
 1

 CHAPTER I

INTRODUCTION

1.0 Motivation

There has been incredible progress in the areas of semiconductor

manufacturing and Integrated Circuits (IC) in the past few decades. The emergence

of automated Very Large Scale Integrated Circuits (VLSI) design tools has made it

possible to have millions of transistors on a single chip, thus enabling designers to

have powerful processing tools available for a competitive price. Personal Computers

(PC’s) have emerged as a result of powerful and efficient design techniques. The age

of popular usage of PC’s has come where these machines are used for processing

huge amounts of data more than they are used for scientific processing. There has

been significant progress in the areas of digital logic optimization and database

information storage and retrieval; however, there has been very little transfer of these

methods from these two domains. The motivation for the work presented here is

based on the idea that digital logic optimization techniques can be used for efficient

information processing. The impressive advances that have been accomplished in

logic minimization indicate that they are likely to yield good results when applied to

the field of information processing.

1.1 Description

 The objective of this thesis is to investigate the use of Computer Aided Design

(CAD) methods in the area of information storage and retrieval. Binary Decision

Diagrams (BDD) [17] are the main form of decision diagram used for the data

structures in this work. Boolean function manipulation has played a key role in the

 2

area of digital system design. Until recently, Boolean functions have been represented

using truth tables or cube lists. A cube list is a mere symbolic representation of set of

product terms. The use of truth tables to represent Boolean functions requires a

considerable amount of memory resources for even a small function. Cube lists may

require lesser amounts of memory than representation of a function using truth tables;

however, they have the disadvantage that they are not canonical and all possible

Boolean functions cannot be represented efficiently using them. BDDs have emerged

as a good solution for most functions encountered in modern designs. A detailed

description of BDDs is given by R.E. Bryant in [4]. Other data structures used in this

work are AND/OR graphs and Multi valued Decision Diagrams (MDDs) [33].

AND/OR graphs [11] have been proven to have superior properties as compared to

BDDs in some respects [7].

1.2 Query Optimization

 Relational database systems are currently the predominant technology for

storing, handling, and querying large amounts of data. A key factor in the popular

usage of this approach is the introduction and development of query optimization

techniques [3]. One of the reasons for the commercial success of relational database

systems is that they offer good performance to many business applications, mostly

due to the use of sophisticated query processing and optimization techniques [2].

Query optimization has always been one of the most crucial components of database

technology and is used to efficiently process a user’s query. There has been extensive

work in query optimization since the early 1970s [35] [2] [3] [4]. Query optimizers

are one of the main means by which modern database systems have an improved

 3

performance. Given a request for data manipulation or retrieval, an optimizer will

choose an optimal plan for evaluating the request from among the many different

possible strategies. Many optimizers for commercial database systems have been

developed and the problem of query optimization has continued to receive

considerable research [35] [36]. Numerous query optimization techniques have been

proposed for conventional centralized or distributed relational database systems,

including static versus dynamic techniques [37], sequential versus parallel strategies

[38], heuristics-based versus cost-based optimization, and single-query versus

multiple-query optimization [36]. As the size of the databases increase by larger

amounts, the necessity for good optimizers also increases. Still, the problem of query

optimization is a very much an area of open research.

1.3 Datamining

 Datamining is another key area of interest in information processing and has

been given a lot of focus in the last decade. Many large companies and corporations

have had years of accumulation of data pertaining to the information of their

products, suppliers and employees among other items.

The availability of inexpensive storage and progress in data capture

technology and also the rapid pace of e-commerce techniques has paved the way for

the creation of very large databases and the size of a typical database is expected to

grow more in years to come. This explosive growth in data requirements has

generated an urgent need for new techniques and tools that can intelligently and

automatically transform the processed data into useful information and knowledge.

 4

Datamining, also known as “knowledge discovery in databases”, is the

efficient discovery of unknown patterns in large databases [30]. Database discovery

seeks to reveal noteworthy and unrecognized associations between data items in an

existing database. The potential for discovery comes from the realization that

alternate contexts may reveal additional valuable information. Thus, datamining helps

in finding trends and correlations that can guide strategic decision making. One

possible reason for the limited success of database systems is that current systems do

not have adequate features for the user interested in taking advantage of available

information. Datamining is one such concept that assists in extracting valuable

information from the data already present in the DB. Reasonably sufficient amounts

of work have been performed for developing association rules for datamining

applications [27] but very little attention has been paid towards memory requirements

for storage of the database. Although good association rules exist for efficient

datamining algorithms, the consumption of memory resources has been a problem,

that does not receive a fair share of attention. Given a large database of customer

transactions, not only should there be efficient algorithms that generate association

rules to extract useful information from the available transactions, but also there

should be an efficient data structure that consumes less memory, since, as the number

of transactions increases, the memory requirements increase. BDDs are found to be

one such data structure. They have several desirable features and are very efficient

data structures for storing huge amounts of transactions using less memory. The

importance of this data structure for data mining applications is outlined in chapter 3

of this thesis.

 5

1.4 Multi-valued Query Optimization

 Binary-valued logic, based on only two values of logic have been used to

represent a vast amount of logic functions and in the design of logic functions, have

been proven very effective for representation. Although binary-valued logic has been

very useful and effective, many complex circuits cannot be represented in binary

logic. This problem has created the necessity of having more numbers of logic levels

greater than two and thus Multi-valued Logic (MVL) has become very popular and

many useful commercial products are being developed with MVL [6]. MVL was

proposed as a means for reducing the power, improving the speed, and increasing the

packing density of VLSI circuits. Although researchers have been working on MVL

for a large amount of time, the development of MVL circuits continues to be stalled

by technological factors. Inexpensive MVL circuits are still not available, but a more

serious problem is the absence of efficient synthesis methodologies. The synthesis

techniques developed to date are not complete in some aspects [6]. In some cases, the

synthesis methods that are currently used are quite expensive. In this work, a data

structure for the representation of MVL networks MDD (Multi-valued Decision

Diagram) is presented that is used to achieve the synthesis of Multi-valued logic

networks (MVLN) and is shown that such structures are a natural extension of the

techniques described for query optimization. MDDs are projected as useful data

structures for query optimization in the multi valued domain.

1.5 Contribution

 The work performed in this thesis presents an innovative approach of using

hardware synthesis techniques for efficient information processing. Two key areas in

 6

the area of information processing, query optimization and data mining are discussed

and an efficient method has been developed for each of the issues. An MVL synthesis

method has been provided and its relation to query optimization process is discussed

and shown to be efficient and complete using MDDs instead BDDs.

1.6 Outline

 In chapter 2, a technique for optimizing an SQL query is presented. First, a

brief introduction is given about the query optimization process and relational

databases. The significance of query optimization in relational database systems is

outlined. Secondly, a brief introduction is given for AND/OR graphs which are

crucial in the optimization technique used in this work. Finally, the query

optimization process using AND/OR graphs as an intermediate data structure is

explained in detail with the help of an example along with some experimental results.

 In Chapter 3, a synthesis technique for MVLN is presented and MDDs are

used to carry out the synthesis process. First, background about MVLNs and MDDs

is presented and then the advantages of MVLNs over binary-valued networks are

outlined. Secondly, the synthesis process is described in detail with the help of an

example. Next, a mapping process that maps an MDD to MAX and MIN gates is

described and finally, experimental results are given which underscore the

significance of this mapping technique. It is shown in this chapter that MDDs are

good extension for query optimization in the multi-valued domain.

In Chapter 4, a key research area of interest in the area of database systems

known as “datamining” is discussed. First, concepts of datamining are discussed

outlining their significance. Secondly, an efficient storage technique for datamining is

 7

proposed and the significance and reasoning behind using this data structure for data

mining applications is explained. Finally, experimental results are shown which show

the effectiveness of this storage technique.

 Chapter 5 includes the conclusions and some possible future research areas for

the work presented in this thesis.

 8

CHAPTER II

DD BASED QUERY OPTIMIZATION

In this Chapter, a query optimization technique is described. First, the

concepts involved behind this technique are presented. Second, a brief description of

AND/OR graphs is given. Third, the methodology for achieving query optimization

using AND/OR graphs is described in full detail. Finally, experimental results are

provided for some sample queries using this technique.

2.0 Background

In this section the concepts involved behind this technique, brief descriptions

about digital logic optimization, relational databases, and AND/OR graphs is given.

The problem of query optimization is discussed and the reasoning behind using

AND/OR graphs for representing a query is given.

 Most of the complex electronic devices seen currently are composed of digital

logic circuits. These are the circuits that operate on only two fixed voltages assigned

to the Boolean values ‘1’ and ‘0’. Given a specific functionality, a digital function can

be represented in several ways and similarly several forms of digital circuits can be

designed for that specific functionality. Some of these functions are more optimal

than others. The criteria of optimization can be the number of literals involved in the

function. The less the number of literals, the more compact the corresponding circuit

will be. A literal is an occurrence of a variable in an expression in complemented or

uncomplemented form. Several methods have been developed that minimize the

number of literals in a function. These methods include the “Karnaugh map reduction

technique” or “cube list reduction”. A minimal sum of products expression for a logic

 9

function can be obtained using karnaugh map reduction technique. A minimal sum of

products expression is equivalent to the original expression but contains minimum

number of terms and minimum number of literals. The problem of finding an absolute

optimum function for a given functionality has remained a challenging problem

belonging to a class of problems known as NP-Hard problems [39]. Since it is

difficult to find an absolute optimal function, several heuristics are applied to obtain a

near-optimal solution and many researchers are still working on improving solutions

for the problem of logic minimization.

2.1 Relational Data Bases and Query optimization

To store and access huge amounts of data, a good storage technique is needed

along with an efficient technique to retrieve the information from the DataBase (DB).

In order to serve this purpose, Data Base Management Systems (DBMS) [15] were

developed. A DBMS is used to access and manipulate the data in a DB easily.

Typically, information is retrieved from a DB using a query. After a query is

presented to a DMBS, it initiates a search over the records present and extracts

information requested by the query. Structured Query Language (SQL) [40] is a very

widely used query language. To obtain the same information from the DBMS, a

query can be formulated in multiple ways. Some queries being more efficient than

others depending on the way they are represented. Query optimization is the process

of optimizing a query before it is presented to the DBMS.

 The problem of query optimization is described here along with the basic idea

behind using AND/OR graph for optimizing an SQL query. As a query can be

formulated in multiple ways, the way it is presented to the DB has a tremendous

 10

impact on the efficiency of the corresponding data retrieval. The more efficient a

query is formulated, the quicker becomes the process of information retrieval for that

query. A query can be represented efficiently using a data structure called an

AND/OR graph as explained in [1]. Sub-graph isomorphism frequently occurs in an

AND/OR graph and such a graph is reduced in size by replacing all the isomorphic

sub-graphs with a single graph. This crucial property of an AND/OR graph is the

main reason for representing the query in this form. Also, representation of a query in

this form will allow the methods previously developed for digital logic circuit

optimization to be easily applied to information retrieval from a DBMS. Several

powerful CAD techniques for manipulating Decision Diagrams (DDs) developed

over the past couple of decades can be used if an AND/OR graph is used for

representing a DBMS query.

2.2 AND/OR graphs

 DDs play a very prominent role in the area of design automation [7]. A

considerable amount of problems can be solved if the corresponding DD’s are built

for the problem at hand. For some problems, a DD may not be a suitable data

structure because the DD may explode in size and not be able to fit into main

memory. Many problems in decision-making and Artificial intelligence (AI) can be

classified as graph search problems. In most of these cases the aim is to determine the

most efficient path from the root node to a set of leaf nodes. An OR-search has been

studied extensively. In this kind of search, each outgoing edge from a node represents

a possible move from some current state to another. The main difference between

DDs and AND/OR graphs arises from the underlying search criteria. DDs use OR-

 11

search, whereas AND/OR graphs are based upon AND/OR search. The difference

between AND/OR searching and OR-searching can be illustrated by an example. Let

us consider a puzzling situation faced by Joe Frank when he is trying to attend a

meeting at his workplace and had experienced a flat tire. Joe has to attend the

important meeting and now he has couple of obvious choices among which he has to

decide. The way Joe can analyze his situation can be represented by using both an

AND/OR graph and a BDD as illustrated in figure 2.1. The obvious choices that Joe

faces are:

a) He can ask for a ride from a person who passes by.

b) He can repair the car on his own.

Figure 2.1 BDD and AND/OR graph

If Joe wants to take a ride then he has to give an indication that he needs a ride

and someone must stop to give him a ride. This situation can be illustrated using an

AND node in the AND/OR graph, as it is necessary that both the conditions be

satisfied. Similarly, if he decides to repair the car then he has to have necessary tools

 12

to repair the car, a spare tire and enough time to repair the car before his meeting.

This can also be represented by an AND node. With this type of representation we

can reach a conclusion that if Joe doesn’t have a spare tire, he cannot repair the car

even if he has the necessary tools and enough time. This is a noticeable advantage of

AND/OR representation over other types of decision diagrams, since a conclusion can

be reached even before the entire graph is traversed. Other nodes in the AND/OR

graph in Figure 2.1 are self-explanatory. This AND/OR graph is built with an

assumption that Joe will be able to attend the meeting. Similarly a BDD can be built

for a similar situation as shown in Figure 2.1. More than one BDD can be built for a

single function if the order of variables is varied. If the order of variables is varied in

a BDD, the size and shape of the resulting BDD will vary but not the functionality.

So, for the situation described above, more than one BDD can be built depending on

the condition of the root node. One such possible BDD is shown in Figure 2.1 and we

can see from the BDD that we cannot reach a conclusion until we traverse the BDD

all the way through to the terminal nodes. If we begin the search process at the root

node, then according to the BDD shown in Figure 2.1, if Joe has enough time to

repair the car then he can go a step further and think about the possible requirements

necessary to repair the car. If he does not have enough time then he has to forget

about repairing the car and use some other means to get to the meeting (i.e. taking a

ride). The rest of the nodes in the graph are self-explanatory but an important thing to

be noticed is that each node has two out-going edges and only one, not both, of the

two edges is activated while traversing the BDD. This kind of searching technique

used while traversing BDD is an OR-searching technique because only one of the two

 13

possibilities can occur depending on whether or not the current condition is satisfied.

OR-search has proven useful for many applications especially in the field of AI. By

using an AND/OR search, logical consequences for a set of given assumptions can be

obtained. AND/OR graphs have also shown some promise in the area of design

automation and some of the problems that exist if DDs are used can be overcome if

AND/OR graphs are used as an alternative data structure. AND/OR graphs are

developed due to the need of an efficient underlying data structure to solve many

CAD problems. The problem of Boolean satisfiability is a very significant problem in

the area of design automation. It is the problem of finding whether or not a function

can assume a logic value 1. The satisfiability problem can be formulated by an

AND/OR graph provided the graph is built according to the recursive learning

technique as described in [8]. Every Boolean expression can be represented as an

AND/OR graph. AND/OR graphs are also very useful in performing Boolean

reasoning for multi-level circuits. Another interesting feature of AND/OR graphs is

that it is sufficient to enumerate an AND/OR graph only partially to obtain some

crucial information whereas very little information can be obtained from a partially

constructed DD. AND/OR graphs can be better understood with the help of an

example. Below is an example of bulding an AND/OR graph from an arbitrary

Boolean function.

 14

Figure 2.2 Digital circuit for the expression y=abc+bcd+bce

Figure 2.2 represents a two level combinational digital circuit and figure 2.3

represents corresponding AND/OR graph for the implication y=0. The AND nodes

are represented using an arc below a circle to distinguish it from an OR node. The

Boolean function considered in this example is y = abc+bcd+bce. If we consider the

implication y=0 (generally AND/OR graphs represent the implication that f=0 where

f is a Boolean function) then there are 3 conditions that are necessarily to be satisfied

in order for this condition to be true and are given by u=0, v=0, w=0. So an AND

node is used to represent y=0 as all the three conditions are mandatory. Similarly, for

u=0, it is sufficient if either a or b or c is zero and an OR node is used to realize this

condition and the circuit is traversed in this fashion from the output to the inputs and

the corresponding AND/OR graph is developed considering the implications for each

node. This AND/OR graph can be further reduced without any loss of information.

