfer matrices simultaneously.

Table 5 contains the results of computation of the transfer
matrices for a set of benchmark circuits. The data was
acquired using a Dell PowerEdge 2950 multi-user server
containing dual quad-core Intel Xeon CPUs with a 2.6 GHz
core clock speed and hosting a linux operating system.
Reported times are actual runtime values as reported
through system calls to the linux time function. Circuit size
is reported with the number of primary inputs and outputs,
the number of gates, and the number of partitions given.
Actual computation time is reported in milliseconds as the
time for partitioning and the time for computing the overall
transfer function matrix.

The results in Table 5 illustrate the partitioning and
explicit matrix formulation of the approach. Because the
explicitly represented partition and overall transfer matrices
are exponentially large, it is necessary to utilize a more
compact representation. Fortunately, the partition and over-
all matrices are sparse and consist of elements that are
restricted to {0,1}. A variety of sparse matrix structures and
associated arithmetic algorithms can be used to greatly
reduce computational requirements.

Example 2 shows that the transfer matrix is isomorphic to
a function truth table. This observation allows any data
structure for representation of a truth table to be used as a
transfer matrix representation. Accompanying the structure,
there must be a means of manipulating them using linear
algebraic operations as well.

In the second set of experimental results, we represent
the transfer matrices as BDD structures. In [20] algorithms

TABLE 5
Results Using BDDs for Matrix Structures

NAME IN/OUT
MATRIX
SIZE (KB)

MATRIX
TIME (ms)

C880 60/26 18513.56 60
C1355 41/32 2876.28 50
C1908 33/25 1193.72 90
C3540 50/22 40409.64 3940
apex7 49/37 26.39 133.1
dalu 75/16 51064.39 563.7
x4 94/71 79.84 8.264
apex5 117/88 42.41 296.5
ex4 128/28 143.72 113.9
frg2 143/139 102.63 306.9
i2 201/1 8.36 4.647

THORNTON: SIMULATION AND IMPLICATION USING A TRANSFER FUNCTION MODEL FOR SWITCHING LOGIC 3589

for linear algebraic operations using BDDs as the underly-
ing data structures are described. Table 5 contains the name
of the circuit and its size in terms of the number of primary
inputs and outputs. The amount of memory required to
store the overall transfer matrix in KB and the time required
to build the matrix are also given.

6 CONCLUSIONS

An alternative to the traditional switching theory model
for digital network representation and manipulation is
developed and is based on a linear algebraic underpin-
ning. The principle basis of the approach is the represen-
tation of a digital logic network as a transfer function in
the form of a matrix that linearly transforms the input
stimulus, represented as a vector, to a corresponding
output response also represented as a vector. It is shown
that the transfer matrix is isomorphic to representations
of the switching theory model and a technique for com-
puting the transfer matrix directly from a structural net-
list representation is presented. The direct computation
of the transfer matrix from a netlist avoids problems that
may occur due to excessive memory requirements for
other types of switching function representations.

Using the transfer function framework, methods for both
digital network simulation and implication are presented.
The use of constants h!j and htj allow the methods to
produce multiple responses through a single calculation.
This approach is a viable alternative to current symbolic
simulation and implication approaches based upon switch-
ing theory models.

ACKNOWLEDGMENTS

The author thanks David Houngninou for generating exper-
imental results and proofreading assistance.

REFERENCES

[1] G. Boole, The Mathematical Analysis of Logic—Being an Essay
Towards a Calculus of Deductive Reasoning. Cambridge, George Bell,
U.K.: MacMillan, Barclay, & MacMillan, 1847.

[2] C. Shannon, “A symbolic analysis of relay and switching circuits,”
MS thesis, Dept. Elect. Eng., Massachusetts Inst. Technol., Cam-
bridge, MA, USA, Aug. 1937.

[3] C.-T. Chen, Linear System Theory and Design, Holt. New York, NY,
USA: Rinehart and Winston, ISBN 0-03-060289-0, 1984.

