
A Coarse-Grain Phased Logic CPU
Robert B. Reese, Member, IEEE, Mitchell Aaron Thornton, Senior Member, IEEE, and

Cherrice Traver, Senior Member, IEEE

Abstract—This paper describes an asynchronous design tool flow known as Phased Logic that converts a clocked design into an

asynchronous design implemented as a micropipeline using two-phase control and bundled data signaling. Example designs include
variations of a double-precision floating-point clipping operation mapped to two commercial standard cell libraries (0.18! and 0.13!)

and a five-stage pipelined MIPs-compatible integer unit mapped to the 0.13! library. The design style includes a feature known as

early evaluation, which is a generalized form of bypass, that allows the self-timed design to recover some of the inherent latch delay
penalty in micropipelines.

Index Terms—Automatic synthesis, self-timed, asynchronous, pipelined processor, micropipelines.

!

1 INTRODUCTION

PROPONENTS of self-timed design have repeatedly touted
advantages such as reduced EMI signatures, lower

power, and control scalability over traditional clocked
designs. However, there is no asynchronous methodology
that can claim mainstream success; instead, asynchronous
designs have been relegated to niche applications. The
reason for this lack of wide acceptance has been that most
asynchronous methodologies have one or more disadvan-
tages that outweigh any advantages. Barriers to adopting an
asynchronous methodology are:

. Area—delay insensitive approaches have a 2X to 3X
area increase due to the required dual-rail routing.

. Performance—micropipeline approaches add extra
latency in the critical path, resulting in a performance
penalty. Other approaches use fine grain cells that are
more complex and slower than typical standard cells,
resulting in a performance slowdown.

. Tool Support—many asynchronous methodologies
require new languages and/or new tool chains,
requiring a substantial investment in design engi-
neer retraining.

. Custom libraries—many asynchronous methodolo-
gies require custom cell libraries and cannot use the
same commercial standard cell libraries used for
clocked designs.

Phased Logic (PL) [1], [2] is a self-timed design
methodology that avoids significant penalties in the above
areas and offers the typical advantages of other asynchro-
nous approaches. This paper describes the first PL netlists

that have been mapped to a commercial standard cell
netlist. The example designs are a five-stage pipelined
MIPS-compatible integer-unit [3] and a double-precision
floating-point clip operation. The CPU implementation uses
a standard cell library and register file generator designed
for a 0.13! technology. The clip operation is mapped to both
a 0.13! library and a 0.18! library (library vendors are not
identified by prior agreement). No extra cells were added to
either standard cell library even though this could have
increased the efficiency of the PL implementation. A
PL netlist is a two-phase micropipelined system that uses
bundled-data signaling. A PL netlist is produced by an
automated translation from a clocked netlist which allows
the designer to use familiar languages and tools for
producing the clocked design. The performance penalty in
the micropipeline due to the additional latch latency on
blocks can be reduced by a technique known as early
evaluation. This technique allows blocks in the micropipe-
line to evaluate on arrival of a subset of the inputs,
increasing the amount of parallel activity in the micropipe-
line, which improves performance. The use of bundled data
signaling keeps the area penalty to approximately a
50 percent increase in active cell area, which does not
include the area required by the global clock network.

2 PHASED LOGIC

A PL netlist is a two-phase micropipeline system whose
distributed control network is automatically generated from
a clocked netlist. This transformation uses marked graph
theory [4] to produce a PL netlist that is both live and safe.
The control network only replaces the global clock network;
the original logic of the clocked design is retained. Two
distinct implementation technologies are supported, fine-
grain and coarse-grain. The fine-grain approach [5] uses a
one-to-one mapping of gates in the clocked system to
PL gates that use a 4-input Lookup-Table (LUT4) as the
logic element with delay-insensitive dual-rail routing
between gates. This technology forms the basis for the
implementation of a self-timed FGPA. Because all routing
between gates is delay-insensitive, there are no timing

788 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

. R.B. Reese is with the Electrical and Computer Engineering Department,
Mississippi State University, Box 9571, Mississippi State, MS 39759.
E-mail: reese@ece.msstate.edu.

. M.A. Thornton is with the Department of Computer Science and
Engineering, School of Engineering, Southern Methodist University, PO
Box 750122, Dallas, TX 75275-0122. E-mail: mitch@engr.smu.edu.

. C. Traver is with the Electrical and Computer Engineering Department,
Union College, Schenectady, NY 12308. E-mail: traverc@union.edu.

Manuscript received 9 June 2003; revised 16 June 2004; accepted 24 Jan. 2005;
published online 16 May 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0059-0603.

0018-9340/05/$20.00 ! 2005 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

mechanisms external to a PL gate that can cause a failure
due to timing. The coarse-grain approach used in this paper
maps groups of gates in the clocked netlist to the
combinational compute function of a PL block, with
bundled data signaling used between blocks. The combina-
tional compute function of a coarse-grain PL block can be
implemented using a traditional standard cell library. The
coarse-grain technology is an ASIC approach to the
implementation of PL systems. All timing concerns in a
coarse-grain implementation are between local intercon-
nected blocks; there are no global mechanisms that can
cause failure due to timing.

2.1 The Marked Graph Model

The clocked-to-PL transformation is based upon marked
graph theory and definitions are required before discussing
the transformation process. The following definitions are
taken from [13] as they are concise and complete. Expanded
definitions can be found in [12].

A Petri net (PN) is a triplet, PN = {T, P, F} where:

. T is a nonempty finite set of transitions,

. P is a nonempty finite set of places, and

. F ! ðP# TÞ [ðT# PÞ is the flow relation between
transitions and places.

A PN can be represented as a directed bipartite graph,
where the arcs represent elements in a flow relation. A
PN marking is a function m: P! f0; 1; 2 . . .g, where mðpÞ is
called the number of tokens in p under marking m. A
transition t 2 T is enabled at a marking m if all of its
predecessor places are marked. An enabled transition t may
fire, producing a new marking m0 with one less token in
each predecessor place and one more in each successor
place (denoted by m½t > m0).

A sequence of transitions and intermediate markings
m½t1 > m1½t2 > . . .m0 is called a firing sequence fromm. The
set of markings m0 reachable from marking m through a
firing sequence is denoted by m½> . The set m0½> is called
the reachability set of a marked PN with initial marking m0,
and a marking m 2 ½m0 > is called a reachable marking.

A PN marking is live if, for each m0 2 ½m and for each
transition t, there exists a markingm00 2 ½m0 > that enables t.
Similarly, a transition t is live if, for eachm0 2 ½m, there exists a
markingm00 2 ½m0 > that enables t. Amarked PN is live if its
initialmarking is live.AmarkedPN is k-bounded if there exists
an integer k such that, for each place p for each reachable
marking m, we have mðpÞ & k. A marked PN is safe if it is
1-bounded (this ends the definitions used from [13]).