The reduced AND/OR graph is shown in Figure 2.4 and it contains a fewer number of

nodes than the original AND/OR graph but functionally it is equivalent to the original

AND/OR graph.

 15

Figure 2.3 AND/OR graph for the above digital circuit

Figure 2.4 Reduced AND/OR graph

 16

Some of the necessary conditions to be taken care of while building an AND/OR

graph are:

a) There should be a single root node

b) AND and OR nodes occur in alternate levels (i.e. no two AND nodes or OR

nodes can be in adjacent levels).

c) The leaf nodes are always OR nodes.

2.3 Query Optimization using AND/OR graphs

 AND/OR graphs are efficient for representing a DB query, the advantage

being that most of the logic minimization techniques developed for AND/OR graphs

can be applied to the DB query. The experimental set up which is used to obtain

query optimization using AND/OR graphs as an intermediate data structure is shown

below in figure 2.5.

Figure 2.5 Experimental setup used for optimizing query in this approach

 The query which is initiated by the user for the purpose of retrieving

information from the database is converted into an AND/OR graph. This part is

 17

achieved by interfacing an SQL parser with the AND/OR package, the intermediate

step being generation of a digital circuit represented by a Berkeley Logic Interchange

Format (BLIF) file.

A BLIF model is developed to describe logic level hierarchical circuit in

textual form and this is a very useful representation even for complex circuits. The

skeleton of a BLIF file can be outlined as below.

.model < model_name>

.inputs <input_list >

.outputs <output list >

.names < operation >
 .
.names <operation >

.end

 “.model” is used to specify a name for a model. This is mainly useful in

identifying different models and nesting different models. This is an optional

statement. If “.model” line is not specified then the model name is assigned to the

name of the BLIF file.

 “.inputs” is used to specify names of the inputs. These input names are the

inputs for the model being considered. Each input is separated by a blank space and if

multiple input lists are written then all those inputs are concatenated.

 “.outputs” is used to specify names of the outputs. These output names are the

outputs for the model being considered. Each output is separated by a blank space and

if multiple output lists are written then all those outputs are concatenated.

 18

 “.names” is used to specify an operation performed on inputs. Temporary

signals can be added in the “.names” statement. Most of the functionality of the

circuit can be expressed in this part of the model.

 “.end” statement is used to signal the end of the model. This is always used to

indicate that the model description is complete.

 There are several other statements used in BLIF files that are not covered in

the skeleton shown above but above statements are enough to completely represent a

circuit. Figure 2.7 shows an example of a BLIF file for the circuit shown in figure 2.6.

Figure 2.6 circuit model for the BLIF file

 Figure 2.7 BLIF file for the digital circuit shown in figure 2.6

 19

 Each .names statement in the figure 2.7 corresponds to a gate in the actual

circuit. So for each of the four gates in the circuit there is a “.names “ statement and

it can be noticed that there are some temporary signals generated such as u, v and w as

per the necessity. A .end statement is used to signal the end of the description of the

circuit.

 After the generation of BLIF file, an AND/OR graph is built corresponding to

the circuit represented in the BLIF file. An AND/OR package [10] is used to build an

AND/OR graph from a BLIF file, and this package replaces all the isomorphic sub

graphs with a single graph at the time of constructing the AND/OR graph from the

query. Thus all the redundancy carried over by the query will be removed. Thus

AND/OR package generates a reduced AND/OR graph which is transformed back

into an SQL query which will be of reduced length when compared to the length of

the original query in most cases. The query obtained at this point is an optimized

query and this query is presented to the DBMS to retrieve the desired information, the

whole of optimization process takes place before the query is presented to the DB.

 The example to follow will emphasize the process of query optimization even

better. Consider the following SQL query :

Select pname from project where (Pteam = CAD and Pcity = Starkville and

P#=P1006) or (Pcity = Starkville and EmpName = John and Pteam = CAD) or

(Pteam = CAD and Pleader = Chris and Pcity = Starkville);

 20

 Figure 2.8 Digital circuit for the example query

Figure 2.9 Digital circuit for the example query

This query is converted into a digital circuit, which is represented as a BLIF

file in the actual implementation of this technique. This circuit represents the same

query but in a different form. The digital circuit for the above query is shown in

Figure 2.8 and the corresponding BLIF file is shown in Figure 2.9. This circuit

represents a case of a query failure (Pname=0). At this stage optimizing the query an

be thought of as optimizing the corresponding digital logic circuit, so, the problem of

 21

query optimization can now be considered as the problem of digital logic

optimization. As it is a very difficult to find out an absolute optimal digital function,

finding an absolute optimal query is also a very hard problem but close optimal

solution can be reached in many cases. An AND/OR graph is generated

corresponding to this digital circuit and this graph is shown in Figure 2.10. This graph

also represents the case of a query failure. This graph generated from the given query

contains fair amount of redundant information which increases the execution time of

the query.

 Figure 2.10: AND/OR graph of example query

All the redundant nodes in the AND/OR graph are removed in the AND/OR

package which results in a reduced AND/OR graph. The reduced graph is shown in

Figure 2.11. This reduced graph is functionally equivalent to the original AND/OR

graph i.e. it carries the same information as the original graph. Another advantage of

such a graph is it is easy to predict the failure of a query only by partially building the

 22

graph, for example, if we consider the reduced graph in Figure 2.11 then only by

knowing that Pname is not equal to ‘CAD’ (or by knowing that pcity is not equal to

‘Starkville’) the query can be considered as a failure. This may prove very useful

when large queries are considered because the processing time taken for querying the

database can be reduced if the failure of the query is known early.

Figure 2.11 : Reduced AND/OR graph for the example query

 After the reduced AND/OR graph is obtained the next step is to obtain the

query back from the AND/OR graph, again the intermediate step being the digital

circuit. The digital circuit corresponding to the reduced AND/OR graph is shown in

Figure 2.12

 23

 Figure 2.12 digital circuit for the reduced AND/OR graph

The query can be reconstructed from the above circuit but it represents the

cases for the failure of the query rather than it’s success, since we are interested in the

success of the query the above circuit should be modified in some way so that the

circuit represents the output Pname =1 instead of representing Pname=0. This can be

achieved by placing inverters at the outputs and at all the inputs and the circuit

obtained by doing such a kind of a translation is shown in Figure 2.13. Circuit in

Figure 2.13 is further reduced resulting in the circuit shown in Figure 2.14.

Figure 2.13 Circuit negated to represent success of the query

 24

Figure 2.14 circuit representing successful query

 The query is reconstructed back from the circuit in Figure 2.9, doing so yields

the following query:

Select Pname from project where Pteam = CAD and Pcity=Starkville and

(P#=P1006 or Empname=John or Pleader=Chris);

 The length of the query obtained after optimizing it is much smaller than the

original query. The example discussed above is a trivial example but it emphasizes

the use of AND/OR graphs in reducing the length of the query. Most of the redundant

information carried over by the query will be discarded if it is represented by an

AND/OR graph.

2.4 Experimental Results

 The original queries and queries optimized using AND/OR graphs are

executed using ORACLE DBMS and the execution times taken by these two queries

are compared. The results obtained on doing so are tabulated in table 2.1

 25

Table 2.1 Experimental results

Query Orig AND/OR Opt.Query Total
1 0.29 0.04 0.09 0.13
2 0.10 0.02 0.05 0.07
3 0.08 0.03 0.04 0.07
4 0.12 0.03 0.03 0.06
5 0.13 0.02 0.09 0.11
6 0.09 0.03 0.04 0.07
7 0.09 0.03 0.03 0.06
8 0.36 0.09 0.13 0.22

“Orig” is the execution time taken by the original query, “AND/OR” is the

time taken for building an AND/OR graph for the query in the AND/OR package,

“opt. query” is the time taken by the DBMS to process the optimized query and the

total time taken for the whole optimization process is given by “total”. All results are

given in seconds of CPU runtime. These results indicate that this technique is very

effective for some queries. In almost all the queries tested the execution time taken by

the optimized query is either equal to or less than original query but not more.

2.5 Conclusion and future work

A method is introduced for optimizing an SQL query with the use of

AND/OR graphs as an intermediate data structure. The experiments indicate that in

most of the cases the execution time of the query is optimized at least by 30%. In

almost all the queries tested so far the query obtained by the reduced AND/OR graph

will have an execution time either equal to or lesser than the execution time of the

original query but not more than the original query. The next possible step in this area

would be to pass set of queries simultaneously to AND/OR package and identify

 26

subgraph isomorphism between the queries. This would be an interquery optimization

where as we examined only intra-query optimization in this paper.

All the sets of queries cannot be optimized using this technique. Only some

subset of the queries can be optimized because the technique examined here works

well only in Boolean space. So the next logical extension would be to optimize multi

vlaued queries. This can be done by using Multivalued Decision Diagrams(MDD) to

represent the query instead of an AND/OR graph.

 27

CHAPTER III

MULTI VALUED QUERY OPTIMIZATION

 In Chapter 2, an optimization technique for SQL queries using AND/OR

graphs is described in which query optimization is possible for only queries that

operate in the Boolean space. A logical extension of this technique is to develop an

optimizer for a multi-valued query and multi-valued query optimization can be

achieved in a similar way when a query is mapped to a Multi-valued Decision

Diagram (MDD) instead of an AND/OR graph. AND/OR graphs operate in the

Boolean domain whereas MDDs work in multi-valued domain. An intermediate step

in generating an MDD from an SQL query would be representing the query as a

Multi-Valued Logic Network (MVLN). There should be an efficient synthesis

technique for the synthesis of MVLNs in order to physically realize the multi valued

query optimization process. In this chapter, an efficient synthesis technique for

synthesizing MVLNs is described using logic gates called MIN and MAX gates and

then process of multi valued query optimization is explained. Section 3.0 gives an

introduction about Multi-valued logic and it’s advantages over binary logic. Section

3.1 gives background information about MVLNs and MDDs and section 3.2

describes the methodology used for synthesizing MVLNs using MDDs, the need for

multi-valued query optimization using MDDs and it’s possible outcome is given in

section 3.3 and section 3.4 gives the experimental results for the MVLN synthesis

using MDD and the chapter is concluded with a conclusion in section 3.5.

 28

3.0 Introduction

 Logic design has been mostly thought of in terms of binary signals, while

design using binary signals has proved very useful and effective in many applications,

it is difficult to implement more complex designs using binary valued logic, for

complex designs, variables with symbolic values are desired. In the recent years,

Multiple Valued Logic (MVL) [6] has played an increasing role in the evolution of

many commercial products and the use of MVL has made many designs simpler and

efficient. MVL has been basically proposed as a means for reducing the power,

improving the speed, and also increasing the packing density of VLSI circuits.

Decision Diagrams (DDs) are the state of the art data structures for design

automation problems. DD's have been successfully applied to solve many problems in

the area of Computer Aided Design (CAD) and DD's are becoming extremely popular

in the area of design automation. Boolean functions are generally represented using

Binary Decision Diagrams (BDDs) as many functions can be represented in a very

compact form using BDD's and many logic optimization and manipulation techniques

can be performed on Boolean function when represented using BDDs. Boolean

functions are the functions which satisfy the relation f : {0.1}n -> {0,1}. Every node

in a BDD has two outgoing edges and either of the edges can be active. A data

structure known as Multivalued Decision Diagram (MDD) has been developed to

represent Multivalued functions. Multivalued functions satisfy the relation f :

{0,1,2,..k-1} n ->{0,1,2,,..k-1}. Most of the efficient algorithms that are efficiently

used to manipulate a BDD can be used to manipulate an MDD.

 29

 In this chapter, synthesis of MVLN's using MDD's is examined. Every DD

has to be mapped to a target architecture and several approaches to achieve this kind

of mapping have been proposed, for example 2-input multiplexers can be used to

represent every node in a BDD as only one of the edges emerging out from the node

is active. MIN and MAX gates are used for the mapping process for synthesis of

MVLNs.

3.1 Background

 In this section information about MVLN's and MDD's is given and they are

explained in detail with specific examples.

3.1.1 Multi Valued Logic Networks

 In a MVLN, each primary input may take the values from the set {0,1,..k-1)

where k denotes the number of logic levels and so is the case with each primary

output. A primary input node does not have any incoming edges and a primary output

node does not have any outgoing edges. The basic cells used in an MVLN are MIN,

MAX, INV and LITERAL. MIN gate in MVL corresponds to AND gate in binary

logic, MAX gate corresponds to OR gate and INV corresponds to NOT gate. An

MVLN is generally a directed acyclic graph and every vertex in this graph is labeled

by one of these basic cells.

3.1.2 Multi Valued Decision Diagrams

 An MDD is developed as an efficient data structure to represent multi-valued

functions. An MDD can be built from an MVLN by traversing it in topological order.

Each node in an MDD has k outgoing edges where k denotes the number of

permissible logic values. Size of an MDD depends on the order of the multi-valued

 30

variables used to build the MDD. A node in an MDD is considered to be redundant if

it has all the successors pointing to the same node and another type of redundancy

occurs when an MDD has isomorphic sub graphs. An MDD devoid of these kind of

redundancies is termed as a reduced MDD. The example to follow explains the

behavioral nature of an MDD.

 Consider a two valued three variable function with the following truth table:

 Table 3.1 Truth table of a multi-valued function

x1 x2 x3
0 0 0
0 1 1
0 2 0
1 0 1
1 1 1
1 2 2
2 0 1
2 1 2
2 2 2

 An MDD can be constructed for the above multi valued function and the

MDD obtained by doing so is shown in figure 1. From the figure it can be observed

that each internal node in an MDD has 3 outgoing edges (equal to number of logic

values).

 31

Figure 3.1 MDD for function with truth table in Table 3.1

3.2 Methodology

 A mapping method that maps every edge of an MDD onto a set of MAX and

MIN gates is described in this section. For this mapping process an assumption is

made that an MDD representing a k-valued function is given initially. Another

assumption made is that each characteristic function is available for each primary

input. The characteristic function is given by the set of Jj(xi) values such that Jj(xi) =

k-1 if xi=j and Jj(xi) = 0 otherwise. Given an MDD each edge in it is translated into a

set of MAX and MIN gates in the following way:

a) The characteristic functions of input xi drive one MAX gate and another MAX gate

is driven by predecessor edge values.

b) The outputs of these two MAX gates serve as inputs to a MIN gate which produces

the final value for that edge.

 Mapping an MDD in this way generates a circuit with a size proportional to

the size of an MDD, the property which can be used for several optimization

 32

techniques. The above mapping process is explained in more detail with the help of

an example. Consider the following simple MDD shown in Figure 3.2.

 Figure 3.2 : example MDD to show mapping process

Each edge emerging from a node of an MDD is mapped to sets of MIN and

MAX gates. Figure 3.3, Figure 3.4, Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8,

Figure 3.9, show the steps involved in mapping process. Figure 3.10 shows the

synthesized circuit for all the edges in MDD. If there are any MAX or MIN gates

with a single input then that gate is redundant and is removed.

 33

Figure 3.3 Mapping for edge ec

Figure 3.4 Mapping for edge ed

 34

Figure 3.5 Mapping for edge ef

Figure 3.6 Mapping for edge eg

 35

Figure 3.7 Mapping for edge ee

Figure 3.8 Mapping for edge ei

 36

Figure 3.9 Mapping for edge ei

3.3 Multi valued query optimization

 In chapter 2, it was explained that a query can be optimized by

representing it using an AND/OR graph. Differences between BDDs and

AND/OR graphs are also explained with the help of an example, so, a query can

also be optimized by using a BDD as an intermediate data structure instead of an

AND/OR graph and several BDD circuit optimization techniques can be used for

optimizing SQL queries if they are represented using a BDD. Both BDDs and

AND/OR graphs work in the Boolean space and to make the query optimization

process more complete and practically useful there should be a data structure

which operates in multi-valued domain. An MDD is one such data structure

which operates in multi-valued domain.