[4] R. E. Bryant, “Graph-based algorithms for Boolean functions
manipulation,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 667–691,
Aug. 1986.

[5] T. Sasao, Switching Theory for Logic Synthesis. Norwell, MA, USA:
Kluwer, 1999.

[6] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[7] R. Wille and R. Drechsler, Towards a Design Flow for Reversible
Logic. New York, NY, USA: Springer, 2010.

[8] N. S. Yanofsky and M. A. Mannucci, Quantum Computing for
Computer Scientists. Cambridge, U.K.: Cambridge Univ. Press,
2008.

[9] M. A. Thornton, “Spectral analysis of digital logic using circuit
netlists,” in Proc. Int. Proc. Conf. Comput. Aided Syst. Theory, Feb.
2011, pp. 414–415.

[10] S. A. Szygenda, “The simulation automation system, using auto-
matic program generation for hierarchical digital simulation sys-
tems,” in Proc. Eur. Simul. Conf., 1990, pp. 61–65.

[11] C. Segar and R. Bryant, “Formal verification by symbolic evalua-

[12] D. M. Miller and M. A. Thornton, Multiple-Valued Logic Concepts
and Representations. San Rafael, CA, USA: Morgan & Claypool
Publishers, Jan. 2008.

[13] G. Ricci and T. Levi-Civita, “M"ethodes de calcul diff"erentiel
absolu et leurs applications,” Mathematische Annalen, vol. 54, nos.
1/2, pp. 125–201, Mar. 1900.

[14] P. A. M. Dirac, “A new notation for quantum mechanics,” Proc.
Cambridge Philosophical Soc., vol. 35, p. 416, 1939.

[15] IEEE Design Automation Standards Committee, IEEE Standard
Multivalue Logic System for VHDLModel Interoperability, 1993.

[16] IEEE Design Automation Standards Committee, 1364–2001-IEEE
Standard Verilog Hardware Description Language, 2001.

[17] J. G. Koller and W. C. Athas, “Adiabatic switching, low energy
computing, and the physics of storing and erasing information,”
in Proc. Workshop Phys. Comput., Oct. 1994, pp. 267–270.

[18] P. Telchmann, Adiabatic Logic Future Trend and System Level Per-
spective. New York, NY, USA: Springer Publishers, 2012.

[19] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, MD, USA: The Johns Hopkins Univ. Press, 1996.

[20] E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan, J. C.-Y. Yang,
and X. Zhao, “Multi-terminal binary decision diagrams: An effi-
cient data structure for matrix representation,” in Proc. IEEE Int.
Workshop Logic Synthesis, 1993, pp. 1–15.

Mitchell A. Thornton (M’85-SM’99) received the
BS degree in electrical engineering from Okla-
homa State University in Stillwater, OK, in 1985,
the MS degree in electrical engineering from the
University of Texas-Arlington in Arlington, Texas,
in 1990, the MS degree in computer science from
Southern Methodist University in 1993, and the
PhD degree in computer engineering from South-
ern Methodist University in 1995. He was a senior
electronic systems engineer at E-Systems, Inc. in
Greenville, TX from 1986 through 1991. He was

employed as a design engineer at Cyrix Corporation from 1992 through
1993. He has served as a full-time faculty member in the University of
Arkansas from 1995 to 1999, Mississippi State University from 1999 to
2002, and is currently the Cecil H. Green chair of engineering and
professor at Southern Methodist University. He is a licensed profes-
sional engineer in the States of Arkansas, Mississippi, and Texas. Within
IEEE, he has served as a chair of several committees. His research
interests include electronic design automation algorithms for synthesis
and verification, computer arithmetic, disaster tolerant systems and
modeling, and computer security hardware. He is a senior member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3590 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 12, DECEMBER 2015

tion of partially-ordered trajectories,” Formal Methods Syst. Design,
vol. 6, no. 2, pp. 147–189, 1995.