A PN is a marked graph (MG) if every place has exactly
one predecessor and one successor. A shorthand graphical
notation is usually adopted for MGs in which arcs are
shown as between transitions, with the intervening places
understood. We use this shorthand notation for MGs in our
figures unless explicitly noted otherwise. We also use the
terms node and transition interchangeably. In an MG
ðG;m0Þ, a directed circuit C is a directed path that begins at
a transition t and ends at the same transition t. The sum of
the tokens in the set of places contained in C is the token
count of C, designated by m0ðCÞ. Two important theorems
[4] about the liveness and safety of MGs are:

Theorem 1. A marked graph ðG;m0Þ is live if and only if, for all
directed circuits C of G,m0ðCÞ > 0, i.e., m0 places at least one
token on each directed circuit in G.

Theorem 2. A marked graph ðG;m0Þ is safe if and only if every
arc of G belongs to some directed circuit C with m0ðCÞ & 1.
As a corollary, a live marked graph is safe if and only if every
arc belongs to a directed circuit C with m0ðCÞ ¼ 1.

If a PL netlist is not live, then signal transitions do not
occur (tokens do not circulate) and, thus, there is no activity
in the netlist. A PL netlist requires token circulation for
computation, so a dead PL circuit is not useful. If a PL netlist
is unsafe, then a PL block can fire and produce a second
output value before a destination block has consumed the
first output value, resulting in incorrect operation.

A PL coarse-grain netlist is composed of multiple blocks,
where each block has a mixture of DFFs and combinational
logic (a barrier block) or combinational logic only (a through
block). Each block output is a data bundle consisting of
multiple data wires and one phase wire (similar to a
“request” wire in other asynchronous methodologies). A
block and corresponding phase wire are represented as
nodes and arcs in the MG model. The phase wire toggles
between “0” and “1,” designated as the EVEN phase and
ODD phase. Each PL block contains an internal state
element, called the block phase, which is either EVEN or
ODD. If the phase of an input phase wire matches the block
phase, then the arc that models the data bundle is said to
contain a token. A PL block fires if all input arcs have
tokens; firing toggles the internal block phase and toggles
all output phases. Upon firing, all data wires in output
bundles are updated with new values.

Fig. 1 shows this token abstraction for a block A with
fanout to three destination blocks (B, C, D). The block phase
provides the output phase and both true and complement
versions are available. Upon reset, all blocks have the EVEN
phase (an arbitrary choice, the only requirement is that all
blocks are reset to the same phase). Initial token marking in
the MG is accomplished by a wiring choice; using the
uncomplemented phase output assigns an initial token to
that signal. In Fig. 1, the arcs from block A to blocks B and C
will have an initial token after reset. In the MG model, all
fanout is represented by separate arcs as each fanout must
be considered individually in terms of safety and liveness.

2.2 The Clocked-to-PL Transformation

The starting point for a coarse-grain clocked-to-PL netlist
transformation is a hierarchical clocked netlist in which the

REESE ET AL.: A COARSE-GRAIN PHASED LOGIC CPU 789

Fig. 1. Token abstraction.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

output

block phase
EVEN (0)

A

Block
Connections
(phase wire)

Initial token
at reset

Circuit View

input

block phase
EVEN (0) B

block phase
EVEN (0) C

block phase
EVEN (0) D

Marked Graph view

components at the top level define the blocks that will have
PL control logic placed around them. If a block contains
D-Flip-Flops and combinational logic, then it is designated
as a barrier block; if it contains only combinational logic,
then it is called a through block. The terms barrier and
through are used to distinguish these blocks for the purpose
of initial token marking rules, which are specified later in
this section. The translation procedure may need to insert
additional phase wire signals, termed feedback signals, to
make the resulting PL netlist live and safe (a more familiar
term is acknowledgment signals, but we will use the
terminology developed in [1]). In the MG equivalent, a
feedback signal is the same as any other directed arc
between nodes. However, in the PL netlist, a feedback
signal does not have any data associated with it, so a
feedback signal from a block is simply a phase wire without
the corresponding data wires.

The translation algorithm that maps clocked netlists to
PL netlists consists of the steps that are outlined below.
These steps are illustrated in Fig. 2a, Fig. 2b, Fig. 2c, and
Fig. 2d. See [1] for more details. These rules assume the
PL netlist forms a closed system, i.e., that the global reset is
the only external input signal. The method for addressing
external I/O signals is discussed after the presentation of
the translation rules.

1. To build the internal MG model, all mixed DFF/
combinational logic blocks in the clocked netlist are
mapped one-to-one to barrier blocks in the PL netlist.
All combinational blocks are mapped one-to-one to
through blocks in the PL netlist. All inputs to a block
from a source block are collapsed to one arc in the

MG model. The initial token marking rules assume
that inputs from barrier blocks always have an initial
token on them. Therefore, all barrier blocks have their
uncomplemented phase outputs connected to fanout
blocks to implement initial tokens at reset. The initial
token marking rules require that any nonfeedback
input signals from through blocks do not have an
initial token, so these input signals are connected to
the through block output whose phase is opposite the
through block’s internal phase. A global reset signal is
used to reset all blocks to EVEN phase at startup.
Fig. 2a and Fig. 2b illustrate this step.

2. Extra blocks, termed splitter blocks, are inserted to
break any direct connection between barrier blocks.
Splitter blocks are through blocks that implement
buffer functions. Splitter blocks are required so that
the initial token marking rules and feedback inser-
tion rules can result in a live and safe MG. In Fig. 2c,
through block u7 is a splitter block inserted between
barrier blocks u5 and u6.

3. The network is traversed and any signals that are part
of adirected circuitwith token count= 1 aremarkedas
safe signals. At this point, only signals from barrier
blocksaremarkedwith initial tokens, soa signal is safe
iff it is in adirected circuit that begins at a barrier block
and terminates at the same barrier block. It is
important to understand that each fanout from an
output counts as a separate signal for safety checking.
If all signals are safe, then the transformation process
is finished and the PL netlist is live and safe.

Extra arcs called feedbacks are now added to the

MG model to make the remaining signals safe. A feedback

790 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 2. Example translation. (a) Partitioned clocked netlist. (b) Initial Marked Graph (no splitter blocks). (c) After splitter block insertion, sl* indicates

an unsafe signal in initial marking. (d) After feedback insertion, graph is live and save.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

(a)
(b)

.- 7

s9

I

L-------------•
(c)

(d)

Through
Block

Barrier
Block

□o□erageJ

f1 D(s3,s10)
f2D(s6)
f3D(s7)
f4D(s1)
f5D(s2)

signal is added from the output of a source block to the
input of a destination block to form a directed circuit with
token count = 1. Any initially unsafe signals contained in
this directed circuit are now safe. Any signals made safe by
the addition of the feedback are said to be covered by that
feedback. The directed circuit cannot include a barrier block
unless the barrier block is either the source or destination of
the feedback. Fig. 3 summarizes the rules for feedback
insertion and initial token marking for directed circuits
formed by feedbacks. A feedback originating from a
through block and terminating on a through block has an
initial token (this marking supplies the token in the directed
circuit since the nonfeedback output of a through block
does not have an initial token, see Fig. 3a).