 37

Figure 3.10 Mapping for all edges in example MDD

 MDDs are generalizations of BDDs in the multiple valued domain. MDDs

often allow efficient representation of functions with multi valued input variables

similar to BDDs in the binary case. All the optimization techniques that were

developed for optimization of BDDs over the past few decades can be used even for

MDDs and thus if an SQL query is represented using an MDD then several rich

optimization techniques can be used to optimize the query and recently several new

 38

MVL synthesis and MVL optimization tools are appearing and all these newly

appearing tools certainly contribute to the query optimization process to make the

process of optimization more efficient if query is represented in this way. Query

optimization using multi valued logic has not been implemented in this work but

strong and positive results obtained after representing the query as an AND/OR graph

in this work is a sure indication of the possible success of query optimization in multi

valued domain. This will be the future area of research in the query optimization

process.

3.4 Experimental results

Table 4.1 shows the experimental results after using this mapping technique

for several benchmark circuits. The number of MIN and MAX gates required for

mapping the benchmark circuits using this mapping technique are given. Further

reductions are possible and so the number of MIN and MAX gates given here are

upper bounds. The number of logic levels used are also given for the benchmark

circuits along with the number of cubes in the file.

The benchmark files shown in the experimental results are binary files

containing binary list of cubes, which are mapped to corresponding MVL cubes by

pairing of variables. The MDD package used to build MDD’s from “.pla” or “.ml”

files can currently build MDD’s only for multi valued cubes obtained from mapping

binary cubes to multi valued cubes.

 39

 Table 3.2 Experimental Results for benchmark circuits

S.NO CIRCUIT Logic
Levels

MIN MAX #cubes

1 Z5xpl.pla 4 125 157 127

2 Test1.pla 3 15 9 16

3 Tial.pla 4 2086 5447 640

4 Ts10.pla 3 523 357 127

5 In2.pla 4 857 1762 137

6 Risc.pla 3 297 276 73

7 Add6.pla 4 4648 9337 1091

8 Alu2.pla 3 166 246 86

9 C8.pla 4 183 327 173

3.5 Conclusion

 An edge mapping synthesis method for generating netlist for multi valued

logic networks is examined and the significant property of this kind of mapping is

that the resulting circuit size is proportional to the number of nodes in an MDD. It has

been shown that SQL query optimization in multi-valued domain can be achieved by

using MDD as an intermediate data structure.

 40

 41

CHAPTER IV

EFFECIENT STORAGE TECHNIQUE FOR DATAMINING APPLICATIONS

4.0 Background

The computerization of many business and government transactions has

resulted in huge amounts of useful data to be stored in a database. There are millions

of databases used today in almost every organization, and each database contains a

huge collection of data that, if analyzed properly, will reveal very important

information. This may be a good starting point for future ventures. One of the main

reasons for the limited success of the database systems in this area is that the current

database systems do not provide necessary functionality for a user interested in taking

advantage of the information available to him or her. Researchers have been

successful in building powerful and affordable database systems, but there is still an

urgent need to develop new techniques for intelligently and automatically

transforming the processed data into useful information.

The size of a typical database has been increasing at a tremendous pace.

Datamining essentially involves discovering patterns from the database and inferring

certain rules from the discovered patterns. These rules are called Association Rules.

Discovering association rules is very much an important part of datamining. One has

to search the database for patterns and infer certain rules from the discovered patterns.

This forms the crux of the datamining problem.

The main concentration of researchers in this area of datamining has been

revolving around association rules for data mining. Numerous algorithms for

association rules were developed but the issue of memory requirement for storing the

 42

data, which is a crucial issue, has been overshadowed. Memory requirement is a very

crucial issue because of the multifold increase in the sizes of the databases of late.

Given a large database of customer transactions, not only there should be efficient

algorithms that generate association rules but there should also be an efficient data

structure that consumes less memory and has desirable properties to retrieve

information easily, since the number of transactions increases as the memory

requirements increase. This chapter presents a data structure that can be used to

achieve amazing reduction in memory requirements for storing a data file. We also

present results for storage requirements for a sample sales data file showing the

effectiveness of this data structure.

4.1 Introduction

Of late, there has been an upward trend in the size of the databases, the

reason being the accumulation of data. At the same time, there have been

technological advances in leaps and bounds in the field of computer hardware

components and in the field of computer networks. One can make use of these

technological advances to maximize the efficiency of extracting the right kind of

data from the database.

 Section 4.2 gives the methodology and experimental results are provided in

Section 4.3 and finally the chapter is concluded in section 4.4.

4.2 Methodology

A storage technique is developed to store transactions of a data file in a BDD

and this technique can currently be applied for “Market Basket Analyses”. A market

basket is a collection of items purchased in an individual transaction. For example, in a

 43

case where a customer visits a grocery store, all the items he has purchased in that

particular outing to the grocery store come under one transaction. All these kind of

transactions are accumulated into a transaction data file where each transaction contains

the item-id of the item that has been purchased. One common analysis that can be run

over transactions is the concept of an itemset. Itemsets are set of items that appear

together in many transactions.

If we consider a transaction data file then the ideal data structure that is used

to store the items in the data file should have the following properties:

i) There should be a hash key for each entry of a transaction to retrieve the

transaction quickly by using some kind of a hash function.

ii) There should be an easy comparison method between two transactions so

that same hash key can be used for identical transactions (i.e. sharing of

similar transactions should be possible).

iii) Finally, the data structure should take a minimum of memory resources,

which is really crucial because transaction data files consume a lot of

memory resources.

BDD data structure satisfies all the requirements and can be

considered to be a very good data structure for datamining application.

Some of the important features that are useful for the storage of

datamining applications are listed below.

i) Every node in a BDD has a unique id that can be used as a hash key.

ii) Sharing of similar transactions can be easily achieved using a BDD

because BDD is built using a hash table and if a similar transaction to an

 44

already existing transaction is found it’s pointer value is made equal to the

pointer value of the already existing transaction. This is a very useful

feature as there is a high probability that transactions can be similar in a

transaction data file and there will be wastage of memory and thus slower

execution speed if these identical transactions are stored without sharing.

iii) BDD uses minimum amount of memory as all the similar transactions are

shared and there is even sharing of sub-transactions apart from sharing

whole of the transactions.

Thus, BDD happens to be a very good storage data structure for

datamining applications and another useful feature is that many

manipulations can be performed on the data stored in a BDD using BDD

manipulation techniques developed over the past few decades.. This may

be very useful for future work on datamining for efficient manipulation of

transactions.

4.2.1 Methodology process: BDD package is used to build BDD’s for

different transactions from a transaction file. A BDD is built for every transaction and

all these BDD’s for several transactions are managed by a single DD manager. If

there are two transactions which are somewhat similar, then the DD manager builds

the BDD’s in such a way that most of the nodes are shared between those

transactions, as the number of transactions increase, the number of nodes shared

between different BDD’s for different transactions increase, so on the whole, there is

reduction in the usage of memory because there is huge amount of sharing of nodes.

Another very important feature is that there is a unique pointer pointing to the root

 45

node of every BDD representing a transaction. This is especially crucial for

datamining applications because this can be used as a hash key to identify the

transaction.

 Figure 4.1 : BDD for item ‘13’

Let us consider a transaction in a transaction data file with the following items

in a single transaction, “ 13 3 13 11 10 15 ” where each number represents an

item number that has been purchased in that particular transaction. For example, “ 13

” is a code for a specific item in the store and presence of this item number in a

transaction indicates that it is one of the items that has been purchased by the

customer.

First, a BDD is built for each of the items in a transaction. Item number ‘13’

can be represented in binary as “1011” and this can be expressed as a logic function

given by x0.x1’.x2.x3 (x2’ represents the complemented form of x2) . So, this item can

 46

be represented as a Boolean function of four variables and the BDD that represents

such a logic function is shown in figure 2.1

Similarly a BDD can be built for the second item in the transaction, which is

‘3’. The Boolean function representing this item is given by x0’.x1’.x2.x3 and the

corresponding BDD for this function is shown in figure 2.2.

Figure 4.2 : BDD for item ‘3’

It can be easily observed that item1 and item2 share some similar nodes and

have some similar structure, the only difference being that the complemented and

uncomplemented edges of x0 are reversed in both the cases. BDD’s for these two

items can be OR’ed together to form a reduced BDD, which is shown in figure 2.3. It

can be easily observed that the BDD obtained when the BDD’s of item1 and item2

are combined is a much compact BDD and needs storage space for only 5 nodes

when compared to the storage space of 8 nodes needed by item1 and item2. This is a

significant improvement in storage. As the number of items in the transaction file

 47

increase, the number of shared nodes also increase and more compact will be the size

of the resulting BDD.

 Figure 4.3 BDD for item1 and item2

Another interesting feature in this process is that BDD corresponding to each

item can be identified with a unique pointer that points to the specific item and each

item can be easily retrieved using the pointer value. The same process can be used for

building the BDDs for other items in the transaction. BDDs for all the transactions in

the file are built using the same DD manager, so sharing of nodes takes place not only

within a single transaction but also with in sets of transactions. In this way almost all

the redundancy involved in storing unnecessary data will be eliminated and as the

number of transactions in a transaction file increase, the more reduction in storage

space could be achieved as there is a fair possibility that many similar transactions are

possible. By using this approach there won’t be any duplication of memory resources

as all similar transactions can be represented by a single BDD with each item

 48

recognized by it’s corresponding pointer value. The experimental results obtained by

using this approach are shown below.

 4.3 Experimental Results

 Table 2.1 shows the experimental results of the usage of memory for several

data files and when the comparison is made between the amount of storage space

used for the actual data file and the storage space used when BDD is used to store the

items, There is a huge amount of reduction in the memory when BDD is used as a

data structure.

Table 4.1: Results

File Size No: of transactions No: of BDD nodes (Size)
13MB 100000 8153 (127.4 KB)
7MB 64000 8323 (130.1 KB)
9MB 84000 11253 (175.8 KB)

4.4 Conclusion

 An efficient data structure for storing huge transaction files is proposed and

experimental results indicate that it is highly efficient. If BDD’s are used to represent

transactions then not only there is a good reduction in the usage of memory but also

powerful manipulation techniques can be used. This is a very desirable feature in the

area of datamining. Future work in this direction can include manipulation of

transaction data files using BDD’s. Several manipulation algorithms can possibly be

performed on transactions to extract valuable information. Furthermore, and since

BDD has been used as a versatile data structure over the past couple of decades in the

area of computer-aided-design, there is a high probability that it will augur well even

for data mining applications.

 49

 CHAPTER V

 CONCLUSION AND FUTURE WORK

5.1 Conclusions

 In this thesis some problems in the area of information processing have been

addressed, described in detail, and an efficient hardware technique has been described

for each of the problems. It has been shown that the tremendous developments over

the past decade in the area of digital logic optimization have been used to solve

problems in the area of information processing. Some problems that can be solved

this way have been identified and some more problems in information processing area

are expected to be solved using hardware techniques.

 In chapter 2, a technique for optimization of a query is described. The

problem of query optimization has been described in detail. The need for optimizing a

query is described, the optimization problem is analyzed, previous strategies used to

optimize a query are explained and a method is introduced for optimizing an SQL

query using AND/OR graphs. Experimental results are given indicating the

effectiveness of optimizing a query using this technique and they show that in most

of the queries tested, the execution time of the queries is optimized by 30% using this

query.

 In chapter 3, an Multivalued Decision Diagram (MDD) based synthesis of

Multi Valued Logic Networks (MVLN) networks is described, a description about

 50

MVLN's and MDD's is given, an edge mapping process in which MIN and MAX

gates are used for the mapping process instead of substituting each node by a

multiplexer is described and it is shown that mapping an MVLN in this way has an

advantage that resulting circuit size is proportional to the number of nodes in the

corresponding MDD. It has been shown that this representing the query using MDD

is a logical extension of representing the query using AND/OR graphs. Experimental

results were given to prove that this mapping technique is very effective mapping

technique.

 In Chapter 4, a very important problem in data base systems known as

datamining is addressed, the concepts of datamining are discussed in detail and some

previously developed algorithms for genertaing association rules are discussed. It has

been shown that not only the concentration should be on building better algorithms

for the association rules, but there is also a great need for developing an efficient

storage technique because datamining applications usually involve large datafiles and

need a complex data structure with indexing and hashing to store the items in the

transactions. A data structure requiring much less memory and well suited to the

application is proposed. Experimental results are generated for a sample data file

indicating that this is a very effective storage technique. Another very interesting

feature is that using this data structure, not only the memory requirements are less but

powerful manipulation techniques can be used (for example, manipulating the

transactions) if this data structure is used for storage of transactions.

 51

BIBLIOGRAPHY

[1] V. Komaragiri, M. A.Thornton and R. Drechsler, “Application of a hardware

synthesis technique for Database query optimization”, IEEE Pacific Rim Conference

on Communications, Computers and signal Processing (PACRIM), Pages: 716-719,

2001.

[2] S. Chaudhuri, “ An Overview of Query Optimization in Relational Systems ”,

Proceedings of the 17th ACM SIGACT-SOGMOD-SIFART Symposium on

Principles of Database Systems (PODS), Pages 34-43, 1998.

[3] M. Jarke and J. Koch, “Query Optimization in Database Systems”, Computing

Surveys, Vol. 16, No. 2, Pages 111-52, 1984.

[4] C. T. Yu and W. Meng, “Principles of Database Query Processing for Advanced

Applications ”, Morgan Kaufmann Publishers, Inc., 1998.

[5] W.Ziarko, Rough sets, “Fuzzy sets and Knowledge discovery”, Springer-verlag,

1994.

[6] D.C. Rine, “Computer science and Multiple Valued Logic”, North-Holland 1984.

[7] R. Drechsler, W. Kunz and D. Stoeffel, “Decision Diagrams and AND/OR graphs

for Design Automation problem”, Proceedings of the International Conference on

Information, Communication and Signal Processing, Pages 67-72, 1997.

[8] W. Kunz and D. K. Pradhan, “Recursive Learning, A New Implication Technique

for efficient solutions to CAD problems: Test, Verification and Optimization”, IEEE

Transactions on CAD, Pages 1143-1158, 1994.

[9]. R. E. Bryant, “Graph Based Algorithms for `Boolean function manipulation”,

IEEE Transactions on computers, Pages 677-691, 1986.

 52

[10] A. Zuzek, R. Drechsler and M. A. Thornton, “Boolean Function Representation

and Spectral Characterization using AND/OR graphs”. Integration, The VLSI

journal. Vol. 29, Pages 101-106, September 2000.

[11] D. Stoeffel, W. Kunz and S. Gerbe, “AND/OR reasoning graphs for determining

prime implicants in Multilevel combinational circuits”, Proceedings of the ASP

Design Automation Conference, Pages 25-32, 1997.

[12] R. Drechsler and B. Becker, “Decision Diagrams in Synthesis, algorithms ,

applications and extensions”, VLSI Design Conference, Pages 46-50, 1997.

[13] R. E. Bryant, “Binary Decision Diagrams and beyond: Enabling techniques for

formal verification”, Int’l Conf on CAD, Pages 236-243, 1995.

[14] D. Stoeffel, W. Kunz, S. Gerber,” AND/OR Graphs”, Technical Report, MPI-I-

95 -602.

[15] H. Korth and A. Silberschatz, Database System Concepts, McGraw-Hill, Inc.,

New York, NY, 2nd edition, 1991.

[16] F. M. Brown, Boolean Reasoning, Kluwer academic publishers, Boston, MA

1990.

[17] Akers S, “Binary Decision Diagrams”, IEEE transactions on computers, Vol.27,

Pages 509-516, June 1978.

[18] Drechsler, R. Gunther, W. Somenzi. “Using lower bounds during dynamic BDD

minimization”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Pages 51-57, Jan. 2001.

[19] R. Drechsler and B. Becker, "Decision Diagrams in Synthesis, algorithms,

applications and extensions", VLSI Design Conference, Pages 46-50, 1997.

 53

[20] R. Drechsler and B. Becker, "Efficient graph based representation of multi

valued functions with application to genetic algorithms", Intl.symp., on multiple

valued logic, Pages 64-72, 1994.

[21] K. S. Brace, R. L. Ruddell and R.E Bryant, "Efficient implementation of a BDD

package", Design Automation Conf., Pages 40-45, 1990.

[22] R. K. Brayton, Sunil. P. Khatri, "Multi Valued Logic synthesis", Intl conference

on VLSI design, January 1999.

[23] S. Malik, A. Srinivasan, "Algorithms for discrete function manipulation",

Proceedings of int’l conference on computer-aided-design, 1990.

[24] E. Clarke, M. Fujita and P. Mcgeer, "Multi Terminal Binary Decision Diagrams:

An efficient data structure for matrix representation", Intl workshop on logic

synthesis, Pages 1-15, 1993.

[25] R. Drechsler, D. Jankovic, and Stankovic, "Generic implementation of DD

packages in MVL", EUROMICRO Conference, Proceedings. Volume: 1, Pages 352

–359, 1999.

[26] P. Arunachlam, C. Chase, D. Moundanos, “Distributed binary decision diagrams

for verification of large circuits” Computer Design: VLSI in Computers and

Processors, ICCD '96. Proceedings, Pages: 365 –370 , 1996.

[27] J. S. Park, M. S. Chen, and P. S. Yu “ An effective hash-based algorithm for

mining association rules”, Proc. ACM SIGMOD conf, Management of data, May

1995.

[28] R. Srikanth and R. Agarwal, “Mining centralized association rules”,

Proceedings. 21st Int’l Conf. Very Large Databases, Pages: 1-23, Sept 1995.

 54

[29] R. T. Ng and J. Han. “Efficient and Effective clustering methods for Spatial Data

Mining”, Proc. 20 th Int’l Conf. Very Large Databases, Pages: 144-155, Sept 1994.

[30] U. M. Fayyad, “ Advances in Knowledge Discovery and Data Mining”,

AAAI/MIT press, 1996.

[31] R. Agarwal, T. Imielinski and A. Swamy, “Database Mining: A Performance

perspective”, Proc. 18 th Int’l Conf. Very Large Databases, Pages: 914-925, August,

1992.

[32] U. M. Fayyad, P. Smyth and R. Uthruswamy, “Advances in knowledge discovery

and data mining”. AAAI/MIT Press, 1996.

[33] M. A. Thornton, R. Drechsler and D. Wessels, “MDD based synthesis of multi-

valued logic networks”. IEEE ISMVL, Pages: 41-46, May 23-25, 2000.

[34] V. M. Sarathy, L. V. Saxton D. V. Gucht, “Algebraic foundation and

optimization for object based query languages”, Proceedings, Ninth International

Conference on Data Engineering, Pages: 81-90, 1993.

[35] A. S. Chiou, J. C. Sieg, “Optimization for queries with holistic functions”

Proceedings. Seventh International Conference on Database Systems for Advanced

Applications, Pages: 327-334, 2001.

[36] A. Gupta, S. Sudarshan, S. Vishwanathan, “Query scheduling in multi query

optimization”, International Symposium on Database Engineering & Applications

Pages: 11 –19, 2001.

[37] G. Antoshenkov, “Dynamic query optimization in Rdb/VMS”, Proceedings.

Ninth International Conference on Data Engineering, Pages: 538-547, 1993.

 55

[38] A. Hameurlain, F. Morvan, “An overview of parallel query optimization in

relational systems “,Proceedings. 11th International Workshop on Database and

Expert Systems Applications, Pages: 629-634, 2000.

[39] L. Stockmeyer, D. S. Modha, “Links between complexity theory and constrained

block coding”, IEEE Transactions on Information Theory, Jan. 2002 Pages: 59-88.

[40] C.J Hursch, “SQL, the structured query language”, Windcrest publishers,

1992.

 56

 APPENDIX A - Multi Valued Query Optimization

/**
THIS SECION DESCRIBES DIFFERENT MVDD ROUTINES FOR BUILDING
AN MVDD AND ALSO MAPPING IT TO MIN AND MAX GATES. SOME
SECTION OF THIS CODE IS A MODIFIED VERSION DR. M. Miller's MDD
PACKAGE.
**/

void
skip(char c)
/* This routine is used to Skip characters to end of line. */
{
 while(1)
 {
 if(c=='\n')break;
 scanf("%c",&c);
 }
}

void
collect(void); /* Collect garbage */

DDcubeinput(DDedge f[],int *p,int *n,int *m)
/* Reads a list of cubes and returns the function root edges in f[]. Also sets p =
number of values,
n = number of inputs and m = number of outputs.
INPUT ORDER RESTRICTION AND LIMITATION
Input must be a .r command followed by a .i command
followed by a .o command followed by the list of cubes
followed by the .e command.
*/
{
char ch1,ch2,s[80];
int i,j,k,cnt,x;
int value[4];
DDedge c,cube,e,edge[maxp];
/* Read number of logic values. */
fflush(stdin);
scanf("%c%c%d\n",&ch1,&ch2,p);
fflush(stdin);
/* Init MVDD package. */
DDinit(*p);
fflush(stdin);
/* Read number of input variables */
 scanf("%c%c%d\n",&ch1,&ch2,n);

 57

/* Read number of output functions */
fflush(stdin);
scanf("%c%c%d\n",&ch1,&ch2,m);
/* Init function edge pointers. */
for(i=0;i<*m;i++)
{
f[i]=DDlogic[0];
DDincref(f[i]);
}
/* Loop one cube at a time */
while(1)
{
scanf("%c%c",&ch1,&ch2);
/* Check for end of cube list */
 if((ch1=='.')&&(ch2=='e')) break;
/* Put characters of cube in s[] */
s[0]=ch1;
s[1]=ch2;
cnt=2;
for(i=2;;i++)
{
 scanf("%c",&ch1);
 if(ch1=='\n')break;
 s[i]=ch1;
 cnt++;
 }
/* Convert input side of cube one input at a time */
j=0;
for(i=0;i<*n;i++)
 {
 for(k=0;k<*p;k++) value[k]=0;
 while(1)
 {
 if(s[j]==' '||s[j]=='-') break;
 value[s[j]-'0']=2;
 j++;
 }
 j++;
 if(i==0)
 {
 cube=DDliteral(i+1,value);
 }
 else
 {
 for(k=0;k<DDradix;k++)
 if(value[k]==2) edge[k]=cube;

 58

else
{
edge[k]=DDlogic[0];
}
cube=DDfunc(i+1,edge);
}
}
/* Now combine cube with appropriate output functions */
 for(i=0;i<*m;i++)
{
 if(s[j]!='0'&&s[j]!='-'&&s[j]!='~')
{
 k=s[j]-'0';

if(k<DDradix-1)
/* Form min of cube with output value if necessary */
 {
 e=DDlogic[k];
 e=DDmin(cube,e);
 apply(minid);
 e=DDcleanup(e,ptr(e)->flag+1);
 } else
 e=cube;
/* Max cube with output function to date */
 DDdecref(f[i]);
 f[i]=DDmax(f[i],e);
 apply(maxid);
 f[i]=DDcleanup(f[i],ptr(f[i])->flag+1);
 DDincref(f[i]);
 }
 j++;
 }
/* Collect garbage */
 collect();
 }
}

 59

/***
This section contains a programs which takes the
initial input file, builds an MDD and also synthesizes
the obtained MDD using MAX and MIN gates
**/
#include <iostream>
#include <fstream>
#include <stdlib>
#include <memory>
#include "MVDDpackage.h"
#include "MVDDpackage.c"
#include "MVDDread.c"
#include "timing.c"
using namespace std;
typedef struct MDDmap Childedge;
struct MDDmap /* Structure for a node in an MDD*/
 {
 string child[8]; /* specifies the number of the children */
 string terminal[8]; /* dummy nodes to identify the terminal
node */
 string nodename; /* identifying a particulat node */
 int prevnodes; /* ancestors */

 int pos; /* determines the position of the current
child of the node */

 int termpos;
 int prevnodecntr;

int prevnodepos[8]; /* Gives information about which child
of the previoud node is connected to the
current node.*/

 Childedge cedge[0];
};
void
main(void)
{
 DDedge f[10],pntr;
 int i,p,m,n;
 long time1,time2;
 ofstream outfile("esp.out")
 time1=usertime();
/* Read a MVL cube specification from STDIN */
/* and build the (shared) MVDD */
/* NOTE DDcubeinput calls DDinit */
 DDcubeinput(f,&p,&n,&m);
 time2=usertime();

 60

 for(i=0;i<m;i++)
 { printf("\n next output \n");
 DDprint(f[i]);
/* Print function is described below */
DDprint(DDedge e)
/**
 Prints and MVDD but not in a graphical format
 but in a format which is a bit difficult to comprehend
**/
{
 int i;
 if(ptr(e)->redundant) printf("R");
 outfile<<" "<< (long)ptr(e));//(long)ptr(e)->alias);
 if(DDterminal(e))
 {
 outfile<<" "<<DDgetcycle(e);
 }
 else if(DDid(e)<maxn)
 {
 // printf("v%ld[",DDid(e));
 outfile<<"[";
 for(i=0;i<DDradix;i++)
 {
 DDprint(DDchild(e,i));
 }
 outfile<<"]";
 } else
 { if(DDid(e)==maxid) printf("max[");
 else if(DDid(e)==minid) printf("min[");
 else if(DDid(e)==sumid) printf("sum[");
 else outfile<<"???[";
 for(i=0;i<2;i++)
 DDprint(DDchild(e,i));
 outfile<<"]";
 }
}
 /*DDprint(f[i]);*/
 printf("\n");
 }
/* Display stats */
 DDstats();
 printf("Time to read: ");
 printtime(time2-time1);
 printf("\n");

 61

}
 int stackptr=0,nodecntr=0,No_of_nodes=0,childpos=0,Nodes_done=0;
 MDDmap node[200]; /*Stack of 200 MDD nodes */
 int nodestackptr=0,tempcntr=0;
 bool flag = false;
 int maxchild = DDradix; /* Maximum number of children
allowed */
 /* illegal to use more number of children
*/
 int No_Of_Max_Nodes =0;
 int No_Of_Min_Nodes =0;
 bool init=true;
 string expression;
 ifstream infile("esp.out");
 ofstream outfile("viv.txt");
 for(int cnt=0;cnt<200;cnt++)
 {
 node[cnt].pos = 0; /* initializing the position pointer to
child "Zero" */
 node[cnt].prevnodes=0; /* initializing the previous nodes to "Zero" */

 node[cnt].prevnodecntr=0;
 }
 if(!infile)
 cout<<"Error in opening the file"<< endl;
 while(infile>>expression)
 { if(nodecntr==-1)
 /* Used to ensure that traversal will not go beyond root node */
 break;
 if(init==true)
 {
 node[nodecntr].nodename= expression;
 init = false;
 }
 else if(expression=="]")
 { /* This loop is used to decrease the node count when a
 terminal node appears */
 Nodes_done++;
 /* Used as a reference number to traverse back to the right node */
 nodecntr=No_of_nodes - Nodes_done;
 while(1)
 {
 if(node[nodecntr].pos >= maxchild)
 {
 nodecntr--;
 }

 62

 else
 break;
 }
 cout<<"nodecntr is "<< nodecntr<< endl;
 cout<<"No_of_nodes is "<< No_of_nodes<<endl;
 }
 else if(flag == true)
 {
 childpos=node[nodecntr].pos;
 /* position of the current active child of the node */
 node[nodecntr].child[childpos] = expression;
 node[nodecntr].pos++;
 nodecntr=No_of_nodes+1;

/* Increase the node pointer so that the pointer points to next
available node in the traversal */

 No_of_nodes++;
 node[nodecntr].nodename = expression;
 node[nodecntr].prevnodes++ ;
 node[nodecntr].prevnodecntr++;
 node[nodecntr].prevnodepos[prevnodecntr]= node[nodecntr-
1].pos -1;
 flag= false;
 }
 else if(expression=="[")
 {
 flag = true;
 /* This flag is used to signal that the next node is the
 first child of the current of the node */
 }
else
 {
 if(expression[0]!='e')
 {
 /* This loop is used to identify whether the child is a terminal
node or not
 and also to carry out MDD building operations*/
 childpos = node[nodecntr].pos;
 node[nodecntr].child[childpos] = expression;
 node[nodecntr].pos++;
 nodecntr=No_of_nodes+1;
 No_of_nodes++;
 node[nodecntr].nodename= expression;
 node[nodecntr].prevnodes++ ;
 node[nodecntr].prevnodecntr++;
 node[nodecntr].prevnodepos[prevnodecntr]= node[nodecntr-
1].pos -1;

 63

 }
 else if(expression[0]=='e')
 { /* If the current node is a terminal node */
 nodecntr--; /* decrease the node pointer */
 No_of_nodes--;
 childpos=node[nodecntr].pos-1;

 /* decide which terminal child it is */
 if(expression == "e0")

 node[nodecntr].child[childpos]="TERM0";
 else if (expression == "e1")

 node[nodecntr].child[childpos]="TERM1";
 else if (expression == "e2")

 node[nodecntr].child[childpos]="TERM2";
 else if (expression == "e3")

 node[nodecntr].child[childpos]="TERM3";
 if(node[nodecntr].pos > maxchild)

 outfile<<" ERROR :more number of children
than allowed"<<endl;
 outfile<<"child["<< childpos<<"] of"<<
node[nodecntr].nodename<<"is "<< node[nodecntr].child[childpos]<<endl;
 }
 }
}
 for(int i=0;i<maxchild;i++)
 { /*display of the children of each node in the MDD. Strictly for
troubleshooting purpose */
 for(int k=0;k<maxchild;k++)
 outfile<<"child["<<k<<"] of " << node[i].nodename <<"is
"<< node[i].child[k]<<endl;
 outfile<<endl;
 }
 for (int i1=0; i1<No_of_nodes ; i1++)
 {
 if(node[i1].prevnodes == 0)
 {
 int OutGoingNodes = maxchild;
 /* This is the root node */
 for (int j=1; j<maxchild; j++)
 { int n=1;
 while (n<= maxchild)

 64

 {
 while(1)
 {
 if(node[i1].child[j].nodename= node[i1].child[j-
n].nodename)
 {
 OutGoingNodes--;
 }
 n++; // temp =n;
 if(n== j)
 break;
 }
 }
 }
 No_Of_Max_Nodes = OutGoingNodes -1;
 No_Of_Min_Nodes++;
 }
 else if (node[i1].prevnodes >0)
 {
 /*for each outgoing edge*/
 int *TotalEdges;;
 TotalEdges = new int[maxchild]; /*used as a temporary array
*/
 int total=maxchild;
 for(int j=0; j<maxchild;j++)
 {
 TotalEdges[j] = node[i1].child[j].pos;

 }
 int temp=0;
 max1 = TotalEdges[0];
 for(int j1=1;j1<maxchild;j1++)
 {
 temp=j1;
 for(int k=0;k<temp;k++);
 {
 if(temp== maxchild)
 break;
 if(TotalEdges[j1]== TotalEdges[k])
 {
 total--;
 temp++:
 }
 else
 {
 max1=DDmax(TotalEdge[j1],max1);