A feedback originating from a through block and
terminating on a barrier block does not have a token (the
initial token on the directed circuit is provided by the barrier
block, see Fig. 3b). Any feedbacks originating from barrier
blocks have initial tokens (i.e., all signals originating from
barrier blocks have initial tokens, see Fig. 3c). A feedback
cannot both originate from a barrier block and also terminate
on a barrier block (the directed circuit formed would be
unsafe as it would have an initial token count > 1, see Fig. 3d).
Fig. 3e shows how this problem is solved by splitter block
insertion to break barrier-to-barrier block paths.

There are usually multiple ways in which feedback can
be added to cover unsafe signals [1]. A feedback’s
destination can be multiple block levels back, tracing from
the source, which then covers multiple signals (i.e., feed-
back f1 in Fig. 2). However, this can create a long loop delay
from feedback destination block firing to feedback source
firing, adversely affecting system performance. In the
coarse grain methodology, feedback destinations are lim-
ited to a source block’s immediate predecessor. This
maximizes the number of required feedbacks, but prevents
feedbacks from limiting system performance. Optimal
insertion of feedback signals in a coarse-grain netlist is an
area of future study.

In [1], the marked graph equivalent as produced by the
clocked-to-PL translation algorithm has been proven to
result in marked graphs that are live and safe and whose
firing sequence displays the same cyclic, synchronous,
deterministic behavior as the clocked netlist. The safety and
liveness of external inputs and outputs are handled at the
VHDL testbench level during simulation; the PL netlist
provides a feedback output to the testbench for each input
and accepts a feedback input from the testbench for each

output. The same token marking rules are applied to these
feedbacks as are applied in the clocked-to-PL transforma-
tion process.

2.3 Early Evaluation

Early evaluation [7] allows a block to fire upon arrival of
only a subset of inputs. This increases the amount of
parallel activity in the graph, which increases performance.
Inputs to an early evaluation block are separated into early
arriving inputs (Ei) and late arriving inputs (Li). A logic
function, called the trigger function, which is based on the
data bundles of the early inputs, determines if the block
fires after all early inputs have arrived. An early evaluation
block has separate signals for output phase (Op) and
feedback output (Fo). In an early evaluation block, the
feedback output is not updated until all inputs have
arrived. In a nonearly evaluation block, the output phase
also serves as the feedback output.

Fig. 4 shows a two node marked graph model that is
used by the mapping algorithm to represent an early
evaluation block (this two node marked graph is henceforth
collectively referred to as an EEnode). All late inputs
terminate on the M node and all early inputs on the T node.
Feedback output originates from the M node; feedback
input terminates on the T node. We view an early
evaluation block as dynamically switching between two
configurations: normal fire and early fire.

A normal fire occurs when the trigger function evaluates
to false; the output phase is updated after all inputs have
arrived and is viewed as originating from the M node, as
shown in Fig. 4. An early fire occurs when the trigger
function evaluates to true after all early inputs have arrived;
the output phase is updated and is viewed as originating
from the T node, as shown in Fig. 5. In the early fire case,
the M-node fires after the T-node fires and after all late
inputs have arrived. The firing of the M-node updates the
feedback output.

Fig. 6 shows an example of a marked graph model for a
simple PL netlist that includes an EEnode (Gb). A key
question for PL netlists with EEnodes is how to maintain
liveness and safety. In Fig. 6a, the graph is live and safe if the

REESE ET AL.: A COARSE-GRAIN PHASED LOGIC CPU 791

Fig. 3. Feedback insertion rules. (a) TB to TB feedback. (b) TB to
BB feedback. (c) BB to TB feedback. (d) BB to BB feedback. (e) Splitter
block inserted between barrier blocks.

Fig. 4. Normal fire case for EEnode. (a) Token arrival. (b) T fires. (c) M

fires.

Fig. 5. Early fire case for EEnode. (a) Token arrival. (b) T fires.
Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

... - f:: Fo <- _Fo
<- - -

' .,
L~· 'M Op

~ Ei A + m T e Fi .

+ ~~;~ --i.::J ~~ o-------1..'.:t ~ ~

(a) (b) (c)

•---•----~
(d) (e)

Fo
♦---

~
(a) (b)

normal fire configuration of the EEnode is used. However,
using the early fire configuration of Gb in Fig. 6b makes the
graph unsafe as signals S1, A, and S2 are not part of a directed
circuit C with token count 1 (m(C) = 1).

Fig. 6c adds feedback signals F1, F2, and F3 to make the
graph live and safe. Three rules (presented as lemmas) for
feedback insertion in the presence of EEnodes are evident
from Fig. 6.

Lemma 1. All late arriving signals into an EEnode must be part
of a directed circuit that includes the feedback output from the
EEnode as the feedback output is the only signal originating
from the M-node in the early fire configuration.

Lemma 2. At least one early input must be in a directed circuit
that includes the feedback output from the EEnode as this is the
only way to include the internal signal A of the EEnode in a
directed circuit in the early fire configuration.

Lemma 3. The output signal of an EEnode must be in a directed
circuit that either includes an early input or a feedback input
that terminates on the T node. This ensures that the output
signal will be in directed circuit in either the normal or early
fire configurations.

It is clear then that an EEnode represents a form of choice
and a marked graph is defined as being choice-free.
Different formal methods for representing choice are Free-
Choice Petri nets, Change Diagrams, and Causal Logic nets
[13]. However, using one of these representations means
that the simple properties of liveness and safety of marked
graphs are lost. In the remainder of this section, we define a
reconfigurable marked graph model and prove that any

marked graph containing EEnodes that has a live and safe
initial marking created using Lemmas 1-3 will be safe and
live for any early or normal firings of EEnodes.

Let a marked graph consisting of a directed graph G and
marking mi be designated by ðG;miÞ. The firing of a
non-EEnode simply changes the marking and the graph
transitions from ðG;miÞ to some ðG;mkÞ, where mk is the
new marking of the marked graph. It is well-known that, if
a marked graph G with initial marking m0 is live and safe,
then any marked graph ðG;miÞ reachable by a set of node
firings from ðG;m0Þ is also live and safe.

However, the firing of an EEnode can change the graph,
as the nonfeedback output arcs of an EEnode can change
their origination points from the M node or the T node. In
order to keep the marked graph model in PL netlists with
EEnodes, we view a PL netlist as transitioning from a
marked graph ðG;miÞ to a new marked graph ðG0; mjÞ any
time an EEnode changes configuration (from normal to
early configuration or vice versa). A configuration change
occurs when the block fires and if the type of firing (early or
normal) is different from the previous firing. An early-to-
normal configuration change means the current fire is a
normal fire and the previous fire was an early fire. A
normal-to-early configuration change means the current fire
is an early fire and the previous fire was a normal fire. Our
approach for making a PL netlist with EEnodes live and
safe is to make the marked graph equivalent ðG;m0Þ live
and safe by adding appropriate feedback signals and an
initial marking, where each EEnode in ðG;m0Þ is repre-
sented by its early fire configuration. We then claim that any
combination of firings of non-EEnodes or EEnodes results
in a live and safe marked graph ðG0;miÞ. We prove this
through two theorems.