 65

 No_Of_Max_Nodes++;
 }
 }
 }
 max2 = 0;
 for (int p=0; p< maxchild; p++)
 {
 temp=node[i].prevnodes[p];
 J[temp]=1;
 max2= DDmax(J[temp],max2);
 No_Of_Max_Nodes++;
 }
 DDmin(max1,max2);
 No_Of_Min_Nodes++;
 }
cout<<"total number of MAX nodes is given by "<< No_Of_Max_Nodes<<endl;
cout<<"total number of MIN nodes is given by "<< No_Of_Min_Nodes<<endl;
 }
}
}
/* definitions of some sample functions used in this mapping technique.*/
DDedge
getnode(int p)
/***
 Get a node from the avail list or allocate a new node.
 Initialize the node fields.
***/
{
 DDedge np;

 if(avail==NULL)
 {
 DDtotalnodes++;
 np=malloc(sizeof(node)+p*sizeof(DDedge));
 }
 else
 {
 np=avail;
 avail=avail->next;
 }
 np->ref=0;
 np->redundant=0;
 np->flag=0;
 np->alias=NULL;
 return(np);
}

 66

DDedge
DDchild(DDedge e,int p)
/***
 Returns pth child of node pointed to by e with cycle
 accummulation.
***/
{
 DDedge ep;

 ep=ptr(e)->e[p];
 DDsetcycle(ep,(DDgetcycle(ep)+DDgetcycle(e))%DDradix);
 return(ep);
}
void
DDinit(int r)
/**
 Initialize the MVDD package with r as the max number of logic
 values to be used this time.
**/
{
 int i,j;

 printf("MVDDpackage V. 3.0\n");
 printf("------------------\n\n");
 printf("node size: %ld\n\n",sizeof(node)+(r-1)*sizeof(DDedge));
 printf("\n\n");

/* Init globals */
 avail=NULL;
 DDradix=r;
 DDtotalnodes=0;
 DDactivenodes=0;
 DDzero=getnode(DDradix);
 DDzero->v=0;
 for(i=0;i<maxp;i++)
 DDzero->e[i]=NULL;

/* Set unique table to empty */
 for(i=0;i<nid;i++)
 for(j=0;j<nbucket;j++)
 unique[i][j]=NULL;

/* Init DDconst vector of constants */
 for(i=0;i<DDradix;i++)
 {

 67

 DDlogic[i]=DDconst(i);
 printf("DDlogic[%d] is given by %p\n", i,DDlogic[i]);
 }
/* Init variable ordering vectors */
 for(i=0;i<=maxn;i++)
 order[i]=orderinv[i]=i;

}

DDedge
DDmax(DDedge e0,DDedge e1)
{
 DDedge e[maxp];
 int i;

/* Check terminal cases */
 if(e0==DDlogic[DDradix-1]||e1==DDlogic[DDradix-1])
 return(DDlogic[DDradix-1]);
 if(e0==DDlogic[0]) return(e1);
 if(e1==DDlogic[0]) return(e0);
/* Create the appropriate operator node */
 e[0]=e0;
 e[1]=e1;
 for(i=2;i<DDradix;i++) e[i]=NULL;
 return(DDfunc(maxid,e));
}

DDedge
DDmin(DDedge e0,DDedge e1)
{
 DDedge e[maxp];
 int i;

/* Check terminal cases */
 if(e0==DDlogic[0]||e1==DDlogic[0])
 return(DDlogic[0]);
 if(e0==DDlogic[DDradix-1]) return(e1);
 if(e1==DDlogic[DDradix-1]) return(e0);
/* Create the appropriate operator node */
 e[0]=e0;
 e[1]=e1;
 for(i=2;i<DDradix;i++) e[i]=NULL;
 return(DDfunc(minid,e));

}

 68

DDedge
DDsum(DDedge e0,DDedge e1)
{
 DDedge e[maxp];
 int i;

/* Check terminal cases */
 if(e0==DDlogic[0]) return(e1);
 if(e1==DDlogic[0]) return(e0);
/* Create the appropriate operator node */
 e[0]=e0;
 e[1]=e1;
 for(i=2;i<DDradix;i++) e[i]=NULL;
 return(DDfunc(sumid,e));
}

DDedge
DDfunc(int v,DDedge e[])
/***
 Create a node representing a function.
***/
{
 DDedge p;
 int i,q,q0,q1;
 if(v>maxn){
/* Operator node. */
/* Terminal value cases. */
 if(DDterminal(e[0])&&DDterminal(e[1]))
 {
 q0=DDgetcycle(e[0]);
 q1=DDgetcycle(e[1]);
 if(v==maxid)
 {
 if(q0>q1) q=q0; else q=q1;
 }
 else if(v==minid)
 {
 if(q0<q1) q=q0; else q=q1;
 }
 else if(v==sumid)
 {
 q=(q0+q1)%DDradix;
 }
 return(DDlogic[q]);
 }
 }//end of if(v>maxn)

 69

/* Create node. */
 p=getnode(DDradix);
 p->v=v;
 for(i=0;i<DDradix;i++)
 p->e[i]=e[i];
/* Locate it. */
 p=locate(p,1);
 return(p);
}

 70

APPENDIX B – Storage Technique For Datamining

/**
THIS PROGRAM IS USED TO BUILD A DATA STRUCTURE FOR

DATAMINING APPLICATIONS. THE MAIN CONCENTRATION IS TO BUILD

A DATA STRUCTURE FOR DATA TRANSACTION FILES. THIS PROGRAM

INCLUDES ROUTINES DEVELOPED IN THE “BDD” PACKAGE.

**/
.
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <time.h>
#include "util.h"
#include "cudd.h"
#include "bnet.h"
#include "ntr.h"
#include "cuddInt.h"
#include "netlist.h"
#define Item_Bit_len 16 /* Bit length for each item */
#define Max_Basket_Size 100
#define Block_Size 100
static NtrOptions * mainInit ARGS(());
extern void BddEdgeMap(DdManager * manager,BnetNetwork *netlist);
extern void AddEdgeMap(DdManager * manager,BnetNetwork *netlist, int);

void AddEdgeMap(char* Transaction_File_Name, DdManager *manager)
{
 GdManager *gateManager;
 int result = 0;
 int k = 0;
 int j = 0;
 int p=0;
 int tran_count = 0;
 int totalVars = 0;
 int numVars = 0;
 int orgVars = 0;
 int nvars = 0;
 int *varIn;

 71

 int i = 0;
 DdNode *support;
 DdNode *scan;
 DdNode *fo; /* pointers to the nodes of a BDD. Most of the pointers
 as temporary pointers */
 DdNode *fc;
 DdNode *fx;
 DdNode *tempfx;
 DdNode *storefx;
 DdNode *fAdd;
 DdNode *shortA;
 BnetNode *circ_node=NULL;
 DdNode **ff;
 DdNode **trans;
 DdNode **Temptrans;
 DdNode **fMiddle;
 FILE *fpx;
 FILE *fp;
 char basket[Max_Basket_Size * 8]; /* storage structure for storing each
itemset */
 char Itemset_Str[8];
 char tempstr[8];
 int Itemset_Len = 0;
 int Itemset_Num = 0;
 unsigned short int Item_No = 0;
 unsigned short int bit=0;
 unsigned short int bit1=0;
 unsigned short int tempbit=0;
 int storebit=0;
 int check=0;
 int count = 0;
 long initialtime=0; /* used to calculate cpu seconds */
 long totaltime=0;
 long tempfortime=0;
 int s,r=0;
 long timeStart;
 orgVars = manager->size;
 /* Open transaction file */
 if((fp = fopen(Transaction_File_Name, "r")) == NULL)
 printf("Can't open the file: %s!", Transaction_File_Name);
 /* Itemset_Num: the number of the itemsets in the file */
 Itemset_Num = 0;
 while(!feof(fp)){
 check=check+1;
 fgets(basket, Max_Basket_Size * 8, fp);
 Itemset_Num++;

 72

 /* Get each transaction in a intem until end of file is reached */
 }
 printf("Itemset_Num = %u\n", Itemset_Num);
 fseek(fp,0,SEEK_SET);
 ff =ALLOC(DdNode*, Item_Bit_len * sizeof(DdNode*));
 trans =ALLOC(DdNode*, Itemset_Num * sizeof(DdNode*));
 Temptrans =ALLOC(DdNode*, Itemset_Num * sizeof(DdNode*));
 Cudd_AutodynEnable(manager, CUDD_REORDER_SIFT);
 /* Callng a CUDD function */
 for(i=0;i<Item_Bit_len;i++)
 {
 fc = Cudd_bddNewVar(manager);
 ff[i] = fc;
 /* Create a new BDD variable for each of the 16 bits*/
 }
 printf("Tran_No Memory Time Address \n");
 cuddInitInteract(manager); /* must use this before use swapInPlace */
 cuddGarbageCollect(manager, 1);
 k = 0;
 while(!feof(fp)){
 memset(basket, '\0', Max_Basket_Size * 8);
 fgets(basket, Max_Basket_Size * 8, fp);
 trans[0] = Cudd_ReadZero(manager);
 /* pointing to a constant node '0' initially */
 storefx = Cudd_ReadOne(manager);
 Itemset_Len = strlen(basket);
 for(s=0;s<8;s++)
 {
 tempstr[s]=0;
 }
 timeStart = util_cpu_time();
 /* Starting the time counter */
 for(i = 0; i < Itemset_Len; i++)
 {
 if(basket[i]=='\t') /*indicates an end of an item */
 {
 Item_No = atoi(tempstr);
 s=0;
 }
 else
 {
 tempstr[s]=basket[i];
 /*concatenate individual digits into a string */
 s++;
 }
 tempbit = Item_No << 2;

 73

 printf("Item_No is %d\n", Item_No);
 bit1=tempbit;
 fx = Cudd_ReadOne(manager);
 /* The below for loop is used to AND current BDD to the new bit
 if it is a '1' and NOT the BDD if the bit is a '0'. This
 is used to build a BDD for a single item in an itemset */
 for(j = 0; j <= Item_Bit_len-3; j++)
 {
 bit = bit1>>Item_Bit_len-1;
 if(bit > 0)
 {
 fx = Cudd_bddAnd(manager,fx,ff[j]);
 }
 else
 {
 tempfx=Cudd_Not(ff[j]);
 fx = Cudd_bddAnd(manager,fx,tempfx);

 }
 bit1=tempbit<<j+1;
 printf("a--0-1%lX %lX %lX\n",trans[k], manager, fx);
 Cudd_Ref(fx);
 }
 trans[k] = Cudd_bddOr(manager, fx, storefx);
 /* OR the BDD's of different items */
 Cudd_RecursiveDeref(manager,fx);
 /* Taking care of reference counts */
 storefx=trans[k];
 Cudd_Ref(trans[k]);
 }
 p++;
 Temptrans[k]=storefx;
 Cudd_RecursiveDeref(manager,trans[k]);
 printf("result is %d \n", result);
 k++;
 /*Cudd_RecursiveDeref(manager,trans[k]);*/
 Cudd_ReduceHeap(manager, CUDD_REORDER_SIFT, 0);
 Cudd_AutodynDisable(manager);
 result = Cudd_ReadNodeCount(manager);
 /* counting the total number of nodes in the BDD */
 printf("result is %d \n", result);
 tempfortime++;
 initialtime= (util_cpu_time() - timeStart);
 totaltime=totaltime+initialtime;
 printf("%-15u%-15u%-15s%-15u\n", k, result,
 util_print_time(util_cpu_time() - timeStart), trans[k]);

 74

 }
 if(fclose(fp) == NULL)
 printf("Can't close the file: %s! \n", Transaction_File_Name);
}

NtrOptions *mainInit()
{
 NtrOptions *option;
 /* Initialize option structure. */
 option = ALLOC(NtrOptions,1);
 option->initialTime = util_cpu_time();
 option->verify = FALSE;
 option->second = FALSE;
 option->file1 = NULL;
 option->file2 = NULL;
 option->traverse = FALSE;
 option->depend = FALSE;
 option->image = NTR_IMAGE_MONO;
 option->imageClip = 1.0;
 option->approx = NTR_UNDER_APPROX;
 option->threshold = -1;
 option->from = NTR_FROM_NEW;
 option->groupnsps = NTR_GROUP_NONE;
 option->closure = FALSE;
 option->closureClip = 1.0;
 option->envelope = FALSE;
 option->scc = FALSE;
 option->maxflow = FALSE;
 option->zddtest = FALSE;
 option->sinkfile = NULL;
 option->partition = FALSE;
 option->char2vect = FALSE;
 option->density = FALSE;
 option->quality = 1.0;
 option->decomp = FALSE;
 option->cofest = FALSE;
 option->clip = -1.0;
 option->noBuild = FALSE;
 option->stateOnly = FALSE;
 option->node = NULL;
 option->locGlob = BNET_GLOBAL_DD;
 option->progress = FALSE;
 option->cacheSize = 32768;
 option->maxMemory = 0; /* set automatically */
 option->slots = CUDD_UNIQUE_SLOTS;
 option->ordering = PI_PS_FROM_FILE;

 75

 option->orderPiPs = NULL;
 option->reordering = CUDD_REORDER_NONE;
 option->autoMethod = CUDD_REORDER_SIFT;
 option->autoDyn = 0;
 option->treefile = NULL;
 option->firstReorder = DD_FIRST_REORDER;
 option->countDead = FALSE;
 option->maxGrowth = 20;
 option->groupcheck = CUDD_GROUP_CHECK7;
 option->arcviolation = 10;
 option->symmviolation = 10;
 option->recomb = DD_DEFAULT_RECOMB;
 option->nodrop = TRUE;
 option->signatures = FALSE;
 option->verb = 0;
 option->gaOnOff = 0;
 option->populationSize = 0; /* use default */
 option->numberXovers = 0; /* use default */
 option->bdddump = FALSE;
 option->dumpFmt = 0; /* dot */
 option->dumpfile = NULL;
 option->store = -1; /* do not store */
 option->storefile = NULL;
 option->load = FALSE;
 option->loadfile = NULL;
 return(option);
} /* end of mainInit */
/* Part of the program used to read the actual input transaction file and
 call the function to build a BDD for the corresponding transaction file*/
int main()
{
 DdManager *manager;
 DdNode *f, *fc, *fcomp,*shortA, **ff;
 NtrOptions *option;
 BnetNetwork *netlist=NULL;

 /* Set up the options structure for converting the netlist to a BDD */
 option = mainInit();

 /* Initialize the DD manager */
 manager = Cudd_Init(0, 0, CUDD_UNIQUE_SLOTS,
CUDD_CACHE_SLOTS, 0);
 AddEdgeMap("ttt.dat", manager); /*reading the input data file and calling the
function to create a BDD for the Transaction data file */
 return(0);
}

 76

APPENDIX C - SQL Query Optimization

/**
THIS SECTION IS A MODIFIED VERSION OF THE LEX & YACC FILES FOR

AN SQLPARSER DEVELOPED BY DR. M. Kernsten. THIS PARSER HAS BEEN

MODIFIED TO SUITE THE PROCESS OF SQL QUERY OPTIMIZATION

**/
 D [0-9]
 L [a-zA-Z_]
 E [Ee][-+]?{D}+
 S [\t\n]*
 %{
 /* Type conflict resolution */
 char getch();

 #include <stdio.h>
 #include <ctype.h>
 #undef input
 # define input() (((yytchar=yysptr>yysbuf?U(*--
yysptr):(char)getch(yyin))==10?(yylineno++,yytchar):yytchar)==EOF?0:yytchar)

 #define Symbol(X) {/*printf("symbol(%d)\n", X);*/ yylval=X; return(X);}
 #define Vector(X,Y) /*printf("vector(%d,%s)\n", X,Y);*/ yylval=Y; return(X)

 #define TRUE 1
 #define FALSE 0
 #define LISTING 1

 FILE *lexout;
 int endoffile =0;
 long atol();
 float atof();

 typedef struct {
 char *Lex_name;
 unsigned Lex_return;
 } Lex_tab;

 #include "tokens.h"

 Lex_tab *lex_lookup();
%}
%%

 77

"prolog".*"\n" { printf("%s\n", yytext+6); fflush(stdout);}
quit { stop();}
"<=" {return LEQ;}
"<>" {return NEQ;}
">=" {return GEQ;}
"^^" {return DHAT;}
".." {return DDOT;}
{L}({L}|{D})* {
register Lex_tab *lp;
char buf[20];
if (lp = (Lex_tab *) lex_lookup()){
Symbol(lp->Lex_return);
}else{ /* HIO 92 - remove Capital as first character*/
if isupper(yytext[0]) yytext[0]=tolower(yytext[0]);
/* END HIO */
Vector(IDENTIFIER, newstr("",yytext));
 }
 }
{D}+ {
Vector(INTEGERVALUE, newstr("int",yytext));
 }
{D}+"."{D}+({E})? |
"."{D}+({E})? |
{D}+{E} {
Vector(FLOATVALUE, newstr("flt",yytext));
 }
\"[^\n\"]*\" { if (yytext[yyleng-1] == '\\')
 yymore();
 else {
yytext[yyleng-1] = '\0';
Vector(STRINGVALUE, newstr("str",yytext+1));
}
}
\'[^\n\']*\' { if (yytext[yyleng-1] == '\\')
yymore();
else {
yytext[yyleng-1] = '\0';
Vector(STRINGVALUE, newstr("str",yytext+1));
}
}
"--" { /* Skip comment */
while(yytchar != '\n' && yytchar!=0) input();
 return(yylex());
}
{S} ;
";" { return 0;}

 78

{/*fputc(*yytext,stderr); */ Symbol(*yytext);}
%%
#define MAXLINELENGTH 2048
char linebuf[MAXLINELENGTH], arrowbuf[MAXLINELENGTH], *arrow;
char *cptr;
int lnerr;
char getch(fd)
FILE *fd;
{
extern int listing;
if(!cptr || !*cptr)
{
if(lnerr) printf("/* %s*/\n",arrowbuf);
lnerr=0;
/* Fill the buffer */
cptr= linebuf;
arrow= arrowbuf;
if(fgets(linebuf,MAXLINELENGTH,yyin) == NULL){
stop();
}
if(listing){
/* printf("%s",linebuf);*/
savetxt(cptr);
}
}
 *arrow= *cptr=='\t' ? '\t': ' ';
 arrow++;
*arrow= 0;
 return(*cptr++);
 }

 /*
 **MODULE lex_lookup
 **FUNCTION Take the identifier in the buffer yytext and
 ** find out if it denotes a key word. Note that
 ** the identifier is mapped to lowercase as required
 ** by the report.
 */

 Lex_tab *lex_lookup()
 {
 /* Search the lexical table for keywords */
 register Lex_tab *t,*l;
 register char *n,*n2;
 char localname[200];
 /* First map identifier to one case */

 79

 for(n=yytext, n2=localname; *n && n2<localname+200; n++, n2++)
 *n2= isupper(*n)? *n-'A'+'a':*n;
 *n2=0;
 n=localname;
 if(*n<'a' || *n >'w') return(0);
 t = Keywords +Keyind[*n-'a'];
 for(l= Keywords+Keyind[*n-'a'+1]; t<l;t++)
 if (strcmp(t->Lex_name, n) == 0)
 return(t);
 return((Lex_tab *) 0);
 }
 char *lex_name(tokenid,value)
 int tokenid;
 char * value;
 {
 int i;
 static char num[30];
 switch(tokenid){
 case GEQ: return "'>='";
 case LEQ: return "'<='";
 case NEQ: return "'<>'";
 case DOT: return "'!'";
 case DDOT: return "'!!'";
 case HAT: return "'^'";
 case DHAT: return "'^^'";
 case '>': return "'>'";
 case '=': return "'='";
 case '<': return "'<'";
 case '+': return "'+'";
 case '-': return "'-'";
 case '*': return "'*'";
 case '/': return "'/'";
 /* HIO92 AvL added */
 case CORRELATION: return "corr";
 case ATTRIBUTE: return "attr";
 case DEFINEREL: return "defrel";
 /* end AvL */
 case IDENTIFIER:
 if(value && *value=='_') *value='x';
 case INTEGERVALUE:
 case FLOATVALUE:
 case STRINGVALUE:
 /* printf("ID %s\n",value); */
 return value;
 case LITERAL :
 return "";

 80

 }
 for(i=0;Keywords[i].Lex_name;i++)
 if(Keywords[i].Lex_return== tokenid)
 return Keywords[i].Lex_name;
 if(value) return value;
 return "(unknown)";
 }

 newstr(hdr,str)
 char *hdr,*str;
 {
 /* Make a copy of a string */
 char *cell;
 int len;
 len= strlen(str);
 cell= (char *) malloc(len+12);
 if(*hdr)
 switch(*hdr){
 case 's':
 sprintf(cell,"%s('%s')",hdr,str);
 break;
 default:
 sprintf(cell,"%s(%s)",hdr,str);
 }
 else
 sprintf(cell,"%s",str);
 return((int) cell);
 }
 stop()
 {
 printf("writeschema.\n");
 fflush(stdout);
 exit();
 }
 yywrap(){
 if(endoffile) return(0);
 endoffile = TRUE;
 return(-1);
 }

/*sql.yacc*/

 %token ATTR ALTER ADD
 %token ALL AND ANY AS
 %token ASC AVG AUTHORIZATION
 %token BEGINSYM BETWEEN BY

 81

 %token CHARACTER CHECK CLOSE COBOL
 %token COMMIT CONSTRAINTS CONTINUE COUNT
 %token CREATE CURRENT CURSOR CORRELATION
 %token COPY COLUMN DATABASE
 %token DECIMAL DECLARE DEFAULT DELETE
 %token DESC DISTINCT DOUBLE DROP
 %token ERASE ESCAPE EXEC
 %token EXISTS FETCH FIRST
 %token FIXED FLOAT FOR FOREIGN
 %token FORTRAN FOUND FROM
 %token GRANT GOTO GROUP HAVING
 %token HASH INDEX
 %token INDICATOR IN INSERT INTEGER
 %token INTO IS KEY LANGUAGE
 %token LAST LIKE MAX MIN MODULE
 %token NOT NULLSYM NUMERIC NEXT
 %token OF ON OPEN OPTION
 %token OR ORDER PRIOR
 %token PASCAL PLI PRECISION PRIMARY
 %token PRIVILEGES PROCEDURE PUBLIC
 %token REAL REFERENCE ROLLBACK RENAME
 %token SCHEMA SECTION SELECT SET
 %token SMALLINT SOME SQL SQLERROR
 %token SQLCODE SUM TABLE TO
 %token TUPLE TYPE THEN
 %token UNION UNIQUE UPDATE USER
 %token VALUES VIEW WHENEVER
 %token WHERE WITH WORK

 %left SELECT
 %left FROM
 %left WHERE
 %left GROUP
 %left HAVING
 %left OR
 %left AND
 %left NOT
 %left '<' '>' '<=' '>=' '=' '<>'
 %left '*' '/'
 %left '+' '-'
 %left UNARY
 %left OF '.' DDOT '^' DHAT '->'
 %token ENDSYM BODY
 %token LIST METHOD RETURNS
 %token RESULT STRING
 %token GEQ NEQ LEQ

 82

 %token DOT HAT
 %token APPEND

 /* Internal tokens for marking the syntax tree */
 %token IDENTIFIER INTEGERVALUE FLOATVALUE
STRINGVALUE
 %token LITERAL TRUEVALUE FALSEVALUE ATTRIBUTE
 %token DEFINEREL
 %{

 /* #include "sqlvar.h"*/
 #include <malloc.h>
 #include "yytree.h"
 %}

 %%

 session : query
 | schema
 | module
 | statement
 | table_definition
 | view_definition
 | create_body
 /* | assign_stmt */
 | ingresstmt
 | error

 literal : INTEGERVALUE
 | FLOATVALUE
 | STRINGVALUE

 column_list: column_l {yylist(0);}

 column_l: IDENTIFIER
 | column_l ',' IDENTIFIER {yydelete(1);}

 table_name : IDENTIFIER
 | IDENTIFIER '.' IDENTIFIER {yydelete(1); yymark(':');}

 module_name : IDENTIFIER

 cursor_name: IDENTIFIER

 procedure_name: IDENTIFIER

 83

 data_type: character_string_type
 | exact_numeric_type
 | approximate_type

 character_string_type: CHARACTER
 | CHARACTER '(' INTEGERVALUE ')'
 {yydelete(3);yydelete(1); yypromote(0);}

 exact_numeric_type: NUMERIC prec_scale {yypromote(0);}
 | DECIMAL prec_scale {yypromote(0);}
 | INTEGER
 | SMALLINT

 prec_scale: INTEGERVALUE
 | INTEGERVALUE INTEGERVALUE
 | /* empty */ { yydelete(0);}

 approximate_type: FLOAT INTEGERVALUE {yypromote(0);}
 | FLOAT
 | DOUBLE
 | REAL
 | DOUBLE INTEGERVALUE {yypromote(0);}

 value_list : '(' value_l ')'
 { yydelete(2); yylist(1); yydelete(0);}

 value_l : value
 | value_l ',' value {yydelete(1);}

 value: USER
 | IDENTIFIER INDICATOR IDENTIFIER
 | literal
 | NULLSYM

 /* column_name : primary_path */ /* TSQL */
 column_name : IDENTIFIER {yymark(ATTRIBUTE);}
 | IDENTIFIER '.' IDENTIFIER {yydelete(1); yymark(ATTR);}

 set_function:
 COUNT '(' alldistinct column_name ')'
 {yydelete(4); yydelete(1); yypromote(0);}
 /*
 | funcname '(' alldistinct column_name ')'
 {yydelete(4); yydelete(1); yypromote(0);yytval->token=$1;}
 */

 84

 | funcname '(' alldistinct value_expression ')'
 {yydelete(4); yydelete(1); yypromote(0); yytval->token=$1;}
 funcname: AVG
 | MAX
 | MIN
 | SUM

 value_expression: term
 | value_expression '+' term {yypromote(1);}
 | value_expression '-' term {yypromote(1);}

 term : factor
 | term '*' factor {yypromote(1);}
 | term '/' factor {yypromote(1);}

 factor : '+' primary %prec UNARY {yydelete(0);}
 | '-' primary %prec UNARY
 {
 yytval->yysons[0]->token=INTEGERVALUE;
 yytval->yysons[0]->val= (int) "0";
 yymark('-');}
 |primary

 primary : value
 | set_function
 | column_name /* column_name */
 | '(' value_expression ')' {yydelete(2); yydelete(0);}

 predicate: comparison_predicate
 | between_predicate
 | in_predicate
 | like_predicate
 | null_predicate
 | quantified_predicate
 | exists_predicate

 comparison_predicate: value_expression LEQ value_expression
 { yypromote(1);}
 | value_expression GEQ value_expression
 { yypromote(1);}
 | value_expression NEQ value_expression
 { yypromote(1);}
 | value_expression '>' value_expression
 { yypromote(1);}
 | value_expression '<' value_expression

 85

 { yypromote(1);}
 | value_expression '=' value_expression
 { yypromote(1);}
 /* | value_expression comp_op sub_query*/

 comp_op: '=' {$$='=';}
 | NEQ {$$=NEQ;}
 | '<' {$$='<';}
 | '>' {$$='>';}
 | LEQ {$$=LEQ;}
 | GEQ {$$=GEQ;}

 between_predicate: value_expression BETWEEN
 value_expression AND value_expression
 | value_expression NOT BETWEEN
 value_expression AND value_expression

 quantified_predicate: value_expression comp_op quantifier sub_query
 { yymark($2); yydelete(1);}

 quantifier: ALL
 | some_any

 some_any: SOME
 | ANY

 in_predicate : value_expression IN sub_query {yypromote(1);}
 | value_expression NOT IN sub_query %prec NOT
 {yypromote(1);yytval->token = strcat($1,$2);}
 | value_expression IN value_list {yypromote(1);}
 | value_expression NOT IN value_list %prec NOT
 {yypromote(1);yytval->token = strcat($1,$2);}

 like_predicate : column_name LIKE STRINGVALUE escape
 | column_name NOT LIKE STRINGVALUE escape

 escape : ESCAPE STRINGVALUE
 | /* empty */

 exists_predicate: EXISTS sub_query {yypromote(0);}

 null_predicate : column_name IS NULLSYM
 { yymark('='); yydelete(1);}
 | column_name IS NOT NULLSYM
 { yymark(NEQ); yydelete(1);}

 86

 search_condition: search_condition OR boolean_term {yypromote(1);}
 | boolean_term

 boolean_term: boolean_factor
 | boolean_term AND boolean_factor
 { yypromote(1);}

 boolean_factor: boolean_primary
 | NOT boolean_primary
 { yypromote(0);}

 boolean_primary: predicate
 | '(' search_condition ')' {yydelete(2);yydelete(0);}
 | value_expression /* shiftreduce */

 table_expression: from_clause where_clause group_clause having_clause

 from_clause: FROM table_reference_list {yylist(1); yypromote(0);}

 table_reference_list: table_reference
 | table_reference_list ',' table_reference { yydelete(1);}

 where_clause: WHERE search_condition {yypromote(0);}
 | /* empty */ { yymark(WHERE);
 yytval->yysons[0]= (YYSTREE)
yybool(TRUEVALUE);}

 group_clause: GROUP BY column_name_list
 { yylist(2); yydelete(1); yypromote(0);}
 | /* empty */ { yymark(GROUP); yylist(0);}

 column_name_list: column_name
 | column_name_list ',' column_name {yydelete(0);}

 having_clause: HAVING search_condition {yypromote(0);}
 | /* empty */ { yymark(HAVING);
 yytval->yysons[0]=
(YYSTREE)yybool(TRUEVALUE);}

 sub_query: '(' SELECT alldistinct select_list table_expression ')'
 { yydelete(5); yylist(3); yypromote(1);yydelete(0);yyswap(1,2); }

 query: SELECT alldistinct select_list table_expression
 { yylist(2);yypromote(0);
 /* HIO92 AvL - swap <select_list> and <table_expression> for output */

 87

 yyswap(1,2);
 }

 select_list : select_value
 | select_list ',' select_value {yydelete(1);}
 | '*'

 select_value: value_expression
 /* | subquery */

 query_expression: query_term
 | query_expression UNION query_term {yypromote(1);}
 | query_expression UNION ALL query_term {yypromote(1);}

 query_term: query
 | '(' query_expression ')'
 { yydelete(2); yydelete(0);}

 order_clause: ORDER BY sort_list
 { yylist(2); yydelete(1); yypromote(0);}

 sort_list: sort_elm
 | sort_list sort_elm

 sort_elm: sort_spec ASC {yypromote(1);}
 | sort_spec DESC {yypromote(1);}
 | sort_spec

 sort_spec: INTEGERVALUE
 | column_name

 /* ---- DEFINITION OF DATABASE -------- */

 schema : CREATE SCHEMA authorization_clause schema_list
 { yylist(3); yypromote(1); yydelete(0);}
 | DATABASE IDENTIFIER {yypromote(0);}
 |drop_stmt
 |alter_stmt
 |index_stmt

 authorization_clause: AUTHORIZATION IDENTIFIER {yypromote(0);}

 schema_list: schema_elm
 | schema_list schema_elm

 schema_elm: table_definition /* create_stmt */

 88

 | view_definition
 | privilige_definition

 /* create_stmt: CREATE table_definition { yylist(1);yypromote(0);} */

 table_definition: CREATE TABLE table_name '(' table_element_list ')'
 { yylist(4); yydelete(5);yydelete(3);
 yydelete(1);yypromote(0);
 }
 | CREATE TABLE table_name AS query
 { yydelete(3); yydelete(1);yypromote(0);}
 | CREATE TABLE table_name LIKE table_name
 { yydelete(1); yypromote(0); }

 table_element_list: table_element {yylist(0);}
 | table_element_list ',' table_element {yylist(2);yydelete(1);}

 table_element: column_definition
 | CONSTRAINTS unique_constraint_definition

 column_definition: IDENTIFIER data_type
 | IDENTIFIER data_type column_constraint

 column_constraint: NOT NULLSYM
 | NOT NULLSYM UNIQUE

 unique_constraint_definition: UNIQUE '(' column_list ')'
 { yydelete(3); yydelete(1); yypromote(0);}

 view_definition: CREATE VIEW view_table_name AS query viewcheck

 view_table_name: table_name
 | table_name '(' column_list ')'
 { yydelete(3); yydelete(1);}

 viewcheck: WITH CHECK OPTION
 { yydelete(2); yypromote(1); yydelete(0);}
 | /* empty */
 { yydelete(0);}

 drop_stmt: DROP TABLE IDENTIFIER { yypromote(0);}
 | DROP VIEW IDENTIFIER { yypromote(0);}

 alter_stmt: ALTER TABLE IDENTIFIER ADD COLUMN column_definition
 { yydelete(5); yydelete(2); yypromote(0);}