Theorem 3. From any marking mi reachable from ðG;m0Þ by
non-EEnode firings or EEnode early firings, allow a single
EEnode ui to perform an early-to-normal configuration
change. The resulting graph ðG0;m0iÞ is live and safe.

Proof. The only directed circuits C with mðCÞ ¼ 1 affected
by the early-to-normal configuration change of ui are
those containing an output arc Op of EEnode ui as the
predecessor node to Op is now the M node instead of the
T node. All of these directed circuits now contain internal
arc A as a result of the configuration change. The
configuration change resulted from the T node firing,
which places a token on arc A, so all of these circuits are
live, mðCÞ > 0. When the T node fired, the only arcs in
these directed circuits that could have contained a token
are the arcs incident upon the T node. The firing of the
T node consumed these tokens, so the token count of
these directed circuits remains unchanged, at m(C) = 1.tu

Theorem 3 can be trivially extended to cover any number
of nodes Uk performing early-to-normal configuration
changes as each directed cycle with mðCÞ ¼ 1 can only
have one node ready to fire, so the cycles with mðCÞ ¼ 1
affected by an early-to-normal configuration change are
independent of any other nodes that undergo the early-to-
normal configuration change.

792 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 6. Safety in PL netlist with EEnodes. (a) Normal fire case, all signals
safe. (b) Early fire case, signals S2, A, S2, unsafe. (c) Feedback added,
all signals safe in early fire case.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

(c)

Directed
cycles with
one token:
{S1, S5, S2}
{S4, A, S5, S3}
All signals
covered

S1, A, S2 not
part of a
directed cycle
with one token

* indicates an
unsafe signal

Directed
S2 cycles with

one token:
{S1, F1}
{S4, A, F3}
{S4, S5, S3}
{S2, F2}
All signals
covered

Thus, any graph ðG0;m0iÞ reachable from ðG;m0Þ by non-
EEnode firings, EEnode early firings, or EEnode early-to-
normal configuration changes is live and safe. The next
theorem covers normal-to-early configuration changes.

Theorem 4. From any marking m0k reachable from graph
ðG0;m0iÞ by non-EEnode firings, EEnode early firings or
EEnode early-to-normal configuration changes allow a single
EEnode ui to perform a normal-to-early configuration change.
The resulting graph ðG00;m00kÞ is live and safe.

Proof. The only directed circuits C with mðCÞ ¼ 1 affected
by the normal-to-early configuration change are the ones
containing an output arc Op of EEnode ui as the
predecessor node to Op is now the T node instead of
the M node. All these directed circuits now no longer
contain arc A as a result of the configuration change, but
they do still contain the output arc Op. The firing of the
T node that caused the normal-to-early configuration
change places a token on Op, so these directed circuits
are live, mðCÞ > 0. As these directed circuits have
mðCÞ ¼ 1 at the time of T node firing, the only arcs in
these directed circuits that could have contained a token
are the arcs incident upon the T node. The firing of the
T-node consumed these tokens, so the token count of
these directed circuits remain unchanged, at mðCÞ ¼ 1.
In the original graph ðG;m0Þ, the A arc had to be covered
by a directed circuit with mðCÞ ¼ 1 that included a
feedback output of the EEnode and configuration
changes of the EEnode does not affect this cycle. tu

Theorem 4 can be trivially extended to cover any number
of nodes Uk performing normal-to-early configuration
changes by the same reasoning used to extend Theorem 3.
Theorems 3 and 4 taken together means that, given a
starting marked graph ðG;m0Þ containing EEnodes and
non-EEnodes that is live and safe using the EEnode early
fire configuration, then any marked graph ðG0;m0iÞ reach-
able by non-EEnode firings, EEnode early firings, EEnode
late firings, EEnode early-to-late or late-to-early configura-
tion changes is also live and safe.

3 RELATED WORK

The “de-sync” self-timed design style [9] is the most similar
of recent published methods to our coarse-grain design
style in that it uses a coarse-grained micropipeline with
bundled-data signaling, a marked graph model, and a
commercial standard cell library. It also begins with a
clocked netlist and replaces the global clock network. The
micropipelined de-sync implementation uses four-phase
control [8] built from standard cells. For the DLX processor
implementation (without forwarding) described in [9], the
asynchronous design has equivalent area, performance, and
power consumption when compared to the clocked design.
The main difference between our approach and that in [10]
is that the de-sync approach has not been shown to support
the concept of early evaluation, which provides the
potential for increased performance. Another difference is
that the de-sync approach splits all DFFs in the original
netlist into master/slave components with separate control
wrappers for each. This can potentially result in an

overhead-free (performance) asynchronous implementation
of the clocked system if the master/slave delay is the same
as the original DFF delay + setup time. We initially tried this
approach in [2], but abandoned it in the standard cell
designs as we found that using available latches within the
libraries resulted in a higher performance penalty than just
using a single DFF and satisfying the setup time penalty.
The choice of a master/slave latch approach versus a
DFF approach is highly dependent on available latch and
DFF designs in a given commercial standard cell library.

Other self-timed CPUs that have been designed in the
past include the MIPs integer subset [14], the ARM
processor [15], and the 8051 [16]. The distinguishing
features of our design are the automated mapping from
the clocked netlist to a self-timed netlist and the use of early
evaluation. Previous self-timed CPUs, such as the Amulet3,
have used bypass paths to speed execution. The Amulet3
execution unit had an iterative multiplier and barrel shifter
in series with the ALU; these two components were
bypassed when instructions did not require them. Bypass
operations are essentially a degenerative case of early
evaluation in which all phase inputs are part of the trigger
phase and the early evaluation function has a smaller delay
than the normal compute function. The bypass operation is
used when all signals arrive at the same time, but different
delays are desired depending upon the block operation for
that particular compute cycle (i.e., within an ALU, shift
versus addition). As such, the early evaluation control
wrappers discussed in Section 4.3 support bypass opera-
tions and our design makes use of bypass in much the same
way as the Amulet3. However, the CPU design presented in
Section 5 also uses the general case of early evaluation in
which blocks fire upon arrival of a subset of inputs.

4 THE COARSE-GRAIN PL METHODOLOGY

The tool flow and circuit implementations that transform a
clocked circuit into aPL implementation aredescribedbelow.