 89

 | ALTER TABLE IDENTIFIER DROP COLUMN column_definition
 { yydelete(5); yydelete(2); yypromote(0);}
 | ALTER TABLE IDENTIFIER RENAME COLUMN IDENTIFIER TO
IDENTIFIER
 { yydelete(5); yydelete(2); yypromote(0);}

 index_stmt : CREATE INDEX ON column_name { yydelete(3); yypromote(0);}
 | CREATE HASH ON column_name { yydelete(3); yypromote(0);}

 privilige_definition:
 GRANT privilege_list ON table_name TO grantees
 grantoption

 grantoption : WITH GRANT OPTION
 { yydelete(2); yypromote(1); yydelete(0);}
 | /* empty */
 { yydelete(0);}

 privilege_list : ALL {yypromote(0);}
 | ALL PRIVILEGES {yypromote(0); yydelete(0);}
 | action_list {yylist(0);}

 action_list: action
 | action_list ',' action {yydelete(1);}

 action : SELECT
 | INSERT
 | DELETE
 | UPDATE
 | UPDATE '(' column_list ')'
 { yydelete(3); yydelete(1); yypromote(0);}

 grantees : PUBLIC
 | IDENTIFIER

 module : module_name_clause language_clause module_authorization
 procedure_list
 { yylist(3);}
 | module_name_clause language_clause module_authorization
 cursor_declaration_list procedure_list
 { yylist(3); yylist(4);}

 module_authorization: AUTHORIZATION IDENTIFIER
 { yypromote(0);}
 | /* empty */

 90

 procedure_list: procedure
 | procedure_list procedure

 module_name_clause: MODULE
 | MODULE module_name {yypromote(0);}

 cursor_declaration_list: cursor_declaration
 | cursor_declaration_list cursor_declaration

 cursor_declaration:
 DECLARE cursor_name CURSOR FOR cursor_expression
 { yypromote(2); yydelete(2); yydelete(0);}

 cursor_expression : query_expression
 | query_expression order_clause
 procedure: PROCEDURE procedure_name parameter_declaration_list ';'
 statement ';'
 { yylist(2); yydelete(5);yydelete(3); yypromote(0);}

 procedure: PROCEDURE procedure_name parameter_declaration_list ';'
 block
 { yylist(2); yydelete(3); yypromote(0);}

 parameter_declaration_list: parameter_declaration
 | parameter_declaration_list parameter_declaration

 parameter_declaration: IDENTIFIER data_type
 | SQLCODE

 statement: open_statement
 | close_statement
 | cursor_declaration
 | select_statement
 | fetch_statement
 | insert_statement
 | searched_update_statement
 | positioned_update_statement
 | searched_delete_statement
 | positioned_delete_statement
 | commit_statement
 | rollback_statement

 block : BEGINSYM stmtlist ENDSYM
 { yydelete(2); yylist(1); yypromote(0);}

 stmtlist : statement

 91

 | stmtlist ';' statement
 { yydelete(1);}

 open_statement: OPEN cursor_name {yypromote(0);}

 close_statement: CLOSE cursor_name {yypromote(0);}

 select_statement: SELECT alldistinct select_list INTO parameter_list
 table_expression
 {yypromote(3); yydelete(0);}

 alldistinct: ALL {yypromote(0);}
 | DISTINCT {yypromote(0);}
 | /* empty */ { yymark(ALL);}

 parameter_list: column_name
 | parameter_list ',' column_name {yydelete(1);}

 fetch_statement: FETCH direction cursor_name INTO parameter_list
 { yylist(3); yydelete(2); yypromote(0);}
 fetch_statement: FETCH direction cursor_name
 { yypromote(0);}

 direction: NEXT | PRIOR | FIRST | LAST | /* empty */

 insert_statement: INSERT INTO table_name insert_value
 { yydelete(1); yypromote(0);}
 | INSERT INTO table_name query
 { yydelete(1); yypromote(0);}
 | INSERT INTO table_name '(' column_list ')' insert_value
 { yydelete(5); yydelete(3); yydelete(1); yypromote(0);}
 | INSERT INTO table_name '(' column_list ')' query
 { yydelete(5); yydelete(3); yydelete(1); yypromote(0);}

 insert_value : VALUES '(' insert_value_list ')'
 {yylist(2);yydelete(3);yydelete(1);yypromote(0);}
 /* | VALUES call {yypromote(0);} */

 insert_value_list: insert_value
 | insert_value_list ',' insert_value {yydelete(1);}

 insert_value: value

 searched_update_statement: UPDATE updatehead where_clause {yypromote(0);}

 positioned_update_statement: updatehead WHERE CURRENT OF cursor_name

 92

 { yydelete(3); yypromote(2); yydelete(1);}

 updatehead: def_table_name SET set_clause_list
 {yydelete(1);yylist(1);}

 def_table_name: table_name

 set_clause_list: set_clause
 | set_clause_list ',' set_clause {yydelete(1);}

 set_clause : column_name '=' value_expression {yypromote(1);} /* NEW */

 searched_delete_statement:
 DELETE FROM table_name
 where_clause
 { yydelete(1);yypromote(0);}

 positioned_delete_statement:
 DELETE FROM table_name
 WHERE CURRENT OF cursor_name
 { yydelete(5); yydelete(3);yydelete(1);yypromote(0);}

 commit_statement: COMMIT WORK
 { yydelete(1); yypromote(0);}

 rollback_statement: ROLLBACK WORK
 { yydelete(1); yypromote(0);}

 /* -------------------------- TSQL SECTION -------------------------------- */

 /* -------------------------- 2 TYPE CONSTRUCTORS ------------------------- */

 type_constructor: tuple_type

 data_type: STRING /* a new basic type */

 literal : TRUEVALUE | FALSEVALUE
 | literal_type '(' literal_list ')'
 { yydelete(3); yylist(2); yypromote(0); yydelete(0);}

 literal_type : TUPLE {$$=TUPLE;}

 literal_list : literal
 | literal_list ',' literal {yydelete(1);}

 tuple_type : TUPLE OF tuple_body

 93

 { yydelete(1);yydelete(0);}
 | tuple_body

 tuple_body : '(' tuple_comp ')'
 {yydelete(2); yylist(1); yydelete(0); yymark(TUPLE);}

 tuple_comp: tuple_comp ',' component {yydelete(1);}
 | component

 component: named_type
 | named_type column_constraint /* FOR SQL ONLY */
 | unique_constraint_definition /* FOR SQL ONLY */

 named_type :
 IDENTIFIER type_constructor
 { yymark(':');}
 | '[' type_constructor ']'
 { yymark(UNION);yydelete(2);yydelete(0);}
 | '[' IDENTIFIER type_constructor ']'
 { yymark(UNION);yydelete(3);yydelete(0);}
 | type_constructor

 /* ------------------ 3 THE PATH CONSTRUCTOR --------------------*/

 /* all columns are now interpreted as paths. For tables this may
 require some addition checks */

 /*
 primary_path : primary_factor {$$==$1;}
 | primary_factor OF primary_path
 { yymark(DDOT);
 yytval->yysons[1] = yytval->yysons[0];
 yytval->yysons[0] = yytval->yysons[2];
 yydelete(2);
 }

 primary_factor : primary_elm
 | sub_query
 (Scomment)| call (Ecomment)
 | '*'

 primary_elm: IDENTIFIER

 94

 expression_list : value_expression
 | value_expression ',' expression_list {yydelete(1);}
 */

 /* ------------------ 3 THE FROM CONSTRUCTOR --------------------*/
 /* table_name =usedtobe= table_selector */
 table_reference: table_name
 | table_name IDENTIFIER {yymark(CORRELATION);}

 /*
 table_selector : selector
 | '.' selector {yydelete(0);yymark(ATTR);}

 selector : path

 path: path_term
 | path_term '.' path {yydelete(1);yymark(ATTR);}

 path_term: IDENTIFIER
 */

 /* ------------------ 4 THE UPDATE STATEMENTS --------------------*/

 /* table_name =usedtobe= table_selector */
 /*
 updatehead: UPDATE table_selector SET set_clause_list
 {yydelete(2); yypromote(0);}
 */
 /* column_name =usedtobe= primary_path */
 /*
 assign_stmt: SET column_name '=' value_expression
 { yymark(SET); yydelete(2); yydelete(0);}
 | SET column_name '=' query
 { yymark(SET); yydelete(2); yydelete(0);}

 */
 create_body: CREATE BODY IDENTIFIER body_list
 {yypromote(1); yydelete(0); yylist(1);}

 body_list: body_impl
 | body_list ',' body_impl
 { yydelete(1);}

 body_impl:IDENTIFIER type_constructor {yymark(':');}
 | IDENTIFIER body {yymark(':');}

 95

 body : AS search_condition {yydelete(0);}
 | AS query {yydelete(0);}
 | AS language_clause {yydelete(0);}

 ingresstmt: COPY TABLE IDENTIFIER copyarg FROM STRINGVALUE
 { yydelete(4); yydelete(1); yypromote(0);}
 ingresstmt: COPY TABLE IDENTIFIER copyarg INTO STRINGVALUE
 { yydelete(1); yypromote(0);}

 copyarg: '(' copyitem ')'
 { yydelete(2); yydelete(0); yylist(0);}
 copyitem: IDENTIFIER '=' IDENTIFIER
 {yydelete(1);}
 | copyitem ',' IDENTIFIER '=' IDENTIFIER
 {yydelete(3); yydelete(1);}
 %%

 #include "lex.yy.c"
 #include "yyerror.h"
 #undef yyerror
 #define yyerror(X) {error(":",yystate,yylineno); myerror(yystate);}

 96

/**

THIS PART OF THE PROGRAM IS USED TO GENERATE A "BLIF" FILE FOR

THE CORRESPONDING QUERY. SOME PART OF THE QUERY IS

TRANSFORMED INTO A 'BLIF" FILE IN THIS SECTION.

**/

#include <iostream>
#include <fstream>
#include <string>
#include <stack>
using namespace std;
void main()
{
int var,var1,varforhide,varforoperator,varin,i=0,j=0,k=0,len,count=0;
string store[5], inputvalue[3], dupeelement[20];
int vardupe=0, tempstackptr=0;
int stackptr=0,StoreInt=0,StoreIntTwo=0,
stackholdptr=0,stackholdoneptr=0,stackholdtwoptr=0;
int interpointer=0; /*for intermediate nodes in the AND/OR graph*/
stack<string> elementstack[150]; /*stack for storing part of a query */
stack<string> tempstack[20]; /*Temporary stack for manipulating query */
stack<string> stackhold[5]; /* Stack for holding temporary stack items*/
stack<string> stackholdone[5];/* Stack for holding temporary stack items without
paranthesis */
stack<string> stackholdtwo[30];
stack<string> InterStack[10];
string element, temp, temp1,temp2; /*temporary strings for holding temporary
values*/
ifstream inFile("query.txt"); /*input query file */
ofstream outFile("query1.blif"); /* intermediate BLIF file */
if (!inFile)
outFile << "Cannot find fruit.txt" << endl;
outFile<<".model "<< " " << "query1.blif" << endl;
while (inFile >> element)
 {
 var++; /* variable to check for the output list after "select" */
 var1++;/* variable to check for the list of coloumns in the table */

 varin++;/* variable to check for the input list after "where" */

 97

 dupeelement[vardupe] = element;
 vardupe++;
/*duplicate variable helpful in parsing the query and building BLIF file for it*/

 if((var1== 3 && var==3)||(var1== 3 && varin==3)||(varin== 3 && var==3))
 {

 outFile<<"there is a clash at the element: "<< element<< endl;
/*If the query is properly parsed by the parser this conflict never occurs*/
 }

 if((var1>3) && (element == ",")) /*for storing coloumns in the table */
 {
 var1=2;
 }
 if (element == ";") /*end of the query */
 {
 outFile<< " .end"<<endl;

 break;
 }
 else
 {
 len = element.length();
 temp = element;
 }
 if(temp=="select") /* Recognizing Start of the SQL query */
 {
 var=2;
 }
 if(temp == "from") /* signals the start of the list of coloums to be queried */
 var1=2;
 if(temp == "where") /* signals the start of actual conditions for the query */
 {
 varin=2;
 }
 if (var == 3)
 {
 temp1 = element;
 outFile<<".outputs "<< temp1<<endl; /* Actual output of the digital circuit */
 }
 if(var1==3)
 {
 if(element[len-1] == ',')
 {
 element=element.erase(len-1,1);
 var1=2;

 98

 }
 temp2= element;
 store[i]=element; /* for storing the coloumn names in the table */
 i++;
 }
 if(varin==3)
 { varforhide++;
 varforoperator++;
 count++;
 varin=2;
 if((element== "=") || (element == ">")||(element== "<") || (element == "<="))
 {
 varforoperator=2;
 }
 if(varforoperator==3)
 {
 inputvalue[j]= element;
 j++;
 }
 if((element != "=")&&(element != ">")&&(element != "<")&&(element !=
"<=")&&(element != ">=")&& (count%4!=0))
 {
 if(count==1)
 outFile<< ".inputs"; /* Actual inputs of the digital
circuit */
 if(varforhide!=3)
 outFile<<" " <<element;
 }
 else if(count%4!=0)
 varforhide = 2;
 }
 }
if(var==2) /*Buildng some part of intermediate section of the BLIF file */
 {
 for(stackptr=0;stackptr<200;stackptr++)
 {
 if(elementstack[stackptr].top() == "where" || elementstack[stackptr].top() ==
"Where")
 break; /* Parsing the query after the "where" statement */
 stackptr++;
 }
 stackptr++;
 while(elementstack[stackptr].top() != ";")
 { /*Build the circuit until the end of the query is reached */
 if(elementstack[stackptr].top() == "(")
 { StoreInt = stackptr;