4.1 Tool Flow

Fig. 7 illustrates the PL coarse-grain methodology flow.
Synopsys is used for RTL synthesis and static timing. The
custom tools in the flow are:

pl_partitioner: The principle function of this tool is to
insert slack matching buffers into the netlist as specified by
an external configuration file. In the clocked system, a slack-
matching buffer is simply a combinational buffer on all
signals between two blocks. In the PL implementation, a
PL control wrapper is placed around this block and, thus, it
functions as an intermediate storage location for data
tokens. It was shown in [14] that slack-matching buffers
added to asynchronous pipelines can improve performance
in some cases; one case where slack-matching can be
beneficial is if a block output feeds several other blocks that
complete at different times. Having this tool read slack
buffer locations from an external file frees the user from
having to “pollute” their top-level RTL with slack buffers.
This tool is implemented in C and has been tested under
Linux Redhat 7.3 and Sun Solaris.

pl_mapper:This tool automatically generates thePL control
wrappers and the control signal network based upon the

REESE ET AL.: A COARSE-GRAIN PHASED LOGIC CPU 793

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

clocked netlist. This is the heart of the PL methodology and
this tool shares common code with the fine-grain methodol-
ogy. This tool is implemented in C and has been tested under
Linux Redhat 7.3 and Sun Solaris.

A perl script called plcg_timing.pl is used to perform the
timing analysis for each block using Synopsys static timing.
The overall flow is controlled by a top-level perl script
called plcg_make.pl.

4.2 Designer Responsibilities

Aside from providing clocked RTL, designer responsibil-
ities for producing a working PL system are:

1. The top-level RTL must contain the components that
define the blocks to be encapsulated by PL wrap-
pers. Currently, there is no automated partitioning
capability in the PL coarse-grain methodology.

2. Early evaluation opportunities must be identified by
the designer. The designer must identify a single
output port from the block that is a “1” when the
block early evaluates. RTL code must be added to
the block to support this function (in many cases, the
logic function is already available). More details on
early evaluation are provided in [2].

3. The designer must identify locations of slack
matching buffers via a configuration file provided
to the pl_partition tool.

4.3 PL Control Wrappers
Two standardized control wrappers are used for PL blocks
—one that supports early evaluation and one that does not.
Fig. 8 shows the PL control wrapper used for nonearly
evaluation blocks [17] and its interface to the datapath

block. This is a variation on the traditional control used for
micropipelines [10]. Each delay block for a phase input is
chosen to match the datapath delay of the corresponding
data bundle through the compute function. The delay block
is a chain of delay cells where the delay cell was provided
as a standard cell within both libraries. Delay blocks are
generated automatically as part of the tool flow, with first-
pass static timing used to calculate the required delay block
values and second-pass static timing used to verify that
delay-matched paths met the user-specified minimum
timing margin. Initially, a Muller C-element and XOR gate
was used to produce the gating signal for the output
latches. The C-element is mapped to a standard cell
implementation, as described in [6]; no monolithic
C-element is available in either library. The C-element
output could be used to provide the phase output directly,
but the DFF is used as it provides clear starting and
stopping points for static timing analysis and makes
control/datapath delay matching easier. This C-element
and XOR gate combination was found to be slow (especially
the XOR gate) and was replaced in the final design by the
logic in the lower half of the figure for through blocks that
did not perform time-borrowing with a successor block
(time borrowing usage is discussed in Section 5.1). Fast
control is helpful when the compute function delay for a
particular phase input is lower than the control path delay,
which occurred in some instances. In barrier blocks, the
latches shown in the datapath block section are replaced by
the DFFs in the original clocked netlist. If a barrier block has
outputs that loop back to the compute function (which is
usually the case), then that barrier block has a feedback to
itself with a delay equal to the longest delay of the loopback
path through the compute function.

Fig. 9 shows the PL control wrapper with early
evaluation capability [18]. A normal fire occurs when
EE_q = ’’0’’ after all inputs have arrived; both output phase
and feedback phase signals are updated. An early fire
occurs when EE_q = ’’1’’ and all inputs have arrived to the

794 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 7. PL coarse-grain methodology flow.

Fig. 8. PL control wrapper (no early evaluation).

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

Clocked RTL (VHDLNerilog)

© Synthesis (Synopsys)

One-level Hier. EDIF
(blocks contain std. cells)

: ♦ Partitioner

Hier. VHDL and EDIF Nellis!

I ♦ PL Mapper :
: generate control network 1
-------i-------~

Hier. VHDL and EDIF Nellis!

© Synthesis of control
wrappers (Synopsys)

~Commercial Tool

:♦-• Custom Tool
- .J

Slack Buffers,
Early Evaluation
pin identification

, + 1st Pass Timing Analysis 1

I

I© Synopsys Static Timing

• - - - - - - _-1. - - - - - - - I

, ♦ PL Mapper ,
: regenerate control with 1

1 delay elements 1
_______ J ______ .J

© Synthesis of control
wrappers (Synopsys)

-------*-------' ♦ 1st Pass Timing Analysis 1

I

© Synopsys Static Timing

Timing Margin Report J

D_bndl_1

• D_bndl_N

?

?

Compute
Function

Preset (if needed)

? GC

Reset (if needed)

I

?'
• : Block

, Phase 1

1-; ;l:m~~t ~;d -X~R gate replaced by

GC

Ophs_ip

Tphs phase C-element; this updates the output phase, but
not the feedback phase.

After an early fire, the feedback output phase is updated
once all of the late inputs (L[1]-L[j]) arrive. The Lphs_nodly
C-element provides this value; note that this C-element has
no delay blocks as these delays do not have to be satisfied
once the output has been updated. This provides a fast path
for feedback once all inputs have arrived. However, new
L[1]-L[j] inputs could arrive while old inputs are still
traversing delay blocks, causing input hazards to the Lphs
C-element.

To avoid this problem, the Dkill block uses two delay
chains internally, as shown in Fig. 10. The toggling of the sel
(feedback) signal routes the a input between the two delay
blocks so that one delay block is “recovering,” while the
other delay block is “active.” Normal operation is either
aþ N1þ ðsel ¼ 1Þ or a) N0) ðsel ¼ 0Þ, where the full
delay chain penalty is used. An early fire can cause sel to
change while the a transition is still within dly1 or dly0. A
change in sel chooses the opposite delay path, whose value
is the normal arrival value for the previous delay path.

Providing early feedback before the late C-element fires
means that the Lphs C-element has to be an input to the Tphs
and Lphs_nodly C-elements to prevent firing of these
C-elements before the late C-element has caught up to
these states. The EEsel latching logic holds the EEsel signal
stable as long as the Lphs C-element and Tphs C-element
states are not equal to each other.

5 DESIGN EXAMPLES

Mapping and simulation results for a MIPs-subset CPU and
a double-precision floating-point clipping operator are
presented here. Simulation results are from a gate-level

Verilog simulation using prelayout back-annotated SDF
generated by Synopsys.

5.1 A MIPs-Subset CPU

The PL coarse-grain methodology was first discussed in [2]
and applied to the same MIPs-compatible CPU. In that
design, the logic was synthesized to four-input lookup
tables (LUT4s), the control wrappers used behavioral
models, the register file used a behavioral model, timings
did not account for output loading, and no timing margins
were assumed for either the PL or clocked netlists. In this
CPU implementation, all logic has been mapped to a
standard cell library targeted for a 0.13! technology. The
register file is implemented using a two-port register file
generator for the same technology.

Fig. 11 shows the CPU architecture. Behavioral models
were used for instruction and data memories. Labeled
through blocks contain only combinational logic. The
unlabeled through blocks are buffers added automatically
by the mapping tool to break connections between barrier
blocks. A Verilog model with full timing as produced by the
0.13! two-port register file generator was used for the rfcore
block. A custom PL wrapper was designed for the rdport
and writeport blocks to interface to the rfcore, space
constraints prevent its inclusion in the figures. The
connections in Fig. 11 indicate the phase signal connections
between blocks; feedback connections are not shown as
most blocks provide feedback to their immediate predeces-
sor. However, feedback is not required in all cases. For
example, the incpc block does not provide feedback to the
PC block as these phase signals are part of a naturally
occurring loop that contains one barrier block. Also, fanout
from one block to multiple blocks uses the same phase/data
bundle even though separate connections are show in the
figure. The idpipe block provides the same phase/data
bundle to the add/shift/log blocks; this phase/data bundle is
not duplicated. However, separate feedbacks are required
for these three fanouts.

Early evaluation is used as follows:

. The PC block fires early if the branch PC computa-
tion (bpc block) is not required.

. The idpipe block (decode stage) fires early if the new
operands for the execute stage do not require either
a data memory value or a forwarded value from the
ALU output (exep2 block).

. The add block fires early if the operation is not an
add or subtract. The shift block fires early if the

REESE ET AL.: A COARSE-GRAIN PHASED LOGIC CPU 795

Fig. 9. PL control wrapper with early evaluation.

Fig. 10. Delay kill block internals.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

D_bndl_1

• ?

D_bndl_N

?

Preset (if needed)

Compute s
Function ?

D Q
GC

G
? Dout

EEval EE_d R

Fback

1 EE Latch details ,

1 ~Eq1 I EE_d D Q - I

:rphs G ,
1 Lphs :

·- - - - - - - - - - - - - - - .J

multiple sections for
long delay chains

y

operation is not a shift operation. The add and shift
blocks only have one input, so this use of early
evaluation is simply a bypass operation.

. The memdff block fires early if a data memory
operation is not required.

Slack matching buffers were used on the output of the
decode block as it fans out to multiple destinations which
finish at different times. These buffers further desynchro-
nize the firing of the blocks, improving throughput.

Because of the use of latches in through blocks, time
borrowing can be used between two through blocks or
between a through block and a barrier block if the data delay
in one block is less than the control path delay. Time
borrowing was used across block pairs add/exep2, shift/exep2,
log/exep2, incpc/pc, decode/ifetch, and in the through block
between the rdport and idpipe blocks. Time borrowing is
performed automatically by the mapper between a source
block and a destination block if the destination block is not an
early evaluation block, has only one control input, and if the
data delay is less than the control delay in the destination
block. More aggressive time borrowing is possible, but is not
implemented in the current methodology.

5.2 CPU Performance Results and Area Values

Table 1 gives the performance results of the PL CPU
compared to the clocked CPU for five benchmark programs.
All benchmarks were written in C and compiled using gcc.
A number > 1.0 for the PL/CLK ratio means that the
PL design had slowdown compared to the clocked design;
all benchmark programs had slowdown for the PL versus
the clocked design. The simulations used a gate-level
Verilog netlist with Synopsys-generated prelayout timing
delays. Synopsys static timing reported the register-to-
register critical path of the clocked design as 2,170 ps; to this
value was added a 3 percent clock skew budget of 65 ps for
a total clock period of 2,235 ps. For the PL netlist, a target
timing margin of 20 percent was specified for delay chain
generation, with a 10 percent minimum timing margin

allowed for failure flagging for margin checking in the
second timing pass. The minimum margin reported for any
path after second pass timing was 12 percent. Suggested
timing margins [19] for delay matching in micropipelines
range from 10 percent for regular/tiled layout blocks to
30 percent for synthesized standard cell blocks. However,
delay path matching in micropipelines is equivalent to
gated clock/datapath delay matching in high performance
microprocessors [20], [21]. These designs regularly use
margins of less than 10 percent of the clock period. The
target margin selected for a commercial design will depend
heavily on the quality of timing analysis tools available, the
skill of the engineering team, and the amount of time
available for fine-tuning.

The nonreordered code used the assembly code un-
changed as produced by the gcc compiler. The reordered
code used manual reordering of code sequences in critical
loops, increasing early evaluation opportunities as reported
in [2]. An example code reordering is shown in Fig. 12,
where both sequences give equivalent results, but the bne
instruction in Sequence B does not require operand
forwarding from the exep2 block, resulting in faster
execution.

796 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 11. CPU architecture diagram.

TABLE 1
Benchmark Performance Results

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

IBBJ barrier block, □ thru
~ EEval block

n thru block, IBBJ barrier
~ EEval lJ block

Benchmark

fibonnaci
bubblesort
ere
sieve
matrix
transnose
avera11:e

thru block for
slack buffering

PL/CLK PL/CLK
(noEE) (EE,non-

reordered)

1.29 1.12
1.29 1.16
1.29 1.12
1.29 1.18
1.29 1.19

1.29 1.15

PL/CLK
(EE,

reordered)

1.12
1.15
1.07
1.15
1.16

1.13

The fastest instructions were logical operations that did
not require operand forwarding from the exep2 block. The
CRC reordered benchmark has the fastest execution
because it contains the largest number of logical operations
and fewest operand-forwarding requirements.

In [2], an average speedup of 41 percent for PL versus
Clocked was obtained for the reordered benchmarks using
the generic LUT4 technology. Reasons for the slowdown in
the standard cell MIPs are:

. No timing margin was used for the results presented
in [2].

. In [2], the simulation did not take into account the
effect of loading on nets; all cell delays were fixed,
regardless of output loading.

. Output latch delay and control path delay were
significantly underestimated for the behavioral
models used for the wrapper logic in [2].

The results presented in [2] can be viewed as an
estimation of the maximal speedup that could be obtained
if extremely low latency latches/DFFs and highly opti-
mized control was used in the design in the wrapper logic.

The performance numbers are disappointing in that the
PL CPU has slowdown compared to the clocked design.
However, the slowdown is not prohibitive from considering
this approach as a viable alternative to a global clock
distribution network.

Table 2 shows that the PL design has an increase of

47 percent in active cell area as reported by Synopsys. The

clocked design area figure does not include any area

required by the global clock network, and neither figure

includes interconnect area.

5.3 Double-Precision Floating-Point Clip

A double precision floating-point clip operation defined as

shown was implemented in several ways and mapped to

both 0.18 and 0.13 standard cell libraries.

if (A < low_bound) then

Y := low_bound

elsif (A < high_bound) then

Y := A;

else Y := high_bound;

Fig. 13 shows the design variations, which were chosen

to experiment with partitioning, time borrowing, and early

evaluation choices.

a. Multicycle FSM, implemented as one barrier block.
The FSM had four states: two states for loading
values for high and low bounds and two for
computing the clip value. The result was available
in two or three clocks, depending on if it was out of
bounds or not.