 99

 while(1)
 { /* Store the elements in a temporary tack to make the process of mapping
 the query to the digital circuit simple. Also helps if there are nested queries */
 tempstack[tempstackptr].top() = elementstack[stackptr].top();
 stackptr++;
 if(elementstack[stackptr].top() == ")")
 { /* Signals the end of the sub portion of the query */
 Interstack[interpointer].push(elementstack[stackptr+1].top();
 interpointer++;
 break;
 }
 }

 for(i=stackptr;i>=StoreInt;i--)
 {
 elementstack[stackptr].pop();
/* Popping out the portion of the query on which mapping operation is completed */
 stackptr--;
 }
 StoreInt=0;
 for(i= tempstackptr;i>=0;i--)
 {
if(((tempstack[tempstackptr].top() == "and")||(tempstack[tempstackptr].top() ==
"AND")) &&
 ((tempstack[tempstackptr-2].top() != "and")
||(tempstack[tempstackptr].top() != "AND")))
 { stackholdptr = tempstackptr-3;
 stackholdoneptr = tempstackptr+1;
 for (int j=0;j<3;j++)
 { /*collecting the inouts to the binary gate */
 stackhold[j].top()=tempstack[stackholdptr].top();
 stackholdptr++;
 }
 for (j=0;j<3;j++)
 {
 stackholdone[j]=tempstack[stackholdoneptr];
 stackholdoneptr++;
 } /*Statement corresponding to the query in BLIF file */
 outFile<<".names "<<
stackhold[0].top()<<stackhold[1].top()<<stackhold[2].top()<< " "<<

 stackholdone[0].top()<<stackholdone[1].top()<<stackholdone[2].top()<< " ";
 outFile<< "I"<< interpointer<<endl; /*Intermediate node used
at second

 or higher level stages in the circuit*/

 100

 interpointer++;
 outFile<<"11 1"<<endl;
 }
 else if(tempstack[tempstackptr].top()== "or" || tempstack[tempstackptr].top()==
"OR")
 {
 stackholdptr = tempstackptr-3;
 stackholdoneptr = tempstackptr+1;
 for (j=0;j<3;j++)
 {
 stackhold[j].top()=tempstack[stackholdptr].top();
 stackholdptr++;
 }
 for (j=0;j<3;j++)
 {
 stackholdone[j].top()=tempstack[stackholdoneptr].top();
 stackholdoneptr++;
 }
 outFile<<".names "<<
stackhold[0].top()<<stackhold[1].top()<<stackhold[2].top()<< " "<<

 stackholdone[0].top()<<stackholdone[1].top()<<stackholdone[2].top()<< " ";
 outFile<< "I"<< interpointer<<endl;
 interpointer++;
 outFile<<"11 1"<<endl;
 }
else if(tempstack[tempstackptr].top()== "between" || tempstack[tempstackptr].top()==
"BETWEEN")
 { stackholdptr = tempstackptr-3;
 stackholdoneptr = tempstackptr+1;
 for (j=0;j<3;j++)
 {
 stackhold[j].top()=tempstack[stackholdptr].top();
 stackholdptr++;
 }
 for (j=0;j<3;j++)
 {
 stackholdone[j].top()=tempstack[stackholdoneptr].top();
 stackholdoneptr++;
 }

outFile<< ".names "<<
stackhold[2].top()<<">"<<stackholdone[0].top()<<
stackhold[2].top()<< "<"<<stackholdone[2].top()<<" ";

 outFile<< "I"<< interpointer<<endl;
 interpointer++;

 outFile<<"11 1"<<endl;

 101

 }

 else
 { /*If the query does not have a ")" then the BLIF file is constructed as below
*/
 StoreIntTwo=stackptr;
 while(1)
 {
 stackholdtwo[stackholdoneptr].top() = elementstack[stackptr].top();
 stackptr++;
 stackholdtwoptr++;

if((elementstack[stackptr].top() == "(")||(elementstack[stackptr].top()
== ";")|| (elementstack[stackptr].top() ==
")")||(elementstack[stackptr].top() == "Union"))

 {
 break;
 }
 }
 stackptr=StoreIntTwo;
 /*Rest of the portion is self explanatory */
 for(i=stackptr;i>=StoreIntTwo;i--)
 {
 elementstack[stackptr].pop();
 stackptr--;
 }
 StoreInt=0;
 for(i=stackholdtwoptr;i>=0;i--)
 {

 if(((stackholdtwo[i].top() == "and")||(stackholdtwo[i].top() == "AND"
)) &&
 ((stackholdtwo[i-2].top() != "and") ||(stackholdtwo[i-2].top()!=
"AND")))
 {
 stackholdptr = stackholdtwoptr-3;
 stackholdoneptr = stackholdtwoptr+1;
 for (int j=0;j<3;j++)
 {
 stackhold[j].top()=stackholdtwo[stackholdtwoptr].top();
 stackholdptr++;
 }
 for (j=0;j<3;j++)
 {
 stackholdone[j]= stackholdtwo[stackholdtwoptr];
 stackholdoneptr++;
 }

 102

 outFile<<".names "<<
stackhold[0].top()<<stackhold[1].top()<<stackhold[2].top()<< " "<<

 stackholdone[0].top()<<stackholdone[1].top()<<stackholdone[2].top()<< " ";
 outFile<< "I"<< interpointer<<endl;
 interpointer++;
 outFile<<"11 1"<<endl;
 }
 else if(stackholdtwo[i].top()== "or" || stackholdtwo[i].top()== "OR")
 {
 stackholdptr = stackholdtwoptr-3;
 stackholdoneptr = stackholdtwoptr+1;
 for (j=0;j<3;j++)
 {
 stackhold[j].top()=stackholdtwo[stackholdptr].top();
 stackholdptr++;
 }
 for (j=0;j<3;j++)
 {
 stackholdone[j].top()=stackholdtwo[stackholdoneptr].top();
 stackholdoneptr++;
 }
 outFile<<".names "<<
stackhold[0].top()<<stackhold[1].top()<<stackhold[2].top()<< " "<<

 stackholdone[0].top()<<stackholdone[1].top()<<stackholdone[2].top()<< " ";
 outFile<< "I"<< interpointer<<endl;
 interpointer++;
 outFile<<"11 1"<<endl;
 }
 else if(stackholdtwo[i].top()== "between" || stackholdtwo[i].top()== "BETWEEN")
 {
 stackholdptr = tempstackptr-3;
 stackholdoneptr = tempstackptr+1;
 for (j=0;j<3;j++)
 {
 stackhold[j].top()=tempstack[stackholdptr].top();
 stackholdptr++;
 }
 for (j=0;j<3;j++)
 {
 stackholdone[j].top()=tempstack[stackholdoneptr].top();
 stackholdoneptr++;
 }
 outFile<< ".names "<<
stackhold[2].top()<<">"<<stackholdone[0].top()<< stackhold[2].top()<< "<"

 103

 <<stackholdone[2].top()<<" ";
 outFile<< "I"<< interpointer<<endl;
 interpointer++;
 outFile<<"11 1"<<endl;
 }
 }
}
}
}
i=0;
while(1)
{
 if((InterStack[i].top() == "or") || (InterStack[i].top() == "OR"))

{outfile<<".names "<< " "<< "I"<<i<<" " <<"I"<<i+1<<"
"<<I<<interpointer<< endl;

 if(i<interpointer)
 interpointer++;
 outfile<<"00 0"<< endl;
 i++; }
 if((InterStack[i].top() == "and") || (InterStack[i].top() == "AND"))
 {
 outfile<<".names "<< " "<< "I"<<i<<" " <<"I"<<i+1<<"
"<<I<<interpointer<< endl;
 outfile<<"11 1"<< endl;
 if(i<interpointer)
 interpointer++;
 i++: }
 if(i>=interpointer)
 {if((InterStack[i-1].top() == "and") || (InterStack[i-1].top() == "AND"))
 {
 outfile<< "I"<< i-2 <<" " << "I"<<i-1<<" "<< temp1<< endl;
 outfile<<"11 1"<<endl;
 }
 else if((InterStack[i-1].top() == "or") || (InterStack[i-1].top() ==
"OR"))
 {
 outfile<< "I"<< i-2 <<" " << "I"<<i-1<<" "<< temp1<< endl;
 outfile<<"00 0"<< endl;
 }
 break;
 }
}
}
}
}

 104

/**
Most of this part of the program is from AND/OR package developed by Dr. Alanka

Zuzek. This portion of the AND/OR package has been modified according to the

convenience.

**/

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream.h>
#include<math.h>
#include "options.h"
#include "tree.h"
#include "output.h"
#include "aotr.h"
#include "hash.h"

#ifdef DMALLOC
#include <dmalloc.h>
#endif

int suma_all_nodes = 0;
int suma_loc_nodes = 0;
int suma_iso_nodes = 0;
float max_diff_iso = 0;
float max_diff_loc = 0;

int BLTsize;

BnetLookupTable* BLT; // BnetLookupTable
BnetNetwork *net; // network
int rmax; // r_max; See Kunz, Stoffel */

short* nJset;
short* namesJ; // auxiliary array for set of justifications
unsigned char* valsJ; // auxiliary array for their values

short* signs;
unsigned char* io_val;
unsigned char* kids_val;
unsigned char* node_val;

TreeNode *root; // temp root AND/OR grafa

 105

int max_nodes; // holds the maximal number of nodes;
 // actual when building AND/OR graphs for all nodes
int *szAO_inp; // holds the sizes of AND/OR graphs, but only for
 // primary inputs; used for ord_alg = 0 (sizes AO)

#ifdef DEBUG_PATH
short* tempP; // for paths
#endif

/*---*/
/* function prototypes */
/*---*/

/**AutomaticStart***/

/*Function**

 Synopsis [Opens a file.]

 Description [Opens a file, or fails with an error message and exits.
 Allows '-' as a synonym for standard input.]

**/

FILE *open_file(char *filename, char *mode)
{
 FILE *fp;

 if (strcmp(filename, "-") == 0) {
 return mode[0] == 'r' ? stdin : stdout;
 } else if ((fp = fopen(filename, mode)) == NULL) {
 perror(filename);
 exit(1);
 }
 return(fp);

} /* end of open_file */

 106

/**

 Synopsis [Compute the maximal path of the generated tree]

 Description []

**/

double computeMaxSizeofTree(int depth)
{

 // number of internal nodes on the longest path
 int path = rmax;
 cout << "\n#max_path = "<< path;
 double sum = 1;
 int i,j,temp;

 for (i = 0; i < rmax-depth; i++){
 temp = 1; // for the root node
 for (j = 0; j < i + 1; j++)
 temp = temp * (path - j);
 sum += pow((BLT->max_io()-1), i + 1) * temp;
 }
 return sum;
}

/**

 Synopsis [Writing output tree to a dot file]

 Description []

**/

void dumpDot(TreeNode* node, char* title)
{
 toDot << "\ndigraph Before {\n";
 toDot << "size=\"10,18\";\n"; //
 toDot << "label=\""<<title<<"\";"; // title of the graph
 toDot << "orientation=\"landscape\";\n"; //
 toDot << "center=\"page\";\n";
 node->writeDot();
 toDot << "\n}";
}

 107

/**

 Synopsis []

 Description [initialize and allocate auxiliary data structures
 (globally declared), used for AND/OR enumeration and
 recursive learning]

**/

int init_and_alloc_auxData(recurOptions *option)
{
 BLT = new BnetLookupTable();
 BLT->write();

 BLTsize = BLT->size();
 int BLTmax_io = BLT->max_io();

 signs = new short[BLTmax_io];
 io_val = new unsigned char[BLTmax_io];

 // for creating justifying sets
 namesJ = new short[BLTmax_io + 1];
 valsJ = new unsigned char[BLTmax_io+1];
 nJset = new short[BLTsize-1];

 // these two are for learning
 kids_val = new unsigned char[BLTsize];
 node_val = new unsigned char[BLTsize];

 // this var hold the size of the biggest AND/OR graph
 max_nodes = 0;

 // initization of auxiliary pointers
 szAO_inp = NULL;

 // the array for ordering, used for ord_alg=0, and for ord_alg=1,
 // these algorithms operate on the sizes of AND/OR graphs
 if (option->ord_alg == 0 ||option->ord_alg == 1){

 szAO_inp = new int [net->ninputs];
 // it must be initialized
 int i;
 for (i = 0; i < net->ninputs; i++)
 szAO_inp[i] = 0;

 108

 }
 else if (option->ord_alg == 2)
 // else we prepare array for the traversing through the tree
 {
 // under construction!!
 }
 // size of the BnetLookuptable is returned
 return BLT->size();
}

/**

 Synopsis [Free auxilliary arrays]

 Description [Free auxilliary arrays]

**/

void free_auxData()
{
 delete[] kids_val;
 delete[] node_val;
 delete[] nJset;
 delete[] namesJ;
 delete[] valsJ;
 delete[] signs;
 delete[] io_val;
 delete BLT;
}

/**

 Synopsis [AND/OR enumeration used for node assignment specified in
 option]

 Description [Perform the AND/OR enumeration for node specified in
 option]

**/

void do_AOtree(recurOptions *option)
{
 long localTime = util_cpu_time();

 // @ in this version hash table is allocated for each single tree
 // allocate Hash Table

 109

 Hash = new hsh_tabel(BLTsize*3);

 root =
 new TreeNode(option->depth,option->node,
 (option->val) ? val1 : val0, option);

 if (root){ // exists

 // learning if such option
 if (option->learn || option->dumpImps)
 root->learning();

 // dumping implications if such option
 if (option->dumpImps){
 root->append_dumpImps((option->val) ? 0 : 1);
 }

 // dump tree in Dot format to dumpfileDot
 if (option->dumpDot){
 cout << "\ndumping..";
 dumpDot(root, option->file_net);
 }

 // dumping in default (robust) format the final AND/OR graph
 if (option->dump)
 root->writeTree();

 cout << ", time = "<< util_print_time(util_cpu_time() - localTime);

#ifdef DEBUG_PATH
 // this was used for debugging
 cout << "\nPaths with unjustified nodes are:";
 tempP = new short[BLTsize];
 root->write_rootPaths(rmax-option->depth);
#endif

 //Hash->write(1);
 Hash->statistics();
 }

 // this also if root = NULL
 delete Hash;
}

 110

/**

 Synopsis [Main function]

 Description []

**/

int main(int argc, char *argv[])
{
 recurOptions *option; /* options */
 FILE *fp; /* network file pointer */
 int pr; /* verbosity level */
 long localTime; /* stores elapsed CPU times */
 int i; /* loop index */
 int ok; /* overall return value from main() */
 int BLTsize;
 long localTimeAll;
 char* out_file_imps = NULL; /* output file for implications */

 if (argc <= 1) {
 cout << "usage: recler [options] <circuit.blif>" << endl;
 cout << "recler -help" << endl;
 exit(-1);
 }

 // read control options
 option = new recurOptions();
 option->Read_recurOptions(argc, argv);

 // initialization
 net = NULL; // network
 pr = option->verb; // verbosity level
 fp = open_file(option->file_net, "r"); // input file

 // not possible to use from stinput
 i = strlen(option->file_net);

 // reading input blif
 if (i > 5 && strcmp(option->file_net+i-5, ".blif") == 0)
 net = Bnet_ReadNetBlif(fp,pr);
 else
 cout << "Warning input UNKNOWN!";

 if (net == NULL) {
 (void) fprintf(stderr,"Syntax error in %s.\n",option->file_net);

 111

 exit(2);
 }

 // end of reading input file
 (void) fclose(fp);

 // output file for implications if needed
 if (option->dumpImps){
 out_file_imps = strdup(option->file_net);
 *strrchr(out_file_imps, '.') = 0;
 out_file_imps = strcat(out_file_imps,".1.imps");
 open_output(out_file_imps);
 }

 // prepare dot-output file if needed
 if (option->dumpDot)
 open_outputDot(option->dumpfileDot);

 // inicialization and allocation of auxiliary structures
 BLTsize = init_and_alloc_auxData(option);

 // cheking options; @@ need to be done

 // used when measuring time
 localTimeAll = util_cpu_time();

 // start building AND/OR graph for single graph, specified in options
 if (option->single){

 do_AOtree(option);

 } // end of building single tree
 else{
 // loop for running recursive learning for all
 // nodes for values 0 and 1

 // if doing for ordering, AND/OR graphs will be build only for inputs
 int limit = (option->ord_alg==0||option->ord_alg==1)? net->ninputs:BLTsize;

 for (i = 0; i < limit; i++){

 // performing and/or for node i
 option->node = i;

 // first for logic "1"

 112

 option->val = 1;

 do_AOtree(option);

 // and then for logic "0"
 option->val = 0;

 // do the tree
 do_AOtree(option);

 }
 if (option->ord_alg == 0 || option->ord_alg == 1)
 do_AOordering(NULL, option);
 }
 // closing output files
 if(option->dumpDot) // dot-file
 close_outputDot();

 if (option->dumpImps){ // implication-file
 close_output();
 delete out_file_imps;
 }

 // freeing auxiliary structures
 free_auxData();

 // freeing main allocated structures
 Bnet_FreeNetwork (net);
 delete option;

#ifdef DMALLOC
 dmalloc_log_unfreed();
 dmalloc_shutdown();
#endif
 exit(ok);
 /* NOTREACHED */
} /* end of main */