REESE ET AL.: A COARSE-GRAIN PHASED LOGIC CPU 797

Fig. 12. Example code reordering.

TABLE 2
Area Results

Fig. 13. Floating-point clip variations. (a) One block. (b) One block with EE. (c) Two blocks. (d) Two blocks with EE. (e) Three blocks, barrier, slack,
EE. (f) Three-stage pipeline, three blocks in original netlist, splitter blocks inserted automatically between barrier blocks. (g), (h) Three-stage pipeline,
five blocks in original netlist (three barrier, two thru blocks), second and third barrier blocks have thin logic, so time borrowing is done between thru
and barrier blocks.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

addi r4,r4,1
slti r2,r2,8
bne r2, rO, LlO

slti r2,r2,8
addi r4,r4,1
bne r2, rO, LlO

(a)

Sequence A

Sequence B

barr. thru (slack) thru

(e)

(g)

(b)

thru

Design Cell Cell % area increase
Count area

Clocked 9183 169854
PL 14983 249570 47%

barr. thru barr. thru

I ~ I

~~
(c) (d)

barr. thru (splitter) barr. thru (splitter) barr.

(f)

barr.

b. Same as a, except early evaluation was used based
on the sign bits of the high/low bound values and
the input value.

c. Same as a, except logic was split into a barrier block
and a through block.

d. Sameas c, exceptEEwasused in the samemanner as 2.
e. Same as d, except a slack buffer was added.
f. Three stage pipeline, with a new input value every

clock. The first stage had a simple two-state FSM that
input the low/high bound values and accepted a
new data input value every clock during computa-
tion. The second stage did low bound comparison,
the third stage high bound comparison. The top-
level netlist contained three mixed DFF/combina-
tional logic blocks, which were mapped to three
barrier blocks, with splitter blocks inserted auto-
matically by mapping tool to break barrier-to-barrier
gate paths.

g. Same as f, but the top-level netlist was partitioned
into five blocks, with the stage 2 and stage 3 blocks
of 6 split into combinational and sequential compo-
nents. This resulted in no barrier-to-barrier gate
paths, so splitter blocks were not inserted. Also, the
mapper took advantage of available time borrowing

between the through and barrier-blocks when creat-
ing delay chains for the through blocks.

h. Same as g, but early evaluation used for low/high
bound comparisons based on both sign bits and
exponent fields. The early evaluation computation
conditions were done in the first stage and then
passed to the successive stages.

Table 3 shows the mapping and simulation results for the
0.13! and the 0.18! libraries. The designs were tested with
1,000 vectors of randomly generated numbers between the
values of +/-15.0, with low and high bounds of +/-5.0.
Approximately 2/3 of the input numbers were clipped. The
“Min Margin” column is the minimum time margin for all
blocks. The “Borrow Margin” column is the minimum
reportedmargin across any two blocks used time borrowing.

The most interesting aspect of the numbers in Table 3 is
the disparity in the PL/CLK area/speed comparisons
between the 0.13! and 0.18! libraries. For the 0.18! library,
the EE versions of the PL designs achieved speedup; for the
0.13! library, no speedup was obtained. The reason for this
disparity is that the 0.13! designs had much shorter
combinational paths in terms of total gates as a result of
more efficient technology gate mapping. The longer

798 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

TABLE 3
Mapping and Simulation Results for Clip Variations

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

PL/elk elk eye finish PL/Clk Min. Borrow
0.13u cells area /areal losl lnsl ltimel Marain Marain

a. Meyele elk 2332 38075 2359 6725
(1 blkl PL 2456 39912 1.05 n/a 8322 1.24 11.4% n/a
b. Meyele elk 2441 39254 2225 6343
(1blk EE) PL 2564 42621 1.09 n/a 6540 1.03 13.3% n/a

e. Meyele elk 2266 36446 1483 4230
(2 blk) PL 2678 42306 1.16 n/a 5151 1.22 14.4% n/a
d. Meyele elk 2266 36446 1483 4230

2 blk + EEl PL 2753 42801 1.17 n/a 5031 1.19 17.4% n/a
e. Meyele elk 2266 36446 1483 4230
(2 blk + EE,
buffl PL 3613 55568 1.52 n/a 4865 1.15 17.4% n/a
f. 3-stg pipe elk 2822 50152 1411 1421
(3 blks+2

solitterl PL 4396 72878 1.45 n/a 2219 1.56 13.2% n/a
g. 3-stg pipe elk 2902 50102 1411 1422
(5 blks,

time brwl PL 3898 62518 1.25 n/a 2038 1.43 16.1% 10.9%
h. 3-stg pipe elk 2902 50102 1411 1424
(5 blks, EE,
time brwl PL 4020 63190 1.26 n/a 1884 1.32 16.1% 15.5%

0.18u
a. Meyele elk 1920 63200 4542 12954
(1 blkl PL 2031 73441 1.16 n/a 15922 1.23 19.7% n/a
b. Meyele elk 1872 62683 3801 10838
(1blk EEl PL 2016 74229 1.18 n/a 9114 0.84 16.4% n/a
e. Meyele elk 2091 65025 4274 12198
(2 blkl PL 2414 84162 1.29 n/a 15424 1.26 22.3% n/a
d. Meyele elk 2091 65025 4274 12198
(2 blk + EE) PL 2493 89276 1.37 n/a 10375 0.85 18.3% n/a
e. Meyele elk 2091 65025 4274 12198
(2 blk + EE,

buff) PL 3149 113890 1.75 n/a 9914 0.81 18.3% n/a
f. 3-stg pipe elk 2295 82481 4110 4143

5 blksl PL 3488 135113 1.64 n/a 5810 1.4 16.9% n/a
g. 3-stg pipe elk 2548 84862 4110 4145
(5 blks,
time brwl PL 3405 126904 1.50 n/a 5730 1.38 29.3% 20.2%
h. 3-stg pipe elk 2548 84862 4110 4149
(5 blks, EE,

lime brwl PL 3535 135364 1.60 n/a 3434 0.83 20.4% 15.3%

combinational paths in the 0.18! designs reduced the
effective DFF and latch delay overhead in those netlists.
This reinforces the point that low latency DFFs and latches
in micropipeline designs can significantly increase perfor-
mance. Neither library had particularly fast DFFs; in both
libraries, the ratio of DFF clock-to-Q delay to a typical gate
delay was a 4X to 5X factor.

The effect of partitioning at the top level is seen in the
performance difference between designs f and g for the
0.13! library. In design f, the three blocks at the top level
were all barrier blocks, which forced the insertion of splitter
blocks by the mapping tool to break barrier-to-barrier block
paths. In design g, the top level included combinational
blocks between stages. This removed the need for splitter
block insertion and also allowed the mapper to take
advantage of time borrowing between the through and
barrier blocks during delay block creation.

6 CONCLUSIONS

This paper describes the first coarse-grain PL designs
mapped to commercial standard cell libraries. The exam-
ples show that this approach can produce self-timed
designs that are comparable with clocked designs in
performance. The benefits of early evaluation were clearly
shown in both the CPU and floating clip operation
examples.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) under Grant CCR-0098272.

REFERENCES

[1] D.H. Linder and J.C. Harden, “Phased Logic: Supporting the
Synchronous Design Paradigm with Delay-insensitive Circuitry,”
IEEE Trans. Computers, vol. 45, no. 9, pp. 1031-1044, Sept. 1996.

[2] R.B. Reese, M.A. Thornton, and C. Traver, “A Coarse-Grained
Phased Logic CPU,” Proc. Ninth Int’l Symp. Advanced Research in
Asynchronous Circuits and Systems (ASYNC 2003), pp. 2-13, May
2003.

[3] A. Wallander, “A VHDL Implementation of a MIPS,” project
report, Dept. of Computer Science and Electrical Eng., Luleå Univ.
of Technology, http://www.ludd.luth.se/~walle/projects/myr-
isc, 2000.

[4] F. Commoner, A.W. Hol, S. Even, and A. Pneuli, “Marked
Directed Graphs,” J. Computer and System Sciences, vol. 5, pp. 511-
523, 1971.

[5] R.B. Reese, M.A. Thornton, and C. Traver, “A Fine-Grain Phased
Logic CPU,” Proc. IEEE CS Ann. Symp. VLSI, pp. 70-79, Feb. 2003.

[6] T.-Y. Wuu and S.B Vrudhula, “A Design of a Fast and Area
Efficient Multi-Input Muller C-Element,” IEEE Trans. Very Large
Scale Integration (VLSI) Systems, vol. 1, no. 2, pp. 215-219, June
1993.

[7] R.B. Reese, M.A. Thornton, and C. Traver, “Arithmetic Logic
Circuits Using Self-Timed Bit-Level Dataflow and Early Evalua-
tion,” Proc. 2001 Conf. Computer Design, pp. 18-23, Sept. 2001.

[8] S. Furber and P. Day, “Four-Phase Micropipeline Latch Control
Circuits,” IEEE Trans. VLSI Systems, vol. 4, no. 2, pp. 247-253, June
1996.

[9] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, L. Lwin, and
C. Sotiriou, “Handshake Protocols for De-Synchronization,” Proc.
10th Int’l Symp. Asynchronous Circuits and Systems, pp. 149-158,
Apr. 2004.

[10] I. Sutherland, “Micropipelines,” Comm. ACM, vol. 32, no. 6,
pp. 720-738, June 1989.

[11] J. Campos, G. Chiola, J. Colom, and M. Silva, “Properties and
Performance Bounds for Timed Marked Graphs,” IEEE Trans.
Circuits and Systems, vol. 39, pp. 386-401, May 1992.

[12] T. Murata, “Petri Nets: Properties, Analysis and Applications,”
IEEE Proc., vol. 77, pp. 541-580, Apr. 1989.

[13] A. Yakovlev, M. Kishinevskh, A. Kondratyev, and L. Lavagno,
“On the Models for Asynchronous Circuit Behavior with OR
Causality,” Technical Report Series No. 463, Computing Science,
Univ. of Newcastle upon Tyne, Nov. 1993.

[14] A.J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R.
Southworth, U. Cummings, and T.K. Lee, “The Design of an
Asynchronous MIPS R3000 Microprocessor,” Proc. 17th Conf.
Advanced Research in VLSI, pp. 164-181, 1997.

[15] J.D. Garside, S.B. Furber, and S.B. Chung, “AMULET3 Revealed,”
Proc. Async. ’99, pp. 51-59, Apr. 1999.

[16] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D.
Gloor, and G. Stegmann, “An Asynchronous Low-Power 80C51
Microcontroller,” Proc. Async ’98, pp. 96-107, Mar. 1998.

[17] R. Reese, M. Thornton, and C. Traver, “Fast Two-Phase Micro-
pipeline Control Wrapper for Standard Cell Implementation,”
Electronics Letters, vol. 40, no. 4, pp. 227-229, Feb. 2004.

[18] R. Reese, M. Thornton, and C. Traver, “Two-Phase Micropipeline
Control Wrapper with Early Evaluation,” Electronics Letters,
vol. 40, no. 6, pp. 365-366, Mar. 2004.

[19] J. Garside private communication, Feb. 2003.
[20] F.E. Anderson, J.S Wells, and E.Z. Berta, “The Core Clock system

on the Next Generation Itanium1 Microprocessor,” Digest of
Technical Papers, Int’l Solid State Circuits Conf. (ISSCC 2002), vol. 1,
pp. 146-148, 2002.

[21] D. Harris and H. Naffziger, “Statistical Clock SkewModeling with
Data Delay Variations,” IEEE Trans. VLSI, vol. 9, no. 6, pp. 888-
898, Dec. 2001.

Robert B. Reese (S’77, M’80) received the BS
degree from Louisiana Tech University, Ruston,
in 1979 and the MS and PhD degrees from
Texas A&M University, College Station, in 1982
and 1985, respectively, all in electrical engineer-
ing. He served as a member of the technical staff
of the Microelectronics and Computer Technol-
ogy Corporation (MCC), Austin, Texas, from
1985 to 1988. Since 1988, he has been with the
Department of Electrical and Computer Engi-

neering at Mississippi State University, where he is an associate
professor. Courses that he teaches include VLSI systems and digital
system design. His research interests include self-timed digital systems
and computer architecture. He is a member of the IEEE.

Mitchell Aaron Thornton received the BS
degree in electrical engineering in 1985 from
Oklahoma State University, the MS degree in
electrical engineering in 1990 from the Univer-
sity of Texas at Arlington, the MS degree in
computer science in 1993 from Southern Metho-
dist University, and the PhD degree in computer
engineering from Southern Methodist University
in 1995. He has worked in industry for
E-Systems, Inc. and Cyrix Corporation and he

is currently an associate professor in the Departments of Computer
Science and Engineering and Electrical Engineering at Southern
Methodist University. His research interests include self-timed digital
circuit synthesis and verification of digital systems. He is a senior
member of the IEEE.

Cherrice Traver received the Bachelor of
Science degree in physics (summa cum laude)
from the State University of New York at Albany
in 1982. Her PhD degree in electrical engineer-
ing is from the University of Virginia (1988). She
joined the faculty at Union College in Schenec-
tady, New York, in 1986, where she is currently
a professor of electrical and computer engineer-
ing. Her research interests are in the area of
timing methodologies for digital circuits. She is a

senior member of the IEEE.

REESE ET AL.: A COARSE-GRAIN PHASED LOGIC CPU 799

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 16,2023 at 13:02:15 UTC from IEEE Xplore. Restrictions apply.

